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Abstract

Model-driven development (MDD) has become a promising trend in software
engineering for a number of reasons. Models as the key artifacts help the
developers to abstract from irrelevant details, focus on important aspects of
the underlying domain, and thus master complexity. As software systems
grow, models may grow as well and �nally become possibly too large to be
developed and maintained in a comprehensible way. In traditional software
development, the complexity of software systems is tackled by dividing the
system into smaller cohesive parts, so-called components, and let distributed
teams work on each concurrently. The question arises how this strategy can
be applied to model-driven development.

The overall aim of this thesis is to develop a formalized modularization
concept to enable the structured and largely independent development of in-
terrelated models in larger teams. To this end, this thesis proposes component
models with explicit export and import interfaces where exports declare what
is provided while imports declare what it needed. Then, composite model
can be connected by connecting their compatible export and import interfaces
yielding so-called composite models. Suitable to composite models, a transfor-
mation approach is developed which allows to describe changes over the whole
composition structure.

From the practical point of view, this concept especially targets models
based on the Eclipse Modeling Framework (EMF). In the modeling commu-
nity, EMF has evolved to a very popular framework which provides modeling
and code generation facilities for Java applications based on structured data
models.

Since graphs are a natural way to represent the underlying structure of vi-
sual models, the formalization is based on graph transformation. Incorporated
concepts according to distribution heavily rely on distributed graph trans-
formation introduced by Taentzer. Typed graphs with inheritance and con-
tainment structures are well suited to describe the essentials of EMF models.
However, they also induce a number of constraints like acyclic inheritance and
containment which have to be taken into account. The category-theoretical
foundation in this thesis allows for the precise de�nition of consistent composite
graph transformations satisfying all inheritance and containment conditions.

The composite modeling approach is shown to be coherent with the devel-
opment of tool support for composite EMF models and composite EMF model
transformation.



Zusammenfassung

Die modellgetriebenen Softwareentwicklung (MSD) ist ein vielversprechender
Trend aus unterschiedlichsten Gründen. Modelle als die Schlüsselelemente
in der MSD erlauben Entwicklern von irrelevanten Details zu abstrahieren,
sich auf wichtige Aspekte der Zieldomäne zu konzentrieren und damit die
Komplexität von Softwaresystemen zu meistern. Eine stetige Steigerung der
Komplexität führt jedoch auch zu stetig wachsenden Modellen. Dies geht so
lange gut, bis die Modelle dem Anspruch der guten Wartbarkeit und Ver-
ständlichkeit selbst nicht mehr genügen. In herkömmlicher Softwareentwick-
lung wird der Komplexität mit Verteilung begegnet, d.h. das Gesamtsystem
wird eine Menge stark zusammengehörender Teile, den Softwarekomponenten,
zerteilt. An diesen können dann verteilte Teams parallel arbeiten. Die Frage
ist nun, ob und wie diese Strategie auch auf die modellgetriebene Softwareen-
twicklung angewendet werden kann.

Entsprechend ist das groÿe Ziel dieser Arbeit die Entwicklung eines for-
mal fundierten Modularisierungskonzepts, welches die strukturierte und weit-
gehend unabhängige Entwicklung von miteinander verknüpften Modellen in
groÿen Entwicklerteams ermöglicht und unterstützt. Diesen Zweck sollen Kom-
ponentenmodelle mit expliziten Import- und Exportschnittstellen erfüllen. Ex-
porte identi�zieren die Teile die verö�entlicht werden, währende Importe die
Teile benennt, welche von auÿen benötigt und konsumiert werden. Letz-
tendlich werden Komponentenmodelle nur durch das Verbinden ihrer zueinan-
der kompatiblen Export- und Importschnittstellen verbunden. Ein solch entste-
hender Modellverband wird composite model genannt. Passend zu solchen Ver-
bänden wird ein Transformationsansatz entwickelt, welcher das Beschreiben
von Modelländerungen über einzelne Modellgrenzen hinweg erlaubt und damit
das parallele Ändern beliebiger Modelle eines Verbands.

Dieses Konzept wird von praktischer Seite mit besonderem Fokus auf eine
bestehende Technologie entwickelt, dem Eclipse Modeling Framework (EMF).
EMF ist in der MSD Welt weit verbreitet und erfreut sich weiter wachsender
Beliebtheit. Beispielsweise bietet EMF, neben den Erweiterungen durch zahlre-
iche andere Eclipse-Projekte, eine vollständige Infrastruktur für das Generieren
von Java Anwendungen basierend auf strukturierten Datenmodellen.

Da Graphen auf natürlich Weise die unterliegende Struktur von (visuellen)
Modellen darstellen können, basiert der Formalismus in dieser Arbeit auf den
Theorien und Konzepte der Graphtransformation. Dabei ist der Verteilungsas-
pekt insbesondere durch die Arbeiten von Taentzer zu Verteilter Graphtrans-
formation geprägt. Die wesentlichen Strukturelemente von EMF Modellen
werden durch getypte Graphen beschrieben, die zusätzliche Strukturen zur
Darstellung von Vererbungs- und Enthaltenseinsbeziehungen (Containment)
bereitstellen. Gerade diese zusätzlichen Strukturen führen im Formalismus zu
einer Reihe von Nebenbedingungen, denen auf geeignete Weise Rechnung ge-
tragen werden muss. So erlaubt das kategoriale Fundament in dieser Arbeit



die Transformation auf Modellverbänden so zu de�nieren, dass auch nach der
Transformation einer Vielzahl miteinander verbundener Modelle die Bedingun-
gen bezüglich Vererbung und Containment überall erfüllt werden.

Die Arbeit rundet die Implementierung der Konzepte in die Eclipse Werkzeuge
CompoEMF und CompoHenshin ab, welche die Machbarkeit und Kohärenz
zeigen.
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1

Chapter 1

Introduction

Software engineers have to cope with a continuously increasing complexity in
software development. A promising paradigm addressing this issue is model-
driven software development (MDD). Here, the main artifacts are models being
ideal means to master complexity by abstraction and thus enable developers to
focus on application-speci�c aspects of a software system. All implementation
details are added by a code generator which is a highly reused part of a model-
driven infrastructure.

1.1 Motivation

Model-driven software development has an increasing importance in software
engineering. Nevertheless, the proceeding growth of software systems may
yield very large models as well being possibly too large to be developed and
maintained in a comprehensible way. In traditional software development, it is
common practice to partition the target system into some kind of components
and let distributed development teams work on each. This divide and conquer
strategy does not only meet complexity related concerns but also o�ers the
chance to work on components concurrently.

The question arises how this strategy can be applied to model-driven devel-
opment, i.e., how models can be treated by teams being physically distributed
and dealing with di�erent logical aspects of software systems. An obvious idea
is to set up a central repository for models which can be used by all teams. This
solution is straightforward to implement. However, central repositories sup-
port the work of physically distributed modelers who still deal with logically
undistributed models. This is not always adequate: for instance, in model-
driven open source development, software components may be developed by
truly independent teams. In this case, composite models where each team
is working on its model component would be more adequate. Furthermore,
designer teams might not want to expose their full model to everybody for a
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couple of reasons. On the one hand, they may want to hide sensitive informa-
tion on model level and indeed information hiding is a well-known and highly
appreciated concept in the object-oriented paradigm. On the other hand, a
small but essential subset of the original model may ease to carry-over parts
and reuse them. Consequently, a rather modular approach is needed here.

Being the central artifacts in the model-driven development, models are
subject to direct model modi�cations. They are usually performed by model
transformations, one of the essential activities in MDD. As editing operations,
model transformations are naturally performed directly on the model, called
in-place. As for a set of distributed models, the question arises anew: how
can such models be transformed in a distributed manner? And since a set of
distributed and interconnected artifacts is always a synchronization challenge,
how can they be transformed in a coordinated way? Obviously, according to a
modular modeling approach, a transformation concept is needed able to deal
with distributed interconnected models.

In the modeling community, the Eclipse Modeling Framework (EMF) [27,
74] has evolved to a well-known and widely used technology. EMF provides
modeling and code generation capabilities based on so-called structural data
models. As they describe structural aspects only, they are mainly used to spec-
ify domain-speci�c languages. EMF complies with Essential MOF (EMOF) as
part of OMG's Meta Object Facility (MOF) 2.0 speci�cation [63].

Interestingly, EMF does already support a plain model distribution mech-
anism where each model element can refer directly to elements contained in
a remote resource, i.e., stored elsewhere. This concept is �ne as long as an
undistributed model is expected since technically arbitrary connected EMF
models appear as a single model in memory. Moreover, each element can be
referred to in an unstructured manner which is not always desired and which
opposes to the concept of information hiding.

There are a number of in-place EMF model transformation approaches
available too, e.g., Kermeta [51], EWL [55], EMF Tiger [9], Moment2 [13],
and Henshin [37, 3].

Altogether, this sounds like a promising base to build up on.

1.2 Goals

The central goal of this thesis is the development of a concept for composite
EMF modeling which is in particular formally funded. Composite EMF mod-
eling subsumes here, on the one hand, a modularization concept which allows
for a logical distribution of EMF model parts into interconnected EMF com-
ponents models. EMF component models shall be connected in a structured
way, i.e., the connection between two EMF models shall only be established
if they are compatible with each other. In the following, such composed EMF
component models are called composite EMF models.
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On the other hand, composite EMF modeling also subsumes a transforma-
tion concept for composite EMF models, called composite EMF model trans-
formation, which appropriately handles synchronization issues. This includes
a closer consideration which synchronization issues may occur at all and how
to tackle them.

Both concepts, the composite EMF models and composite EMF model
transformation, deserve a formal foundation to allow for reasoning and ana-
lyzes. The reasoning shall especially assure that the transformation of dis-
tributed EMF models performs in a consistent way, i.e., that transformations
yield composite EMF models again. Further elaborations on analysis are be-
yond the objectives of this thesis but are, however, enabled by the formal
foundation.

As proof of concept, this thesis shall also comprise a prototypical implemen-
tation of composite EMF models and a tool dedicated to their transformation.

1.3 Main Results

The main result of this thesis is a concept for composite EMF modeling which
allows for the logical distribution of EMF models and their transformations.
Composite models consist of component models each being equipped with a
number of export and import interface models. Export interfaces specify model
parts that are provided to the environment while import interfaces specify
model parts being required. A composite model is build up from component
models being connected via their interfaces. The explicit declaration of in-
terfaces allows for an independent de�nition of component models such that
they can be connected later. Furthermore, explicit interfaces support informa-
tion hiding in a straightforward way since model elements are either shared
explicitly or not at all.

The composite EMF modeling approach is given twofold, i.e., a formal
foundation is provided as well as tool implementations.

Formal Foundation. To provide a formal foundation of composite EMF
modeling with explicit import and export interfaces, a number of approaches
are combined. Since graphs are an ideal means to represent the underlying
structure of (visual) models, the composite modeling approach is based on
graph theory and algebraic graph transformation [23]. EMF model speci�c
structural properties such as inheritance and containment edges are captured
by additional dedicated graph structures yielding graphs with inheritance and
containment structures. This is essentially incorporated from the work of
Biermann et al. [11]. The notion of distribution is added by taking up and
adapting the concepts of distributed graph transformation in [78]. However, in
[78] Taentzer does not consider explicit import and export interfaces which are
fundamental to the composite modeling approach as proposed in this thesis.
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As a key concept in the modeling world, meta modeling is taken into ac-
count in the formalization as well yielding typed composite graphs with inher-
itance and containment. For ordinary graphs this approach is quite common
[20]. However, the approach of the present thesis uses this technique also to
prede�ne possible shapes of compositions, i.e., possible interrelations between
interfaces are speci�ed on meta level already. This approach is believed to be
a straightforward continuation of the ordinary meta modeling concept when
applied to model composition.

The formalization of typed composite graphs with inheritance and con-
tainment as well as their transformations is based on category theory. Formal
reasoning shows that composite graphs and graph morphisms form a cate-
gory which is later used to de�ne composite graph transformations as double
pushouts in this category. Properties of the category of typed graphs with
node type inheritance are shown by Hermann et al. in [38] and are reused in
this context. EMF related properties concerning containment edges, however,
impede the general existence of pushouts (see also [11]). Therefore, a restricted
form of rules is de�ned, called consistent rules, and it is shown that the appli-
cation of consistent rules to composite graphs lead to composite graphs again.
With the help of [26] it is shown that composite graph transformations can be
constructed component-wise.

The most recent enhancement, called weak composite models, allows export
interfaces to occur without their bodies. This underlines the vision of truly
independent component models in the sense that components may be really
hidden somehow except of their export interfaces. It is additionally shown,
that the correspondingly de�ned transformation can be led back to ordinary
composite graph transformation.

Implementation and Tooling According to the main formal results, tool
support has been developed.

A tool called CompoEMF [73, 72] comes as Eclipse [22] plugin and repre-
sents a prototypical implementation of the formal concepts of composite EMF
models. Its main intend is high reuse of existing EMF models, i.e., ordinary
EMF models may easily become parts of component models. Interface data
are consequently stored in separate interface models, being EMF models as
well. While the formalization of typed composite graphs with inheritance and
containment structures does not explicitly consider attributes, CompoEMF
supports attributes anyhow in a coherent way, i.e., sharing attributes requires
their explicit export and import. In practice, the access of imported attributes
leads to a delegate request along the interface chain in order to gather the ac-
tual attribute value. CompoEMF is also shipped with a tree-based editor and
a graphical editor which support the user with features beyond basic CRUD
operations.
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Composite EMF model transformations are implemented by CompoHen-
shin [76, 75], a tool which builds up on the transformation engine of Henshin
[37, 3]. It exploits the fact, that composite model transformations can be
implemented as a number of coordinated local model transformation. A dedi-
cated editor supports the creation of composite model rules. Their application
is supported by means of the CompoHenshin API yet.

CompoEMF and CompoHenshin are prototype implementations of the for-
mal concepts. While they leave a number of improvements open, they already
show the coherence of the concepts.

Note that none of these tools provide implementations in accordance to
the recently elaborated weak composite graphs.

1.4 Related Publications of the Author

This section gives are short summary of own publications strongly related to
this thesis.

In [44], a classi�cation of component concepts is given whereas the one
with explicit import and export interfaces is focused on. It especially sketches
composite models with explicit and implicit interfaces using concepts of dis-
tributed graph transformation and outlines di�erent kinds of composite model
transformations.

While [42] outlines the thesis project in general, the concept of typed com-
posite graphs with explicit import and export interfaces is formalized in detail
in [45]. These de�nitions are further improved in [46] which also provides more
technical considerations towards composite graph transformation. Finally, the
journal paper [47] formalizes the transformation of typed composite graphs
with inheritance and containment structures. This thesis continues that re-
search and clari�es the conditions a match has to satisfy to perform composite
transformations. This includes the de�nition of pushout complements in the
category of composite graphs and morphisms. Moreover, the concepts of weak
composite graphs and their transformation are new and published with this
thesis at �rst.

In the meantime, [3] introduces Henshin, an o�cial Eclipse incubation
project and tool for EMF model transformation, at which the author partici-
pates as initial committer.

1.5 Organization of the Chapters

The remainder of this thesis is structured as follows (compare Fig. 1.1): Chap-
ter 2 gives an informal overview of composite modeling. This includes a general
survey of existing composition approaches as well as an informal introduction
into composite EMF models with explicit import and export interfaces and
their transformation. This explicit structuring of component models is not
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trivial and deserves careful considerations of the engineers. To this end, a
structured design process may help which is also outlined in that chapter.
Last, composite modeling is further motivated by some examples where one of
them is the running example throughout the thesis.

Formalizations and implementations are placed in separate parts, Part I
and Part II, respectively. Part I starts with a general introduction to algebraic
graph transformation in Chap. 3 whose basic de�nitions are extended by inher-
itance and containment structures in Chap. 4 to capture specialties of EMF.
With the local graph structures being properly de�ned, Chap. 5 goes for their
composition by distributed graphs. So far, only simple graphs are composed.
Chapter 6 then combines all concepts and introduces typed composite graphs
with inheritance and containment and their corresponding transformation.

Part II introduces the implementation and tooling for composite EMFmod-
els, �rst. For sake of a fair judgment of CompoEMF, essentials of EMF are
presented beforehand. CompoEMF is then described according to its imple-
mentation and editor support. CompoHenshin is presented in a similar way:
At �rst, Henshin is outlined stand-alone which shall serve as a good basis for
the subsequent introduction of CompoHenshin.

3. Introduction to Algebraic 
Graph Transformation

4. Transformation of Graphs with 
Inheritance and Containment

5. Transformation of 
Composite Graphs

6. Transformation of 
Composite Graphs with 

Inheritance and Containment

2. Composite Modeling 
(with Explicit Import and Export Interfaces)

Formal Foundation

Implementation and Tooling

formalized by

implemented by

serves as basis for serves as basis for

serves as basis for serves as basis for

transforms

8. Composite EMF Transformation 
(CompoHenshin)

7. Composite EMF Models 
(CompoEMF)

Figure 1.1: Illustration of the main content of this thesis.

A discussion of related work and concluding remarks can be found in
Chap. 9 and Chap. 10, respectively.
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Chapter 2

Composite Modeling

The model-driven development of complex software systems rapidly leads to
large models. An intuitive way of mastering complexity is to develop a number
of smaller models being interrelated somehow. Such a modularization facili-
tates common desired properties, e.g., the readability and understandability
of models, their reusability within as well as beyond a software system, and
the �exibility to develop them independently by possibly truly distributed de-
velopers.

Section 2.1 presents an overview of state-of-the-art approaches of model
composition. It especially becomes apparent that, so far, model composition
research solely focuses on techniques in order to merge or integrate individual
models. In contrast, the approach proposed in this thesis rather elaborates on
the independent and consistent development based on interrelated component
models, called composite models. To this end, composite models with explicit
import and export interfaces are introduced whose modi�cations are described
by a corresponding model transformation approach. They are presented in
Sec. 2.2 and Sec. 2.3, respectively. Note that the remainder of this chapter
and this thesis consider composite modeling with explicit import and export
interfaces only.

Obviously, the power of being able to de�ne arbitrary interrelated compo-
nent models comes with a great responsibility. Developers are required to early
de�ne which kinds of components shall exist and how they shall be connected.
This deserves a general process for collaborative and distributed modeling.
Therefore, Sec. 2.4 sketches a possible process which, however, requires fur-
ther elaboration and work in the future.

Last but not least, in Sec. 2.5 example scenarios for composite modeling
are presented at which one of them is to be the running example throughout
this thesis.
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2.1 Composition of Models: State of the Art

The composition of models is generally characterized by multiple component
models and interrelation between the models describing some sort of overlap-
ping or correspondence. In the following, a classi�cation of model composition
approaches is given [44]. Afterwards, a selection of existing approaches and
tools are outlined.

2.1.1 Classi�cation

For an explicit consideration of composition concepts for models, the compo-
sition structure, also called network structure, is considered separately from
the internal structure of models, called object structure. Figure 2.1 illustrates
a general classi�cation on network level in three schemes.

B B

B
B

IF

IF

B

B B

E

E

E

I

I

B

B
B

B

(a) (b) (c)

Figure 2.1: Schemas of component models with implicit interfaces (a), with
common interfaces (b), and with explicit import/export interfaces (c).

Component models with implicit interfaces are illustrated in (a). All
models are interpreted as so-called body models (B) which carry the data of a
certain domain. Elements in a body model may directly refer to arbitrary ele-
ments in other body models. This technique does not need intermediaries/in-
terfaces to connect with each other and thus can be considered e�cient, i.e.,
there is no overhead by additional interfaces. Nevertheless, it is also very plain
since this kind of composition is possible only if all elements are visible to the
environment. Due to the lack of interfaces, modularization is supported rather
physically. That means, the kind of interrelation between models may be
arbitrary and is not limited somehow in favor of the de�nition of logical com-
ponents. Furthermore, important modularization concepts like information
hiding are not supported. With regard to interfaces, the elements referred to
by the source model can be considered as implicit import while they constitute
the implicit export interface in the context of the target model.
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Component models with common interfaces as depicted in (b) can
also be described by bipartite network graphs. Network nodes are either body
nodes (B) or interface nodes (IF) at which network edges run from interfaces
to bodies. This structure describes component models whose corresponding
objects are identi�ed over a common interface. While interfaces are explicitly
given, again information hiding is not supported, i.e., all elements are accessible
from the outside. The notion of a component is still vague since interfaces
may connect an arbitrary number of body models and body models might
be connected by more than one interface. The usage of additional interface
models yields some overhead.

This schema is the most common and does often appear in conjunction with
the integration of uncoupled models which then yields a new single assembled
model. In the past, the research on model composition especially focuses on
this topic. The integration is usually done in two steps: First, some kind
of matching is performed which �nds or completes correspondences between
models. Correspondences may be kept in form of an interface model. The
matching is often speci�ed over a dedicated composition language not being
related to the actual domain. Second, models are merged with respect to the
correspondences found. This is often implemented by model transformation or
at least can be viewed as such [6]. Prior to the integration, however, models
are usually treated as individuals without any correlation. Apparently, this
may easily lead to inconsistencies.

Component models with explicit import and export interfaces have
received less attention in the modeling community yet. Their general schema
is illustrated in (c) where each component is constituted by exactly one body
model (B) and an arbitrary number of import (I) and export interface mod-
els (E). Exports identify those elements of their body which are provided to
the environment while imports identify those being consumed. Accordingly,
components can only be connected via import-export relations. This schema
is the only one providing an explicit de�nition of components and o�ering in-
formation hiding since all elements to be exposed have to explicitly occur in
the export interface. Due to the interfaces which serve as kind of facade [31],
developers are enabled to work with their models independently. Obviously,
interfaces have to remain stable but the developer is aware of existing interfaces
and what parts of the component may (or may not) be safely modi�ed. Any-
how, export interfaces may be extended and import interfaces may be reduced
without running into inconsistencies. The major shortcoming of this approach
is the comparatively high overhead of additional interface models which can
be, however, compensated to some extend by interfaces being simpler than
their body.
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2.1.2 Survey of Existing Approaches

The Eclipse Modeling Framework [27] is a famous representative of schema
(a). EMF models can be structured in separate resources (mostly �les) which
may be interconnected by so-called remote references, i.e., references from
local model elements to remote model elements. The look-up of remote model
elements is realized by proxy model elements which resolve remote references
on demand. EMF supports meta modeling, i.e., meta models and instances
over them can be created. The physical distribution may take place on both
meta level and instance level. See [74] and Sec. 7.1 for further details on EMF.

One of the popular tools of schema (b) is the EMF based Atlas Model
Weaver (AMW) [7, 2], an Eclipse project at incubation state. It allows estab-
lishing relationships between elements of di�erent independent models yield-
ing a weaving model, the interface model. Linking model elements can be
performed manually and alternatively be inferred by means of a match op-
erator. Weaving models must conform to an extensible weaving meta model
which declares permitted relationships. The term weaving model does already
indicate that related models are to be woven into one big model. This is done
with the help of the ATL Transformation Language (ATL) [40, 5], a model
transformation language, toolkit, and also an Eclipse project. Note that the
weaving process does not destroy the original models but creates a new one.

Kompose [29, 30] is a generic model composition tool belonging to schema
(b) as well and also focuses in model integration. It exploits so called sig-
natures to automatically infer relationships between model elements. In fact,
signatures are property values of model elements involved. Kompose is built
on top of Kermeta [51] being a meta modeling environment.

The Modeling Aspects Using a Transformation Approach approach, short
MATA [82, 81], follows the aspect-oriented paradigm on model level. That
means, besides a base model there is an aspect model which specify cross-
cutting concerns in the targeted software system, however, in an independent
manner. In contrast to AMW and Kompose, the composition of base model
and aspect model is speci�ed by model transformation rules whose applica-
tion leads to an integrated model. Transformation rules do not only allow the
de�nition of direct correspondences but may describe more complex correla-
tions, e.g., between various elements. Rules may also introduce new elements
in the integrated model which do not occur in the base model nor in the aspect
model. Considering the set of model transformation rules as interface, MATA
is a special instantiation of schema (b).

An approach more related to the management of component models than
to their integration is Virtual EMF [18, 17], a young project for the virtual
composition of EMF models. In terms of schema (b), the interface model is
represented by a so-called virtual model which is, roughly spoken, the union
of selected elements of the related models. What is remarkable about Virtual
EMF is that the virtual model is not a real model but simulated by the tooling
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where request for access and manipulation are redirected to the original models.
As a result, the user interacts with the interface models rather than with the
body models. Since virtual models may refer to any element in the original
models information hiding does not take place. Furthermore, since models may
participate in several virtual models, inconsistencies may occur. Unfortunately,
Virtual EMF also lacks of a theoretical foundation.

Kelsen and Ma propose another interesting composition technique in [50]
basically belonging to schema (b). Body models and interfaces models are
represented by so-called modules and fragmentation models, respectively. In
addition, a module can be understood as the assembled model resulting from
the composition of modules via a fragmentation model. Since composition
cycles are forbidden, modules establish a hierarchy. This approach, however,
incorporates schema (c) in the following sense: In order to introduce informa-
tion hiding, modules are additionally equipped with an interface description.
This description speci�es which nodes are visible to the environment and how
they can be accessed by fragmentation models. Nevertheless, this technique is
all the same a composition technique focusing on the integration (and decom-
position) of models. Operations to allow for a consistent editing of connected
models are not captured in [50]. Furthermore, this concept does not provide
tooling yet. Each module and the assembled model have to conform to the
same meta model. Note that this approach provides a formalization which
proofs that the assembled models also conforms to the meta model of the
modules.

To the best of the author's knowledge, except for the concept propose in
this thesis (see next section), there are no other concepts available for models
which declare import and export interfaces explicitly (cf. Fig. 2.1 schema (c)).
In the following, composite models with explicit import and export interfaces
are considered only.

2.2 Composite Models with Explicit Import and

Export Interfaces

In the previous section, the concept of component models with explicit import
and export interfaces has already been outlined. Composite models are con-
stituted by interconnected component models where each component model
consists of exactly one body model and an arbitrary number of export and
import interface models. Body, import, and export are also called component
parts. The body model represents the actual data of a component, export
interfaces identify those parts of the body being visible to the environment,
and import interfaces identify those parts being required from other compo-
nents. Interconnections between components are exclusively established by
connecting an import interface with an export interface. Needless to say that
interfaces must be compatible in order to be connected. As a consequence,
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the development of modular systems is not only supported but enforced. In
contrast to other approaches, interconnections are understood as sharing infor-
mation with each other rather than establishing correspondences. The amount
of information to be shared must be explicitly de�ned in the interfaces of each
component. This enables information hiding.

Figure 2.2 illustrates a composite model with explicit import and export
interfaces comprising two interconnected component models. They are shown
on network level and object level. The network level represents the topology of
a composite model, i.e., components are represented by nodes (Body, Import,
Export) and relations between them. Dashed edges denote interface-body rela-
tions while dotted edges denote relations between import and export interfaces.
As a kind of re�nement of network nodes and edges, the object layer repre-
sents the actual models of the component parts and the mappings between
model elements, respectively. Intuitively, mappings on object level must be
compatible in the sense that source and target nodes of mapped edges must
be mapped to source and target of the image edge.

B B
E EIE

Network
Level

Object
Level

Figure 2.2: Composite model with explicit import and export interfaces on
network level and object level.

Note that the element in the import interface is connected to an element
in the export interface. Cases where import elements are not connected to
export elements are conceivable but may denote some kind of inconsistency.
The approach proposed in thesis requires complete mappings, i.e., on the one
hand, all elements in interfaces must be connected to a corresponding body
element, and on the other hand, all elements in import interfaces must also be
connected to export elements.
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2.2.1 Meta Modeling

The present approach focuses on object-oriented model structures at which
meta modeling is a common technique. Meta models provide an abstract
description and generalization of the structure of possible instances, i.e., an
instance model conforms to its meta model if it satis�es the structural con-
straints given. To distinguish model elements, nodes and edges in meta models
are generally called classes and associations (or relations) while their counter-
parts in instance models are called objects and links.

Composite models with explicit interfaces support meta modeling as well.
Figure 2.3 shows a simple con�guration on network level with a composite
model as meta model speci�ed above the line. Contained components may
be considered as component meta models. Below the line, a possible instance
conforming to this composite meta model is given. As usual in the Uni�ed
Modeling Language (UML) [65] and adapted here, the typing of network nodes
is given right after the colon. The typing on object level follows from ordinary
meta modeling and is omitted here in order to focus on structural aspects of
components. Note that each component meta model provides its own meta
models, one for each of its component parts.

The example instance shows that instances of component meta models are
free to instantiate an arbitrary number of interfaces as long they conform to
the interface meta model. One component instance at the left decides not to
have an interface at all while the component instance at the right instantiates
even two import interfaces. Each of these import interfaces points to an export
interface. In the present approach, imports must point to exactly one export.
However, approaches are also conceivable which allow imports to point to
multiple exports or to no export at all. Export interfaces, on the contrary, are
allowed to be referred to by arbitrary many import interfaces.

B1 B2E I
Meta
Model

:B1 :E

:B1 :E

:B2:I

:B2:I

:I

Instance
Model

:B1

Figure 2.3: Meta modeling with composite model with explicit import and
export interfaces.
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2.2.2 Inheritance and Containment

The present approach focuses not only on object-oriented model structures
but in particular on Essential MOF [62] based modeling technologies like EMF
[27]. On meta level, they o�er features beyond simple classes and associations.
Prominent aspects are attributes, inheritance including its notion of abstract
classes, and containment structures. Inheritance relations have no correspon-
dences on object level and describe a parent-child relationship or sub-typing.
Instances of abstract node types are forbidden. A containment relation be-
tween two classes de�nes an ownership relation between instances of them: a
class B being contained by class A means that objects of type B must not exist
separately but each of them has to be contained by exactly one object of type
A. Containment relations are of particular meaning to EMF models (see 7.1
for details). Under the conditions that there is a single root object containing
all other objects transitively and that containment is acyclic, the overall con-
tainment structure spans a tree that allows the serialization of instance models
in a structured manner.

Incorporated into the concept of composite models with explicit interfaces,
inheritance o�ers an interesting feature: Import and export interfaces may
have simpler inheritance structures and do not need to expose the complete
inheritance structures of their component bodies. Attributes are treated anal-
ogously to nodes and edges, i.e., if they shall be shared they have to explic-
itly occur in interfaces. Since containment edges have a special meaning, the
present approach of composite models requires them to be mapped to contain-
ment edges again.

Fig. 2.4 shows a simple meta model (left) and instance model (right) of
a component on object level. The component meta model consists of a body
which carries a structure using inheritance. Complying with standard UML
notation, containment edges are denoted by diamonds at the containers end
and inheritance is denoted by a rectangle at the parents end. Italic letters, e.g.,
B , indicate an abstract class. The export interface exploits that in the body
the classes C and D inherit the containment edge to E such that it o�ers the
containment directly in its interface. Especially note that the two containment
edges in the interface are both mapped to one edge in the body. A straightfor-
ward example component instance model at the right of Fig. 2.4 shows objects
and links. Object typing is denoted after the colon while link typing can be
uniquely deduced and is not denoted explicitly here. Please refer to Sec. 2.5
for concrete examples.

Further features, e.g., multiplicities, operations, and enumerations are not
considered in the present approach as this thesis especially focuses on struc-
tural aspects of the modularization. They belong to future work.



2.3. Transformation of Composite Models with Explicit Interfaces 15

Component meta model Component instance model

A

B
D

E

C C
D

E

:A

:D :C

:E :E :E

:E
:C

:E :E

Figure 2.4: Component meta model with inheritance and containment struc-
tures (left) and an instance (right).

2.3 Transformation of Composite Models with

Explicit Interfaces

Model-based development and especially model-driven development heavily
rely on model transformations. Multiple interconnected models, however, de-
serve a more sophisticated transformation technique in order to master the
synchronization challenge and avoid incompatible mappings. For instance,
consider the cases where bodies are modi�ed without adapting related export
interfaces and where exports are modi�ed without taking dependent import
interfaces into account.

Independent of any concrete model transformation approach, this section
considers composite transformations as partial mappings of composite models.
That means, one composite model is partially mapped to another one. The
source composite model describes the initial state while the target composite
model describes the resulting state. They can describe the major e�ects of
model transformations which can be the creation, deletion or update of model
elements and their references.

In [44], a classi�cation of composite graph transformations is given which
directly corresponds to composite model transformations. Four kinds of com-
posite transformations are distinguished with respect to their impact on the
component models and the topology. Internal transformations run in bodies
only and do not change any interface. Component transformations are espe-
cially concerned with manipulations of single components, i.e., body trans-
formations with interface adaptations. Such transformations do not consider
any impact on connected components, in contrast to synchronized transforma-
tions which consist of several parallel component transformations. They allow
actions like modifying export interfaces and adapting connected import inter-
faces accordingly. The transformation kind with the highest possible impact
on composite models, (network) recon�gurations, may change the overall com-
posite network structure which in turn often requires the adaption of already
existing components. In the following, each transformation kind is discussed
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and visualized. Note that this is done in an abstract way for clarity, i.e., meta
modeling is omitted.

Internal transformations are the kind of composite transformation not
having any impact on adjacent components. Actions to be considered are the
creation of nodes and edges in bodies as well as arbitrary actions to existing
elements in a body that are not part of an interface.

Figure 2.5 shows the transformation of two interconnected component mod-
els which are shown on the network level and on the object level as already
introduced. The transformation reveals a modi�cation in the body model of
the right component only (see bottom right in Fig. 2.5). In detail, the body
model is extended by two nodes and two edges. As this has no e�ect on the
interface, this transformation is obviously to be classi�ed as internal transfor-
mation.

B B
E I

B B
E I

Figure 2.5: Example internal transformation.

Component transformations allow all kinds of actions inside one compo-
nent including its interfaces that do not a�ect other components. Apparently,
internal transformations are a special case of component transformations since
they do not change interfaces at all. Further actions are the deletion of model
elements from import interfaces and their creation in export interfaces. These
actions do not require any adaption of connected interfaces.

An example component transformation is shown in Fig. 2.6. The right-
hand side shows the concurrent extension of the body model and its export
interface with additional nodes and edges. The transformation modi�es only
a single component and has no e�ect on the right component.

Synchronized transformations overcome the limitations of component
transformations and allow performing necessary adaptations of connected com-
ponents. Again, this transformation kind includes the ones introduced above.
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B B
E I

B B
E I

Figure 2.6: Example component transformation.

The transformation in Fig. 2.7 depicts an extension of the right compo-
nent's body and import interface. Since import interface elements shall always
point to a corresponding export interface element, the synchronized extension
of an export interface is required. This transformation performs this con-
currently as well. The export and the body of the left component are also
extended by new elements. A mapping from the new import element to the
new export element is added, too.

B B
E I

B B
E I

Figure 2.7: Example synchronized transformations.

Recon�gurations may also change network structures in contrast to the
transformation kinds above. This includes actions such as the creation of com-
ponent parts, the deletion of component parts, and the creation/deletion of
import-export relation. Such changes may require various adaptations of adja-
cent component parts which can be considered as synchronized transformations
on preserved network nodes. Consequently, synchronized transformations form
a subset of recon�gurations.

In Fig. 2.8, the transformation shows a substantial change in the composite
model. A new component occurs including its mandatory body, an import
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interface and the connection to an export. Analogous changes happen on
object level.

B
E

B B
E I

Figure 2.8: Example (network) recon�guration.

2.4 Towards a Composite Modeling Process

When lifting model-driven development to a distributed setting, a couple of
challenges arise: di�erent possible starting points are conceivable, i.e., ques-
tions matter like �Do models already exist?� and �If yes, is their nature rather
monolithic, i.e., they have not been su�ciently modularized yet?�. In the
answer of both questions is yes, then well-de�ned modularization strategies
have to be applied. Furthermore, contributors at di�erent locations might
be responsible for models that are interconnected in some sense. Thus, clear
conditions and conventions for the editing of models are required to avoid
the emergence of inconsistencies. Since model-driven development always in-
volves some kind of generation, e.g., code generation, the question arises how
composite models can be used as a blueprint for generation facilities later on.

Modularization. Adopting the modularization paradigm to monolithic mod-
els deserves a structured procedure of splitting. A splitting can be performed
along horizontal and vertical facet: The former captures cases where several
domains are represented in a single model; each of which shall then be sourced
out in separate domain-speci�c models. Vertical facets are logical units within
a single domain which may be suitably placed in separate models as well. In
how far one or the other splitting strategy can be (semi-)automatically per-
formed remains up to future work.

Note that the splitting has to be performed on both meta level and instance
level. This is a particular challenge which extends into the research topic of
meta model evolution.



2.5. Example Scenarios 19

Distributed model editing. A crucial challenge of collaborative editing is
to preserve the consistency of models while keeping the editing steps as inde-
pendent as possible. Existing collaborative model editors such as Papyrus [33]
and MagicDraw [58] provide an asynchronous approach to editing: a model
can be displayed and modi�ed in multiple distributed editors at once. Fur-
thermore, model parts may be exclusively locked to perform own modi�cations
and prevent the editing by other developers in the meantime. As for the use
of composite models, composite model transformations are well suitable to
also support synchronous editing steps: for instance, consider the construction
of two related components in parallel. Asynchronous and synchronous steps
correspond to the classi�cation in Sec. 2.3, i.e., asynchronous steps refer the
class of component transformations and synchronous steps mean synchronized
transformations and network recon�gurations.

Another aspect of distributed model editing concerns security. That means,
how do responsibilities and ownership relate to visibilities of component models
and their interfaces and permission for certain editing operations.

Generation. Aiming at providing a full life-cycle of model-driven develop-
ment, code generation semantics for composite models has to be considered.
For this purpose di�erent code generation strategies are conceivable. A dis-
tributed code generator might allow the successive code generation for each
individual component model. This may yield multiple separate collections
of component code which may then be merged together to a whole software
system. A centralized code generator might perform code generation for the
composite model as a whole. This may include some kind of assembling of all
component parts to a whole beforehand. It is also conceivable, that a central
code generator accesses all component and interweaves the generate code on
the �y. However, as for composite models proposed in this thesis, no such
generator exists and is future work.

2.5 Example Scenarios

New concepts of composite EMF modeling are now motivated at three di�er-
ent model-driven development scenarios. At �rst, graphical editor development
based on GMF [34] is illustrated which uses a set of domain-speci�c languages
in order to specify graphical editors. Afterwards, model-driven web applica-
tion development is illustrated which comprises the development of a domain-
speci�c language for web applications. Last but not least, the model-based
development of business components by means of a department management
component and a project management component is shown. This last sce-
nario also serves as running example throughout Part I and II to illustrate
formalisms and tooling.
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2.5.1 Graphical Editor Development

The Eclipse Graphical Modeling Framework (GMF) [34] o�ers the development
of graphical editors in a model-driven way using EMF models. It comprises
a family of modeling languages concerned with di�erent aspects of the tar-
geted visual language. Figure 2.9 shows the so-called GMF Dashboard which
illustrates the GMF approach twofold: On the one hand, boxes represent the
models necessary to generate an visual editor. On the other hand, arrows
between the boxes denote the general work�ow.

GMF models and work�ow. As indicated by the name, the domain model
contains the language description of the target domain of the editor. Starting
from here, one can automatically derive a domain generator model (Domain
Gen Model) actually belonging to EMF for model code generation purposes.
Furthermore in a semi-automatic manner, a graphical de�nition model (Graph-
ical Def Model) can be derived which speci�es visual elements of the editor.
This can also be considered as the alphabet of the editor's visual language . The
tooling de�nition model (Tooling Def Model) declares which items shall appear
on a graphical action palette. Domain model, graphical de�nition model, and
tooling de�nition model are altogether completely independent yet, i.e., they
do not contain references to each other. They are all combined by the mapping
model which carries links pointing directly to elements of the other models.
Given such a mapping model as input, a so-called diagram editor generator
model can automatically be generated being the input for the �nal generation
process of the editor code.

Figure 2.9: GMF Dashboard.

Challenges. In this setting, there are especially two issues which call for
composite modeling to be tackled.
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First, links between models are created directly and model changes usu-
ally occur independently. Needless to say that this easily leads to inconsistent
models and GMF is actually very sensitive to inconsistencies. This is also
subject of research by other groups. In [68], the authors describe an model
evolution process for the GMF based editor development. They analyze model
changes and try to deduce co-evolutional editor operations in related models.
In contrast, composite modeling as proposed in this thesis follows a more natu-
ral �co-evolution� approach where composite model transformations modify all
related models concurrently and thus enable to de�ne consistency preserving
model changes.

Second, composite modeling is even more suitable with regard to compo-
nents in a GMF based editor development. Assume the case where a domain
modeler is responsible for mapping the application domain to the domain
model. In addition, there are editor designers who develop domain-speci�c
editors showing the domain model in one or more di�erent views. Compos-
ite models would then support the decoupling of domain model and editor-
speci�c models by specifying them as two components being interconnected
by interfaces. This is outline in [44] by means of a graphical editor for website
development. It further presents concrete composite model transformations
according to the classi�cation given in Sec. 2.3.

Note that EuGENia [54] meets these issues by enabling the domain model
to be equipped with annotations regarding to the desired visual representation.
A special generator then infers appropriate GMF models which are always
consistent to each other. However, this approach does not support separate
developer teams, e.g., one team for the domain model and one team for the ed-
itor. Moreover, supplied annotations only capture a very subset of all features
GMF actually o�ers.

2.5.2 Web Application Development

Following the main idea in the previous section, a speci�cation language for
simple web applications shall be developed now.

Initial meta model. Figure 2.10 shows the abstract syntax of such a lan-
guage in form of a meta model depicted in a UML complying class diagram.
Attributes are fully omitted in order to concentrate on structure aspects; how-
ever, meaningful attributes are obvious, e.g., for names. The class Website

serves as root element and contains a number of entities (Entity) and web
pages (Page). Entities represent some kind of data to be shown at web pages
and may carry attributes (Attribute) and references (Reference) to other en-
tities. Web pages can be interconnected, i.e., a page may contain links which
trigger the navigation to another page. In this simple scenario, pages can either
be static (StaticPage) or dynamic (DynamicPage). While static pages contain
�xed content independent of entities, dynamic pages present a list of available
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entities (IndexPage) or a detailed view for on a speci�c entity (DetailsPage).
Note that Feature, Page, and DynamicPage are abstract classes denoted by
italic letters.

DynamicPage StaticPage

DetailsPageReference IndexPageAttribute

Feature

Page

Website

LinkEntity

target
1

links
*

target1

pages
1..*

startPage
1

features*

entities *
entities
*

Figure 2.10: Modeling language for the speci�cation of simple web application.

Apparently, two di�erent domains have been encoded in this single model:
It encloses the speci�cation of data and the speci�cation of interconnected web
pages for data presentation. In favor of modularity, both shall be divided into
separate but interconnected models.

Revisited composite meta model. Figure 2.11 shows a revisited meta
model in terms of a composite meta model comprising two components 1.
Rounded rectangles wrap component parts and dashed arrows illustrate map-
pings between component parts. The left component represents the content
component, i.e., the one that contains the actual data, while the site map
component at the right is able to represent interconnected web pages. Each
component body resembles the structure of its corresponding part in the origi-
nal meta model. Note that the class Entity appears in both component's body
models as it actually concerns both. The components are connected via their
interfaces. In detail, the left-hand component is equipped with an import and
export interface able to expose entities and also to let entities of other content
models be consumed. On the right-hand side, the site map model imports
entities to be presented on web pages. In addition, even web pages of other
site map models may be connected. Concrete examples follow below.

Note at this point, that associated attributes and references of Entity

objects cannot be exported because the classes Attribute and Reference do
not occur in export interface Export1.1. They are consequently unknown in
site map models. However, in this scenario composite modeling aims at a
modularization of the original large model only while expecting instances of
the component meta models to have full knowledge of each other. This is

1The new components may result from any kind of decomposition algorithm applied to
the large original (meta) model.
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Import2.1

Export2.2
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Body1
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Figure 2.11: Composite (meta) model showing two components as parts of
a modular language for the speci�cation of simple web application (compare
Fig. 2.10).

comparable with approaches where multiple models are merged at the end
and interfaces are designed such that they describe overlaps. For site map
models it is therefore assumed to be su�cient to refer to entities in order to
gather remaining information if required. A scenario with truly independent
components which also hide information is presented in the subsequent section.

Example composite model. An example instance of the composite meta
model in Fig. 2.11 is given in Fig. 2.12. Related component part types are
denoted by corresponding names within the component parts, e.g., in the top-
most left and right the component parts denote to be a body each typed over
Body1. Objects and links are given in a UML conform manner. Object typing
is denoted after the colon; link typing is given with the corresponding type
name at the end. Equal numbers in front of columns (only used in Entity

objects) declare equality and are used in favor of traceability.
Figure 2.12 describes a website structure in the context of a conference.

The content component in the upper right describes the ingredient of the
website which allows to store data concerning authors and their belonging
institution while the upper left speci�es the paper related component. The
latter particularly associates paper and author entities while the author entity
is de�ned in the other component. Therefore, an export and import is required
as shown for the 2:Entity object.

Arranged at the bottom, there is also a component describing the web page
structure. The starting page is a :StaticPage which refers to an :IndexPage
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displaying paper entities and links allowing to look at details of a paper. In
that :DetailsPage may also be links to have a closer look at details of the
authors. Both paper and author entities are imported.

: Attribute

name = "abstract"

: Reference

name = "authors"

1 : Entity

name = "Paper"

: Attribute

name = "title"

: Content

2 : Entity

1 : Entity

2 : Entity

entitiesentities

target
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Import1.1

Export1.1
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Figure 2.12: Example instance of the composite meta model shown in Fig. 2.11.

At the end, the developers might merge all three components along their
interfaces and generate website code out of the resulting big model. Until
then, however, each component can be developed independently of each other
as long as the interfaces remain stable.

2.5.3 Development of Component-Oriented Business

Application

The traditional development of business applications is often characterized
be dividing the target system into software components, develop them con-
currently and connect them somehow. In the following scenario, a similar
approach is followed in the context of model-driven development. Note that
this scenario constitutes the running example in this thesis.

Composite meta model. Consider the speci�cation of two simple software
components in Fig. 2.13. Both components serve as component meta models.
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Body models are arranged at the top while their interfaces are located below.
Again, attributes are omitted in favor of readability and to focus on structural
aspects.

The component at the left depicts a department management component.
The body DepBody speci�es a department to contain employees at which em-
ployees may be assistants, managers, and ordinary employees. All employee
sub-types inherit from Person which may provide properties such as surname,
lastname and so on. Managers may also supervise a number of employees.
The set of interfaces only contains export interfaces which are able to expose
certain subsets of the body. DepExport1 focuses on the department hierarchy
while DepExport3 is able to export any kind of employee. However, the latter
exposes them without any interrelation. In contrast, DepExport2 allows to
export departments and their related employees and managers. Note in par-
ticular, that DepExport2 does not simply resemble the structure of the body
DepBody but even simpli�es it. This is also shown by the dashed arrows where
two of them run from the edges employees and managers in DepExport2 to a
single one, employees, in DepBody.

At the right, a project management component is illustrated. A project
is accomplished by freelancers and employed members. Employed members
are here employees of the company the component is deployed to. Interfaces
of this component o�er to build project hierarchies. In particular, import
interface PrjImport2 imports (information of) employed member by pointing
to exported employee in the department management component. Note that
another export would have served as well, e.g., pointing to the employee in
DepExport3. It is rather a matter of if objects are exported on instance level.
The meta level solely opens up the possibility to export or import objects.

Figure 2.13: Composite meta models of a department management component
(left) and a project management component (right).
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Composite instance model. A composite instance model typed over the
composite meta model in Fig. 2.13 is shown in Fig. 2.14. Rounded rectangles
again specify component parts whose typing is denoted by the underlined text.
Object typing is given after the colon while link typing is omitted this time to
keep the diagram clear. However, their typing can uniquely be deduced. Note
that names in front of colons are given for improved traceability (they might
as well express the value of a name attribute.)

At the left, the component describes a department concerned with com-
puter science whose head is the manager named Frank. The department is
constituted by further sub-departments, software engineering and cloud com-
puting. Exemplarily, the software engineering department also contains em-
ployees. The lower export interface partially exposes the department structure
and the upper export interface exposes some selected objects of the body. The
manager Diane and the department Cloud Computing are not exposed at all,
i.e., they are still hidden towards other components.

The project management instance at the right shows a quality assurance
project whose sub-project elaborated metrics. Each project is accomplished
by some member whereas the employed member object named Felicia is an
imported object and actually part of the department management component.
Note that there are actually two project management components being in-
terconnected. The project management composite meta model (cf. Fig. 2.13)
connects its import interface with its export and therefore enables intercon-
nections between project management component instances.

Figure 2.14: Sample instance of the composite meta model depicted in
Fig. 2.13.

Assuming attributes in this context, it is conceivable that Felicia's vita
stored in the department management component is not exposed to the project
management component. Vice versa, within the project management compo-
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nent the employed member Felicia may be equipped with additional project-
related attributes like hours of work, project role, etc.
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Part I

Formal Foundation
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This �rst of two main Parts provides the formal foundation of the composite
modeling concepts proposed in the present thesis.

All concepts rely on the theory of algebraic graph transformation and cat-
egory theory, that is why in Chap. 3 a general introduction to graph trans-
formation is given. Although attributes are common in models and are also
well-founded in terms of attributed graphs, they are not explicitly considered
throughout this thesis in order to concentrate on structural aspects. However,
they can be added in a straightforward way. Chapter 3 also outlines a general-
ization of the algebraic approach to the categorical level by so-called High-Level
Replacement systems (HLR systems) and HLR categories [24]. They enable
generic de�nitions which can then be instantiated in the context of di�erent
categories. Of particular interest are weak adhesive categories [56] for which
a number of theoretical results are available that may be exploited for related
categories in this thesis.

While the concepts in this thesis focus on EMF models in particular, or-
dinary graphs are not su�cient to represent EMF speci�cs like inheritance
and containment. Therefore, Chap. 4 joins these features to the formalism of
graph transformation yielding transformation of graphs with inheritance and
containment structures.

When local graphs are fully formalized, the formal description of the com-
position is introduced. It relies on distributed graph transformation introduced
by Taentzer [77, 78] and extends the distribution structure notably by explicit
import and export interfaces. In order to focus on the new composition con-
cepts, the formalisms are given for ordinary graphs so far. Not until Chapter 6
the composition and graphs with inheritance and containment structures are
combined leading to the composite graphs with inheritance and containment
structure and their transformation.

These relations are also visualized in Fig. 1.1 in Sec. 1.5.
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Chapter 3

Introduction to Algebraic Graph Transformation

This chapter builds a �rst bridge between the practical modeling world and
the theory-oriented world of algebraic graph transformation [23] as applied in
this thesis. It provides fundamental concepts of how models are formalized
by graphs and how their changes are formalized by graph transformations.
For now, graphs and graph transformations as de�ned in this chapter are
only capable of representing basic model structures and their changes. In
subsequent chapters, however, these de�nitions are extended and therefore
constitute the basis for more subtle structures in order to suit sophisticated
models such as EMF models and distributed/composite models.

In the following, the reader is given a very general approach on how mod-
els and their interrelations can be formalized by graphs and graph morphisms,
respectively. Being a key concept in the modeling world, meta modeling is con-
sidered as well in the formalization. Distinguished graphs, called type graphs,
serve as sort of meta models while their instances are represented by so-called
typed graphs being graphs with appropriate morphisms to their type graphs.
Model changes are formalized by graph transformations which are, on the one
hand, based on the double-pushout approach [19] and, on the other hand, ad-
ditionally formalized over the general framework of High-Level Replacement
Systems (HLR Systems) [24]. The latter provides de�nitions and results on
the level of category theory and enables heavy reuse by applying di�erent
categories of graph-like structures.

Here and throughout the rest of the paper, all aspects are presented in
a formal way accompanied with informal descriptions and examples. Readers
familiar with category theory and the theory of graph transformation may just
skim through the formalisms, at least in this chapter.
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3.1 Typed Graphs

Graphs are a natural means to represent the underlying structure of (visual)
models. A graph primarily consists of a set of nodes and a set of edges which
connect nodes by means of a source and target function. Di�erent graphs may
relate to each other by means of graph morphisms where nodes are mapped to
nodes and edges are mapped to edges. Amongst others, morphisms are used
to formalize the concept of meta modeling. Here, so-called instance or typed
graphs map to a so-called type graph while their elements are called instances or
typed nodes/edges and node/edge types, respectively. Type graphs correspond
to meta models in the modeling world. Graphs may be extended by attributes
as, e.g., presented by Ehrig et al. in [23]. However, this thesis concentrates
on structural aspects and omits the formalization of attributes. Furthermore,
UML-related properties like multiplicities are omitted as well.

Definition 3.1 ((Simple) Graph). A simple graph G = (GN , GE , sG, tG),
shortly called graph, consists of a set GN of nodes, a set GE of edges, as well
as source and target functions sG, tG : GE → GN . ✸

Remark 3.2. If the distinction between nodes and edges is of no importance,
the indices �N� and �E� are omitted, i.e., G instead of GN . Operations on
graphs are de�ned componentwise, e.g., the di�erence between two graphs,
written G \H, is de�ned by GN \HN and GE \HN . Note that such operation
may not necessarily lead to valid graph structures. Individual edges may also
be addressed in the form e : n → m ∈ GE where sG(e) = n ∧ tG(e) = m and
n,m ∈ GN . If the context is clear, the assignment to GE may be left out. ▽

Example 3.3. Figure 3.1 shows two graphs representing excerpts of a larger
system model. On the left-hand side, a simple department management com-
ponent is depicted which consists of a named Department being constituted
by a number of Employees and Managers while managers may supervise em-
ployees. Managers and employees have a full name and a personnel number.
Furthermore, departments may consist of several sub-departments. On the
right, a project management component for companies is depicted. A named
Project with a progress indication ratio may refer to related projects as well
as spawned children projects. Projects have a number of members being em-
ployees of a company (EmployedMember) or being Freelancers. Both provide
a number of useful attributes, e.g., a full name, a project role, and a salary.
These models are interpreted as graphs in the following way: All boxes are
considered as nodes while arrows form the set of edges. Node identities are
depicted in bold face. Edge identities are depicted next to arrows which run
from source nodes to target nodes. Note that in Fig. 3.1 attributes are shown
for comprehensibility only whereas in the examples and formalizations below
they are omitted. △
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Figure 3.1: Graphs modeling a simple department management (left) and a
simple project management (right).

Definition 3.4 (Graph morphism). Given two graphs G and H, a pair of
total functions (fN , fE) with fN : GN → HN and fE : GE → HE forms
a graph morphism f : G → H, shortly morphism, if it ful�lls the following
properties:

1. fN ◦ sG = sH ◦ fE and (compatible source mappings)

2. fN ◦ tG = tH ◦ fE . (compatible target mappings)

If both functions fN and fE are injective, f is called injective. If both functions
fN and fE are inclusions, i.e., GN ⊆ HN and GE ⊆ HE , f is called inclusion.

✸

Graphs may be typed, i.e., a type is assigned to each graph element rep-
resenting an �instance of� relation in terms of models. This type assignment
is accomplished by a total graph morphism which maps typed nodes/edges to
their node/edge types provided by a distinguished graph, called type graph.

Definition 3.5 (Typed graph, type graph and typing graph morphism). A
graph G is called typed graph or instance graph, if there exist a distinguished
graph TG, called type graph, and a total graph morphism typeG : G → TG,
called typing graph morphism. ✸

Example 3.6. Figure 3.2 shows an example instance graph on the left-hand
side and as type graph on the right the department graph of Fig. 3.1 without
attributes. To enable proper di�erentiation, each instance node is equipped
with a name and its type behind the colon, e.g., Frank :Manager. Corre-
sponding to the given type, there exists a typing mapping to its node type.
Edge typings are not explicitly shown by mappings in favor of readability.
However, they can be uniquely deduced as long as there is at most one edge
type between each two node types which is the case in the type graphs of the
running example. On the left-hand side in Fig. 3.2 for example, the edges
between Diane :Manager and :Employee nodes are all typed over the edge
type managed running from the node type Manager to Employee. △
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Figure 3.2: Sample instance graph (left) typed over a type graph (right) rep-
resenting a department management component on instance and type level.

Definition 3.7 (Typed graph morphism). Let G and H be two graphs
typed by the typing graph morphisms typeG : G→ TG and typeH : H → TH,
respectively. A typed graph morphism f : G → H is a graph morphism typed
over a graph morphism t : TG → TH, called type graph morphism, if the
following holds: typeH ◦ f = t ◦ typeG (cf. Fig. 3.3a). ✸

TG
t // TH

G
f //

typeG

OO

H

typeH

OO

(a)

TG

G
f //

typeG
==

H

typeH
aa

(b)

Figure 3.3: A typed graph morphism f (a) typed over a type graph morphism
t and (b) typed over type graph TG.

Remark 3.8. Note that G and H being typed over the same type graph TG
as illustrated in Fig. 3.3b can be considered as a special case of the de�nition
above. Then, TG and TH are equal with t being the identical morphism. Ac-
cordingly, the property to hold reduces to typeH ◦f = typeG. In the following,
such case is expressed by saying that morphism f is typed over TG. ▽

Now that (typed) graphs and graph morphisms are de�ned, some category
theoretical conclusions follow. They are particularly signi�cant in terms of
graph transformations which rely on pushouts as the gluing construction on
graphs (see the following section). A number of category theoretical results
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relate to pushouts, e.g., in terms of their existence, composition and decom-
position.

A category is de�ned over a class of objects and a class of morphisms,
with an identity morphisms for each object and a composition operator on the
morphisms. The class of all graphs and the class of all graph morphisms form
the category Graphs. Analogously, typed graphs and typed graph morphisms
form the category GraphsTG.

It can be shown that both categories are co-complete, i.e., pushouts exist
and consequently a common subgraph can always be constructed at which the
gluing of two graphs may take place. For further details the reader may consult
[23].

Fact 3.9 (Categories Graphs and GraphsTG). Graphs and graph mor-
phisms form a category, called Graphs (cf. [23, Sec. 2.2]). Furthermore,
given a type graph TG, typed graphs over TG and typed graph morphisms
form a category, called GraphsTG. The category GraphsTG can be consid-
ered as a slice category (see [23, Def. A.5]) of Graphs according to a graph
TG.

Remark 3.10. A similar category with injective typed graph morphisms only
forms a category as well. The proof of category properties is straightforward
relying on the fact that the composition of injective graph morphisms leads to
injective graph morphisms again. ▽

Fact 3.11 (Graphs and GraphsTG are co-complete). In the categories
Graphs and GraphsTG pushouts exist (see [23, Sec. 2.3]). In each case,
the initial object is the empty graph (see [23, p. 344]).

The kind of pushouts in GraphsTG is illustrated in Fig. 3.4: Consider
the commutative diagram with the graphs A, B, C, and D. Let A, B, and
C be typed over TG by typeA (not shown), typeB, and typeC , respectively.
Furthermore, let a and c be typed over TG. Then a unique morphism typeD
exists such that D, b, and d are typed over TG by typeD, due to the universal
property of pushouts.

B

b   

typeB

''
A

a
??

c ��

D
typeD // TG

C

d
>>

typeC

77

Figure 3.4: Illustration of the kind of pushouts in GraphsTG.

In [23, Fact 4.16], the authors show that the categories Graphs and
GraphsTG of (typed) graphs and graph morphisms are adhesive categories



38 Chapter 3. Introduction to Algebraic Graph Transformation

[56] along injective morphisms in that category. This allows to apply a number
of results such as the Local Church-Rosser and Parallelism Theorems. Partic-
ularly, properties related to pushouts and pushout complements will facilitate
the reasoning concerning graph transformations in subsequent sections.

Fact 3.12 (Graphs andGraphsTG are adhesive categories.). The categories
Graphs and GraphsTG are adhesive categories, where the monomorphisms
in Graphs and GraphsTG are the injective graph morphisms and injective
typed graph morphisms, respectively.

3.2 Transformation of Typed Graphs

In this section, basic de�nitions concerning transformations in the categories
Graphs and GraphsTG of (typed) graphs and (typed) graph morphisms are
provided. For the sake of simplicity, the formalisms below are mainly given
without typing information while, however, corresponding typing could be
added in a straightforward way analogously to the section above.

The key artifacts of graph transformations are graph rules. Rules consist
of a left-hand side (LHS) L and a right-hand side (RHS) R, each one being
a graph. Furthermore, a gluing graph K indicates corresponding items in L
and R, i.e., identities, by morphisms running from K to L and from K to
R. Roughly spoken, a rule is applied, called transformation step, by �nding a
morphism from L to a host graph G, and replacing the items in G identi�ed
by L with those in R. The replacement preserves all correspondences of L
being mapped by K, deletes those not being mapped by K, and creates items
corresponding to the part of R not being mapped by K.

The following de�nitions correspond to those in [23, Sec. 3] but are, how-
ever, slightly adapted to �t the needs of the current work.

Definition 3.13 (Graph rule). A graph rule p = (L
l← K

r→ R) consists of
the graphs L,K,R, called the left-hand side (LHS), the gluing graph, and the
right-hand side (RHS), respectively, and the two injective graph morphisms
l : K → L and r : K → R. ✸

Remark 3.14. More general de�nitions of graph rules as in [23] do not
require l and r to be injective. This enables rules to express gluing or splitting
of graph elements. In the present approach, however, l and r are required to
be injective to ease the reasoning. ▽

Definition 3.15 (Graph transformation step). Given a rule p as de�ned
above, a graph G, called host or start graph, and an injective graph morphism
m : L→ G, a transformation step G

p,m
=⇒ H from G to graph H is given, if (1)

and (2) in Fig. 3.5 form a double pushout.
In order to conveniently refer to certain parts of the graphs being involved

in a transformation step (cf. Fig. 3.5), the following is de�ned in addition:
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L

m

��

K
loo

d

��

r // R

m′

��

(1) (2)

G D
goo h // H

Figure 3.5: Transformation step by a double pushout (DPO).

• L \ l(K) = LDel represents the part to be deleted,

• R \ r(K) = RCrt represents the part to be created, and

• G \m(L) = GInd represents the part of G that is not mapped by m, i.e.,
that is independent of the transformation step.

✸

Remark 3.16. In Fig. 3.5, note that the morphisms g and h are injective
since l and r are injective (cf. [23, Fact 2.17]). Furthermore, D is called
context graph. Also note again that for graphs the set di�erence is calculated
component-wise, i.e., for the sets of nodes and edges separately, which may
not necessarily lead to a graph. ▽

A graph transformation step is not applicable in general. Consider for
example a graph rule that only intends to delete a node as shown in Fig. 3.6,
i.e., L contains a node while K and R are empty. If one tries to apply this
rule to a host graph and particularly to a node with edges, the context graph
D (compare Fig. 3.5) cannot be constructed in a valid fashion, since it then
would contain dangling edges.

Figure 3.6: Invalid pushout due to a dangling edge.

Consequently, for a graph transformation step to be applicable, D must be
constructed such that it leads to a pushout. A corresponding so-called gluing
condition is given by the authors in [23] and is revisited and adapted below.
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Definition 3.17 (Gluing condition for graphs). Let there be a graph rule

p = (L
l← K

r→ R), a graph G, and an injective morphism m : L→ G. p and
m satisfy the gluing condition if ∀e ∈ GInd

E : sG(e), tG(e) /∈ m(LDel
N ) holds.

Then, m is called match. ✸

Remark 3.18. The constraint given in the de�nition above is also known as
dangling condition or dangling points property. In [23], it is de�ned slightly
di�erent but, however, the notation above is equivalent and the author believes
that it is more intuitive. Additionally, note that the gluing condition given
in [23] contains further properties, e.g., identi�cation points which are only
meaningful in a setting with non-injective morphisms. ▽

If the gluing condition is ful�lled then the context graphs exists and is
unique. This is shown to hold below which also leads to the construction of
the so-called pushout complement, i.e., the context graph D and its adjacent
morphisms.

Fact 3.19 (Existence and uniqueness of context graph). Given a graph trans-

formation step G
p,m
=⇒ H with a graph rule p = (L

l← K
r→ R) and a match

m : L→ G, the context graph D exists and is unique up to isomorphism.

Proof. Consider a pushout diagram analog to Fig. 3.5.
�⇒�. Given the pushout (1), the gluing condition as de�ned above follows from
the properties of pushouts (cf. [23, Fact 2.17]) in the category Graphs: Con-
sider e ∈ GInd

E with sG(e) = mN (n). Due to property 2, m and g are jointly
surjective, there is an e′ ∈ DE with gE(e

′) = e and gN (sD(e
′)) = sG(e). From

property 3 it follows that there is n′ ∈ KN : lN (n′) = n and dN (n′) = sD(e
′)

and consequently n /∈ LDel
N and sG(e) /∈ m(LDel

N ). Analogously for tG(e).
�⇐�. If the gluing condition is satis�ed, one can construct the pushout com-
plement (d, g,D) as follows:

• D = G\m(LDel) is the componentwise construction of the context graph
and

• then d = m ◦ l and g = idD.

The uniqueness of pushout complements follows from the properties of
adhesive HLR categories (cf. property 4 of [23, Fact 4.26]).

✷

Now that conditions are given in order to construct the context graph in a
valid fashion, a transformation step can be applied in two stages: At �rst, the
context graph is constructed as given above, i.e., roughly spoken the images
of LDel are deleted in G which results in D. In stage two, nodes and edges in
RCrt are added to D yielding H.
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Fact 3.20 (Existence and uniqueness of transformation step). Given a graph

transformation step G
p,m
=⇒ H with a graph rule p = (L

l← K
r→ R) and a

match m : L→ G, the transformation step exists and is unique up to isomor-
phism.

Proof. A transformation step can be constructed as follows:

1. Construct the context graph as shown in Fact 3.19.

2. ConstructH as pushout of (K, r, d), i.e., as componentwise disjoint union
H = D ⊎RCrt.

The uniqueness of this construction follows from the uniqueness of D (cf.
Fact 3.19) and the uniqueness of pushout objects (cf. [23, Fact 2.20]). ✷

Remark 3.21. The context graph and the transformation step are con-
structed such that G ⊇ D ⊆ H with g : D ↩→ G and h : D ↩→ H being
inclusions. Analogously, one could easily construct the rules to use inclu-
sions since l and r are injective already. Given a graph rule p, the graph
rule p′ with inclusions can be constructed as follows: K ′ = L \ LDel and
R′ = K ′ ⊎ RCrt. Since l′ and r′ are the identical morphisms idK′ , it is su�-
cient to write p′ = (L ⊇ K ′ ⊆ R′). Obviously, K ′ and R′ are isomorphic to K
and R, respectively. Note that rules with inclusions are not limited compared
to rules with injective morphisms as de�ned so far. Both kinds can be easily
constructed out of the other. ▽

Remark 3.22. The de�nitions of typed graph rules and typed graph trans-
formation steps are straightforward, namely by typed rules and typed trans-
formation steps in the category GraphsTG. Furthermore, in the case of graph
rules with inclusions p = (L ⊇ K ⊆ R) there is typeL ⊇ typeK ⊆ typeR. ▽

3.3 Transformation in High-Level Replacement

Systems

This section lifts the algebraic approach of graph transformation from Sec. 3.2
to the level of category theory. More abstract de�nitions like the one of rule
and transformation step can then be instantiated in subsequent sections which
simpli�es de�nitions that recur again and again similarly. Moreover, general
results can be applied to all instantiations.

High-level replacement systems, short HLR systems, can be considered
as a general and formal framework of graph transformation systems where
transformations are de�ned over objects of HLR categories. An HLR category
is de�ned as a category C and a distinguished class of morphisms M which
speci�es those kind of morphisms to be used in transformation rules. In the
following, the generic concepts of rules and transformation steps in [23, Chap.
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5] are revisited and adapted to �t present needs, e.g., by limiting targeted
categories and morphisms.

Rules consist of a left-hand side L, a right-hand side R, each one being
an object in a given category C. Furthermore, a gluing object K indicates
corresponding items in L and R, i.e., identities, by morphisms running from
K to L and from K to R. Roughly spoken, a rule is applied, called transfor-
mation step, by �nding a morphism from L to an object G, called host object,
and replacing the items identi�ed by L with those in R. The replacement
deletes all items that occur in L without being mapped by K and creates all
items occurring in R without being mapped by K. Those items in K have
counterparts in L and R and are therefore preserved.

As pointed out already, typing plays an important role and is implemented
by typing morphisms. Needless to say, that this approach is continued below
by also providing de�nitions of transformations which take typing into account.

Definition 3.23 (Rule). Let C be a category and letM be a distinguished

class of injective morphisms in C. A rule p = (L
l← K

r→ R) in C consists of
the objects L,K,R, called the left-hand side, the gluing object, and the right-
hand side, respectively, and the two morphisms l : K → L and r : K → R with
l, r ∈M. ✸

Definition 3.24 (Transformation step). Given a rule p as de�ned above,
an object G in C, called host or start object, and a morphism m : L → G in
C, a transformation step G

p,m
=⇒ H from object G to object H in C is given, if

(1) and (2) in Fig. 3.7 form a double pushout in the category C. ✸

L

m

��

K
loo

d

��

r // R

m′

��

(1) (2)

G D
goo h // H

Figure 3.7: Transformation step by a double pushout (DPO).

Remark 3.25. In Fig. 3.7, note that the morphisms g and h are injective
since l and r are injective (cf. [23, Fact 2.17]). Furthermore, D is called context
object. ▽

Definition 3.26 (Applicability of transformation steps). Given a rule p =

(L
l← K

r→ R), an object G and a morphism m : L → G in C, p is called
applicable to G via m if the following conditions are satis�ed:
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1. There are an object D and two morphisms g : D → G and d : K → D as
illustrated in Fig. 3.7 with g belonging to M, such that (1) becomes a
pushout. Then (D, d, g) is called pushout complement.

2. There is a pushout (H,m′, h) over d : K → D and r : K → R in (2) with
h belonging toM.

✸

Now the notion of typing is added to rules and transformation steps by the
category CTG with TG being an object in C.

Definition 3.27 (Typed rule). Let CTG be the slice category of a cate-

gory C and a distinguished object TG in C. A rule p = (L
l← K

r→ R) in
CTG is given by the tuple pTG = (p, type), where L, K, and R are typed
over TG by the triple morphism type = (typeL : L → TG, typeK : K →
TG, typeR : R → TG) (cf. Fig. 3.8), such that typeL ◦ l = typeR ◦ r = typeK
and with typeL, typeR, typeK being total. ✸

L

typeL ''

K
loo

typeK
��

r // R

typeRww
TG

Figure 3.8: Typed rule.

Definition 3.28 (Typed transformation step). A typed transformation step
in CTG is given by the transformation step G

pTG,m
=⇒ H with typed rule pTG and

with the objects G, D and H being typed over TG by appropriate morphisms,
if (1) and (2) are double pushouts in the category CTG as illustrated in Fig. 3.9.

✸

L

��

m

��
(1)

K

��

loo

d

��

r //

(2)

R

||

m′

��
G

uu

D

pp

goo h // H

ppTG

Figure 3.9: Typed transformation step.

Remark 3.29. In order to obtain general results for graph transformation
based on weak adhesive HLR categories, additional properties for the class



44 Chapter 3. Introduction to Algebraic Graph Transformation

of injective morphisms have to be satis�ed (see [23]) such as compatibility
of coproducts withM, existence of initial pushouts overM′-morphisms, and
E ′ −M′− pair factorization. These properties hold for �nitary categories [14]
which are based onM-adhesive categories, a generalization of weak adhesive
HLR categories. In terms of the category of typed graphs with M being the
class of injective typed graph morphisms this means, roughly spoken, typed
graphs in (GraphsTG,M) are �nite if the node and edge sets have �nite
cardinality while the type graph TG itself may be in�nite. The following basic
results for graph transformation are valid for the case of �nitary graphs: Local
Church Rosser Theorem ([23, Thm. 5.12]), Parallelism Theorem ([23, Thm.
5.18]), Concurrency Theorem ([23, Thm. 5.23]), Embedding and Extension
Theorem ([23, Thm. 6.14 and Thm. 6.16]), and Local Con�uence Theorem
([23, Thm. 6.28 and Lemma 6.22]). ▽
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Chapter 4

Transformation of Graphs with Inheritance and

Containment

Graphs as de�ned so far suit well to describe ordinary model structures. In
order to especially represent object-oriented model structures, in particular
MOF-based models like EMF ([27]), plain typed graphs are not su�cient as
they lack prominent aspects of such models, e.g., inheritance with abstract
types and containment structures. Therefore in this chapter, (typed) graphs
with inheritance and containment structures, short IC-graphs, are introduced.
They essentially build upon plain (typed) graphs extended by additional infor-
mation and constraints. Obviously, these additives demand a reconsideration
of related transformations which actually exposes di�culties due to the new
structures. This necessitates the de�nition of consistent transformations to
circumvent occurring problems.

This chapter brings the work in [11] (extended in [12]) and [38] together
which provide a general formalization of EMF model transformation and cat-
egorical reasoning in terms of weak adhesive categories, respectively. It is
structured as follow: At �rst, (typed) graph with inheritance and containment
structures are introduced. Afterwards, their transformation is elaborated.

4.1 Typed Graphs with Inheritance and

Containment Structures

In this section, the concept of typed graphs with inheritance and containment
structures is presented. While inheritance describes a parent-child relationship,
containment de�nes an ownership relation between instances of two node types.
The notion of abstract types is implemented by a distinguished set A which
shares its nodes with the corresponding graph and which declares nodes to be
of abstract types. Analogously to common object-oriented languages, instances
of abstract node types are forbidden.
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The inheritance concept is represented by a relation I which captures in-
heritance information. The relation clan identi�es all clan members of a given
parent node, i.e., children, grandchildren, etc., including the node itself. This
is analogously to [38] and di�ers from the de�nition in [11] which represents
inheritance in form of an inheritance graph. However, the formalization in
[38] appears to be more concise. The semantics of this inheritance concept
is analogous to that of object-oriented programming languages, i.e., features
of parents are passed on to their children. Since attributes are omitted here,
edges are the sole features to inherit. Nevertheless, attributed graphs with
node type inheritance are formalized in [20]. An important constraint with
regard to inheritance is that inheritance cycles are forbidden. This is quite in-
tuitive since children cannot be their own parents. However, this di�ers from
the de�nition in [38] where cyclic inheritance is allowed at �rst and restricted
in a later step.

Containment edges are identi�ed by a subset C of edges of the related
graph. If a containment edge runs from node n to node n′, it is said that n
contains n'. A corresponding relation contains is de�ned in order to identify
all node pairs being connected by such edges. This relation is transitively
de�ned and respects inherited containments. In EMF, it is a desired property
for models that at least all non-abstract nodes are transitively contained in
one root node, mainly for convenient persistence of EMF models. This leads
to instance models with explicit tree structures. However, such a property is
not required in the present approach.

Note at this point that the de�nition of graphs with inheritance and con-
tainment below forms the basis for corresponding graphs on type level and
instance level. This holds true for the related subsequent de�nition of graph
morphisms with inheritance and containment as well aiming at the centraliza-
tion and reuse of properties, on the one hand, and the certainty to deal with
generally equal morphisms all over, on the other hand.

Definition 4.1 (Graph with inheritance and containment). A tuple G =
(T, I, A,C), called graph with inheritance and containment or short IC-graph,
consists of a simple graph T = (GN , GE , sG, tG), an inheritance relation I ⊆
GN ×GN with I∗ being the re�exive and transitive closure of I, a set A ⊆ GN

of abstract nodes and a set C ⊆ GE of containment edges. In addition, it is
required:

• ∀n ∈ GN , the inheritance clan is de�ned by clanG(n) = {n′ ∈ GN |
(n′, n) ∈ I∗} with
∀n,m ∈ GN : n ∈ clanG(m) ∧m ∈ clanG(n) ⇒ n = m (no inheritance
cycles).

Furthermore, the following is de�ned:

• clanG(M) =


n∈M clanG(n).
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• a containment relation containsG corresponding to C:
Let contains′G = {(n,m) ∈ GN × GN | ∃c ∈ C ∧ x, y ∈ GN : sG(c) =
x with n ∈ clanG(x) ∧ tG(c) = y with m ∈ clanG(y)}.
containsG is the transitive closure of contains′G.

• An IC-graph G is called rooted if there is one non-abstract node r ∈
GN \ A, called root node, which contains all other non-abstract nodes
transitively: ∀n ∈ GN \ (A ∪ {r}) : (r, n) ∈ containsG.

• For each simple graph K, its equivalent IC-graph K ′ is de�ned by a
straight inheritance extension with containment as follows: K ′ = (K, ∅, ∅,
∅).

• G is called I-graph if C is empty. For each IC-graph G = (T, I, A,C), its
I-graph is de�ned by G′ = (T, I, A, ∅).

Tuple elements T , I, A and C of an IC-graphG can also be referred to by T (G),
I(G), A(G), and C(G), respectively. Since T speci�es the main structure of
an IC-graph G, from now on GN , GE , sG, and tG abbreviate T (G)N , T (G)E ,
sT (G), and tT (G). ✸

Example 4.2. Figure 4.1 shows two IC-graphs which can be considered to
be the refactored1 versions of the simple graphs in Fig. 3.1. Inheritance is
visualized by an arrow with a triangular head at the parent's end, while a
containment relation is indicated by a diamond at the container's end. Both
are UML-compliant visualizations. In the present formalization, the source
node of an edge being in the set C is considered to be the container of the
target node. In relation I, each tuple (n,m) is interpreted as parent m with
child n. Attributes are shown again just to motivate the setting, although they
are not part of the formalization given in this paper.

On the left of Fig. 4.1, for example, the abstract node Person has been
introduced to encapsulate the attributes firstname and lastname. This kind
of refactoring helps to prevent redundancy. Since Employee and Manager

are (transitive) children of Person, i.e., clan(Person) = {Person, Employee,
Manager}, both inherit these two attributes. As child of Employee, Manager
is contained indirectly in Department since the incoming containment rela-
tion employees is inherited as well. That means, for the left IC-graph there is
{(Department,
Employee), (Department, Manager)} ⊂ contains. In the project management
component on the right-hand side, the abstract node AMember encapsulates
the attributes role, first, and last. Besides the additional introduction of
containments, the rest of the graph corresponds to that in Fig. 3.1.

Considering Department and Project as root elements, both graphs are
rooted as all remaining (non-abstract) nodes are transitively contained. △

1Refactoring is the process of structurally improving a model towards certain model
quality aspects, e.g., modularity and reusability, while preserving its semantics.
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Figure 4.1: IC-graphs modeling a department management (left) and a project
management (right).

Analogously to the previous section, interrelations between IC-graphs can
be established by so-called IC-morphisms as given in Def. 4.3 below. They
are de�ned over plain graph morphisms while taking inheritance structures
into account, too. In order to preserve structural equivalence, they have to
satisfy two essential constraints: Constraint (1) ensures that clans are mapped
to correspondent clans. From this and the de�nition of graphs, it also follows
that the source (target) node of an origin edge should be mapped either to
the source (target) of the image edge directly or, alternatively, to one of its
subtypes (see Lemma 4.5 below). The preservation of containment properties
is guaranteed by constraint (2), i.e., containment edges have to be mapped to
containment edges again.

Definition 4.3 (Graph morphism with inheritance and containment). Given
two IC-graphs G and H, a morphism f : G → H is a graph morphism
fT : T (G) → T (H). f is also called graph morphism with inheritance and
containment or short IC-morphism. If the context G is clear, fGE

and fGN
are

abbreviated by fE and fN . Additionally, the following constraints are required
to hold:

1. ∀n ∈ GN : fN (clanG(n)) ⊆ clanH (fN (n)) (clan-compatible node map-
ping), and

2. fE(C(G)) ⊆ C(H) (containment-compatible edge mapping).

✸

Remark 4.4. An IC-morphism f : G→ H does not de�ne explicit mappings
between A(G) and A(H) and between C(G) and C(H). However, these map-
pings can be directly deduced by fN and fE , respectively. This is obviously
not the case for mappings between I(G) and I(H) since the constraint 1 in
Def. 4.3 merely requires mapped original parent and child nodes to be in a
transitive parent-child relationship in the image. Accordingly, there is rather
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an implicit mapping between the transitive closures I∗(G) and I∗(H) inferred
by fN . ▽

In the de�nition of IC-morphisms above only nodes are required to be
mapped in a clan-compatible way. The question arises whether this should
not be the case for edges as well. And indeed, a clan-compatible edge map-
ping is already induced due to the clan-compatible node mapping, on the one
hand, and the conventional source/target compatibility constraints of graph
morphisms, on the other hand. This is formally shown in Lemma 4.5 below.

Lemma 4.5. Source and target nodes of a mapped edge are mapped in a
clan-compatible way, i.e.,
∀e ∈ GE : fN (sG(e)) ∈ clanH (sH(fE(e))) and fN (tG(e)) ∈ clanH (tH(fE(e))).

Proof. Since ∀n ∈ GN : n ∈ clanG(n), there is

∀e ∈ GE : fN (sG(e)) ∈ fN (clanG(sG(e)))
Def. 4.3.1.
⊆ clanH(fN (sG(e)))

Def. 3.4
=

clanH(sH(fE(e))). Analogously for t. ✷

IC-graphs and IC-morphisms form a category. This appears intuitive but
deserves a closer look especially due to the rather subtle clan-compatible map-
pings.

Proposition 4.6 (Category ICGraphs). IC-graphs and IC-morphisms form
a category, called ICGraphs.

Proof. The axioms of categories are shown, i.e., the compositionality and
associativity of morphisms and the existence of identity morphisms.

Given two IC-morphisms f : G→ H and g : H → K, it is shown that their
composition g◦f : G→ K is an IC-morphism again. That is, the compatibility
of node mappings are to be checked. Afterwards, associativity is shown and
that containment edges are mapped to containment edges:

1. To show: ∀n ∈ GN : gN (fN (clanG(n))) ⊆ clanK(gN (fN (n)))
gN (fN (clanG(n))) ⊆ gN (clanH(fN (n))), since f is an IC-morphism
gN (clanH(fN (n))) ⊆ clanK(gN (fN (n))), since g is an IC-morphism.

2. The composition of IC-morphisms is associative since it is de�ned over
the composition of graph morphisms that is shown to be associative (see
Fact 3.9).

3. To show: gE(fE(C(G))) ⊆ C(K)
gE(fE(C(G))) ⊆ gE(C(H)), since f is an IC-morphism
gE(C(H)) ⊆ C(K), since g is an IC-morphism.

For each IC-graph G, the identity morphism idG : G→ G is chosen which
is obviously well-formed according to Def. 4.3. Furthermore, given an IC-
morphism f : G → H, f ◦ idG = f and idH ◦ f = f are straightforward to
show. ✷
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In the object-oriented modeling world, instance models do not carry inher-
itance structures or containment themselves in contrast to meta models. This
is re�ected in the formalisms. Instances of type IC-graphs can essentially be
formalized by simple graphs which have to obey to the structure of their type
IC-graphs. For the sake of convenient handling, in the following simple graphs
are encoded as IC-graphs with empty inheritance relations and with the set of
containment edges inferred by the actual edge typing. Such IC-graphs are then
called typed IC-graphs. The inferred set of containment edges may appear re-
dundant with the containment edge de�nitions in the type graph. However, it
strongly increases the readability of containment-related constraints in subse-
quent formalisms. For example, two related constraints can already be found
in the de�nition of typed IC-graphs below which state that instance nodes
must have at most one container and that cyclic containment is forbidden. A
corresponding de�nition is given in [11] and is revised in Def. 4.7 below.

Definition 4.7 (Typed IC-graph, type IC-graph, typing IC-morphism and
typed IC-morphism). Let there be a distinguished IC-graph TG, called type
IC-graph, a simple graph G = (GN , GE , sG, tG) and its straight inheritance
extension with containment G′. Furthermore, let typeG′ : G′ → TG be an
IC-morphism which also rede�nes C(G′) by C(G′) = {e ∈ G′

E |typeG′
E
(e) ∈

C(TG)}. G′ is called typed IC-graph and typeG′ is called typing IC-morphism
if the following holds:

1. ∀e1, e2 ∈ C(G′) : tG(e1) = tG(e2)⇒ e1 = e2 (at most one container),
and

2. ∀n ∈ G′
N : (n, n) /∈ containsG′ (no containment cycles).

For simplicity, G and G′ are used synonymously in the following, e.g., C(G) is
used in place of C(G′) and typeG : G → TG is written for the underlying IC-
morphism typeG′ : G′ → TG. Furthermore, if the context G is clear, typeGN

and typeGE
are abbreviated to typeN and typeE , respectively.

A typing IC-morphism typeG is called concrete if all nodes in GN are typed
over concrete types, i.e., ∀n ∈ GN : typeGN

(n) /∈ A(TG). Otherwise it is called
abstract.

Typed IC-morphisms are de�ned analogously to Def. 3.7 replacing graphs
with IC-graphs and graph morphisms with IC-graph morphisms. ✸

Example 4.8. According to the type IC-graph of a department management
component depicted in the left of Fig. 4.1, the instance graph already shown in
the left of Fig. 3.2 is still valid. In this special case the type graphs have been
changed slightly by a refactoring (see Ex. 4.2) without a�ecting the structure
of their instance graphs. △
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Example 4.9. Figure 4.2 shows two type IC-graphs in the top row with cor-
responding instance IC-graph samples in the bottom row. In detail, two dif-
ferent type graphs for a department management component are shown being
mapped by a type IC-graph morphism denoted by dotted arrows. Department
is straightforwardly mapped to Department. Furthermore, the abstract type
node Person and the concrete type node Employee on the left-hand side
are both mapped to Employee on the right-hand side which is a valid clan-
compatible node mapping. The containment edge persons between
Department and Person is mapped to the containment edge employees be-
tween Department and Employee. This is a valid IC-mapping altogether since
the sources of both mapped edges are directly mapped and the origin target
Person is mapped to the image target Employee. Since Employee on the left
inherits the edge persons as well, related edge mappings have to be compat-
ible with that inheritance. This is the case as Employee on the left is clan-
compatibly mapped to the image of the target of persons, namely Employee.

Figure 4.2: Type IC-graphs connected by a type IC-graph morphism (top)
and corresponding typed IC-graphs connected by a typed IC-graph morphism
(bottom).

For each type graph, an instance graph is shown in the lower part of Fig. 4.2.
Again, to enable proper di�erentiation, each instance node is equipped with
a name and its type. Moreover, small circles at edges denote edges typed
over containment edge types.2 Please note that the types of instance edges
and corresponding edge typings are not explicitly shown but can be uniquely

2On instance level there is no UML-compliant and distinguishable visualization of in-
stance edges being typed over compositions/aggregations or ordinary associations.
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determined from their contexts. In the instance graph on the left, e.g., the
edge between Software Engineering :Department and Martin :Employee

is of type persons which runs between the types Department and Person and
consequently between Department and Employee due to inheritance. Similarly
on the lower right, non-containment edges are of type managed. This typing
is compatible with the node typing since the target node types Employee and
Assistant are in the clan of Employee. To summarize, the mappings be-
tween the instance graphs are compatible with the mappings between the type
graphs.

Note that Fig. 4.2 shows instance graphs with nodes typed over concrete
node types only. Consequently, the typing morphisms can be considered to be
concrete. △

Now, the category of typed IC-graphs and typed IC-morphisms can be de-
�ned, called ICGraphsTG. Moreover, please note Remark 4.11 below which
also de�nes the categories IGraphs and IGraphsTG being sub-categories
of ICGraphs and ICGraphsTG, respectively. They essentially indicate an
empty containment set and facilitate the handling of pushouts in the following.

Proposition 4.10 (Category ICGraphsTG). Let TG be an IC-graph. IC-
graphs and IC-graph morphisms typed over TG form a category, called
ICGraphsTG.

Proof. The category of typed IC-graphs over TG and typed IC-morphisms
is a slice category (cf. [23, Def. A.5]) of ICGraphs. ✷

Remark 4.11 (Sub-categories). I-graphs and IC-graph morphisms form a
full sub-category of ICGraphs, called IGraphs. Let TG be an IC-graph
and TG′ its I-graph, I-graphs and IC-graph morphisms typed over TG′ form
a full sub-category of ICGraphsTG, called IGraphsTG. Similarly, category
GraphsTG is the full sub-category of IGraphsTG where all graphs are typed
over graph T (TG), the underlying graph of TG. ▽

After having de�ned the category ICGraphsTG of typed IC-graphs and
typed IC-morphisms, pushouts in that category are now considered. It is
rather easy to see that ICGraphsTG does not have pushouts in general due
to the additional constraints for containment structures. An example for an
invalid existing pushout is given in Example 4.13 below. However, the existence
of pushouts in the category ICGraphsTG is required for appropriate graph
transformations based on the double-pushout (DPO) approach. For now, the
existence of pushouts for IC-graphs with empty containment is shown only,
i.e., for I-graphs, and invalid pushouts according to containments are tackled
later.

In [38], Hermann et al. show that the category of graphs with inheri-
tance and corresponding morphisms forms a weak adhesive HLR category (see
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the de�nition of weak adhesive HLR categories in Def. 10.3 in the appendix)
for a class MS−refl of morphisms that re�ect subtypes of original nodes in
their images. It follows that such a category has pushouts over at least one
morphism in MS−refl. This result is exploited here in terms of the category
IGraphsTG. Below, it is shown that the category IGraphsTG with the class
Minj of injective morphisms is also a weak adhesive HLR category.

Proposition 4.12 ((IGraphsTG,Minj) is a weak adhesive HLR category).
The category IGraphsTG with the classMinj of injective typed I-graph mor-
phisms forms a weak adhesive HLR category.

Proof. LetMS−refl be the class of S-re�ecting morphisms as de�ned in 10.1.
(IGraphs,MS−refl) is a weak adhesive HLR category (see [38, Thm. 1]).
Since IGraphsTG is a slice category over IGraphs, (IGraphsTG,MS−refl)
is also a weak adhesive HLR category (see [23, Thm.4.15]).

Objects in IGraphsTG are graphs which have empty inheritance and con-
tainment structures (but which are typed over a graph TG with a possi-
bly non-empty inheritance structure). Consequently, the constraints of class
MS−refl with respect to subtype re�ection are trivially satis�ed and therefore
the class of all injective typed I-morphisms can be chosen as Minj . Thus,
(IGraphsTG,Minj) is also a weak adhesive HLR category.

✷

Example 4.13. In Fig. 4.3, instances of the department management com-
ponent are considered again (cf. meta model in Fig. 4.1). Small circles at
edges denote those edges typed over containment edge types and are located
at the container's side equivalent to the diamonds on type level. The IC-graph
morphisms are interpreted as normal typed graph morphisms and the pushout
in the category GraphsTG is constructed. See the pushout graph in the bot-
tom right corner of Fig. 4.3. This graph is an invalid IC-graph violating the
constraint of forbidden cyclic containments. Thus, this example shows that
the pushout construction in the category ICGraphsTG cannot be based on
that of the category GraphsTG

Moreover, there is no other IC-graph being the pushout graph due to the
following argumentation: To avoid cyclic containment one can try a sub-graph
of the pushout graph in GraphsTG by deleting at least one of the containment
edges. However, pushout morphisms cannot be found then.

This shows that the categories ICGraphs and ICGraphsTG do not form
weak adhesive HLR categories. △

The report in [39] (strongly related to [38]) shows furthermore that the
category (IGraphsTG,MS−refl) is �nite if nodes and edges in graphs have
�nite cardinality. In correspondence with Remark 3.29, fundamental results
for transformations such as the Local Church Rosser Theorem, the Parallelism
Theorem, and the Concurrency Theorem are valid for (IGraphsTG,MS−refl)
and consequently for (IGraphsTG,Minj) with �nite graphs.
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Figure 4.3: Counter example for co-completeness of the category
ICGraphsTG.

4.2 Consistent Transformation of Typed IC-Graphs

With typed IC-graphs and IC-morphisms at hand, this section introduces
their transformation, called IC-transformation, which shall be obviously more
sophisticated than the transformation of plain typed graphs. First of all,
transformation rules and steps are de�ned as instances of the de�nitions 3.27
and 3.28 in the category ICGraphsTG with M being the class of typed IC-
morphisms. As indicated previously, pushouts over (typed) IC-graphs and
IC-morphisms may not exist in every case since prohibited containment cycles
may occur. This issue is addressed by the de�nition of so-called consistent
IC-rules which provide a consistency preserving structure and thus ensure the
existence of pushouts. First elaborations on dedicated containment conditions
ensuring valid pushouts have been made by Köhler et al. in [53]. Their results
are then incorporate in [11] originally de�ning the notion of consistent rules
which are recalled and slightly adapted here to �t the needs of the present
approach.

Definition 4.14 (Typed IC-graph rule). An IC-graph rule is a typed rule

pTG = (L
l← K

r→ R, type) in the category ICGraphsTG (see Prop. 4.10).
Furthermore, the following must hold: typeRN

(RCrt
N ) ∩A(TG) = ∅. ✸

Definition 4.15 (Typed IC-graph transformation step). A direct typed IC-
graph transformation G

pTG,m
=⇒ H is a typed transformation step in the category

ICGraphsTG. ✸

Remark 4.16. It is shown in [20] that the resulting graph H is well typed
over TG. ▽
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Remark 4.17. Analogously to Remark 3.21, typed IC-graph rules may be
constructed by inclusion morphisms as well. Below, rules with inclusions are
considered only to simplify constructions and proofs. ▽

In the following, the notion of consistent rules are recalled from [11] which
provide su�cient criteria to ensure that the containment hierarchy remains
consistent during their applications. Note that in [11], conditions according
to both the containment and the rooted property are listed. In the present
approach, the rooted property plays a minor role thus only those conditions
are of importance here which prevent the creation of containment cycles.

Consistent transformation rules allow the following kinds of actions related
to containment changes:

1. Create a containment relation together with the contained object node
or change the container.

2. Create cycle-capable containment edges only if the old and the new con-
tainer are both transitively contained in the same container. A cycle-
capable containment is an edge whose source and target nodes may be
typed over the same node type.

The purpose of condition 1 is pretty intuitive: If a containment edge is created
together with its target, containment cycles cannot occur. In cases where
the target node is preserved, the created containment edge is considered as a
replacement, i.e., the old containment edge running to the target node needs to
be deleted while the new containment edge is created at the same time. Note
that this is only a su�cient condition. The host graph may carry nodes which
are not yet the target of any containment edge and thus their preservation
together with the creation of related containments would lead to valid IC-
graphs. Condition 2 covers a special case of the containment replacement
where source and target nodes of containments may be of the same type.
Then, the replacement is only allowed along the current containment hierarchy
of the source node. In Example 4.19 below, these conditions are illustrated by
IC-rules.

Definition 4.18 (Consistent IC-graph rule). Let pTG = (L ⊇ K ⊆ R, type)
be a typed IC-graph rule and let RCrt

C = C(RCrt) and LDel
C = C(LDel). The

IC-graph rule pTG is consistent if the following constraints hold:

1. ∀e ∈ RCrt
C with tR(e) = n : n ∈ RCrt

N ∨ (containment edge creation)
(n ∈ KN ∧ ∃e′ ∈ LDel

C with tL(e
′) = n)

2. ∀e ∈ RCrt
C with s(e) = n ∧ t(e) = m : (cycle-capable containment edge

creation)
∃e′ ∈ LDel

C with s(e′) = o ∧ t(e′) = m :
((o, n) ∈ containsL ∧ (m,n) /∈ containsL) ∨ (n, o) ∈ containsL
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✸

Example 4.19 (Cycle-capable containment). Figures 4.4 and 4.5 show IC-
rules typed over the department management type graph shown at the left of
Fig 4.1. In the type graph, particularly note the Department type and the
subDepartment containment edge type pointing to Department again. The
IC-rules are shown by their left-hand side (LHS) and right-hand side (RHS).
Note that the gluing graph is omitted and node identities are denoted by equal
numbers. Edge identities are not shown at all in favor of readability but they
can be uniquely deduced.

The rule given in Fig. 4.4 shows a linear containment hierarchy at which the
lowermost department shall be contained by the topmost department instead.
This is a containment creation/replacement as de�ned above, i.e., condition
1 holds. However, since subDepartment, the edge type of all edges here, is
a cycle-capable containment edge, the condition 2 must hold as well. In the
RHS of Fig. 4.4, the new containment edge's source still belongs to the same
containment hierarchy as before and therefore satis�es condition 2. Since both
conditions are satis�ed the present rule is a consistent IC-rule.

2 : Department

1 : Department

3 : Department

2 : Department

1 : Department

3 : Department

LHS RHS

Figure 4.4: Consistent IC-rule which properly deletes and creates a cycle-
capable containment edge.

Figure 4.5 shows another IC-rule which obviously violates condition 2. Its
illegal behavior is illustrated by means of a corresponding host graph and the
resulting graph, depicted at the lower left and right. This time, the replacement
of the containment edge does not occur along the same containment hierarchy
and in this case leads to a cyclic containment. △

Fact 4.20. Let pTG = (L
l← K

r→ R, type) be a consistent rule, m : L → G
be a match to an IC-graph G which is typed by typeG : G → TG. Then, an
IC-transformation step G

pTG,m
=⇒ H yields an IC-graph H typed over TG.

Proof. See [11, A.1]. ✷

Please note that this proof only uses the conditions presented in De�ni-
tion 4.18. However, additional consistency conditions presented in [11] are
needed to show that if G is rooted, H is rooted as well. For example, this also
requires that a new object node is immediately connected to its container.
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3 : Department

3 : Department

1 : Department

1 : Department

2 : Department2 : Department

1 : Department

3 : Department

3 : Department

2 : Department2 : Department

1 : Department

LHS RHS

HG

Figure 4.5: Inconsistent IC-rule leading to a cyclic containment.
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Chapter 5

Transformation of Composite Graphs

This chapter presents the formalization of the composite modeling concept
with explicit import and export interfaces which has been informally intro-
duced in Sec. 2.2 and Sec. 2.3. With graphs representing the underlying struc-
ture of models (see Sec. 3.1 and Sec. 3.2), composite models and composite
model transformation are formalized by composite graphs (see Sec. 5.2) and
composite graph transformation (see Sec. 5.3), respectively. In order to fo-
cus on the composition, however, for now all concepts are given in its pure
form, i.e., formalisms do not explicitly consider typing although typing may
be incorporated in a straightforward way. Especially additional structures like
inheritance and containment are not considered until the subsequent Chap. 6.

Composite graphs are initially proposed in [44]. They essentially rely on
distributed graphs introduced by Taentzer in [77] which considers distributed
graphs on the network layer describing the overall composition structure and on
the object layer which speci�es local graph structures and their interrelation.
This twofold view is applied on composite graphs as well. A �rst version
of the related composite graph transformation is introduced in [45] and is
further elaborated in [47]. Both are also heavily in�uenced by the concepts of
distributed graph transformation in [77].

A composite graph is constituted by a set of components1 each consist-
ing of a body graph and a set of interface graphs, namely export and import
graphs. While export interfaces contain graph elements that are provided to
the environment, import interfaces specify required elements. Each interface
graph maps into its body graph by a graph morphism. Furthermore, each im-
port interface also maps to an export interface which constitutes interrelations
between components. The present approach requires graph morphisms to be
total which entails that all elements of import interface graphs are mapped
to elements in export interface graphs, i.e., imports are always fully served

1The formal de�nition of component is omitted as its boundaries are each implicitly
given by a body and its interfaces.
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by connected exports. In general, however, the composition concept may also
allow partial morphisms between interfaces yielding import interfaces being
not fully served (see [44]). Such cases may then be interpreted as some sort of
inconsistency.

The remaining chapter is organized as follows: Section 5.1 informally out-
lines the concepts of distributed graph transformation. Afterwards, Sec. 5.2
and Sec. 5.3 introduce composite graphs and composite graph transformation
in detail, respectively. Finally, a special kind of composite graph transforma-
tion is provided in Sec. 5.4, called weak, which o�ers additional freedom in the
use of composite models.

5.1 Distributed Graph Transformation

The concept of distributed graph transformation as exploited and extended
in this thesis has been introduced by Taentzer in [77]. Taentzer essentially
models distributed systems by means of distributed states and distributed
actions where states and actions are represented in form of structured graphs
and graph transformations, respectively.

Distributed graphs are considered on two levels: On network level a graph,
called network graph, describes the distribution topology by network nodes
and network edges between them. On local/object level each network node is
re�ned by a local graph which represents the local state of the system, i.e., a
local graph in turn consists of (local) nodes (objects) and edges (link) between
them. Network edges are then re�ned by graph morphisms between local
graphs which map corresponding elements between local graphs.

Distributed graphs as presented in [77] exhibit a special structural property:
Some local graphs are interpreted as interface graphs which carry the elements
being shared between two other local graphs (compare with component models
with common interfaces in Sec. 2.1.1 ). There are consequently always two total
morphisms from interface graphs to their two connected graphs. Connections
between interface graphs are not considered, though.

Example 5.1. Figure 5.1 illustrates a distributed graph. The network graph
is constituted by the big circles being network nodes with network edges as
thick arrows between them. Re�ning local graph nodes and edges are directly
embedded in the ellipses. Local graph morphism are not illustrated in fa-
vor of readability but node/edge mappings are encoded via layout position.
The interface graph in the center connects the two exterior local graphs while
carrying the correspondingly shared elements. △

One important result in [77] is that pushouts over a distributed graph can
be constructed component-wise, i.e., the transformation of distributed graphs
can be led back to a number of coordinated ordinary graph transformations. In
detail, a distributed transformation includes the transformation of the network
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Local Graph Local Graph

Interface Graph

Figure 5.1: Distributed graph: Interface graph connecting two local graphs.

graph, on the one hand, which is an ordinary transformation since the network
graph can be considered as plain graph. On the other hand and in correspon-
dence with the network match, each local graph is transformed independently
via an ordinary graph transformation again.

Section 3.2 describes the application of ordinary graph transformation in
detail, exposes di�culties concerning the existence of pushouts and explains
how the so-called gluing condition can help. It is obvious that similar problems
may occur in the context of distributed graph transformation as well. For this
reason, the distributed gluing condition 2 is de�ned requiring the ordinary
gluing condition to hold in terms of the transformations of the network graph
and of each local graph. It additionally comprises the so-called connection
conditions which ensures that local graph elements are created/deleted such
that all morphisms remain total. Moreover, the network condition ensures that
network nodes/edges always have a correspondence on object level and vice
versa, e.g., the deletion of a network node requires the deletion of the whole
corresponding local graph including all of its elements.

In [26], Ehrig et al. consider distributed graphs transformation from a
high-level categorical perspective where not only graphs may be distributed
but arbitrary graph-like structures. That means that distributed graphs are
generalized to distributed objects such that pushout diagrams consist of ob-
jects and morphisms in a certain category C. The componentwise pushout
construction can be essentially characterized as gluing of distributed objects
along their common sub-structure which may also require the extension of
pushout objects with additional elements. This di�ers from the approach pre-
sented in [77] where additional properties in form of the gluing condition limit
possible pushouts at which the extension of pushout objects is not necessary.

Example 5.2. A sample componentwise pushout as proposed in [26] is il-
lustrated in Fig. 5.2. Since the graph in L occurs in R and G, it is preserved,
i.e., it occurs in H as well. Due to G, the graph is also extended by a node

2Note that in contrast to the approach in this thesis distributed graph transformation as
de�ned in [77] does not limit rule morphisms to be injective. Therefore their gluing condition
comprises additional constraints not used here.



62 Chapter 5. Transformation of Composite Graphs

4 and an edge running from 1 to 4. In addition, R introduces a new graph
and a relation from the preserved graph to the new one. In order to satisfy
the totality of morphisms on object level, the new graph has to be extended
by a node 4 and an edge although there are no correspondences in R for these
elements. △

1 2

4

1 2

1 2

4

1 2

34

1 2

1 2

3

L R

G H

Figure 5.2: Componentwise pushout with pushout object extension.

Composite graphs and composite graph transformations as de�ned below
adapt and extend parts of the concepts from Taentzer and use the work of
Ehrig et al. for reasoning purposes. Particularly, the twofold layer concept of
distributed graphs is heavily reused in the de�nition of composite models, i.e.,
the network layer as topology and the object layer as re�nement. In contrast,
composite models use a more subtle network structure which introduces two
kinds of interfaces, export interfaces and import interfaces, in order to connect
components. Composite model transformation can be considered as special-
ization of the general approach in [26]. Due to the speci�c structure of the
network graph, the extension of pushout objects is not required, though.

5.2 Composite Graphs

This section introduces composite graphs whose concepts are based on dis-
tributed graphs [77] (cf. Sec. 5.1). Some formalizations are used in combi-
nation with results by Ehrig et al. in [26] in terms of category theoretical
reasoning.

Composite graphs accomplish the modularization of simple (typed) graphs
and inherit the twofold consideration of network layer and object layer from
the concept of distributed graphs (see above). The network layer describes the
topology of interconnected graphs while on object layer each graph with its
elements can be found as well as the morphisms between the graphs. Below,
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the network layer is speci�ed at �rst followed by relating re�nements by means
of graphs and morphisms on object layer.

The network layer of composite graphs is speci�ed by composite network
graphs which are actually graphs typed over a dedicated type graph Net. Due
to the type graph, nodes of a composite network graph are either body nodes,
export nodes, or import nodes. Each export and import node is the source
of exactly one edge running to a body. In addition, an import node has an
outgoing edge running to an export node. Body nodes have no outgoing edges
at all but can have an arbitrary number of incoming edges. Export nodes may
have multiple incoming edges with import nodes as origin. Composite network
graphs and morphisms between them, composite network graph morphisms,
are shown to form a category, called CompoNetGraphs.

While such network structures are rather restrictive, so-called weak com-
posite network graphs ease the restrictions such that exports may occur with-
out a connected body. This is particularly used in transformation rules later
on.

Definition 5.3 (Composite network graph). Let Net be a graph consisting
of three nodes, namely Body, Export, and Import and three edges running
from Export to Body, from Import to Body, and from Import to Export (cf.
Fig. 5.3). A composite network graph is a graph G = (GN , GE , sG, tG) typed
over Net. An element of GN is called network node while an element of GE is
called network edge. For convenience the following sets are de�ned:

• GBod, GExp, GImp are the disjoint sets of body nodes, export nodes, and
import nodes with GN = GBod ⊎GExp ⊎GImp.

• GEB, GIB, GIE are the disjoint sets of edges running from export to
body, import to body, and import to export withGE = GEB⊎GIB⊎GIE .

In addition, each composite network graphs has to ful�ll the following con-
straints:

1. ∀X ∈ {EB, IB, IE} : (Unique edges)
∀e1, e2 ∈ GX : sG(e1) = sG(e2)⇒ e1 = e2,

2. a) ∀n ∈ GExp : ∃e ∈ GEB : n = sG(e), and (Outgoing edges)

b) ∀n ∈ GImp : ∃e1 ∈ GIB ∧ ∃e2 ∈ GIE : n = sG(e1) = sG(e2).

If constraint 2a is violated, G is called weak. For convenience, GExp de�nes
the set of export nodes without bodies, i.e., GExp = {n ∈ GExp | ̸ ∃e ∈ GEB :
sG(e) = n}.

✸
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Remark 5.4. As for the type graph Net, all constraints in Def. 5.3 above can
be denoted by UML-like multiplicities as depicted in Fig. 5.3. Weak composite
graphs would yield an edge running from Export to Body with multiplicity 0..1
instead of 1. ▽

Figure 5.3: Type graph Net for composite network graphs in a UML-like
fashion with multiplicities.

Example 5.5. An example composite network graph is shown in Fig. 5.4.
Each node denotes its type after a colon. Typing of network edges can be
uniquely deduced. For clarity, dashed edges indicate network edges between
interfaces and their bodies and dotted edges occur between interfaces only.
Furthermore, surrounding rounded rectangles group nodes of the same com-
ponent. The component on the left-hand side consists of a body node and
three export interface nodes while the component on the opposite side has
one export node and two import nodes. As shown within the component on
the right-hand side, relations between interfaces may not only occur between
di�erent components but also inside one and the same. In the following, it
becomes apparent that this makes sense for type graphs only. △

Figure 5.4: Example for a composite network graph.

Definition 5.6 (Composite network graph morphism). Let G and H be two
composite network graphs as de�ned above and let their typing over Net be
implemented via typeG : G→ Net and typeH : H → Net. A graph morphism
f : G→ H is a composite network graph morphism if typeH ◦ f = typeG. ✸

Proposition 5.7 (Category CompoNetGraphs). Composite network
graphs and network graph morphisms form the category CompoNetGraphs
which has pushouts.
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Proof. Composite network graphs and network graph morphisms are graphs
and graph morphisms typed over graph Net. Fact 3.9 states that typed graphs
and graph morphisms form a category and Fact 3.11 states that such a category
of graphs and graph morphisms has pushouts.

It is straightforward to show that compositions of network graph mor-
phisms are again network graph morphisms since their de�nition does not
comprise additional constraints compared to conventional typed graph mor-
phisms. Therefore, it is obvious that CompoNetGraphs is a category.

Pushouts in this category are constructed as for typed graphs. It is left
to show that the constraints for composite network graphs given in Def. 5.3
are satis�ed for pushout graphs. Let a : A → B and c : A → C be composite
network graph morphisms. The pushout morphisms are b : B → D and d : C →
D. The unique edges constraint for PO-graph D is shown at �rst: ∀e, e′ ∈
DEB : sD(e) = sD(e

′) ∧ tD(e), tD(e
′) ∈ DBod =⇒ e = e′. If e ̸= e′, it can be

assumed wlog. that e ∈ bE(BE −AE) and e′ ∈ dE(CE −AE) since A, B, and
C are composite network graphs. Then, either

1. sD(e) ∈ bN (BN − AN ) and sD(e
′) ∈ dN (CN − AN ) and due to PO-

construction sD(e) ̸= sD(e
′) which contradicts the assumption or

2. sD(e) = bN (aN (x)) and sD(e
′) = dN (cN (x)) with x ∈ AN . Then, there

has to be an outgoing edge from x to some body node which has to be
mapped to e and e′. Thus, e = e′ which contradicts the assumption.

This can be analogously shown for edges in DIB and DIE . Now, the outgoing
edge constraint is shown to hold: ∀n ∈ DExp : ∃e ∈ DEB with n = sD(e).
Assuming that there is no such e, then either

1. n ∈ bN (BN − AN ) and since B is a composite network graph ∃e ∈
bE(BE −AE) which contradicts the assumption, or

2. n = bN (aN (x)) with e′ : x → y ∈ AE since A is a composite net-
work graph. Due to the assumption and the PO-construction it follows
@e′′ : aN (x) → aN (y) ∈ BE which contradicts the fact that B is a com-
posite network graph.

Analogously, this can be shown for nodes in DImp.
Obviously, weak composite network graphs and network graph morphisms

form a category as well, called CompoNetGraphsweak. However, note that
that category has no pushouts in general since resulting pushout graphs may
violate the unique edge constraint (see Example 5.8).

✷
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Example 5.8. The diagram in Fig. 5.5 shows an invalid pushout over weak
composite network graphs. Composite network graphs A, B, C, and D are
illustrated by rounded rectangles containing nodes and edges. Mappings be-
tween nodes are denoted by numbers while edge mappings are omitted but
can be uniquely deduced. Obviously, graph D is no (weak) composite network
graph as the constraint unique edges (see Def. 5.3.1) is violated by the export
node pointing to two di�erent body nodes.

Figure 5.5: Invalid pushout in the category CompoNetGraphs
weak which

does not lead to a valid (weak) composite network graph D.

Further examples can be constructed. Consider another pushout similar
to the one in Fig. 5.5 where A contains an additional network node 2: Body
not being connected by 1: Export and where the : Body node in C is actually
2: Body. Then, the pushout D contains the nodes 1 and 2 with two edges
running from 1 to 2. This violates the unique edges constraint again. △

Now that the kind of distribution structure is speci�ed, it follows the de�-
nition of their re�nements by graphs and graph morphisms yielding composite
graphs. Afterwards composite graph morphisms are de�ned to enable map-
pings between composite graphs. Note the last constraint in the de�nition
below; it requires commutativity of import and export mappings in the fol-
lowing sense: A body element a being exported and in turn, imported by the
same component has to be mapped to a again. Such a case is illustrated in
the running example and discussed later on.

Definition 5.9 (Composite graph). Given a composite network graph G, a
composite graph Ĝ over G is de�ned as Ĝ = (G,G(G),M(G)) with

• G(G) being a set of graphs, called local graphs, with each graph uniquely
re�ning a network node in GN : G(G) = {Ĝ(n)| Ĝ(n) is a simple graph
and n ∈ GN},

• M(G) being a set of graph morphisms, called local (graph) morphisms,
each re�ning a network edge in GE : M(G) = {Ĝ(e) : Ĝ(i)→ Ĝ(j)|Ĝ(e)
is a graph morphism and e ∈ GE with s(e) = i and t(e) = j}.
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• ∀eIE , eEB, eIB ∈ GE : tG(eEB) = tG(eIB)∧sG(eEB) = tG(eIE)∧sG(eIE) =
sG(eIB) require that Ĝ(eIB) = Ĝ(eEB) ◦ Ĝ(eIE). (commutative
morphisms)

Ĝ is called weak composite graph if its network graph G is weak.
✸

Definition 5.10 (Composite graph morphism). Given two composite graphs
Ĝ and Ĥ with composite network graphs G and H, resp., a composite (graph)
morphism, written f̂ : Ĝ→ Ĥ, is a pair f̂ = (f,m) where

• f : G→ H is a composite network graph morphism and

• m is a family of morphisms {f̂(n) | n ∈ GN} such that

� for all nodes i ∈ GN , f̂(i) : Ĝ(i) → Ĥ(fN (i)) is a graph morphism
and

� for all edges e : i→ j ∈ GE , Ĥ(fE(e)) ◦ f̂(i) = f̂(j) ◦ Ĝ(e) (see the
illustration in Fig. 5.6).

If morphism f and all morphisms in m are inclusions (injective), f̂ is called
inclusion (injective). ✸

i

e

��

Ĝ(i)
f̂(i) //

Ĝ(e)

��

Ĥ(fN (i))

Ĥ(fE(e))

��
j Ĝ(j)

f̂(j) // Ĥ(fN (j))

Figure 5.6: Illustration of a composite graph morphism.

Remark 5.11. Composite graphs and graph morphisms as de�ned in
Defs. 5.9 and 5.10 form a category, called CompGraphs. It is a functor cate-
gory (cf. [66]) where composite network graphs are considered as (small) cat-
egories such that nodes induce category objects and edges induce morphisms.
In addition, identity morphisms and all compositions of de�ned morphisms
belong to graph-induced categories. ▽

To show the co-completeness of the category CompGraphs, it is compared
with the functor category DisC of distributed objects and morphisms as intro-
duced in [26]. If the underlying category C is Graphs, CompGraphs is a full
sub-category of DisC since composite network graphs are allowed only. The
basic de�nitions of that approach are recalled in the Appendix. Distributed
objects generalize composite graphs in two ways: (1) Any network graph is al-
lowed and (2) local structures can be of any category C, i.e., they do not have
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to be graphs. Ehrig et al. show that the category of distributed objects and
morphisms is co-complete under certain conditions. This result is exploited
for the category CompGraphs.

In the following, it is also shown that the construction of pushouts in
the category CompGraphs can be performed in a component-wise manner,
i.e., the network pushout and all pushouts on local graphs can be computed
separately.

Corollary 5.12 (Category CompGraphs is co-complete). The category
CompGraphs is co-complete. Pushouts along injective composite network
morphisms can be constructed component-wise.

Proof. The initial object is the empty composite graph, i.e., an empty net-
work graph which consequently has no re�ning graphs on object layer.

In Prop. 10.6 it is shown that CompGraphs is a sub-category of DisC
with C being Graphs. According to Fact 10.7, the pushout over arbitrary
distributed morphisms in DisC exists, if the base category is (co)complete.
Since Graphs is (co)complete (cf. Fact 3.11), so is the category DisGraphs.

Proposition 5.7 shows that pushouts in CompoNetGraphs can always be
constructed. This serves as basis for the reasoning that pushout of two (typed)
composite graph morphisms along injective composite network morphisms not
only exists but can be constructed component-wise. In [26, Prop. 4], the
authors show that for each two persistent network morphisms the pushout
within their underlying distributed category can be constructed component-
wise. Since injective composite network morphisms are always persistent as
shown in Prop. 10.9, pushouts in the category CompGraphs along injective
composite network morphisms can be constructed component-wise. ✷

Remark 5.13. Analogously, it can be shown that CompGraphsTG is co-
complete: The category CompGraphsTG can be considered a sub-category of
DisC with C being the category of typed graphs and typed graph morphisms,
GraphsTG. SinceGraphsTG is (co)complete, CompGraphsTG has pushouts
and as the network structure is equal to that in CompGraphs, pushouts can
be constructed component-wise. ▽

Proposition 5.14 (CompGraphs and CompGraphsTG are adhesive cat-
egories). The categories CompGraphs and CompGraphsTG are adhesive
categories, where the monomorphisms inCompGraphs andCompGraphsTG

are the injective composite graph morphisms and typed composite graph mor-
phisms, respectively.

Proof. According to [23, Thm. 4.15 item 3], given a (weak) adhesive category
(C,M) one can construct a functor category ([X,C],M′) which is particularly
a (weak) adhesive category for every category X if M′ is a natural transfor-
mation t : F → G where all morphisms tX : F (X)→ G(X) are inM.
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This construction directly applies to CompGraphs with injective mor-
phisms where CompGraphs is a functor category (cf. Remark 5.11) with
(C,M) being the adhesive category Graphs with injective graph morphisms
(cf. Fact 3.12) and with X corresponding to CompoNetGraphs. Then, all
morphisms tX : F (X)→ G(X) are injective graph morphisms and therefore in
M.

This analogously holds for the category CompGraphsTG at which M is
the class of injective typed graph morphisms. ✷

5.3 Composite Graph Transformation

While previous sections laid the basis for the transformation of single graphs
and the distribution of multiple interrelated graphs, this section elaborates on
graph transformation in such a distributed environment. It particularly focuses
on the transformation of composite graphs without additional inheritance and
containment structures for now.

At �rst, appropriate rules and transformation steps are de�ned. Since
composite graphs comprise (interrelated) graphs on network layer and object
layer, the conventional graph transformation gluing condition (cf. Def. 3.17) is
insu�cient. Special gluing conditions are required and proposed to ensure the
applicability of composite transformation steps. Then, pushout(s) regarding
the transformation of composite graphs are constructed.

Definition 5.15 (Composite graph rule). A composite graph rule p̂ = (L̂
l̂←

K̂
r̂→ R̂) is a rule in the category CompGraphs with M being the class of

injective composite graph morphisms. ✸

Remark 5.16. Each composite graph rule induces graph rules on two layers:

• On network layer, one rule, called network rule, is induced in the category
GraphsNet.

• Each network node in K induces a corresponding rule on object layer,
called local rule, in the categoryGraphs with injective graph morphisms,

i.e., ∀n ∈ KN : p̂(n) = (L̂(n)
l̂(n)← K̂(n)

r̂(n)→ R̂(n)) is a graph rule.

▽

Definition 5.17 (Composite graph transformation step). A composite graph

transformation step (or direct composite graph transformation) Ĝ
p̂,m̂
=⇒ Ĥ of a

composite graph Ĝ, called host graph, to Ĥ by a composite graph rule p̂ and
an injective composite morphism m̂ : L̂→ Ĝ, called match, is given in Fig. 5.7
below, where (1) and (2) are pushouts in the category CompGraphs with
injective morphisms only. ✸
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L̂

m̂

��

K̂
l̂oo

d̂
��

r̂ // R̂

m̂′

��
(1) (2)

Ĝ D̂
ĝoo ĥ // Ĥ

Figure 5.7: Illustration of a composite graph transformation step by means of
two pushouts.

Remark 5.18. The double pushout in the category CompGraphs exists
since CompGraphs is co-complete and pushouts are constructed componen-
twise (see Corollary 5.12). Moreover, the double pushout in the category
CompGraphsTG exists as well. ▽

Remark 5.19. Again, analogously to Remark 3.21 and 4.17, composite graph
rules may be constructed by means of inclusions. Below, only such composite
rules are considered for the sake of simplicity. ▽

Similar to graph transformation steps in a non-distributed environment,
composite graph transformation steps are not applicable in general. First of
all, since composite graph transformations are performed componentwise, i.e.,
actually a number of ordinary (local) graph transformations are performed, the
gluing condition for conventional graph transformation as de�ned in Def. 3.17
must hold. However, this is obviously not su�cient due to composite setting,
i.e., the speci�c structure of network graphs and the (total) morphisms between
graphs on object layer.

Definition 5.20 (Gluing condition for composite graphs). Let there be
a composite graph rule p̂ = (L̂ ⊇ K̂ ⊆ R̂), a composite graph Ĝ, and a
composite morphism m̂ : L̂ → Ĝ. Furthermore, let LDel, RCrt, and GInd be
de�ned on network level while corresponding de�nitions on object level are
straightforward, e.g., L̂Del

N (x) speci�es the nodes to be deleted on object level
with x being the corresponding network node which is not necessarily to be
deleted itself; analogously for edges and network edges. p̂ and m̂ satisfy the
gluing condition for composite graphs if the following hold:

1. m : L → G satis�es the gluing condition (see Def. 3.17) wrt. p = (L ⊇
K ⊆ R) (network gluing condition)

2. ∀x ∈ KN : m̂(x) satis�es the gluing condition (see Def. 3.17) wrt. p̂x =
(L̂(x) ⊇ K̂(x) ⊆ R̂(x)) (local gluing condition)

3. ∀x ∈ LDel
N : m̂(x) is bijective (deletion of network node)

4. ∀y ∈ KN , ∀ŷ ∈ L̂Del(y) : ∀ê : x̂ → m̂(ŷ) ∈ Ĝ(e) with e ∈ GE : ∃x̂′ with
m̂(x̂′) = x̂ (deletion on target side)
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Then, m̂ is called a match. ✸

The composite gluing condition de�ned above ensures the valid transfor-
mation on di�erent layers. The network and local gluing conditions (items 1
and 2) prevent dangling edges in network graphs and in local graphs on object
layer. Item 3 ensures that the deletion of a network node yields the deletion
of its entire re�ning local graph. Therefore, every single element of the local
graph has to be captured by the match. The last item 4 avoids dangling map-
pings on object layer in the following sense. Assuming a mapping between two
graph elements, the deletion of the target element requires the source element
to be part of the rule as well. Since morphisms have to be total, the mapping
between both elements is consequently part of the rule as well and therefore
deleted together with the target element.

It remains to show that obeying the composite gluing condition ensures the
existence and uniqueness of the context graph since this is the prerequisite for
a successful transformation. At �rst, the pushout complement is constructed
which comprises the context graph D̂ and the morphisms d̂ and ĝ (cf. (1)
in Fig. 5.7). Afterwards, it is shown that when taking the composite gluing
condition into account the composite graph transformation step is always ap-
plicable and unique. Note that the construction and reasoning below orientate
on those for ordinary graph transformation in [77, p. 127�.].

Definition 5.21 (Composite context graph). Given a composite rule p̂ =

(L̂
l̂←↪ K̂ r̂

↩→ R̂) and a match m̂ : L̂→ Ĝ as shown in Fig. 5.7, the (composite)
context graph D̂ is constructed as follows:

• Network layer: Let D = G \m(LDel) be the context graph of p and m
in the category CompoNetGraphs. Then, d = m ◦ l and g = idD.

• Object layer:

D̂(x) =


Ĝ(x) \ m̂


L̂Del(y)


, if ∃y ∈ KN with m(y) = x

Ĝ(x) , if x ∈ GInd
N

ĝ−1(t(x)) ◦ Ĝ(x) ◦ ĝ(s(x)) , if x ∈ DE

.

Furthermore, d̂ is de�ned by d̂(y) = m̂(y) ◦ l̂(y), ∀y ∈ KN , and ĝ(x) =
idD̂(x), ∀x ∈ DN .

✸
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Remark 5.22 (Pushout complement). Related to Def. 5.21 above, ∀y ∈ KN

and d(y) = x the pushout complement

D̂(x), d̂(y), ĝ(x)


of l̂(y) and m̂(y)

is constructed analogously in the category Graphs (see [23, Fact 3.11]) since
composite transformations can be considered component-wise. ▽

Proposition 5.23 (Applicability of composite graph transformation steps).

Given a composite rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂), a composite match m̂ : L̂ → Ĝ
which satis�es the composite gluing conditions, and the context graph D̂ as
well as the composite graph morphisms d̂ and ĝ as constructed in Def. 5.21,
then (Ĝ, m̂, ĝ) is the pushout of d̂ and l̂ in CompGraphs (see Fig. 5.7). Fur-
thermore, the pushout of d̂ and r̂ exists.

Proof. At �rst it is shown that D̂ is a composite graph (1) and that the
morphisms d̂ and ĝ are composite graph morphisms (2). Then the uniqueness
of D̂ is shown (3). Afterwards, the pushout properties according to (Ĝ, m̂, ĝ)
are shown, i.e., commutativity (4) and the universal property (5). Last but
not least, the pushout of d̂ and r̂ yielding (Ĥ, m̂′, ĥ) is shown to exist (6).

(1). Obviously, D is a graph due to the network gluing condition (5.20.1).
In particular, D is a composite network graph (see Def. 5.3): Since D =
G\m(LDel), i.e., D is a sub-graph of G, ambiguous edges cannot be introduced
which satis�es constraint 5.3.1. It remains to check that all outgoing edges
required by certain types of network nodes do exist. Assuming that ∃n ∈
DExp : ̸ ∃e : n → b ∈ DEB (cf. Def. 5.3.2), then ∃e′ : n′ → b′ ∈ LDel

E with
m(e′) = e ∧ m(n′) = n ∧ m(b′) = b. And since K is a network graph, from
e′ /∈ KE it follows that n′ /∈ KN , i.e., n′ ∈ LDel

N and thus n /∈ D which
contradicts the assumption. Analogously for outgoing edges of import nodes.

Next, the object layer is checked: The local gluing condition 5.20.2 ensures
that each local transformation step yields a (local) graph Ĥ(x) for all x ∈ H.
The constraint 5.20.3 ensures that the deletion of a network node also leads
to the deletion of its entire re�ning graph on object level by requiring all
corresponding elements to be part of the rule. In this case, (local) morphisms
are properly deleted as well since outgoing and incoming network edges are
properly deleted (see above), i.e., they are part of the rule's left-hand side
which is a composite graph. It is left to show that graph morphisms between
preserved graphs remain sound.

Let there be a network edge f : a→ b ∈ KE which matches e : x→ y ∈ DE

via mE(f) = e. Furthermore, let ê : x̂→ ŷ ∈ Ĝ(e) be a mapping from a local
node x̂ ∈ Ĝ(x)N to ŷ ∈ Ĝ(y)N . The following cases can be distinguished:

• (Deletion on source side). If x̂ /∈ D̂(x)N then ∃â ∈ L̂Del(a)N : x̂ = m̂(â).
Since L̂ is a composite graph, there is a mapping f̂ : â→ b̂ with m̂(f̂) =
ê ∧ m̂(b̂) = ŷ. Then since â /∈ K̂(a) and K̂ is a composite graph it
follows that f̂ /∈ K̂(f), i.e., f̂ ∈ L̂Del(f) and therefore the mapping
m̂(f̂) is deleted as well.
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• (Deletion on target side). If ŷ /∈ D̂(y)N then ŷ = m̂N (b̂) with b̂ ∈
L̂Del(b)N . Due to constraint 5.20.4, for each local node x̂ mapped to ŷ
via an ê there is a corresponding â ∈ L̂(a)N with m̂N (â) = x̂ and since L̂
is a composite graph there is also a mapping f̂ : â→ b̂ which particularly
corresponds to ê. Since b̂ /∈ K̂(b) and K̂ is a composite graph, â /∈ K̂(a)
and f̂ /∈ K̂(f), i.e., â ∈ L̂Del(a) and f̂ ∈ L̂Del(f). This shows that local
source nodes and mappings are deleted together with a local target node.

• (Removal of mappings only). Assume that ê /∈ D̂(e) but x̂ ∈ D̂(x) and
ŷ ∈ D̂(y). Then there exists an m̂(f̂) = ê with f̂ : â → b̂ ∈ L̂Del(f). It
follows that f̂ /∈ K̂(f) but â ∈ K̂(a) and b̂ ∈ K̂(b) which contradicts the
fact that K̂ is a composite graph.

(2). Since l̂ and m̂ are composite graph morphisms, so is their composition
d̂ (see Remark 5.11). Morphism ĝ is the identical morphism idD̂(x) which is
also a composite graph morphisms since D is shown to be a composite graph.

(3). According to the properties of (weak) adhesive HLR categories (cf.
[23, Thm. 4.26]), the pushout complement is unique since CompGraphs is
adhesive and l̂ is inM.

(4). Commutativity, i.e., m̂ ◦ l̂ = ĝ ◦ d̂ is easy to show: Since ĝ is de�ned
as the identical morphism idD̂(x), it follows that m̂ ◦ l̂ = d̂ which is exactly the

de�nition of d̂ (cf. Def. 5.21).
(5). In order to prove (Ĝ, m̂ : L̂→ Ĝ, ĝ : D̂ → Ĝ) to be a pushout of l̂ and d̂,

it has to be shown that for any (X̂, p̂ : L̂→ X̂, q̂ : D̂ → X̂) with p̂◦l̂ = q̂◦d̂ there
is a unique morphism x̂ : Ĝ→ X̂ such that x̂ ◦ m̂ = p̂ and x̂ ◦ ĝ = q̂ (compare
with Fig. 5.8). Let there be such an X̂. x̂ is de�ned as follows: For all y ∈ G
with ∃y′ ∈ LDel : m(y′) = y, x̂(y) = p̂(y′). Furthermore, for all y ∈ GInd,
x̂(y) = q̂(y). It remains the case where ∀y ∈ G with y′ ∈ L \ LDel : m(y′) = y,
i.e., y′ ∈ K. Then, a unique x̂(y) exists due to Fact 3.20 (and [23, Fact 2.20])
which is induced by the pushout (Ĝ(y), m̂(y′), ĝ(y)) in Graphs.

The uniqueness of x̂ follows from the fact that for each y ∈ G only one
of these three disjoint cases occurs. The well-de�nedness of x̂ can be shown
analogously to [77, Prop. 6.2.5] and is omitted here.

L̂

p̂

��

m̂
��

K̂? _l̂oo

d̂
��

Ĝ
x̂

��

D̂? _ĝoo

q̂
ooX̂

Figure 5.8: Illustration for the proof of Prop. 5.23.

(6). The pushout of d̂ and r̂ is constructed componentwise in Graphs. ✷
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Proposition 5.24 (Uniqueness of composite transformation step). Given a
composite rule p̂ = (L̂ ⊇ K̂ ⊆ R̂) and a composite match m̂ : L̂ → Ĝ which

satis�es the composite gluing conditions, the transformation step Ĝ
p̂,m̂
=⇒ Ĥ in

the category CompGraphs is unique up to isomorphism.

Proof. Ĥ is constructed componentwise analogously to Fact 3.20, i.e., set-
theoretically as a disjoint union of D̂ and R̂Crt. The uniqueness of Ĥ follows
from the uniqueness of D̂, shown in Prop. 5.23, and from the uniqueness of
pushout objects. ✷

5.4 Transformation of Weak Composite Graphs

From a practical perspective, it may be desirable to specify composite rules
in the category CompoNetGraphsweak, i.e., with LHS and RHS being weak
composite graphs. For example, consider the case where exported objects of
a foreign component shall be imported in an owned component. On the one
hand, the foreign body structure might not be of interest to the modeler,
and on the other hand, it is actually not necessary to be known in order to
establish the connection properly. Beyond that, the foreign body might even
be intentionally hidden from the modeler for some reasons. Note that the body
exists though.

Transformation steps in CompoNetGraphs
weak face a number of chal-

lenges. One has already been demonstrated in Example 5.8 where pushouts
may not necessarily yield valid (weak) composite network graphs on the net-
work layer. Moreover, while LHS and RHS may be proper weak composite
graphs as motivated above, rule applications shall be understood as taking
place on weak composite graphs which represent selected elements of non-
weak composite graphs. In order to maintain a valid composite structure in
the resulting graph (even if it is just a selection of a composite graph by means
of a weak composite graph), invalid operations on network layer as well as on
object layer need to be prohibited. For example, on network layer a rule with
weak composite LHS and RHS graphs can be easily de�ned which deletes
the edge between an export node and its body node. The related pushout
in CompoNetGraphsweak is obviously a valid weak composite graph, again.
However, understanding the weak composite host graphs as selection of a com-
posite graph, the resulting graph is no composite graph anymore. Even if the
network layer does not contain any deletion/creation of export-body network
edges, on object layer objects in uncoupled export graphs may be created or
deleted which also prevent the pushout to be a valid composite graph.

Consequently, weak composite graph rules have to obey certain constraints
in order to ensure the existence of pushouts in CompoNetGraphsweak on the
one hand, and on the other hand to ensure that the resulting graph corresponds
to a composite graph with the host graph being interpreted as composite graph.
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Such constraints would essentially maintain the integrity of uncoupled exports.
That means, on network level export nodes not being connected to a body node
must not be deleted or created. This must hold as well on object level for all
elements in corresponding re�ning export graphs. Furthermore, edges running
from exports to bodies must not be deleted or created. Roughly spoken, such
export interfaces may not be created, modi�ed, deleted, and coupled to or
decoupled from bodies. However, relations from import interfaces to such
uncoupled exports are allowed to be created, modi�ed, and deleted as this has
no e�ect on the export itself nor on its represented elements in the body.

Definition 5.25 (Weak composite graph rule). A weak composite graph rule

p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂) is a composite rule as de�ned above where L̂ and R̂ (and
thus K̂) are weak composite graphs. In addition, the following constraints
hold:

1. ∀n ∈ KExp it holds (export integrity)

a) n ∈ LExp,

b) n ∈ RExp, and

c) L̂Del(n) and R̂Crt(n) are empty graphs,

2. LDel
Exp

= ∅, and (export deletion)

3. RCrt
Exp

= ∅. (export creation)

✸

The following gluing condition prevents the case where an uncoupled export
and a body occurs in the LHS which are then matched towards an export and
a body being interconnected. While this scenario does not make sense from a
practical point of view, it may also lead to problems when the corresponding
body in the LHS is smaller than the export.

Definition 5.26 (Gluing condition for weak composite graphs). Let there
be a weak composite graph rule p̂ = (L̂ ⊇ K̂ ⊆ R̂), a (weak) composite graph
Ĝ, and a composite morphism m̂ : L̂→ Ĝ. p̂ and m̂ satisfy the gluing condition
for weak composite graphs if

1. the gluing condition for composite graphs (cf. Def. 5.20) is satis�ed and

2. ∀n ∈ m(LExp) with ∃e : n→ n′ ∈ GEB ⇒ n′ /∈ m(LBod).

✸
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Definition 5.27 (Weak composite graph transformation step). A weak com-

posite transformation step Ĝ
p̂,m̂
=⇒ Ĥ is a transformation step in the category

CompoNetGraphs
weak with a weak composite rule p̂ = (L̂

l̂←↪ K̂ r̂
↩→ R̂), a

weak composite graph Ĝ as host and a composite match m̂ : L̂ → Ĝ which
satis�es the gluing conditions for weak composite graphs. ✸

In the following, the applicability of weak composite transformation steps is
led back to the applicability of composite transformation steps. The construc-
tion below prepares the related proposition by de�ning a conversion from weak
composite graph transformation steps to non-weak composite graph transfor-
mation steps. To this end, participating graphs with uncoupled export inter-
faces are equipped with additional bodies being surrogates for the missing ones.
Since weak composite rules require that uncoupled exports are fully preserved
(compare Def. 5.25), their surrogate bodies must be preserved as well. This
is an intuitive behavior for the introduced bodies as they are not the actual
bodies but only represent them.

The conversion is performed is in the following steps: Step 1 completes
the host graph Ĝ to Ĝ′, i.e., on network level for each export interface a new
body is introduced and assigned while on object level the re�ning body graphs
are constructed identical to their export graph. Step 2, on the one hand,
completes the left-hand side L̂ of the rule with respect to the host graph Ĝ′

and the mappings provided by the match m̂. On the other hand, the match
m̂ is correspondingly extended itself by mappings to new elements in L̂′. First
of all, both L and m are extended on network level. Therefore, L is extended
by all the body nodes of G′ whose export nodes are matched by an uncoupled
export node in L. While these body nodes are actually the same in L′ and G′,
the new body graphs in L̂′ di�er as they are the union of their export graphs
glued together along those graph elements which map to the same body graph
element in Ĝ′. This is especially relevant, if two exports in the LHS are mapped
to two exports in the host graphs which in turn point to a common (given)
body. In Step 3, the gluing graph K and the right-hand side R are completed
analogously to L as the additional surrogate bodies are fully preserved. This
step also includes an adequate adaption of the morphisms between L′, K ′, and
R′, namely l̂′ and r̂′.

Definition 5.28 (Weak composite graph transformation step conversion).

Given a weak composite transformation step Ĝ
p̂,m̂
=⇒ Ĥ with the weak composite

rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂), the weak composite graph Ĝ and the composite match
m̂ : L̂ → Ĝ which satis�es the gluing conditions for weak composite graphs.
Then, the weak composite transformation step is converted to a composite

transformation step Ĝ′ p̂
′,m̂′
=⇒ Ĥ ′ as follows:
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Step 1. Complete the weak composite graph Ĝ to composite graph Ĝ′.

a) G′
N = GN ∧G′

E = GE ,

b) G′
Bod = GBod


{bn | n ∈ GExp},

c) G′
EB = GEB


{en : n→ bn | n ∈ GExp},

d) ∀x ∈ GN

GE : Ĝ′(x) = Ĝ(x),

e) ∀bn ∈ G′
Bod \GBod : Ĝ

′(bn) = Ĝ(n), and

f) ∀en ∈ G′
EB \GEB : Ĝ′(en) = idĜ(n).

Step 2. Complete the weak composite graph L̂ to composite graph L̂′ and
the mapping m̂ : L̂→ Ĝ to m̂′ : L̂′ → Ĝ′ (compare Figs. 5.9). This steps starts
at the network level and proceeds at the object layer afterwards.

Let B = {b ∈ G′
Bod | ∃e : a→ b ∈ G′

EB ∧m−1(a) ∈ LExp}.

a) L′
N = LN ∧ L′

E = LE ∧ ∀x ∈ LN

LE : m′(x) = m(x),

b) L′
Bod = LBod


B,

c) ∀b ∈ B : m′(b) = b,

d) L′
EB = LEB


{en : n→ b | n ∈ LExp ∧ b ∈ B ∧ ∃e : m(n)→ m(b)},

e) ∀e : n→ b ∈ L′
EB \ LEB : m′(e) = e′ with ∃e′ : m(n)→ b ∈ G′

EB,

f) ∀x ∈ LN

LE : L̂′(x) = L̂(x) ∧ m̂′(x) = m̂(x),

g) ∀b ∈ B : L̂′(b) =


n L̂(n)

/∼

: ∀n ∈ L̂Exp with en : n → b ∈ L′
EB

and with the equivalence relation ∼= {(x, y) ∈ L̂′(n)× L̂′(n′) | ∀n, n′ ∈
LExp : Ĝ

′(m′(en))◦ m̂(n)(x) = Ĝ′(m′(en′))◦ m̂(n′)(y)} (cf. Fig. 5.9a and
Fig. 5.9b),

h) ∀b ∈ B : ∀x ∈ L̂′(n) with e : n → b ∈ L′
EB : m̂′(b)(x) = Ĝ′(m′(e)) ◦

m̂′(n)(x) with x ∈ [x]∼ (cf. Fig. 5.9b),

i) ∀en ∈ L′
EB \ LEB : ∀x ∈ L̂′(n) : L̂′(en)(x) = [x]
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L′

m

��

n
en

vv

��

b

��

n′en′oo

��G′
m(n)

m(en)

ww
m(b) m(n′)

m(en′ )oo

(a)

L̂′(b)

m̂′(b)

��

L̂′(n)
L̂′(e)oo

m̂′(n)

��
Ĝ′(b) Ĝ′(m′(n))

Ĝ′(m′(e))

oo

(b)

Figure 5.9: Illustrations for Step 2 of Def. 5.28.

Step 3. Based on L̂′, complete the weak composite graphs K̂ and R̂ to K̂ ′

and R̂′, respectively (compare Fig. 5.10).
Let B be de�ned as above or at this point shorter B = L′

Bod \ LBod and
let there be E = L′

EB \ LEB.

a) K ′
N = KN ∧K ′

E = KE ∧R′
N = RN ∧R′

E = RE ,

b) K ′
Bod = KBod


B and K ′

EB = KEB

E,

c) R′
Bod = RBod


B and R′

EB = REB


E,

d) ∀x ∈ RN

RE : R̂′(x) = R̂(x),

e) ∀x ∈ KN


KE : K̂ ′(x) = K̂(x) ∧ l′(x) = l(x) ∧ l̂′(x) = l̂(x) ∧ r′(x) =
r(x) ∧ r̂′(x) = r̂(x),

f) ∀x ∈ B


E : l′(x) = x ∧ r′(x) = x ∧ K̂ ′(x) = L̂′(x) ∧ R̂′(x) = L̂′(x),

g) ∀x ∈ B : l̂′(x) = idL̂′(x) ∧ r̂′(x) = idL̂′(x),

L̂′(n)

L̂′(e)

��

K̂ ′(n)
l̂′(n)oo

K̂′(e)

��
L̂′(b) K̂ ′(b)

l̂′(b)

oo

Figure 5.10: Illustration for Step 3 of Def. 5.28.

✸



5.4. Transformation of Weak Composite Graphs 79

It remains to show that the conversion is well-de�ned.

Lemma 5.29. In Def. 5.28, Ĝ′, L̂′, K̂ ′, and R̂′ are well-de�ned and also l̂′, r̂′,
and m̂′.

Proof. The well-de�nedness is shown with regard to each step in Def. 5.28.

Step 1: Ĝ′ is well-de�ned. Ĝ′ is obviously a composite graph. On network
level, for each uncoupled export node in G a body node is created and assigned
(cf. items b) and c)). Consequently, the property 2a of Def. 5.3 is satis�ed, i.e.,
∀n ∈ GExp : ∃e ∈ GEB : n = sG(e). On object layer, the new body graphs are
minimal since item e) de�nes them as being identical to their corresponding
export graph. This is also re�ected by item f) which appropriately adapts the
related re�nement of the export-body edge as the identical morphism.

The construction is unique since each new body directly corresponds to
one export which is the one assigned via an export-body edge. Obviously, the
construction can always be performed.

Note that the constructed Ĝ′ is not necessarily isomorphic to the possibly
underlying true composite graph of Ĝ. For instance, consider the weak com-
posite graph Ĝ with two uncoupled export nodes only. Then, the underlying
composite graphs may contain these two exports pointing to a single body
while the construction in Def. 5.28 yields two separate bodies. However, un-
coupled exports and new bodies are fully preserved and just help to reuse the
transformation step de�ned for composite graphs.

Step 2: L̂′ and m̂′ are well-de�ned. The �rst group of extensions are
performed on network level . Item b) adds missing body nodes to L which are
actually body nodes of the host composite graph Ĝ′. Only those body nodes
are added whose exports are matched by uncoupled export in L. Note that
such a body node might have been created previously in Step 1. Accordingly,
the match mappings in m′ are immediately de�ned in item c) to match to the
same body node. The new export-body edges in d) are inferred according to
their edges between the matched export nodes and body nodes. This deduction
is unique since there is only one edge running from an export node to a body
nodes (see Def. 5.3) in composite graphs. It follows that the extensions of the
match mappings for export-body edges in e) are unique and well-de�ned as
well. At this point, the network graph L′ is non-weak and m′ maps all nodes
and edges in a compatible way.

On object level, the re�ning graphs of new body nodes in L′
Bod are con-

structed by a union of their export graphs in L′
Exp

, performed in item g).

Cases where targeted body elements of two (or more) exports intersect (cf.
Fig. 5.9a) are handled by an equivalence relation which glues such elements to
an equivalence class together. This equality is identi�ed by the target body
graph of those exports in Ĝ′

Exp being the matched images of the exports in
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L̂′
Exp

. The morphisms between the export graphs in L̂′
Exp

and the new body
graphs are also well-de�ned since each morphism is total by construction and
injective since the equivalence relation ∼ maps (if necessary) two elements of
di�erent export graphs to one element in a body graph (see item i)).

In the following, the well-de�nedness of m̂′ is shown more formally. It is
su�cient to show that the diagram depicted in Fig. 5.9b commutes and that
m̂′ is injective.

To show: ∀e : n → b ∈ L′
EB \ LEB : m̂′(b) ◦ L̂′(e) = Ĝ′(m′(e)) ◦ m̂′(n).

∀x ∈ L̂′(n) : m̂′(b) ◦ L̂′(e)(x)
i)
= m̂′(b)([x])

h)
= Ĝ′(m′(e)) ◦ m̂′(n)(x).

For injectivity to show: m̂′(b) : L̂′(b)→ Ĝ′(b) is injective ∀b ∈ B, i.e., ∀x ∈
L̂′(n) with e : n→ b ∈ L′

EB\LEB and ∀y ∈ L̂′(n′) with e′ : n′ → b ∈ L′
EB\LEB

the following holds: [x] ̸= [y] ∈ L′(b)⇒ m̂′(b)([x]) ̸= m̂′(b)([y]).

m̂′(b)([x])
h)
= Ĝ′(m′(e)) ◦ m̂′(n)(x)

g)

̸= Ĝ′(m′(e′)) ◦ m̂′(n′)(y)
h)
= m̂′(b)([y]) with

x ∈ [x] and y ∈ [y] since this is exactly how the equivalence relation is de�ned.
It can be followed that m̂′ : L̂′ → Ĝ′ is an injective composite graph mor-

phism.
The constructions of L̂′ and m̂′ heavily relies on the structure of Ĝ′. They

can obviously always be performed since missing structures are solely added.
The uniqueness of L̂′ follows from the uniqueness of Ĝ′, since body nodes and
export-body edges in L′ are directly inferred by G′ and body graphs in L̂′ are
constructed such that they uniquely match the body graphs in Ĝ′

Step 3: K̂ ′ and l̂′, R̂′ and r̂′ are well-de�ned. The construction in this
step is rather simple. Consider Fig. 5.10 in addition. Since uncoupled exports
are required to be fully preserved, i.e., no changes happen on network and
object layer (cf. Def. 5.25), they are identical in L̂, K̂, and R̂. Thus, K̂ ′ is
obviously a composite graph as it comprises K̂ and all new bodies and export-
body edges of L̂′ (see items a),b),e), and f)).

It remains to show that the diagram in Fig. 5.10 commutes and thus l̂′

is well-de�ned, i.e., ∀x ∈ L̂′(n) with e : n → b ∈ E : L̂′(e) ◦ l̂′(n)(x) = l̂′(b) ◦
K̂ ′(e)(x).

L̂′(e)◦l̂′(n)(x) 3e)
= L̂′(e)◦l̂(n)(x) l̂(n) is embedding

= L̂′(e)(x) = idL̂′(b)◦L̂
′(e)(x)

3g),3f)
=

l̂′(b) ◦ K̂ ′(e)(x). All other commutativities are given by l̂. Since l̂′, roughly
spoken, comprises l̂ (being an embedding) and the identity morphisms of the
new bodies and the new export-body edges, l̂′ is an embedding as well.

Analogously ∀x ∈ L̂′(n) with e : n → b ∈ E : R̂′(e) ◦ r̂′(n)(x) = r̂′(b) ◦
K̂ ′(e)(x).

Since all elements of p̂′ are well-de�ned, i.e., they particularly are composite
graphs and embedding composite graph morphisms, p̂′ is a composite graph
rule.
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The existence and uniqueness of K̂ ′ and R̂′ follows from the existence and
uniqueness of L̂′ since K̂ ′ and R̂′ are only extended by �missing� parts to be
found in L̂′. The extensions of the embeddings l̂′ and r̂′ are trivial.

✷

Example 5.30. Figure 5.11 illustrates the weak conversion partially, i.e.,
it is limited to the construction of the host graph and the left-hand side of
the rule. Accordingly, only Step 1 and Step 2 are shown being divided into
four stages, (a) - (d). Each stage is represented by a box which shows the
LHS composite graph in the upper area and the host composite graph below.
Both are shown by means of their network graph (left) and their re�ning local
graphs. Relationships between network levels are denoted by their location.
Match mappings are indicated by vertical dashed arrows.

Stage (a) shows as initial state a left-hand side comprising three uncoupled
export nodes. The object level exhibits that each of them contains a single
object. The host graph consists of two body nodes at which one is equipped
with two export interfaces. Furthermore, a single uncoupled export node is
given. All elements on network layer and object layer in the LHS are already
appropriately matched into the host composite graph.

The conversion in Step 1 is performed on the host composite graph only
and yields stage (b). On network layer, the single uncoupled export node is
now connected to a new body node. On object layer, the new body related
graph consists of a single object similar to its export graph. In fact, according
to the construction the body graph actually consists of the same elements as
its export graph. This is di�cult to visualize though and does not matter for
the illustration.

Steps 2.a) - e) complete the LHS and create match related mappings on
network layer yet. Figure 5.11(c) re�ects this: Each export network node in
the LHS is now connected to a body node. This is achieved by selecting all
body nodes in the host graph whose export nodes are matched by uncoupled
exports. These selected bodies are then used in the LHS. Match mappings are
added appropriately.

Finishing Step 2 leads to the composite graphs depicted at stage (d).
Changes essentially concern the completion of the LHS on object layer. The
empty graphs re�ning the new bodies are �lled up with related objects. The
two nodes enclosed by the dashed rectangle indicate a grouping into an equiv-
alence class; the equivalence relation de�ned in conversion Step 2.g) glues both
nodes together as they point to a single node in the host graph. △

Proposition 5.31 (Applicability of weak composite graph transformation

steps). Given a weak composite rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂), a weak compos-
ite graph Ĝ as host and a composite match m̂ : L̂ → Ĝ which satis�es the
gluing conditions for weak composite graphs, then a weak composite graph

transformation step Ĝ
p̂,m̂
=⇒ Ĥ exists and is unique.
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Figure 5.11: Example completion of the left-hand side and the host compos-
ite graph in the context of a weak composite transformation conversion (see
Def. 5.28). The conversion is shown in four steps (a) to (d) at which each time
the LHS is arranged above the host and both are shown on network (left) and
object layer (right). The matching from LHS to host is denoted by dashed
edges.

Proof. A weak composite graph transformation step is performed by convert-
ing p̂, Ĝ, and m̂ to a composite rule p̂′, a composite graph Ĝ′, and a composite
morphism m̂′ as de�ned in Def. 5.28 and applying them in the context of
composite graph transformation step.

m̂′ is a composite match as it subsumes m̂ which already obeys the gluing
condition for composite graphs and additional total and injective morphisms
between bodies in L̂′ and Ĝ′ being all preserved. Thus, the gluing condition is
also satis�ed for all b ∈ B (with B being de�ned as in Def. 5.28).

Then, a transformation step in CompGraphs is performed yielding the
composite graphs D̂′ and Ĥ ′.

From the construction of D̂′ (cf. Def. 5.21) it follows that ∀b ∈ G′
Bod\GBod,

b ∈ D′
Bod since each b is preserved. This holds analogously for all e ∈ G′

EB \
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GEB since each e and their export source nodes are preserved. Consequently,
each b and e are also part of H ′

Bod and H ′
EB, respectively. Thus, the weak

composite graphs D̂ and Ĥ can be deduced by removing those additional
bodies and export-body edges as follows: Let B = G′

Bod \ GBod and E =

G′
EB \GEB. Then, DN = D′

N \B and DE = D′
E \ E; analogously for Ĥ.

The resulting graphs D̂ and Ĥ are weak composite graphs being de�ned in
a straightforward way by removing all graphs of nodes in B and all morphisms
of edges in E.

The existence and uniqueness of the transformation step Ĝ
p̂,m̂
=⇒ Ĥ follows

from the existence and uniqueness of Ĝ′ p̂
′,m̂′
=⇒ Ĥ ′. The existence and uniqueness

of Ĝ′ p̂′,m̂′
=⇒ Ĥ ′ follows from the conversion construction from weak composite

graphs and morphisms to strong ones (cf. Def. 5.28) and back again. Above,
the construction of Ĝ′, L̂′, K̂ ′, R̂′ and all remaining morphisms have been
argued to always exist and to be unique. The resulting graph Ĥ ′ can uniquely
be reduced as follows Ĥ = Ĥ ′ \ (Ĝ′ \ Ĝ) in a componentwise manner. This is
always possible since the content of Ĝ′ \ Ĝ only comprises bodies and export-
body edges which are particularly fully preserved on network and object layer
due to the restrictions of weak composite rules in Def. 5.25. ✷
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Chapter 6

Transformation of Composite Graphs with

Inheritance and Containment

In the present chapter, the concepts of composite graph transformation (see
Chap. 5) and the transformation of graphs with inheritance and containment
(see Chap. 4) are combined. It is structured as follows: Section 6.1 intro-
duces typed composite graphs with inheritance and containment structures to
provide a formal basis for composite EMF models. They are based on the
de�nitions of composite graphs where the graphs on object level are equipped
with inheritance and containment structures. This has been done in [46] for
the �rst time and is recalled and slightly improved here. Related transfor-
mations are presented in Sec. 6.2 and it is shown under which preconditions
pushouts can be constructed and consequently when transformations can be
performed. This chapter �nishes with an elaboration on the transformation of
weak typed composite graphs in Sec. 6.3.

6.1 Typed Composite Graphs with Inheritance and

Containment

Now that composite graphs and (typed) graphs with inheritance and contain-
ment structures are de�ned, both are combined yielding composite IC-graphs.
At �rst, (typed) composite IC-graphs and IC-morphisms are de�ned and it is
shown that together they form a category, called CompICGraphsTG. Fur-
thermore, this section investigates under which conditions pushouts exist in
that category. This allows in the subsequent section to introduce the transfor-
mation of composite IC-graphs based on the DPO approach.
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Definition 6.1 (Composite IC-graph and composite IC-morphism). Given
a composite network graph G, Ĝ = (G,G(G),M(G)) is a composite IC-graph
if G(G) is a set of IC-graphs andM(G) is a set of IC-morphisms re�ning net-
work nodes and edges of G as in De�nition 5.9. Moreover, the commutativity
condition of De�nition 5.9 holds.

Given two composite IC-graphs Ĝ and Ĥ, a pair f̂ = (f,m) = f̂ : Ĝ→ Ĥ
is a composite IC-morphism if f is a composite network morphism and m is a
family of IC-morphisms as de�ned in De�nition 5.10.

✸

Remark 6.2. A straight extension with inheritance and containments of a
(simple) composite graph leading to a composite IC-graph is de�ned compo-
nentwise, i.e., each simple graph re�ning a network node is straightly extended
as de�ned in Def. 4.1. Related (simple) graph morphisms can be easily lifted
to equivalent IC-morphisms. ▽

Example 6.3. According to the network graph in Fig. 5.4, a composite IC-
graph is shown in Fig. 6.1. Each network node is illustrated by a rounded
rectangle which is equipped with meaningful names in the upper left corner
and a re�ning IC-graph in the center. Network edges are omitted in favor
of readability while their re�ning mappings are shown in form of patterned
arrows. Dashed arrows illustrate mappings between interfaces and their bod-
ies while dotted arrows are mappings between interfaces. The department
management component (Dep) is shown on the left while the project man-
agement component (Prj) is shown on the right. The body graphs DepBody
and PrjBody are depicted in the upper area of Fig. 6.1 and their interfaces are
arranged below.

Figure 6.1: Composite IC-graph over the network graph in Fig. 5.4.

This scenario describes how two software components may be connected.
On the one hand, there is a department software component providing inter-
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faces to gather information about published department structures, employed
persons and assignments of persons to certain departments. On the other
hand, a project software component may reveal its project structure and may
require other projects to be associated at the same time. Furthermore, it may
depend on (exported) employees of a department to work within a project.

Interfaces do not need to be mapped into their corresponding body graph
in a one-to-one manner, e.g., export graph DepExport2 provides a structure
which is di�erent to the corresponding part in its body. This export graph
is valid, though, since the containment edge managers can be easily mapped
to the body's containment edge employees. This technique allows to hide
structural dependencies and complexity by providing simple and convenient
interfaces at the same time.

Both components are connected by the import PrjImport2 and the ex-
port DepExport2. Moreover, the project management component is connected
with itself by PrjExport and PrjImport1. The impact of both connections is
examined in detail in Example 6.8.

With regard to EMF models, it would be meaningful to require each body
graph to be rooted. However, this requirement is not made explicit in the
present approach. Interface graphs do not have to be rooted anyway as
they provide representatives of elements from their corresponding rooted body
graphs, e.g., the export DepExport3 does not provide a root. △

In the following de�nition, typed composite IC-graphs are de�ned by spe-
cial composite IC-morphisms expressing typing.

Definition 6.4 (Typed composite IC-graph and typing composite IC-mor-
phism). A composite graph Ĝ(G), called typed composite IC-graph, with com-
posite network graph G is typed over a composite IC-graph ˆTG(TG) with com-
posite network graph TG if there is a composite IC-morphism ˆtypeĜ : Ĝ→ ˆTG,
called typing composite IC-morphism, which is a pair ˆtypeĜ = (typeG,m)
where:

• typeG : G→ TG is a composite network graph morphism, and

• m is a family of typing IC-morphisms { ˆtypeĜ(n) | n ∈ GN} (cf. Def. 4.7).

✸

Remark 6.5 (Global acyclic containment). Note that each component part
of a typed composite IC-graph is constituted by local IC-graphs which have
acyclic containments by de�nition. However, corresponding nodes in di�erent
local graphs can be in opposite containment relations which would lead to
cyclic containment if all local graphs would be merged into one big graph.
This is easy to see: Consider a case where a node contains another one and
which are both exported without their containment relation. The importing
component may locally add a containment relation in the opposite direction.
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Nevertheless, the property of global acyclic containments can be achieve in
two ways:

1. Consider a given typed composite IC-graph as diagram in the category
ICGraphsTG, whose colimes construction is required to yield a typed
IC-graph without cyclic containments.

2. Import and export interfaces are restricted by always exporting/import-
ing all containment edges between exported/imported nodes. The cor-
responding proof is straightforward.

▽

Definition 6.6 (Typed Composite IC-Morphism). Let Ĝ and Ĥ be two
composite IC-graphs typed over a composite IC-graph ˆTG by ˆtypeĜ and
ˆtypeĤ , respectively. A typed composite IC-morphism is a composite morphism

f̂ : Ĝ→ Ĥ such that ˆtypeĤ ◦ f̂ = ˆtypeĜ. ✸

Remark 6.7 (Categories and Sub-categories). Note that the category of
typed composite IC-graphs and morphisms, CompICGraphsTG, is de�ned as
a slice category of CompICGraphs, the category of composite IC-graphs and
composite IC-morphisms. Composite I-graphs and composite IC-graph mor-
phisms form a full sub-category of CompICGraphs, called CompIGraphs.

Let TG be a composite IC-graph and TG′ its composite I-graph, i.e., ∀n ∈
TG′ = TG, ˆTG

′
(n) is the I-graph of ˆTG(n). Then, composite I-graphs and

composite IC-graph morphisms typed over TG′ form a full sub-category of
CompICGraphsTG, called CompIGraphsTG.

Similarly, the category CompGraphsTG is the full sub-category of
CompIGraphsTG where all composite graphs are typed over the composite
graph ˆTG

′
with ∀n ∈ TG′ = TG, ˆTG

′
(n) = T ( ˆTG(n)). ▽

Example 6.8. Considering the composite type IC-graph in Fig. 6.1, Fig. 6.2
shows an example composite IC-graph typed over that composite IC-graph.
Each graph is equipped with a meaningful name according to its typing body
or interface graph. Again, network edges are not explicitly shown while their
re�ning mappings denote them. On the left, a department management com-
ponent instance is given with one body and two export interfaces. These
interfaces are typed over two di�erent export type graphs. On the right, two
project management component instances are given. In order to distinguish
both, the su�xes �.1� and �.2� are added to related component parts. Mappings
between typed edges are neglected as in previous examples.

The export interface DepExport2 exports managers, employees, and de-
partments. It illustrates that not all body objects have to be exported since
some of them are missing in the export. Moreover, although Martin is con-
tained in a department (see DepBody), this information does not have to be
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exported either. In export DepExport1, a subset of the department structure
is exposed.

On the right-hand side, the import interface PrjImport2.1 is depicted with
a morphism running to the export interface DepExport2. This morphism maps
an EmployedMember instance to an Employee instance. Note that both in-
stances being mapped are typed over di�erent types (compare Fig. 6.1) but
are meant to semantically correspond to each other. However, this mapping
is permitted due to the corresponding mapping between EmployedMember and
Employee on type level. Furthermore, consider the import and export graphs
PrjImport1.1 and PrjExport.2. They illustrate how component instances which
are typed over the same component type can relate to each other. Please note
the related mapping on type level in the bottom right of Fig. 6.1 between
interfaces of the same component. △

Figure 6.2: Example of a typed composite IC-graph.

Below, pushouts in the category CompICGraphsTG are examined and
double pushouts thereafter in order to prepare the de�nition of transformations
in CompICGraphsTG. As already shown, containments are problematic here,
since there may be cases where, e.g., a pushout includes an object with two
containers which is forbidden by de�nition. Therefore, for now composite IC-
graphs with empty containments are consider only by means of the category
CompIGraphsTG. The problems related to containments are tackled later by
the de�nition of appropriate consistent rules which never cause containment
problems.

In the remainder of this section, it is shown that pushouts in the category
CompIGraphsTG exist. The argumentation for pushouts relies on the fact
that IGraphsTG is co-complete.

Proposition 6.9 ((CompIGraphsTG,Minj) is a weak adhesive HLR cate-
gory). The category CompIGraphsTG with the classMinj of injective typed



90 Chapter 6. Transformation of Composite IC-Graphs

composite I-graph morphisms forms a weak adhesive HLR category. Pushouts
along injective composite network morphisms can be constructed component-
wise.

Proof. The �rst statement follows from the reasoning in Prop. 5.14 and
Prop. 4.12 and can be argued analogously.

Additionally, the component-wise construction follows from Corollary 5.12.
✷

Proposition 6.10 (DPO in CompIGraphsTG). Let (PO1) and (PO2) be
two pushouts in the category CompIGraphsTG as illustrated in Fig. 6.3 with
l̂, r̂, and m̂ being injective typed composite I-graph morphisms and with the
typing morphisms ˆtypeL̂, ˆtypeK̂ , ˆtypeR̂, and ˆtypeĜ. The typing morphisms
ˆtypeD̂ and ˆtypeĤ exist and (7) and (8) commute.

L̂

��

m̂
��

(PO1)

K̂

��

l̂oo

d̂
��

r̂ //

(PO2)

R̂

~~

m̂′
��

Ĝ

uu

(7)

D̂

pp

ĝoo ĥ //

(8)

Ĥ

ppˆTG

Figure 6.3: Double pushout in CompIGraphsTG.

Proof. Let (PO1) and (PO2) be double pushouts in CompGraphsTG and
let ˆtypeX be typing morphisms with X ∈ {L̂, K̂, R̂, Ĝ, D̂, Ĥ} from a composite
graphs X to the composite I-graph ˆTG such that ˆtypeL̂ ◦ l̂ = ˆtypeK̂ = ˆtypeR̂ ◦ r̂
(1) and ˆtypeĜ ◦ m̂ = ˆtypeL̂ (2). The typing morphisms to be de�ned are
ˆtypeD̂ : D̂ → ˆTG with ˆtypeĜ◦ĝ = ˆtypeD̂ and ˆtypeĤ : Ĥ → ˆTG with ˆtypeĤ◦ĥ =
ˆtypeD̂ and ˆtypeĤ ◦ m̂

′ = ˆtypeR̂ .

Let ˆtypeD̂ = ˆtypeĜ ◦ ĝ (3). This implies ˆtypeD̂ ◦ d̂ = ˆtypeR̂ ◦ r̂ (4) using
equations (1), (2), (3) and pushout (PO1). Now, Prop. 6.9 can be exploited
considering the pushout (PO2) and the equation (4). Then, there is a unique
composite I-graph morphism ˆtypeĤ : Ĥ → ˆTG with ˆtypeĤ ◦ ĥ = ˆtypeD̂ and
ˆtypeĤ ◦ m̂

′ = ˆtypeR̂ . ✷
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6.2 Consistent Transformation of Typed Composite

IC-Graphs

Analogously to non-composite IC-graph transformation, this section intro-
duces the transformation of composite IC-graphs and incorporates the notion
of consistency in order to tackle the containment related issues in pushouts.

Definition 6.11 (Composite IC-graph transformation). A composite trans-
formation system TS = (Ŝ, P̂ , ˆTG) over the category CompICGraphsTG con-
sists of the composite IC-graphs ˆTG and Ŝ, called composite type graph and
composite start graph, with Ŝ being typed over ˆTG, and a set of consistent
composite IC-graph rules P̂ .

• A composite IC-graph rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂, ˆtype) consists of com-
posite IC-graphs L̂, K̂, and R̂ typed over ˆTG by the triple ˆtype =
( ˆtypeL̂ : L̂ → ˆTG, ˆtypeK̂ : K̂ → ˆTG, ˆtypeR̂ : R̂ → ˆTG) being compos-

ite IC-morphisms and typed composite IC-morphisms l̂ : K̂ ↩→ L̂ and

r̂ : K̂ ↩→ R̂ being inclusions such that ∀n ∈ KN : p̂(n) = (L̂(n)
l̂(n)
←↪

K̂(n)
r̂(n)
↩→ R̂(n), ˆtype(n)) is an IC-graph rule (cp. De�nition 4.14). More-

over, ∀n ∈ RN −KN : ˆtypeR̂(n) is concrete.

A composite IC-rule p̂ is called consistent, if ∀n ∈ KN : p̂(n) is consistent
(cf. Def. 4.18).

• A composite IC-graph transformation step (or direct composite IC-graph

transformation) Ĝ
p̂,m̂
=⇒ Ĥ of a typed composite IC-graph Ĝ to Ĥ by a

consistent composite IC-graph rule p̂ and a typed injective composite
IC-morphism m̂ : L̂ → Ĝ is given in Fig. 6.4 below, where (1) and (2)
are pushouts in the category CompICGraphsTG.

• A composite IC-graph transformation is a sequence Ĝ0 ⇒ Ĝ1 ⇒ ...⇒ Ĝn

of direct composite IC-graph transformations, written Ĝ0
∗⇒ Ĝn.

L̂

m̂

��

K̂? _l̂oo

d̂
��

� � r̂ // R̂

m̂′

��
(1) (2)

Ĝ D̂? _ĝoo � � ĥ // Ĥ

Figure 6.4: Illustration of a composite (IC-)graph transformation step by
means of two pushouts.

✸
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As for the transformation of local typed IC-graphs, in Chap. 4 arising dif-
�culties regarding the preservation of proper containment relations have been
discussed and how to face them by consistent IC-rules. Composite IC-graph
transformations are essentially constituted by a number of local IC-graph
transformations such that an obvious idea might be to exclusively use con-
sistent IC-rules on object layer (cf. Example 6.12). And indeed, Theorem 6.13
shows that such a consistent transformation yields a composite IC-graph again.

Example 6.12. Figure 6.5 shows a composite IC-graph rule which conforms
with the composite type IC-graph in Fig. 6.1. The presentation is similar to
previous �gures, i.e., network nodes (or component parts) are illustrated by
rounded rectangles equipped with meaningful names according to their typing.
Re�ning graphs are located within the rectangles where object identities are
denoted by equal numbers while mappings between typed edges are neglected.
Network edges are not explicitly shown but are constituted by their re�ning
mappings illustrated by dashed edges.

The LHS contains a department management component with a body and
an export interfaces. The body shows three departments in a hierarchical
containment relation where two of them are exported together with their re-
lation. As indicated by the RHS, an application of this rule shall not modify
the network structure, i.e., body and export are preserved whereas changes
on object level do occur. In detail, the hierarchical containment structure of
the three departments changes which also involves the deletion of the contain-
ment relation in the export interface. Furthermore, an employee appears in
the body.

Each two corresponding component parts in the LHS and RHS, slightly
highlighted by the rectangles with dotted borderlines, can be considered as
the LHS and RHS of a local rule. For instance, the local rule of the compo-
nent part DepBody resembles the sample consistent IC-rule shown in Fig. 4.4
which especially illustrates how cycle capable containment has to be treated.
In addition, the new containment edge in the RHS has been added together
with a new employee object. This satis�es another requirement for consistent
rules (cf. Sec. 4.2), i.e., a containment edge has been created together with
a contained object node. The deletion of containment edges as shown in the
local rule of the interface DepExport2 does not con�ict with any consistent IC-
rule constraint. To sum up, since both local rules are consistent IC-rules, the
composite IC-rule is considered consistent as well and so is the corresponding
transformation with arbitrary host composite IC-graphs. That this holds true
is shown immediately in the proof of Theorem 6.13 below. △
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DepBody DepBody

DepExport2 DepExport2

LHS RHS

Figure 6.5: Sample consistent composite IC-graph rule.

Theorem 6.13 (Consistent composite IC-graph transformation step). A

composite IC-graph transformation step Ĝ
p̂,m̂
=⇒ Ĥ as de�ned in 6.11 exists

and the resulting graph Ĥ is a composite IC-graph typed over ˆTG.

Proof. First, each given IC-morphism is restricted to an I-morphism with
empty containments and the DPO in categoryCompIGraphsTG is constructed.
Pushouts exist since CompIGraphsTG is shown to be co-complete (see Propo-

sition 6.9). Therefore, a composite I-graph Ĥ results which is typed over ˆTG
′

being ˆTG with empty containment (cf. Prop. 6.10). It is still to be shown that
Ĥ can be typed over ˆTG:

1. Each local graph Ĥ(n) for n ∈ HN is an IC-graph concretely typed over
ˆTG(typeH(n)).

2. Each local graph morphism Ĥ(e) for e ∈ HE is an IC-morphism typed
over ˆTG(typeH(e)).

For the proof of item 1, consider Fig. 6.4 showing a composite graph trans-
formation step as double pushout. For proof of item 2, consider Fig. 6.6 in
particular.

Proof of Item 1. Pushouts inCompIGraphsTG are constructed component-
wise. According to that, ∀x ∈ HN : Ĥ(x) is either constructed by a pushout
in the category IGraphsTG or is equal to D̂(x) or R̂(y) with m′(y) = x.
In case of Ĥ(x) = R̂(y), Ĥ(x) is an IC-graph, since R̂(y) is one. Moreover,
Ĥ(x) is concretely typed since R̂(y) is so, due to assumptions. In case of
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Ĥ(x) = D̂(x), it follows that D̂(x) = Ĝ(x). Since Ĝ(x) is an IC-graph, so
is Ĥ(x). If Ĥ(x) is constructed by a pushout, there is a local graph trans-

formation Ĝ(x)
p̂(y),m̂(y)
=⇒ Ĥ(x) with m(y) = x. Since p̂(y) is consistent by

assumption, Ĥ(x) is an IC-graph concretely typed according to Fact 4.20.

Proof of Item 2. The following is known:

(i) From the pushout construction in CompIGraphsTG, it follows that
ˆTG(typeH(e)) ◦ ˆtype(i) = ˆtype(j) ◦ Ĥ(e) for I-graphs (cf. Prop. 6.9).

(ii) For all e ∈ HE : ˆTG(typeH(e))(C( ˆTG(typeH(s(e))))) ⊆ C( ˆTG(typeH(
t(e)))), since ˆTG is a composite IC-graph.

(iii) ˆtype(i)E(C(Ĥ(i)) ⊆ C( ˆTG(typeH(i))), since ˆtype(i) is an IC-morphism
(Fact 4.20).

(iv) ˆtype(j)E(C(Ĥ(j)) ⊆ C( ˆTG(typeH(j))), since ˆtype(j) is an IC-morphism
(Fact 4.20).

ˆTG(typeH(i))
ˆTG(typeH(e)) // ˆTG(typeH(j))

(=)

Ĥ(i)
Ĥ(e)

//

ˆtype(i)

OO

Ĥ(j)

ˆtype(j)

OO

Figure 6.6: A typed local graph morphism.

To show: Ĥ(e)(C(Ĥ(i))) ⊆ C(Ĥ(j)), ∀e ∈ HE .
A = ˆTG(typeH(e))( ˆtype(i)(C(Ĥ(i)))) ⊆ ˆTG(typeH(e))(C( ˆtype(i))) ⊆ C( ˆTG(
typeH(j))), since ˆtype(i) and ˆTG(typeH(e)) are IC-morphisms.
B = ˆtype(j)E(C(Ĥ(j))) ⊆ C( ˆTG(typeH(j))), since ˆtype(j) is an IC-morphism.
A = ˆtype(j)E(Ĥ(e)(C(Ĥ(i)))), due to equation (i).
A ⊆ B, since ˆtype(j) is a typing IC-morphism.
Hence: Ĥ(e)(C(Ĥ(i))) ⊆ C(Ĥ(j)), ∀e ∈ HE . ✷

Remark 6.14. In order to ensure local consistency in terms of acyclic con-
tainments, consistent composite IC-graph transformation steps apply consis-
tent local IC-rules only. This approach is not su�cient to ensure global acyclic
containments though. As in Remark 6.5, consider again the case where a node
x contains a node y and both nodes are exported without their containment
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relation. Furthermore, an importing component may already refer to the con-
tained node y. A consistent composite IC-graph transformation step may
locally add node x and a containment relation running from y to x, which is,
however, opposite to the original containment relation.

Following the approach proposed in item 2 of Remark 6.5, consistent com-
posite IC-graph transformations where all containments between two exported
and imported objects have to be declared would always maintain this consis-
tency. The proof is straightforward and omitted here. ▽

6.3 Transformation of Weak Typed Composite

IC-Graphs

The liberation of composite graphs to weak composite graphs, where exports
may appear without their bodies, as well as the transformation of weak com-
posite graphs are introduced in Sec. 5.4. Such transformations are led back to
the transformation of ordinary composite graphs by extending rule graphs and
host graphs by surrogate bodies if needed. The crucial part is the arti�cial
introduction of new bodies which are surrogates for the ones �currently� not
available and which must particularly be suitable. For this reason, the body
graphs are constructed based on the structure of their relating (previously un-
coupled) export graphs, on the one hand, and the already existing matching
from these export graphs into the host graph, on the other hand.

The concept of weak composite graph transformation can be applied to
typed composite graphs with inheritance and containment structures since
typed composite IC-graphs are actually composite graphs with typing IC-
morphisms to distinguished composite IC-graphs.

Example 6.15. Figure 6.7 shows a composite IC-graph rule being obviously
weak. The LHS contains an incomplete composite graph where the department
management export interface of type DepExport2 (see type composite IC-graph
in Fig. 6.1) is shown but its belonging body is missing. As de�ned in Sec. 5.4,
such exports must be fully preserved which is the case here. The application
of this rule shall create a new project management component consisting of a
body and an import interface where the interface is connected to the export
of the department management. Nevertheless, the operation does not depend
on the information of the department management's body .

Now consider the case, where the host composite graph of the transforma-
tion is equal to the LHS, i.e., the body component part is missing. Then, the
export interfaces of LHS, RHS and host composite graph are each completed
by a body which is isomorphic to the exports. The corresponding mappings
and matching are obviously trivial. If the body is already given in the host
composite graph, the LHS (and RHS) are completed with a body which carries
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only a minimal graph, i.e., a graph which carries only those elements needs to
be mapped by the exported elements.

Both scenarios can be found in the schema in Fig. 5.11. △

DepExport2 DepExport2

PrjBody

PrjImport2

LHS RHS

Figure 6.7: Sample weak composite IC-graph rule.

In the following, weak composite IC-graph rules and the corresponding
gluing condition are not re-considered as they are similar to those in Sec. 5.4.
The interesting part is rather the adaptation of the body construction in terms
of a weak composite IC-graph transformation step conversion analogously to
Def. 5.28. It also remains to show that such a construction always yields well-
typed composite IC-graphs. Additionally, the properties of typed IC-graphs,
at most one container and no containment cycles, must be satis�ed.

The body-construction on network level is always straightforward: Since
each (type) export interface uniquely belongs to one (type) body, the typing
of a new body node can be easily deduced by its export node. The body-
construction on object level is almost that simple. For the host composite
IC-graph, each new body graph structure exactly corresponds to one export
graph structure and since each element in a (type) export graph points to
exactly one element in the (type) body graph, the typing of an element in a
typed body graph can be deduced. The construction of new body graphs in the
composite rule appears more subtle at the �rst glance due to the equivalence
relation which potentially maps elements from di�erent export graphs to one
element in the body graph. Nevertheless, the equivalence relation refers to
relations between export graphs and their body graph in the host graph which
are well-typed from which is follows that the new body graphs in the rule are
well-de�ned, too.

In the following, the composite graph transformation step conversion is
shown with regard to the typing over composite graphs with inheritance and
containment structures. Then, the well-de�nedness of the body construction
and the satisfaction of typed IC-graph properties are shown in a formal manner
and are illustrated by an example afterwards.
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Definition 6.16 (Weak typed composite IC-graph transformation step con-

version). Let there be a weak typed composite IC-rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂, ˆtype)
with L̂, K̂, and R̂ being weak composite IC-graphs typed over the non-weak
composite IC-graph ˆTG by the triple ˆtype = ( ˆtypeL̂ : L̂ → ˆTG, ˆtypeK̂ : K̂ →
ˆTG, ˆtypeR̂ : R̂→ ˆTG) being composite IC-morphisms.

Given a weak typed IC-composite transformation step Ĝ
p̂,m̂
=⇒ Ĥ with the

weak typed IC-composite graph Ĝ as host typed via ˆtypeĜ : Ĝ → ˆTG, and
the composite match m̂ : L̂→ Ĝ which satis�es the gluing conditions for weak
composite graphs, then the weak typed IC-composite transformation step is

converted to a typed IC-composite transformation step Ĝ′ p̂
′,m̂′
=⇒ Ĥ ′ as follows:

At �rst, the conversion according to Def. 5.28 is applied whose result,

Ĝ′ p̂
′,m̂′
=⇒ Ĥ ′, serves as starting point for the conversion steps below.

For convenience the following is de�ned: G′
B

= G′
Bod \ GBod and G′

E
=

G′
EB \GEB, analogously for L′.

Step 1. Complete the typing of Ĝ′ (cf. Fig. 6.8).

a) ∀x ∈ GN

GE : typeG′(x) = typeG(x),

b) ∀n ∈ GN : ˆtypeĜ′(n) = ˆtypeĜ(n),

c) ∀b ∈ G′
B
: ∃e : n → b ∈ G′

E
: typeG′(b) = bTG with ∃eTG : typeG′(n) →

bTG ∈ TG,

d) ∀e : n→ b ∈ G′
E
: typeG′(e) = eTG with eTG : typeG′(n)→ typeG′(b),

e) ∀b ∈ G′
B
with e : n → b ∈ G′

E
: ˆtypeĜ′(b) = ˆTG(eTG) ◦ ˆtypeĜ′(n) with

eTG : typeG′(n)→ typeG′(b).

Ĝ′(b)

ˆtypeĜ′ (b)

��

Ĝ′(n)
Ĝ′(e)oo

ˆtypeĜ′ (n)

��
ˆTG(bTG) ˆTG(typeG′(n))

ˆTG(eTG)

oo

Figure 6.8: Illustration for Step 1 of Def. 6.16.
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Step 2. Complete the typing of L̂′.

a) ∀x ∈ LN

LE : typeL′(x) = typeL(x),

b) ∀n ∈ LN : ˆtypeL̂′(n) = ˆtypeL̂(n),

c) ∀b ∈ L′
B
: typeL′(b) = typeG′(b),

d) ∀e : n→ b ∈ L′
E
: typeL′(e) = eTG with eTG : typeL′(n)→ typeL′(b),

e) ∀b ∈ L′
B
: ∀x ∈ L̂′(n) with e : n → b ∈ L′

E
: ˆtypeL̂′(b)([x]) = ˆTG(eTG) ◦

ˆtypeL̂′(n)(x) with eTG : ˆtypeL̂′(n)→ ˆtypeL̂′(b) and x ∈ [x],

Step 3. Complete the typing of K̂ ′ and R̂′.

a) ∀x ∈ KN

KE : typeK′(x) = typeK(x),

b) ∀n ∈ KN : ∀x ∈ K̂(n) : ˆtypeK̂′(n)(x) = ˆtypeK̂(n)(x),

c) ∀b ∈ L′
B
: typeK′(b) = typeL′(b) ∧ ˆtypeK′(b) = ˆtypeL′(b),

d) ∀e ∈ L′
E
: typeK′(e) = typeL′(e) ∧ ˆtypeK′(e) = ˆtypeL′(e),

e) analogously for R̂.

✸

Lemma 6.17. In Def. 6.16, the typing morphisms of Ĝ′, L̂′, K̂ ′, and R̂′ are
well-de�ned.

Proof. Let there be a weak typed composite IC-rule p̂ = (L̂
l̂←↪ K̂ r̂

↩→ R̂, ˆtype)
with L̂, K̂, and R̂ being weak composite IC-graphs typed over the com-
posite IC-graph ˆTG by the triple ˆtype = ( ˆtypeL̂ : L̂ → ˆTG, ˆtypeK̂ : K̂ →
ˆTG, ˆtypeR̂ : R̂ → ˆTG) being typing composite IC-morphisms (see Def. 6.6).
Additionally, let there be a weak typed composite IC-graph Ĝ as host typed via
ˆtypeĜ : Ĝ→ ˆTG and a consistent IC-composite transformation step Ĝ

p̂,m̂
=⇒ Ĥ.

The conversion starts with the conversion de�ned in Def. 5.28 which ig-
nores typing. Lemma 5.29 shows that the resulting Ĝ′, L̂′, K̂ ′, and R̂′ are
(typeless) composite graphs and that l̂′, r̂′, and m̂′ are composite morphisms.
Since subsequent conversion steps concern typing morphism only, i.e., main
structures are left untouched, Lemma 5.29 still holds.

It remains to show that typeĜ′ ,typeL̂′ ,typeK̂′ , and typeR̂′ are typing com-

posite IC-morphisms yielding typed IC-graphs Ĝ′, L̂′, K̂ ′, and R̂′ and that l̂′,
r̂′, and m̂′ are well-de�ned typed IC-morphisms. In the following, the typing
morphisms are examined corresponding to the step they have been de�ned in
Def. 6.16. Existing typing in Ĝ, L̂, K̂, and R̂ are taken over in item 1 and
2 of each step. Therefore, the subsequent reasoning focuses on the structural
extensions and their typing only.



6.3. Transformation of Weak Typed Composite IC-Graphs 99

Step 1: ˆtypeĜ′ is a well-de�ned typing composite IC-morphisms and

Ĝ′ is a typed composite IC-graphs. On network level, according to the
de�nition of composite network graphs, each export node points to exactly
one body in a unique way. This is exploited by items c) and d) which �nd
the corresponding types of the new body node and the new export-body edge
with the help of TG and the typing of the given export node type.

This is similarly exploited on object level where the types of body graph
elements are directly deduced from the types of related export graph elements
and their related body graph elements in ˆTG. Figure 6.8 illustrates this in
a diagram. The commutativity of that diagram has to be shown in addition,
i.e., ∀b ∈ G′

B
: ∀x ∈ Ĝ′(n) with e : n → b ∈ G′

E
the following must hold:

ˆtypeĜ′(b) ◦ Ĝ′(e)(x) = ˆTG(eTG) ◦ ˆtypeĜ′(n)(x).

ˆtypeĜ′(b) ◦ Ĝ′(e)(x)
Def. 5.28 Step 1f)

= ˆtypeĜ′(b) ◦ idĜ′(n)(x)
e)
=

ˆTG(eTG) ◦ ˆtypeĜ′(n) ◦ idĜ′(n)(x) =
ˆTG(eTG) ◦ ˆtypeĜ′(n)(x).

Furthermore, one can argue that for all b ∈ G′
B
: Ĝ′(b) is a typed IC-

graphs, i.e., Ĝ′(b) does not contain containment cycles and there is at most
one container (see Def. 4.7) since its structure is similar to its export and the
export is a typed IC-graph.

Step 2: ˆtypeL̂′ and m̂′ are a well-de�ned typing composite IC-morphism

and a typed composite IC-morphism, resp., and L̂′ is a typed com-

posite IC-graph. For the proof of this step, consider the diagram in Fig. 6.9.
So far, with regard to the �gure the following is known: Step 1 in Lemma 5.29
states the commutativity of the front face (A). Step 2 in this lemma shows
that the top face (B) commutes and that ˆtypeĜ′(b) is well-de�ned. The right
face (C) commutes since exports are part of the original weak typed compos-
ite IC-graphs L̂ and Ĝ being matched by m̂. Furthermore, ˆtypeĜ′(m(n)) and
ˆtypeL̂′(n) are well-de�ned for the same reasons. Consequently, the concatena-

tion of (A) and (B) commutes as well as the concatenation of (A), (B), and
(C) where related typing IC-morphisms are also well-de�ned.

It remains to show that (D) commutes and that ˆtypeL̂′(b) is well-de�ned.
In accordance with the de�nition of epimorphisms in [23, Def. A.12], for an
epimorphism e : A→ B and two morphisms f, g : B → C it holds that f ◦ e =
g ◦ e ⇒ f = g. This de�nition is exploited in the following. L̂′(e) : L̂′(n) →
L̂′(b) can be considered as an epimorphism in the category Graphs as it
maps from elements in the graph L̂′(n) to classes of elements in L̂′(b), i.e.,
L̂′(e) is surjective. To show: ˆtypeL̂′(b) = ˆtypeĜ′(b) ◦ m̂′(b). ∀x ∈ L̂′(n),

ˆtypeL̂′(b) ◦ L̂′(e)(x)
Def. 5.28 Step2.i)

= ˆtypeL̂′(b)([x])
e)
= ˆTG(eTG) ◦ ˆtypeL̂′(n)(x)

commut.(A)+(B)+(C)
= ˆtypeĜ′(b) ◦ m̂′(b) ◦ L̂′(e)(x). Therefore, (D) commutes and

ˆtypeL̂′(b) is well-de�ned since ˆtypeĜ′(b) ◦ m̂′(b) is already shown to be well-
de�ned. This yields the commuting concatenation of (A), (B), and (C) as
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described above. Moreover, it follows that the outer square (the concatenation
of (A)+(B)+(C)+(D)) does also commute, i.e., the typing of exports and new
bodies are consistent.

L̂′(b)

ˆtypeL̂′ (b)

))

m̂′(b)

$$

L̂′(n)
L̂′(e)oo

ˆtypeL̂′ (n)

vv

m̂′(n)

xx

(B)

(D) Ĝ′(b)

ˆtypeĜ′ (b)

��

Ĝ′(m′(n))
Ĝ′(m′(e))oo

ˆtypeĜ′ (m′(n))

��

(C)

(A)

ˆTG(bTG) ˆTG(type(m′(n)))
ˆTG(eTG)

oo

Figure 6.9: Illustration for the proof of Step 2 in Lemma 6.17.

It is rather easy to see that all ∀b ∈ L′
B
: L̂′(b) are IC-graphs. Due to

the construction of L̂′(b), containment cycles cannot occur since each element
[x] corresponds to an element x′ ∈ Ĝ′(b) in a structure preserving way. That
means, containment cycles in L̂′(b)may only occur if there are also containment
cycles in Ĝ′(b) which are shown to be absent. For the same reason, the at most
one container constraints holds as well for L̂′(b).

Step 3: ˆtypeK̂′ and ˆtypeR̂′ are well-de�ned typing composite IC-

morphisms and K̂ ′ and R̂ are typed composite IC-graphs. The con-
struction of K̂ ′ and R̂′ as well as their typing of new bodies and body-export
edges directly correspond to L̂′. K̂ ′ and R̂′ are therefore well-de�ned IC-graphs.

✷
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Part II

Implementation and Tooling
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Now that the concepts of composite graphs and composite graph transfor-
mation are theoretically elaborated and formalized, the present part reports
on the e�orts and results which bring these concepts to practical life.

This is achieved by developing dedicated tools based on the programming
language Java and especially based on technologies in the context of Eclipse
[22]. Eclipse is a huge open source community whose projects aim for an open
and extensible development platform able to support the developer throughout
the entire software life-cycle. Moreover, the Eclipse platform with its sophisti-
cated plugin marchitecture has also proven very useful as application platform
(cf. http://www.eclipse.org/community/rcpos.php) in a number of scenar-
ios ranging from 3D graphical editors over homepage builder to network tools.
The community is supported by the non-pro�t Eclipse Foundation which is
driven by many famous companies as, e.g., IBM.

These are a number of reasons to choose Eclipse as a very �rst platform
for the implementation of composite modeling. In fact, composite models are
implemented by means of the Eclipse Modeling Framework (EMF) [27] which
can thoroughly be called the standard modeling framework in the Eclipse envi-
ronment. Furthermore, composite transformations of EMF models are imple-
mented based on Henshin [37] a tool for in-place EMF model transformation.
Both composite EMF models and composite EMF transformations are pre-
sented in Chapters 7 and 8 by means of the running example.

http://www.eclipse.org/community/rcpos.php
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Chapter 7

Composite EMF Models

This chapter presents the implementation of composite models based on the
Eclipse Modeling Framework (EMF) [27]. It is structured as follows: At �rst,
EMF itself is introduced and its features and properties are highlighted. Af-
terwards, CompoEMF [73], the composite EMF model implementation is pre-
sented including its dedicated editor support. CompoEMF has been developed
in collaboration with Tim Schäfer [72].

7.1 Meta Modeling with EMF

The Eclipse Modeling Framework allows de�ning models and modeling lan-
guages by means of so-called structured data models. They can be created
and modi�ed using dedicated wizards, editors and an API. Furthermore, EMF
provides the capability of generating Java code out of an EMF model which
can then be customized to �t ones needs. In the following key concepts of
EMF are outlined.

7.1.1 Ecore

The most important EMFmodel is Ecore which serves as general (meta) model.
Moreover, Ecore is an EMF model itself, i.e., it is typed over itself and therefore
sort of a bootstrap for EMF models. Figure 7.1 gives an impression of the
Ecore meta model by means of a subset of Ecore with its most important
classes and relations shown. Abstract classes are indicated by italic letters
and are colored by a slightly darker background. The concrete classes located
in the lower part of Fig. 7.1 essentially correspond to common entities in UML
class diagrams, i.e., EPackage, EClass, and EAttribute correspond to packages,
classes, attributes. The class EDataType represents certain primitive and
non-primitive types like int (EInt) and Integer (EIntegerObject). EReference
corresponds to associations whereas references are always directed.
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Additional attributes further support the use of these Ecore elements in
di�erent ways, e.g., the attribute nsURI of EPackage is very important as it
assigns a globally unique namespace to a package to allow for its unambiguous
identi�cation. Classes may be declared as abstract classes or interfaces by
corresponding attributes of EClass. Furthermore, references may be explicitly
equipped with lower and upper bound and be declared as derived references
which shall rather be calculated in a certain way.

Figure 7.1: Subset of the Ecore meta model exposing the most important
parts.

Since Ecore is typed over itself, it can be quit tricky to �nd the right term
when speaking of a certain model layer. Therefore, to avoid confusion, in
the following the terms Ecore (meta model), Ecore model and EMF instance
(model) are respectively used referring to Ecore itself, a model directly typed
over Ecore, and in turn an instance of the latter. If either of these models is
to be addressed, the term EMF model is used.

Example 7.1. Figure 7.2 shows the running example by means of two Ecore
models, i.e., the department management is depicted at the left while the
project management is given at the right. They are already shown in a similar
manner in Fig. 4.1. However, this time both models are truly Ecore models
with their concrete syntax visualized by means of the EcoreTools editor shipped
with EMF.

Their abstract syntax can be easily deduced with help of Fig. 7.1. In
Fig. 7.2, each named class is an instance of EClass at which the value of
the EClass.name property is set correspondingly. Classes with a name in
italic letters, e.g., Person, are declared as being abstract with the help of
the EClass.abstract property set to true. Attributes such as pno are de-
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�ned by instances of EAttribute again with a corresponding value set to
EAttribute.name. Note that the attribute types EString, EInt, and EFloat

are Ecore-speci�c types which are assigned via the reference EAttribute.eType
and which shall provide a platform independent type system.

Not visualized in Fig. 7.2, both class diagrams are wrapped each by an
instance of EPackage whose attribute values are given below the diagrams in
the lower area of Fig. 7.2. As explained already, especially the name space
URI (Ns URI) is an important value and shall be unique.

Employee
pno : EInt

Person
firstname : EString
lastname : EString

Department
name : EString

Manager

employees0..*

subDepts
0..*

managed0..*
AMember

role : EString
first : EString
last : EString

EmployedMember
persNo : EInt

Freelancer
salary : EFloat

Project
name : EString

freelancer0..*employedMembers 0..*

children
0..*

Figure 7.2: The running example of a department management (left) and
project management (right) model by means of Ecore models.

△

7.1.2 Containment

The concept of containments, in UML known as composition, plays an impor-
tant role in EMF as it describes an ownership relation aiming at hierarchical
containment structures on instance level. Consequently, objects must belong
to at most one container and (transitive) cyclic containment is forbidden. The
attribute that declares relations to be containments is shown in Fig. 7.1 as
part of class EReference. Another desired property of EMF models is a single
root element, i.e., an object which transitively contains all other model ob-
jects. While this third property plays a minor role in the formalization above,
in terms of the EMF tooling it is important as all three properties together
allow EMF to persist arbitrary models along their spanning containment tree.

The abstract syntax of the Ecore models in Fig. 7.2 provides such valid
containment structures. The instances of EPackage each serve as the root
element which contains related EClass instances which in turn contain their
EAttribute instances as well as the EReference instances.
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7.1.3 Remote References

EMF models are primarily persisted as a so-called resource (usually a �le) in
a format called XML Metadata Interchange (XMI) [64] an OMG standard for
serializing metadata using XML. The hierarchical structure of such an XMI
document closely follows the containment hierarchy of its persisted model and
also provides a way to uniquely identify elements in that model. Exploiting
this, EMF is capable to fragment models across di�erent resources by letting
one model's object relate to a remote model's object via a reference, then
called cross-document reference or remote reference. Beyond that, the remote
object is initially represented by a proxy object which is resolved to the original
element not before it is actually needed.

7.1.4 Code Generation

Instances over an Ecore model can be created in two ways. The �rst one yields
so-called dynamic instances which can be considered as on-the-�y instances,
i.e., objects are actually instances of an EMF internal generic Java class and
just point to the model class whose instance the object pretends to be.

However, the second and rather common way is to exploit generated model
code. To this end, EMF provides a generator facility based on the template
language JET [57]. For each Ecore model class a corresponding Java class
is generated including member variables that represent provided attributes
and references. In fact, EMF generates Java interfaces and implementation
classes where the former only expose accessors to properties according to the
Ecore model while the latter includes additional functionality as noti�cation
handling, list management, proxy resolution and so on. Then, instances of the
original Ecore model are created by instantiating the generated Java classes.

The EMF generator o�ers additional facilities such as the generation of a
basic tree-based editor dedicated to edit related instance models and a facility
to generate skeletons of unit test classes. Note that the generated code is
enclosed by plugin projects which seamlessly integrate into Eclipse.

7.1.5 Editor support

The basic editors in the Eclipse Modeling Framework are the tree-based editors
providing basic CRUD operations. Since EMF o�ers generator capabilities
leading to such editors it is not surprising that the standard editor for Ecore
models is the one generated out of the Ecore meta model itself. However,
EMF also ships a generic tree-based editor, called Sample Re�ective Editor,
that allows to edit arbitrary EMF models, i.e., Ecore models and instance
models.

Since models are rather graph-like structures, a visual representation is
often more adequate. Therefore, EMF comes with a GMF [34] based diagram
editor for Ecore models as well which yields diagrams as depicted in Fig. 7.2.
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EMF instances are by default edited using a generated tree-based editor
or the Sample Re�ective Editor. A generic visual editor for EMF instances is
not available. However, dedicated diagram editors can be generated with some
e�ort using frameworks like GMF and EuGENia [54].

Example 7.2. Figure 7.3 shows the standard EMF generated tree-based
editor resulting from a department management Ecore model as depicted in
Fig. 7.2. It essentially consists of a tree-based editor view (in the upper area)
showing the overall structure along the containment hierarchy and a synchro-
nized properties view (in the lower area) providing access to the attribute
values of the object selected in the editor view. New objects can be added by
means of context menu entries (not shown). △

Figure 7.3: Sample EMF generated editor generated from an Ecore model.

7.2 CompoEMF: A Framework for Composite EMF

Models

This section presents CompoEMF, a �rst implementation of composite graphs
with inheritance and containment having EMF as underlying technology. It
starts with a discussion of the main requirements towards the implementation
of CompoEMF and is followed by an introduction of its underlying meta model.
Some technical points are laid open thereafter concerning loose containment in
interfaces and the delegation of attribute values along interface chains. Finally,
the tool support of CompoEMF is highlighted.
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7.2.1 Requirements

Di�erent ways are conceivable of applying the concepts of composite mod-
els to EMF. However, the current implementation of CompoEMF pursues a
number of promising goals. One of the main goals is to achieve high reuse
of existing EMF models, i.e., ordinary EMF models shall easily and espe-
cially non-invasively become body component parts, i.e., without the need to
modify them. As a result, interface-related information needs to be stored
elsewhere.The implementation approach shall furthermore, analogously to the
formalism, support the pretty useful capability of having interface object struc-
tures being simpler than their body models. Moreover, interfaces shall be espe-
cially able to carry a number of single objects without an explicit containment
hierarchy. Note that this requirement con�icts with the desired EMF model
property of having a single root element.

Although the concept of composite IC-graphs does not explicitly consider
attributes, in practice attribute values are of particular interest when export-
ing and importing objects. Therefore, a further goal is to treat attributes
analogously to objects in composite EMF models, i.e., attributes need to be
explicitly exported and imported in order to let components share their values.

7.2.2 CompoEMF Meta Model

Complying with the requirements above, in CompoEMF each component model
is essentially constituted by a body being an ordinary EMF model. In order to
de�ne export and import interfaces it appear obvious to exploit EMF models
again. This further increases the reuse of EMF and actually reminds of the un-
derlying formalism where bodies, exports, and imports are graphs. However,
while Ecore serves as meta model for body models, it lacks of structures re-
quired by interface models namely the references to corresponding bodies and
imports. CompoEMF introduces dedicated interface meta models, called EEx-
port and EImport, which extend the kernel classes of Ecore and enrich them
with remote references to body and export models. Interface models can thus
be treated similarly to ordinary EMF models and existing EMF features/tools
can be reused (to a certain extent) such as code generators, generic editors,
etc.

Figure 7.4 illustrates this constellation in form of a meta level hierarchy.
Level M3 shows Ecore as topmost meta model which is typed over itself, i.e.,
Ecore on M4 and so on. One level below on M2, Ecore, EExport, and EImport
are all typed over Ecore on M3 and serve as meta models for body and interface
models on M1. Note that on level M2, the classes of EExport and EEImport
inherit elements from Ecore and enrich them with additional references. This
fact is denoted by the (not UML compliant) inheritance relation between the
interface models and Ecore. Obviously, level M0 speci�es the instance level
with EMF instance models and instances of interfaces de�ned on M1.
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Figure 7.4: Meta layers corresponding to bodies and interfaces.

In the formalism of composite graphs, network graphs de�ne the kind of
graphs on object level in terms of component parts, i.e., whether they are
bodies, exports, or imports. Since EExport, EImport, and Ecore already de-
clare the component part type of a model, the question arises whether one
needs a similar second layer in practice too. The di�culty here, however,
comes with the design decision that body models are original EMF models,
i.e., they are not aware of their interfaces nor of interconnected components.
Therefore, CompoEMF provides an additional Ecore model, called Composite,
which maintain such information.

In the following, EExport, EImport, and Composite are presented in more
detail.

EExport and EImport. Figure 7.5 depicts details of the meta models EEx-
port and EImport together with parts of Ecore. The original Ecore meta
classes are shown in the center (compare Fig. 7.1) while elements belong-
ing to EExport and EImport are arranged at the left and right. The from
annotation in brackets additionally indicates the origin of each meta model
element. Especially notice the outgoing references introduced by each element
of EExport and EImport. For example, the Ecore class EClass is inherited
by ExportedClass and ImportedClass both referring to their corresponding
body element via reference bodyClass while ImportedClass also has a refer-
ence to ExportedClass. In fact, each of the three (meta) models shown in
Fig. 7.5 is modularized in a separate resource1 and references like bodyClass

are actually remote references.

1The meta models are de facto �les each located in a separate Eclipse plugin together
with their generated (meta) model code.
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Figure 7.5: Extended Ecore model for composite EMF models. Ecore meta-
classes are arranged in the center and annotated with their origin.

In order to further support the special needs of composite EMF models,
the EMF generator is utilized to generate model code and editor code for both
EExport and EImport. The resulting model code is then essentially extended
by a mechanism which allows multiple elements being not contained explicitly
and by a delegation mechanism to pass attribute values along interfaces. The
editor code is also adapted and tailored, e.g., by unique icons, by a wizard
to easily choose elements from a body to be added to the export, and by a
capability to create dynamic interface instance models.

Example 7.3. Figure 7.6 shows the models of the running department/pro-
ject management example by means of a composite EMF model on level M1
(cf. Fig. 7.4). Unsurprisingly, in general it looks pretty similar to what is
shown throughout Chap. 6. The body models are located in the upper area
with the department management Ecore model at the left and the project man-
agement Ecore model at the right. Their export and import models are located
below. Remote references between the model elements are not shown but are
denoted by arrows between the models. The packages wrapping the two body
models, the export model and the import model are not shown either2. Close
to each model the corresponding �le name is shown. Since the body models
are instances of Ecore, their �le extension is .ecore. Analogously, since the
department export and the project import models are instances of EExport
and EImport their �le extensions are .eexport and .eimport, respectively. △

Composite Ecore model. CompoEMF also includes a model to represent
the network structure of a composite EMF model, called Composite Ecore
model. In Fig. 7.7, the Composite Ecore model is given together with two
elements of the Ecore meta model. The class Composite is the root ele-

2The diagrams are shown by means of the original EMF EcoreTools diagram editor
which does not support the illustration of surrounding packages.
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Figure 7.6: Example composite EMF model similar to the running example in
Chap. 6 (e.g. compare with Fig. 5.4).

ment and may contain arbitrary ComponentParts such as Component and
Interface. ComponentParts remotely refer to the root element of their repre-
sented component part model (rootEObject) and to the meta model of that
part (ePackage). It also contains a derived attribute EPackageUri whose value
is directly derived from the nsUri attribute value of the associated :EPackage

object. This attribute has been introduced to allow for a convenient matching
only as explained later. A class Component represents a component by, on the
one hand, referring to its body model and, on the other hand, also contain-
ing its interfaces. Note that the reference interfaces is directed opposite to
what has been formalized so far. Nevertheless, this is a bidirectional reference
and the correct direction is modeled as well by body. Interfaces are repre-
sented by the abstract class Interface and their children ImportInterface

and ExportInterface. Please also note that in the current state of devel-
opment, Composite does not support the representation of weak composite
graphs which would allow uncoupled export interfaces.

Analogously to the interface meta models, model and editor code of the
Composite Ecore model are adapted and extended. Moreover, a visual editor
is generated by GMF [34] which o�ers more convenient capability of editing
composite EMF models.

Example 7.4. Considering Fig. 7.6 in the context of a Composite model, the
two body models in the upper area are represented by two :Component objects
contained in a single :Composite object. The rootEObject references of both
components point to the root packages of the body Ecore model while the
ePackage references point to the root package of the body Ecore meta models
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Figure 7.7: Composite Ecore model serving as network meta model for com-
posite EMF models.

as this is the meta model of Ecore models. The department management
related :Component contains the object :ExportInterface which points to the
packages of the DepExport2 model and the EExport meta model. The project
management related :Component contains the object :ImportInterface which
points to the packages of the PrjImport2 model, the EImport meta model, and
in addition to the :ExportInterface object of the department management
component. △

7.2.3 Transparent Interface Container

A requirement based on the formalism is to allow interfaces models to carry
multiple classes/objects not necessarily being contained, i.e., having more than
one root element. In general, EMF supports multiple root elements in a sin-
gle resource. The handling of such resources is comparatively inconvenient,
though, e.g., having a single root each element can be treated similar for in-
stance using the convenient traversal method over all contained elements while
multiple roots require a special handling here.

The design decision for CompoEMF is to introduce an arti�cial container
which is automatically created and transparent to the user. Therefore, the
model code of EExport and EImport is appropriately extended to introduce
a topmost container class, called Container, each time an interface model is
created. Adding a new class to an interface model then also automatically
results in a new containment reference running from Container to that class.
Consequently, in interface instances a :Container object is the root element
which is able to contain all objects if necessary. Note that the editor code is
also adapted such that the Container class is hidden to the user.

Example 7.5. Given the composite EMF model in Fig. 7.6, Fig. 7.8 shows
an overview of the real structure of DepExport2. The class Container is the
root element and carries containment references to all classes in the model. △
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Figure 7.8: Real structure of interface model DepExport2 in Fig. 7.6.

7.2.4 Delegation of Attribute Values

With the structures described above it is now possible to establish EMF com-
ponent models which may share selected information with each other by ex-
porting and importing objects. However, attributes values (often also called
properties) of objects are of particular interest as they provide the actual data.
For example, an object of type Employee is rather meaningless without the
knowledge of the properties name and personnel number (pno) being �Felicia�
and 512, respectively.

In CompoEMF, attributes are treated similar to classes and references:
they must be explicitly exported and imported in order to be shared. Then,
if the value of an imported attribute of an imported object is accessed, the
request is delegated along the import-export interface to the original body
element. This is illustrated in Fig. 7.9 which shows a small instance of the
composite EMF model given in Fig. 7.6. In addition to the (remote) references
between the models, dashed arrows denote the direction of the delegation. For
example, an access to the value of the attribute first of the :EmployedMember
object triggers a request to the import model (PrjImport2) which asks the
export model (DepExport2) which in turn retrieves the actual value of the
related :Employee object in the department management body. Finally, the
resulting value is returned along the query chain.

: Department

name = "Software  Engineering"

: Project

name = "Quality Assurance"

: Employee

firstname = "Felicia"
lastname = "Dough"
pno = 512

: Employee

firstname = "Felicia"
lastname = "Dough"
pno = 512 : EmployedMember

first = "Felicia"
last = "Dough"
persNo = 512
role = "Leader"

: EmployedMember

first = "Felicia"
last = "Dough"
persNo = 512

Body Body

DepExport2 PrjImport2

Reference
Delegation
Reference
Delegation

Figure 7.9: Composite EMF model illustrating the direction of references and
delegation.
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The delegation along interface models is technically achieved by exploiting
an EMF feature called setting delegates. CompoEMF automatically attaches
them to attributes de�ned in interface models which leads to a dynamic eval-
uation of requests 3 . Body models are, however, ordinary EMF models and
imported elements in body models are themselves not aware of being imported.
Consequently, they are not able to trigger the delegation. Moreover, having a
closer look at Fig. 7.9, the direction of the required delegation is opposite to
the reference import-body reference such that the body even does not know
where to delegate to. To enforce the delegation anyway, an aspect-oriented
approach by AspectJ [4] is applied, i.e., delegation code is planted into body
objects at runtime. This technique works for both instance created with gen-
erated model code and for dynamic instances. Please �nd more details in the
master thesis of Tim Schäfer [72].

7.2.5 Editor support

Since body models are ordinary Ecore models, the EMF editors described in
the previous section are applicable to the full extent. The same holds true for
EExport and EImport model which are Ecore models as well.

The interface meta models EExport and EImport provide EMF-generated
tree-based editors which are slightly modi�ed, e.g., by hiding the arti�cial con-
tainer class (see Sect. 7.2.4 ). It is recommended, however, not to used them
but the Composite model editor (see below) which transparently integrates
editor parts of EExport and EImport and serves as common editor for all
parts of a composite EMF model. Note that the Ecore diagram editor can be
reused only to a certain extent as its tool palette merely provides the creation
of elements from Ecore. Consequently, that editor is better to be used for vi-
sualization, editing, and deletion than for creation. It is conceivable, however,
to build upon the Ecore diagram editor or even generate dedicated diagram
editors for interface models in the future.

The Composite Ecore model comes with generated model code and a gen-
erated tree-based editor, too, as depicted in Fig. 7.10. It shows not only the
network layer but allows the navigation into each re�ning model. Moreover,
the highlighting of correspondences among bodies, exports, and imports and a
convenient drag'n'drop functionality to easily assign body elements to exports
and imports facilitate the handling of composite EMF models.

The modeler is further supported by a Composite diagram editor which is
recommended as the main editor of composite EMF models. In Fig. 7.11, this
editor show a composite EMF model scenario equal to the one in Fig. 7.6. A
tool palette at the right o�ers the creation of component parts and to connect

3 The recent implementation of setting delegates in CompoEMF caches attribute values
to handle cases where the target is unreachable, e.g., due to network problems. However,
the present state of the approach generally assumes connected models to be accessible.
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Figure 7.10: Composite tree editor shipped with CompoEMF.

them. Notice the �Export Interface (foreign Component)� which is yet inoper-
able but will serve as tool to create connect to (uncoupled) exports without the
knowledge of their bodies. The left part of the editor shows the topology of the
composite EMF model. Each node is equipped with small links that trigger
certain actions such as the creation or assignment of models. Especially these
kinds of action include mechanisms to relieve work from the modeler, e.g., the
creation of a model takes the prede�ned meta model into account or a model
assignment automatically sets the meta model.

Figure 7.11: Composite diagram editor shipped with CompoEMF.
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Moreover, when creating interface models a wizard opens up and allows,
e.g., to specify the model elements to share. This is illustrated by the wizard
in Fig. 7.12 which appears if the modeler is to create a new export model
with a given body model as depicted in Fig. 7.6. Obviously, this wizard page
does not allow the speci�cation of all possible combinations. For example, an
export interface like DepExport2 in Fig. 7.6 with one reference (employees)
in the body being represented by two reference (employees and managers) in
the interface cannot be de�ned here. Nevertheless, this wizard page suits well
to quickly specify simple interfaces. More subtle interfaces, however, should
be established using the tree-based editor yet which opens using the Show in
Editor link with the selected component part focused.

Figure 7.12: �New Export� wizard.

Considering the instance level, Ecore instance models do not have a default
visual editor but only a tree-based editor (the generated editor or the Sample
Re�ective Editor). This holds consequently true for body instance models and
interface instance models. Since Composite models are used on model and
instance level, their tooling o�ers a tree-based editor and a diagram editor
again.
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Chapter 8

Composite EMF Model Transformation

This chapter presents an implementation of model transformation for Compo-
EMF models which is joint work with Daniel Strüber within the scope of his
diploma thesis [75] co-supervised by the author.

Since composite EMF models are formalized by means of graphs and graph
morphisms, it is straight forward to use graph transformation concepts. Com-
posite EMF transformation is conceptually based on composite IC-graph trans-
formation whose theoretical �ndings open up a way for a convenient imple-
mentation. Particularly, in Chap. 5 reasoning and proofs have shown that a
composite transformation step can be performed at object level by a number
of coordinated ordinary graph transformation steps on each local graph. This
technically results in the implementation of a composite EMF transformation
engine called CompoHenshin [76] which exploits the capabilities of Henshin
[37], a model transformation tool for EMF models.

The remainder of the present chapter is structured as follows: At �rst,
Sec. 8.1 introduces Henshin which serves as background information for the
subsequent presentation of CompoHenshin in Sec. 8.2.

8.1 Henshin: In-Place EMF Model Transformation

Henshin is a transformation language as well as an engine and comes with a
rich tooling environment (compare Fig. 8.1) for EMF model transformation.
Model transformations can be performed on arbitrary EMF models in an in-
place fashion, i.e., changes are applied on models directly without the need of
a copy. Thus, the engine is obviously specialized on transformation within the
range of the same underlying meta model, called endogenous transformation.
However, exogenous transformations, i.e., transformations where underlying
source and target meta models di�er, are supported as well.

As a successor of EMF Tiger [9] it is also based on graph transformation
concepts but extends the transformation language of EMF Tiger considerably.
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Henshin o�ers a powerful declarative model transformation language that is
represented by an EMF model itself. It conceives transformation rules as the
main artifacts which can furthermore be enriched by powerful application con-
ditions and �exible attribute computations based on Java or JavaScript. Rules
may even be nested which o�ers a forall-operator on patterns. The transforma-
tion language also provides control structures for rule applications in a modular
way, i.e., so-called transformation units with prede�ned control-�ow semantics
may be nested arbitrarily in order to de�ne even more subtle control-�ows. A
set of rules and transformation units is subsumed as transformation system
and stored the EMF way in a so-called Henshin �le in the XMI format (see
Sec. 7.1).

The tool environment primarily consists of a transformation engine, a tree-
based and a visual editor, as well as a graphical state space exploration tool
that allows formal reasoning.
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Figure 8.1: Outline of Henshin showing its kernel and tool environment.

In the following, the meta model of the transformation language is infor-
mally described also serving as foundation of CompoHenshin as explained in
the Sec. 8.2. A more detailed view on Henshin's tool set is given afterwards.

8.1.1 Transformation Meta Model

The Henshin transformation language originates from graph transformation
concepts what is apparently re�ected by Henshin's meta model shown in
Fig. 8.2. Note that most properties of model elements and multiplicities are
neglected in order to focus on the structure of the transformation meta model.
Similarly to the de�nitions in Chap. 3, a Rule basically consists of a left-hand
side and a right-hand side Graph, also referred to as LHS and RHS. Graphs
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may have attributed Nodes being connected by Edges where in addition each
Attribute may carry a value. The identity of nodes in LHS and RHS is de-
�ned over Mappings contained in the rule. The overall root element which
contains all other elements in the meta model is TransformationSystem.

The structure de�ned over this meta model is used to match a corre-
sponding structure of EMF classes and references while the Attribute.value
furthermore restrict valid matches. To capture the meta modeling of EMF
models, i.e., the typing of model elements, each node, attribute, and edge is
equipped with type information by the reference type pointing to an EClass,
EAttribute, and EReference, respectively. Using these generic Ecore meta
model elements (cf. Sec. 7.1.1 ) enables Henshin rules to match arbitrary
EMF-based models. For a proper matching, these types are required to �t in
with the types of the target structure.

Note that the typing references once again resemble the formalism in
Chap. 3 where mappings of typing morphisms run from elements of one graph
to the elements of another graph being interpreted as types in a typed graph.
Since EMF does not allow parallel edges of one type between the same nodes,
the identity of edge mappings can be easily deduced and is therefore not mod-
eled explicitly.

Figure 8.2: Simpli�ed Henshin meta model concerning transformation rules.

Henshin's transformation meta model covers additional concepts not yet
incorporated into the approach of composite modeling. For example, rules may
also be equipped with conditions over attributes which further restrict the num-
ber of valid matches. Additionally, the LHS (and RHS) may contain so-called
application conditions which are model patterns that can appear in a positive
or a negative form and that can even be nested arbitrarily and combined in
logical formulas. Their successful matching, possibly (partially) prede�ned by
the matching of the LHS or another application condition pattern, a�ects the
overall matching. There are other very interesting features of Henshin as pa-
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rameters to de�ne partial pre-matches or to preset possible attribute values,
nesting of rules to specify for-all semantics and transformation units express-
ing control �ows. As part of Henshin's transformation language, they all have
their corresponding elements and structures in the meta model. Please refer to
Henshin's website [37] and to various publications [3, 48, 49, 43, 10] for more
details and example application scenarios.

8.1.2 Rule Application

Rules can be applied via Henshin's API or via a wizard dialog shipped with
Henshin. The overall transformation procedure starts with the matching. To
this end, the explicit type information of nodes is used, i.e., a node whose type
reference points to a certain EClass will match to objects of this type only.
This analogously applies to edges which implicitly point to an EReference and
only match such references typed over a corresponding EReference. If a match
has been found that also passes all checks concerning the gluing condition,
an object of type Match is instantiated which stores the mappings between
elements of the rule and element of the host model. The match can either be
dismissed in order to determine other possible matches, or be used as a base to
apply the given rule on. The rule application is performed by calculating and
accumulating all model changes and by executing them together afterwards.

8.1.3 Tool Environment

Fig. 8.1 presents an outline of the Henshin tool environment arranged around
the core. It consists of a visual diagram editor and a tree-based editor for
transformation systems where both o�er a di�erent representation of the same
content. In particular, the diagram editor exploits an integrated view of rules
where LHS and RHS are merged to a single view with created and deleted
model elements marked by dedicated stereotypes. This allows the concise
and fast de�nition of rules. A state space generator and the sophisticated
visual state space explorer support the reasoning of transformations by model
checking. In Fig. 8.3, screenshots of the diagram editor, the tree-based editor,
and the state space explorer are shown to gain a closer impression of how these
tools look like. The use of rules and transformation units are illustrated by a
number of given examples covering di�erent settings. They also include the
use of Henshin's transformation engine API. In order to help developers and
modelers to test the behavior of their transformation system in an automatic
way, a transformation test-framework is shipped with Henshin which is also
used to test Henshin's transformation engine.

Since the transformation concepts of Henshin are close to graph transforma-
tion concepts, it is possible to export the rules to AGG [1], a tool environment
for algebraic graph transformation where they might be analyzed concerning
con�icts and dependencies of rule applications as well as their termination.
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Figure 8.3: Samples of Henshin's tree-based editor (a), the diagram editor (b),
and the state space exploration tool (c).

Furthermore, the TFS group [79] at the Technical University of Berlin
o�ers yet another visual multi-view editor [80] for Henshin transformation sys-
tems based on the Graphical Editing Framework (GEF) [32] and a GEF-based
framework designed for the development of multi-view editors, called MuVitor
[60] . Figure 8.4 depicts the multi-view Henshin editor whose presentation of
rules in the upper center reminds of their original formal de�nition, i.e., the
LHS and RHS are separate models (or graphs from the formal point of view).
Mappings, i.e., the declaration of identities, are encoded by equal colors and
numbers. This is considerably di�erent to the diagram editor shown in Fig. 8.3
where identic elements of LHS and RHS are visualized as truly one element.

Straight left to the LHS and RHS, a bird's eye view of an application
condition (AC) is given. Although looking like a model pattern, it shows the
nesting of ACs. Nevertheless, ACs itself are model patterns analogously to the
one given in the LHS and RHS. In the present case, the AC isAbstract is
nested by a NOT operator which means that the pattern de�ned in isAbstract

must not be found in order to apply the rule. Such condition is usually called
negative application condition (NAC).

Henshin transformation units are means to apply rules in a structured
manner and are supported by the multi-view editor as well. The lower area
shows the visualization of a sequential unit which applies contained rules and
units one after the other. It also illustrates the parameter schema to be passed
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by the �rst rule. Henshin o�ers a number of nestable transformation units
for di�erent purposes, e.g., the so-called Independent Unit implements a non-
deterministic rule/unit choice, Conditional Units requires an initial rule ap-
plication as precondition for further applications, the Priority Unit applies
rules/units according to their priority, and Loop Units allow to de�ne how of-
ten rules/units shall be applied. Each unit has its own graphical representation
in the editor.

In the leftmost position of Fig. 8.4, a tree-based view additionally supports
the user with a concise outline of the transformation system. Note that this
editor provides the basis of the implementation of the CompoHenshin editor
explained later.

Figure 8.4: Externally developed editor for Henshin transformation systems.

8.2 CompoHenshin: A Composite EMF Model

Transformation Tool

This section presents CompoHenshin [76], a Henshin [37] based transformation
engine for CompoEMF models [73]. In the following, the requirements towards
the implementation of CompoHenshin are discussed. Afterwards, the trans-
formation language is introduced by de�ning its underlying meta model. The
application of a CompoHenshin rule is described and illustrated thereafter.
Finally, the tool support of CompoHenshin is highlighted.
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8.2.1 Requirements

The main requirement is obviously the ability to transform composite EMF
models based on CompoEMF. In the same way as CompoEMF conforms to
the formalism of composite graphs, CompoHenshin shall conform to the for-
malism of typed composite IC-graph transformation presented in Chap. 6.2.
This includes considerations about composite rule consistency which shall be
re�ected in CompoHenshin by means of a rule validation facility.

Choosing Henshin as underlying transformation engine, it is advisable to
orientate at Henshin's tooling and go for high reuse as much as possible. This
shall range from Henshin's transformation meta model to the reuse of actions
and icons in Henshin editors. While Henshin provides a number of interesting
advanced features such as control �ow structures, the �rst version of Com-
poHenshin shall be limited to the basic transformation concepts de�ned in
Part I.

As basic editor, a tree-based editor shall be available merely providing
CRUD functionalities. Nevertheless, composite model structures tend to be-
come complex very fast and therefore deserve a visual editor supporting a
network view and the capability to conveniently navigate into related graphs
on object layer.

8.2.2 CompoHenshin Meta Model

Figure 8.5 shows the CompoHenshin transformation meta model and in addi-
tion related Henshin kernel elements arranged in the center (cf. Sec. 7.1). The
very fact that each CompoHenshin class inherits from a Henshin class already
indicates the remarkable high reuse on Henshin. This is also apparent since
CompoHenshin classes are not directly but only transitively associated with
each other due to the inheritance from parent Henshin classes.

Analogously to Henshin's meta model, a composite model transformation
system is constituted by a dedicated root element, CMTransformationSystem,
containing composite model rules (CMRule). In accordance to the formalism,
a CMRule represents a network rule and a number of local rules on object
layer. A CMRule considered as a Rule is actually the network rule with an
LHS and a RHS network graph (NetworkGraph) each carrying network nodes
(NetworkNode) and network edges (NetworkEdge). Identical network nodes are
speci�ed over Mappings analogously to original Henshin rules. The type refer-
ence of a :NetworkNode object is supposed to refer to the classes Component,
ExportInterface, and ImportInterface of the Composite Ecore model only
(see Fig. 7.7); analogously for NetworkEdges. Thereby, the kind of each net-
work node and network edge is explicitly de�ned and typing information can
be directly used for a matching on Composite instance model (see below).

By means of the reference objectRules, CMRule contains other Rules which
are ordinary Henshin rules and specify the transformation on object level. Each
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network node in a LHS or RHS is re�ned by a corresponding graph in the LHS
or RHS of a local rule (see the Example 8.1 below). The relationship between a
network node and its re�ning graph is de�ned by the reference objectGraph.
The supposed meta model of that graph is prede�ned by the network node
via its reference domainModel pointing to the EPackage of the targeted meta
model. In compliance with the formalism, mappings between local models are
maintained by related network edges, expressed by the containment reference
objectMappings.

Rule
(from henshin)

CMTransformationSystem

NetworkGraphGraph
(from henshin)

CMRule

Node
(from henshin)

Edge
(from henshin)

NetworkEdge
NetworkNode

Mapping
(from henshin)

TransformationSystem
(from henshin)

EPackage
(from ecore) lhs1 rhs1

graph 1

nodes0..*

source1

target1

edges 0..*

incoming 0..*

outgoing 0..*origin1image 1

mappings 0..* objectMappings0..*

rules 0..*
objectRules
0..*

objectGraph
1

domainModel 1

Figure 8.5: The CompoHenshin transformation meta model together with
parts of Henshin's transformation meta model.

While the heavy reuse of Henshin's meta model simpli�es the rule applica-
tion as explained later, a disadvantage is that various meaningless instances of
CompoHenshin can be created, e.g., local rules containing network nodes and
network edges. To restrict possible instances, a number of OCL constraints
are embedded into the CompoHenshin meta model. In fact, instances are not
actively restricted by EMF (except by customized editors) but related checks
automatically incorporated into the validation feature of EMF enable the user
to conveniently ensure the correctness of speci�ed composite rules. These con-
straints are not show here but are described in [75] and can be looked up in
the model itself [73].

Example 8.1. In order to clarify the use of CompoHenshin's meta model,
Fig. 8.6 shows the abstract syntax of a sample CompoHenshin rule. Attributes
and typings as well as two objectRules links running from :CMRule to both
:Rule objects are omitted in favor of clarity.
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The root object :CMTransformationSystem at the top of Fig. 8.6 comprises
a single composite rule :CMRule, arranged below, whose network LHS contains
two associated network nodes. It is assumed here that the left node represents
an export node and the right one represents a body node while accordingly the
network edge is an export-body edge. Comparing the RHS, only one network
node is contained which is then identi�ed as the body node by the Mapping

contained in CMRule. An application of that network rule would consequently
lead to a removal of an export interface.

Taking identities into account, two network nodes exist. Each of them is
re�ned by the LHS and/or RHS graphs of their local rules. Considering the
mapped body network nodes in the LHS and RHS, their re�nements on object
level are the LHS and RHS graphs of the local rule located in the right center
of Fig. 8.6. Their structure looks incidentally similar to the network rule and
would lead to the deletion of a local node and an edge. The export network
node in the LHS is re�ned by an LHS graph of another rule arranged at the
bottom of Fig. 8.6. This local export graph contains only one export node
whose corresponding body node is identi�ed by the given :Mapping object.
Since the export network node appears in the LHS only, i.e., the node is to be
deleted, the local RHS graph is empty and not associated by a network node.

: CMTransformationSystem

: NetworkGraph : NetworkGraph

: Graph

: Graph : Rule

: Rule

: Graph

: Graph

: NetworkNode: NetworkNode : NetworkNode

: NetworkEdge

: Mapping

: Mapping

: Mapping

: CMRule

: Node

: Node

: Node : Node

: Edge

lhs

objectGraph

lhs

objectMappings

edges

origin

nodes

rhs

image

rhs

rhs

nodes mappings nodes

origin

targetsource

image

image

origin

mappings nodes
nodes

nodes

lhs

source

nodes

target

objectGraph

edges

rules

Figure 8.6: Sample instance of CompoHenshin's transformation meta model
in abstract syntax.

Figure 8.7 shows the given example in concrete syntax. The network rule
is given in the upper area and reveals that the export node (E) and its edge to
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the body (B) shall be deleted. Note that the body node in the LHS and RHS
is identic. Below, the two corresponding rules for the re�nments of body and
export are given. Equal numbers mean equal nodes. Note here in particular
that numbers declare identities beyond rule borders and that the RHS of the
export rule is empty which is due to the deletion of the export.

Figure 8.7: Sample concrete syntax of Figure 8.6.

△

8.2.3 Composite Rule Application

Aiming at lifting Henshin's functionality to composite modeling, the composite
rule application API (not shown here) closely resembles the one provided by
Henshin. However, obviously the transformation procedures of Henshin and
CompoHenshin di�er considerably since composite rules in contrast to ordinary
rules consist of a number of rules to be matched and to be transformed. In
the following, the transformation procedure is outlined. See [76] for a more
detailed description.

Matching. Figure 8.8 illustrates the matching algorithm of a CompoHenshin
rule in a simpli�ed form. First of all, the algorithm determines a match on
network level. This includes related composite gluing condition checks. If a
network match can be found, the algorithm determines a set of matches on
object layer which is consistent with the network match. That means, the
match �nding on object layer takes the network match and the re�nements
of all network nodes and edges into account. If such a set can be found, the
composite gluing conditions for the object layer are checked to ensure the
match to be valid. If no such set can be found or if the potential match turned
out to violate the composite gluing condition, a di�erent network match is
tried to be determined and so on. If no network match is left, the algorithm
�nishes.

The network matching is actually performed by means of an ordinary
matching from the CompoHenshin's network rules into a Composite instance
model without considering re�nements on object layer yet. The direct appli-
cation of the network rule is possible since the network rule is a real Henshin
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Find matches
on object layer

Find next
network match

: Match

: Match

[not found]

[not found]

[found]

[found]

Figure 8.8: Simpli�ed process of composite matching in CompoHenshin.

rule and all nodes in the LHS by de�nition refer to elements of the Composite
Ecore model via the type reference (see Sec. 7.2.2 ). So far, this allows to select
those nodes in the Composite instance which are of the same kind (body, ex-
port, import). What remains is to �lter them according to their domain model
referred to by the :NetworkNodes reference domainModel (cf. Fig. 8.5). Since
there are no direct correspondences to match, this is achieved by transpar-
ently equipping :NetworkNode objects with an additional :Attribute which
is typed over the attribute Component.ePackageUri (cf. Fig. 7.7). The value
of this attribute is then set to the nsUri of the assigned domain model.

Example 8.2 (Network matching). Figure 8.9 illustrates a simple setting of
network matching by means of models in abstract syntax. In the upper center,
the network LHS of a CompoHenshin rule is given which is matched to the
network of a host model located below. The rule as well as the host model
consist of only one component part for clarity. In detail, the host model consists
of the node :Component being the network representative of the department
management body constituted by the object :Department. At the left, a subset
of the Composite Ecore model is given and at the right, the domain model of
the host model's body is shown which shall be the department management
model again.

The :NetworkNode in the LHS refers to the class Component and there-
fore declares to match a body component part. The targeted body is de�ned
more closely by the reference domainModel which points to the :EPackage

of the department management Ecore model. An :Attribute representing
ePackageUri attributes is added automatically during runtime and preset by
the value of the associated :EPackage, �http://depmgt�. :NetworkNode and
:Attribute together are now su�cient to match the desired structure. △

Rule application. The activity diagram at the left of Fig. 8.10 outlines the
application of the object rule with respect to the matches found beforehand.
Analogously to composite matching explained above, the application initially
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: Component

ePackageUri = "http://depmgt"
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Figure 8.9: Matching from a network rule's LHS into the host Composite
instance model.

takes place on the network layer using the network match and is performed by
Henshin. In the background, for each newly created network node an empty
graph is created immediately which serves as host for the corresponding object
rule later.

The transformation of the object layer requires a more sophisticated ap-
proach due to the references between objects of di�erent graphs, e.g., objects
in interfaces refer to objects in bodies. Obviously, a certain application order is
meaningful to prevent cases where new objects shall point to others which have
not been created yet. The basic procedure is to transform those object graphs
�rst whose network nodes are preserved, afterwards those that have been cre-
ated and �nally the deleted ones. In particular, each time the network kind
order body → export → import is adhered, i.e., at �rst all preserved body
graphs are transformed and then all preserved export graphs and preserved
import graphs.

Figure 8.10 especially illustrates the steps concerning preserved network
nodes. Note the two complex activities in the diagram on the left with the
small tree structures in their lower right corner; both complex activities are
re�ned by activity diagrams themselves depicted in the right of Fig. 8.10.
When the network rule has been applied on a match, the graphs of all preserved
body graphs are successively selected and their corresponding rules are applied
with respect to their match. Afterwards, all graphs of preserved export nodes
are selected. The application of their rules comprises each an ordinary graph
transformation and in addition the update of references towards the body.
Similarly, the subsequent application of graphs of preserved import nodes is
performed while the additional task contains the updating of references towards
the body graph and towards the related export graph.

When all preserved network nodes are processed, a similar procedure starts
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for all newly create nodes and then for all deleted nodes.

Figure 8.10: Process of applying a CompoHenshin rule.

8.2.4 Tool Environment

Since composite transformation systems containing composite rules are ordi-
nary instances over the CompoHenshin Ecore model, the natural choice for a
�rst editor support is the editor that can be fully generated by EMF. Such
a tree-based editor is available [76] providing basic CRUD functionality and
validation. Synergies arise when existing editor customizations of the origi-
nal Henshin editor are reused, e.g., reusing custom commands for local rules
such as the deletion command which deletes not only Nodes but all associated
Mappings and Edges as well.

Example 8.3. Fig. 8.11 shows an example CompoHenshin rule in its tree-
based editor representation. Conforming to the meta model shown in Fig. 8.5,
this rule consists of a network rule and two object rules as re�nements. The
rule name and the network LHS graph reveal that an export interface shall
be deleted. The lower area shows the properties of the selected body node.
They indicate that the re�ning model conforms to the department management
Ecore model and that the graph LHS2 is the left-hand side of the belonging
rule on object layer. △
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Figure 8.11: Sample CompoHenshin rule shown in the tree-based editor.

Looking at this small example it is already evident that the tree-based
editor reaches its limitations very fast with regard to the presentation of graph
structures. A more promising and particularly natural editor for graph-like
structures would be a graphical one. To this end, the CompoHenshin tooling
includes a graphical editor with multiple views on a CompoHenshin rule which
is based on GEF analogously to the Henshin editor of the TFS group (see
Sec. 8.1). In fact, the sources of that editor serve as a good starting point
for the development of the more advances graphical editor for CompoHenshin
rules.

Example 8.4 (Visual editor for CompoHenshin transformation systems).
Figures 8.12 - 8.14 present di�erent views on the rule already shown in a
tree-based manner now by means of the graphical editor for CompoHenshin
transformation systems.

Figure 8.12 gives an overview of the whole editor and shows the network
layer of the rule.

Analogously to the TFS Henshin editor, a tree-based outline of the trans-
formation system is given on the left which includes imported meta models
and a list of available rules. Note that to import meta models in this context
means that the editor is acquainted with these meta models and their classes
and references. Only then, when creating rules on object layer those classes
and references are available to be selected as node types or edge types. At the
very right, a tool palette is given which allows to place nodes on the content
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pane, to connect them and to map nodes of LHS and RHS. The network graph
arranged in the center revisits the previous example and declares the export
interface of type DepExport2 of a department management component to be
deleted.

Figure 8.12: Network layer of a sample CompoHenshin rule shown in the
CompoHenshin visual editor.

A rule on object layer is presented in Fig. 8.13. In detail, the rule repre-
senting the export interface is shown. Since the interface is to be deleted, the
RHS of the rule has to be empty. Nevertheless, the LHS indicates that the
LHS of the body object rule at least consists of three equivalent nodes which
are exported so far.

Figure 8.13: Export node (cf. Fig. 8.12) on object level being a local rule.

The re�nement of network edges is also visualized in form of an aggregated
model which contains all elements of the edge's source and target model. Fig-
ure 8.14 illustrates the re�nement of the export-body network edge between
the :DepExport2 export interface and the :depmgt department management
body as shown in Fig. 8.12. The three nodes in the upper area belong to the
export model while the four nodes below belong to the body model. This is
also denoted by colors corresponding to the color in the network view. Edges
between nodes of di�erent models constitute the mappings which are the ac-
tual re�nement of the network edge. Obviously, aggregated models may yield
huge models very fast such that the handling in this view may become uncom-
fortable. Generally, since composite models and composite rule are complex
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structures it is up to future work to �nd more adequate visualizations and
tools to handle them in a convenient way.

Figure 8.14: Mappings graph as object layer of the body-export edge in
Fig. 8.12.

△
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Chapter 9

Related Work

In the following, the approach presented in this thesis is compared with other
concepts for the distribution and composition of models and graphs. Further-
more, a generic component framework for system modeling is considered as
well.

Section 2.1 already presents a number of selected approaches along the
given classi�cation which essentially relates to structural aspects. In contrast,
the considerations below compare the present approach of composite modeling
with explicit import and export interfaces from a more general perspective.

9.1 EMF Models with Remote References

EMF already o�ers the possibility to spread models over a number of so-called
resources, e.g., �les (compare [27]), exploiting so-called remote references. Such
a remote reference is an ordinary association whose source is an object node in
the local model while its target is an object node in a remote model. Since each
object node can be referred to by remote references, no information hiding is
taking place here. References solely restrict the type of the target object node
while any reference may be utilized in a remote manner. In accordance to com-
posite models with explicit interfaces, EMF models with remote references can
be considered as body models with interfaces being de�ned implicitly. Target
nodes of remote references induce the implicit import while all model elements
are exported implicitly. The imported element is identical to the correspond-
ing exported element.1 A single imported model element can be exploited to
reveal connected elements of the remote model. Consequently, several phys-
ically distributed EMF models can be considered as a single undistributed
model from a logical perspective.

1In fact, proxy objects represent remotely targeted nodes until they are accessed for the
�rst time. In that case a proxy is resolved and replaced by the original node.
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The present approach di�ers from the one in [27] in a number of aspects. In
particular, composite models with explicit interfaces are a component-oriented
distribution of models. Being still on meta level, the declaration of body, ex-
port, and import component types and their interconnections already prede�ne
possible distribution shapes on instance level. Node types, edge types as well as
mappings between them along di�erent component types prede�ne permitted
objects, links, and relationships. Nevertheless, only objects and links being ac-
tually part of an export interface are visible to other components. Vice versa,
only explicitly imported objects and links, i.e., such being part of an import
interface, enable the access of entities of foreign components.

This explicit structuring of models is not trivial and requires careful con-
sideration by the engineers. As a side e�ect, it requires a structured design
process to be followed by the engineers. In contrast to EMF models with re-
mote references, the present approach considers elements in interface models
to be some kind of delegate objects. In particular, they do not need to have
the same type as the targeted one and are especially not the same objects on
instance level. De�ned features such as containment, references, and attributes
(not formally described but included in CompoEMF) just need to be mapped
to corresponding features of the target. Accessing such an imported feature
leads to a delegation to the corresponding exported feature. Delegate objects
have further advantages: In addition to imported features, they may have a
number of own features. As a consequence, a composite model is not con-
sidered as a single huge model but as a composition of individual component
models. Consequently, EMF-typical constraints such as acyclic containments
must hold in each component of a composite graph, but might not hold if they
are merged into one big graph (which is usually not done in the composite
modeling concept proposed in this thesis).

9.2 Model composition approaches

In [16], the composition of separate design models is speci�ed by composition
relationships identifying overlapping elements of di�erent design models and
specifying their integration. Thus, explicit interfaces supporting information
hiding are not present. Estublier and Ionita [28] distinguish two types of
model compositions: (1) Composing di�erent views of the same system and
(2) composing the same view of di�erent systems. In general, the approach in
this thesis allows di�erent views of di�erent systems and thus, a generalization
of case (2). Case (2) is treated by a merge-by-name strategy as in [16] and
thus does not provide an information hiding concept though.

In [36], Heidenreich et al. propose an approach to extend a meta model
inversely in order to compose its instance models. This merging is done along
prede�ned interface-like structures. In contrast, the present approach describes
a component concept for models consisting of separate and especially individ-
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ual components with possibly di�erent meta models sharing explicitly revealed
information only.

A model composition technique has been introduced by Kelsen and Ma in
[50] where meta models are extended by explicit denotations of elements as
glue for a composition created later. Instances of such meta models achieve
the composition by referring to other models. Referred elements need to be
exposed explicitly by the target model in a manner similar to an export in-
terface. This enables information hiding. The authors consider a single meta
model only, while the present approach allows a number of meta models. Fur-
thermore, interfaces are essentially subsets of the original meta model. The
approach in this thesis, however, is more �exible by providing interfaces being
possibly simpler than the structure of the original meta model with respect to
inheritance.

It is common to all model composition approaches that transformations of
composite models are not considered.

9.3 Graph-Oriented Approaches

In [67], an approach to distributed graphs and graph transformations is pre-
sented which allows the distribution of graph parts, but does not support
explicit interfaces. In this sense, the distribution concepts of that approach
and of EMF models with remote references are quite similar. In [59], Mezei et
al. present distributed model transformations based on graph transformation
concepts. Model transformations are not distributed logically, but in the sense
that they are performed in a distributed way in order to increase e�ciency.
This means that transformations are distributed automatically. Again, inter-
faces are handled implicitly. View-oriented modeling has already been speci-
�ed by distributed graph transformation in [35] using the same formal basis
as composite graphs. However, the structuring of graphs is elaborated more
deeply in this paper, since components with explicit interfaces are considered.

Knirsch et al. present an approach of modeling distributed graph trans-
formation systems by transformation units in [52]. While the approach in this
thesis considers the application of single distributed/composite rules only, dis-
tributed graph transformation units essentially consist of a set of distributed
rules which are, in addition, applied by taking a control condition into ac-
count. Such units and their rules are structured similarly to composite rules
in this paper, i.e., they consist of a set of local transformation units which are
connected by interface units. However, their underlying distribution structure
does not distinguish import and export interfaces but single boundary graphs
only, representing the intersection of two interconnected graph.
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Hierarchical graphs as presented in [21] are hypergraphs where distin-
guished hyperedges contain graphs that can be hierarchical again. Components
with interfaces are not explicitly considered but can be de�ned as a subclass of
hierarchical graphs with hierarchy depth 2. Moreover, the upper layer would
contain network graph structures only. Drewes, Ho�mann, and Plump do not
only present hierarchical graphs but also their transformation following the al-
gebraic approach. However, typing of graphs including node type inheritance
as well as containment structures are not considered in that approach what
makes it di�cult to use as formal basis for composite EMF modeling. In [15],
an algebraic view on hierarchical graphs is established; however, the above
mentioned restrictions are also valid in that approach.

9.4 Generic Approaches towards Composite

Modeling

The approach of mega modeling focuses on model interrelations which may be
of arbitrary kind, e.g., model transformations, integration rules, and typing
relations between typed models and their meta models. A number of more
concrete settings for mega modeling are discussed in [41] and [8]. For instance,
in [41] relations between meta models of di�erent modeling languages are elab-
orated. Tool support concentrates on model integration (AMW [2]) and model
based reverse engineering (MoDisco [61]). So far, there have been no consider-
ations according to component models with explicit interfaces and reasoning
according to potential inconsistencies between related models.

Another generic approach is called macro modeling [71] which comprises
a formal framework able to interconnect models of arbitrary domain and lan-
guage. The use of specialized model relationships then yields a new type of
model, called macro model, with a formal semantics. Macro modeling aims at
convenient handling of multiple models and a related consistency management.
The consistency management is implemented in form of global consistency
properties [69] which are formulated and checked by means of logic theory
[70]. Tools are still in a prototypical state and are not integrated in popular
environments like Eclipse. Furthermore, (macro) model transformation is not
yet considered.

In [25], a generic component framework for system modeling is presented.
It abstracts from concrete modeling techniques but establishes constraints de-
scribing a compositional semantics for components. Components have explicit
import and export interfaces to provide information hiding. However, the
numbers of interfaces are restricted to exactly one import and one export in-
terface while composite models as presented in this thesis allow arbitrary many
interfaces. Furthermore, in [25] the composition of components to new ones is
presented. Transformation concepts of composite structures are not yet con-
sidered though. The framework is assembled on a number of properties which
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have to be shown for each instantiating modeling technique in order to apply
the framework. Several instantiations are considered such as Petri nets, graph
transformation systems, and visual modeling techniques. However, typing of
graphs including node type inheritance as well as containment structures are
not considered as instantiation yet.
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Chapter 10

Conclusion

This chapter summarizes the main results of this thesis �rst and closes with
an outlook to future work.

10.1 Summary

Model-driven development is a promising paradigm to tackle the development
of nowadays complex software systems. Models are an ideal means for abstrac-
tion allowing developers to focus on certain aspects of the system. Details are
added by (code) generators later. Nevertheless, steadily growing complexity
may lead to large models. Moreover, various models representing di�erent
views on a software system need to be kept consistent to each other somehow.

To meet these challenges, this thesis introduces a model composition con-
cept, called composite models with explicit import and export interfaces. Com-
posite models consists of a set of component models where each is constituted
by a body model and an arbitrary number of interface models. Component
models can interrelate in a structured way by connecting their export and im-
port interfaces. This also o�ers information hiding because shared elements
have to be declared explicitly. Furthermore, possible composition shapes can
already be de�ned on meta model level. Composite model transformation en-
ables the preservation of consistency between each component model by allow-
ing to modify several ones synchronously. This concept of composite modeling
essentially targets models based on the popular Eclipse Modeling Framework
yielding composite EMF modeling.

A formal foundation is provided which relies on category theory and the
theory of graph transformation. Typed graphs with inheritance and contain-
ment structures, short typed IC-graphs, describe the essential structures of
EMF models while graph transformation described model transformation for-
mally. Formal distribution concepts are based on distributed graphs and dis-
tributed graph transformation. Combining them altogether yields the category
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of typed composite IC-graphs, CompICGraphsTG, and a related composite
IC-graph transformation approach based on double pushouts. It has further
been clari�ed under which conditions pushouts in this category exist, i.e., when
does a transformation leads to typed component IC-graphs with proper con-
tainment structures. Furthermore, a very important result is that composite
transformation can be led back to ordinary graph transformation. This fact is
exploited later by the tool support. On top of composite graphs, the concept
of weak composite graphs further facilitates the usefulness of component mod-
els in practice at which foreign components truly expose their export interface
only.

The formalized concepts are implemented by the prototype tools Compo-
EMF and CompoHenshin, both providing dedicated tree-based editors and
even more sophisticated visual editors. They represent a proof-of-concept im-
plementation and show the coherence of the composite EMF modeling con-
cepts. CompoEMF allows ordinary EMF models to become the bodies of
component models in a noninvasive way, i.e., without the need to modify them.
This promotes high reuse. Interfaces are stored in separate EMF models which
transparently propagate attribute values of shared objects along the interface
chain. CompoHenshin provides the transformation of CompoEMF models and
builds up on the EMF model transformation tool Henshin. Each part (body,
export, import) of component models is transformed by a single Henshin trans-
formation being coordinated with each other.

10.2 Outlook

Even with an elaborated composition concept and tooling at hand, a couple
of challenges arise in a distributed and model-driven setting. For instance,
contributors at di�erent locations might be responsible for component models
being interconnected with others. Thus, clear conditions and conventions for
the editing of models are required to avoid con�icts. Furthermore, the starting
point of distributed development might di�er, e.g., a big model may already
exist which has to be split up somehow. When going to generate code out
of a set of distributed models, one (and presently the common) possibility is
to merge all models and using the resulting large model as the generator's
input. Other strategies are conceivable as well as providing a distributed code
generator. To conclude, a comprehensive elaboration on a development process
for composite modeling in distributed model-driven software development is
needed. This in general includes substantiation of scenarios for distributed
model-driven development.

The formalism given in this thesis captures the essentials of EMF mod-
els. However, a formal speci�cation of attributes shall be integrated as done
in [23] since the tools CompoEMF and CompoHenshin exploit attributes al-
ready. Some other aspects of EMF models have not been considered yet as
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well and need to be caught up, e.g., bidirectional edges and multiplicities. As
for composite IC-graph transformation, the formalism shall be extended to ex-
ploit polymorphisms in the sense that objects in rules may match objects with
the same type and also objects with a type being a child of the required type.
Formalisms particularly enable the development of analysis which should be
exploited in the future. Conceivable analysis are such concerning critical pairs
and the termination of composite rules.

So far, the given implementations towards composite EMF modeling are of
prototypical nature which leaves the door open for a number of improvements.
CompoEMF may simplify the speci�cation of composite EMF models with
an improved editor support. In accordance with the formalism, CompoEMF
shall also support weak composite models. This does not mean a capability to
create composite models with export interfaces only but to provide a means
to physically hide component model parts except of its export interface. The
editors of CompoHenshin may also get improved in a number of ways. A surely
meaningful improvement would be some kind of debugging functionality to
help the modeler to understand what is going on. Furthermore, CompoHenshin
shall support the transformation of weak composite models which is assumed to
be rather easy to implement as soon as CompoEMF supports weak composite
models. Other conceivable improvements of CompoHenshin are related to the
adaption of features already o�ered by Henshin such as application conditions
which further limit matches and transformation units to specify control �ows.

Aside from the tool implementations in this thesis, there is room for other
ways and technologies to implement the concepts introduced here. Conceiv-
able are implementations which utilize service-oriented architectures, e.g., such
that model interfaces are provided by web-services on a system and composite
model transformations are performed truly distributed on each systems inde-
pendently. However, the probably most important next step is the elaboration
on a practical model-driven development process in a distributed environment.
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Appendix

This appendix recalls and adapts de�nitions of related work used within proofs
in this thesis. Furthermore, some helper propositions are presented needed to
build a bridge between related work and the presented work.

First of all, the notion of S-re�ecting IC-graph morphisms is needed which
fully re�ect subtypes of original nodes in their images.

Definition 10.1 (S-re�ecting morphism (cf. Def. 4 in [38])). An IC-graph
morphism f : G → H between IC-graphs G and H is S-re�ecting if it is in-
jective and has the following property: ∀(n11, n1) ∈ I(H)∗, n0 ∈ GN : n1 =
fN (n0) =⇒ ∃n01 ∈ GN : fN (n01) = n11 ∧ (n01, n0) ∈ I(G)∗. ✸

Definition 10.2 (van Kampen square (cf. Def. 4.1 in [23])). A pushout
(1) is a van Kampen square, if for any commutative cube (2) with (1) in the
bottom and the left and front faces being pullbacks holds: the top face is a
pushout ⇔ the back and right faces are pullbacks.

A

f

��

(1)

m // B

g

��
C

n // D

C ′

c

��

n′
// D′

d

��

A′

a

��

m′
//

f ′

>>

B′

b

��

g′

>>

(2)

C n
// D

A m
//

f

>>

B

g

==

✸
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Definition 10.3 ((weak) adhesive HLR category (cf. Defs. 4.9 and 4.13
in [38])). A category C with a morphism class M is called an adhesive HLR
category, if

1. M is a class of monomorphisms closed under isomorphisms, composition
(f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and decomposition
(g ◦ f ∈M, g ∈M⇒ f ∈M),

2. C has pushouts and pullbacks along M-morphisms and M-morphisms
are closed under pushouts and pullbacks,

3. pushouts in C alongM-morphisms are VK squares.

(C,M) is called weak adhesive if pushouts in C alongM-morphisms are weak
VK squares, i.e. the VK square property holds for all commutative cubes with
m ∈M and (f ∈M or b, c, d ∈M) (see Def. 10.2). ✸

In the following, basic de�nitions of distributed object and distributed
morphisms are recalled as well as basic results from [26] (slightly adapted to
the notation in this thesis). In addition, a few propositions are presented
building a bridge between those results and the present work.

Definition 10.4 (Path morphism and commutative functor (cf. Def. 1 in
[26])). Given a graph D, a functor D̂ : D → C (interpreting D as a category)

and a path p : n
e1→ . . .

ek→ n′ in D, the path morphism D̂(p) : D̂(n) → D̂(n′)
of D̂ is de�ned along p as D̂(p) = D̂(ek) ◦ . . . ◦ D̂(e1). For the empty path

ϵn : n
0→ n, D̂(ϵn) = idD̂(n).

A functor D̂ : D → C is commutative, if for any two paths p1, p2 : n
∗→ n′

in D it holds D̂(p1) = D̂(p2). ✸

Definition 10.5 (Distributed object and distributed morphism (cf. Def. 2 in
[26])). Given a category C, a distributed object D̂ over C (or just a distributed
object, if C is implicit in the given context) consists of a graph D, called
network graph, and a commutative functor D̂ : D → C, called diagram functor.

A distributed morphism over C (or just a distributed morphism, if C is
implicit in the given context) f̂ : D̂1 → D̂2 consists of a graph morphism
f : D1 → D2 and a natural transformation f̂ : D̂1 → D̂2 ◦ f .

Distributed objects and distributed morphisms over C form the category
DisC. ✸

Proposition 10.6 (Category CompGraphs is a sub-category of category
DisC). The category CompGraphs of composite graphs and composite mor-
phisms is a sub-category of the category DisC of distributed objects and dis-
tributed morphisms over a category Graphs (being the category of graphs
and graph morphisms).
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Proof. It is to show that composite graphs and composite graph morphisms
are valid distributed objects and distributed morphisms along Def. 10.5.

Let Ĝ be a composite graph over composite network graph G and a functor
Ĝ : G→ Graphs (interpreting G as a category). It is required that the functor
Ĝ is commutative (cf. Def. 10.4), i.e., for any two paths p1, p2 : n

∗→ n′ in
the composite network graph G, their path morphisms satisfy Ĝ(p1) = Ĝ(p2).
The following cases can be distinguished:

• If n is a body node, all paths have length 0, since body nodes do not
have outgoing edges.

• If n is an export node, there is exactly one path with length 1 running
to its body node.

• If n is an import node there is

� exactly one path with length 1 to an export node,

� exactly one path with length 1 to a body node, and

� exactly one path with length 2 to a body running over an export
node. Here a triangle constellation may occur if a component's
import refers to the same component's export. Consequently, there
would be two paths between an import node and a body node.
However, the present de�nition of composite graphs (cf. Def. 5.9)
requires for such cases Ĝ(eIB) = Ĝ(eEB) ◦ Ĝ(eIE) such that Ĝ is a
commutative functor.

• Other cases are not possible in composite network graphs.

It follows that the properties according to commutative functors are satis�ed.
Composite morphisms are valid distributed morphisms as they de�ne graph

morphisms restricted to composite network graphs and a natural transforma-
tion according to network and object structure illustrated in Fig. 5.6.

Consequently, category CompGraphs complies with all properties of cat-
egory DisC as de�ned in Def. 10.5. ✷

Fact 10.7 ((Co)completeness of category DisC (cf. Theorem 3 in [26])). If
the category C is (co)complete, so is the category DisC.

In the following, the notion of persistent network graph morphisms is re-
visited (see [26, Prop. 4]). Furthermore, it is shown that composite network
morphisms are always persistent. Persistence is needed to show that pushouts
in DisC can be constructed component-wise.

Definition 10.8 (Persistent morphism). A graph morphism f : G → H is
persistent if for all nodes n, n′ ∈ GN the following property holds:
If there exists a path f(n)

∗→ f(n′) ∈ H then there exists a path n
∗→ n′ in G

(see [26, Prop. 3]). ✸



156 Appendix

Proposition 10.9. Injective composite network graph morphisms are per-
sistent.

Proof. The following shows that the constraint in Def. 10.8 is satis�ed due
to the speci�c structure of composite network graphs. Consider an injective
morphism representing the evolution of a network graph, i.e., the image graph
is the newer one, while all preserved network nodes and edges are mapped.
That is, elements of the image graph are considered to be created if they do
not have a preimage. Network edges connecting network nodes are always
created together with their source nodes, i.e., non-connected network nodes in
the preimage graph cannot be connected by a path in the image graph. In
fact, the following cases in terms of creation may occur only:

1. Creation of a body node: This does not a�ect existing paths.

2. Creation of an export node: This operation requires a body node to
which an edge is created with the export node as source. New paths
between two existing nodes are not created.

3. Creation of an import node: This operation requires a body node and
an export node to exist to which an edge is created each with the import
node as source. Again, new paths between two existing nodes are not
created.

4. Creation actions can be combined which does not a�ect the argumenta-
tion concerning paths.

Injectivity prevents the gluing of nodes and therefore the circumvention of
these cases. These are all cases. Consequently, new paths between two existing
nodes are not created. ✷

Proposition 10.10 (Category CompIGraphs is a sub-category of category
DisC). The category CompIGraphs of composite I-graphs and composite I-
morphisms is a sub-category of the category DisC over a category C as de�ned
in Def. 10.5, with C being the category of I-graphs and I-morphisms IGraphs.

Proof. The proof is analogously to the one of Prop. 10.6 above while the
underlying category C has to be changed to IGraphs only. ✷
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