
Autom Softw Eng (2013) 20:141–184
DOI 10.1007/s10515-012-0114-7

A tool environment for quality assurance based
on the Eclipse Modeling Framework

Thorsten Arendt · Gabriele Taentzer

Received: 30 March 2012 / Accepted: 28 November 2012 / Published online: 11 December 2012
© Springer Science+Business Media New York 2012

Abstract The paradigm of model-based software development has become more and
more popular since it promises an increase in the efficiency and quality of software
development. Following this paradigm, models become primary artifacts in the soft-
ware development process. Therefore, software quality and quality assurance fre-
quently leads back to the quality and quality assurance of the involved models. In
our approach, we propose a model quality assurance process that can be adapted
to project-specific and domain-specific needs. This process is based on static model
analysis using model metrics and model smells. Based on the outcome of the model
analysis, appropriate model refactoring steps can be performed. In this paper, we
present a tool environment conveniently supporting the proposed model quality as-
surance process. In particular, the presented tools support metrics reporting, smell
detection, and refactoring for models being based on the Eclipse Modeling Frame-
work, a widely used open source technology in model-based software development.

Keywords Modeling · Model-based software development · Model quality · Model
quality assurance · Eclipse Modeling Framework

1 Introduction

In modern software development, models play an increasingly important role promis-
ing a growth in efficiency and quality of software development. In particular, this is

T. Arendt (�) · G. Taentzer
FB 12—Mathematics and Computer Science, Philipps-Universität Marburg, Hans-Meerwein-Strasse,
35032 Marburg, Germany
e-mail: arendt@mathematik.uni-marburg.de

G. Taentzer
e-mail: taentzer@mathematik.uni-marburg.de

mailto:arendt@mathematik.uni-marburg.de
mailto:taentzer@mathematik.uni-marburg.de

142 Autom Softw Eng (2013) 20:141–184

true for model-driven software development where models are used directly for auto-
matic code generation. High code quality can be reached only if the quality of input
models is already high.

In our approach, we concentrate on quality aspects to be checked on the model
syntax. They include not only the consistency with the language syntax definition,
but also e.g. the conceptual integrity in using patterns and principles in similar situ-
ations, and the conformity with modeling conventions often defined and adapted to
specific software projects. In Mohagheghi et al. (2009), six classes of quality goals for
software models are identified. We take them as conceptual basis for a goal-question-
metrics approach (Basili et al. 1994) to our quality assurance process for software
models.

In the literature, well-known quality assurance techniques for models are model
metrics and refactorings, see e.g. Genero et al. (2005), Sunyé et al. (2001), Markovic
and Baar (2008), Zhang et al. (2005), Porres (2003), Lange (2007). They origin from
corresponding techniques for software code by lifting them to models. Especially
class models are closely related to programmed class structures in object-oriented
programming languages such as C++ and Java. For behavior models, the relation
between models and code is less obvious. Furthermore, the concept of code smells
(Fowler 1999) can be lifted to models leading to model smells (compare e.g. Lange
2007). Again, code smells for class structures can be easily adapted to model smells,
but smells of behavior models cannot directly be deduced from code smells.

In Arendt et al. (2011), we present the integration of these techniques in a pre-
defined quality assurance process that can be adapted to specific project needs. It
consists of two sub-processes: Before a software project starts, project- and domain-
specific quality checks and refactorings have to be defined. Quality checks are for-
mulated using model smells which can be specified e.g. by model metrics and anti-
patterns. After formulating quality checks and refactorings, the specified quality as-
surance process can be applied to concrete software models by computing model
metrics, reporting all model smells and applying model refactorings to erase smells
that indicate clear model defects.

Since the process of manual model reviews is very time consuming and error
prone, the proposed project-specific model quality assurance process should be auto-
mated as effectively as possible. In this article, we present a flexible tool environment
for metrics reporting, smell detection, and refactoring of models being based on the
Eclipse Modeling Framework (EMF) (Steinberg et al. 2008), a widely used open
source technology in model-based software development. We integrated the entire
tool set into the Eclipse incubation project EMF Refactor (EMF Refactor 2012).

The paper is organized as follows: In the next section, we motivate the develop-
ment of the presented tool environment by a discussion of selected model quality
aspects and an overview on the general approach of our contribution. In Sect. 3, we
present the running example of this paper whereas Sect. 4 describes the state-of-the-
art in model quality assurance tooling as well as the deduced requirements for our
tool environment. Thereafter, we describe the architecture of our tools in Sect. 5. The
application of our quality assurance tool environment to the running example is il-
lustrated in Sect. 6. Afterwards, we present supported specification approaches for
model metrics, smells, and refactorings in Sect. 7. We evaluate the tools in Sect. 8
and finally conclude in Sect. 9.

Autom Softw Eng (2013) 20:141–184 143

2 Model quality and quality assurance

In this section, we present the definition and application of a structured model quality
assurance process that can be used to address project-specific and domain-specific
needs (compare Arendt et al. 2011). The general approach uses known model qual-
ity assurance techniques being model metrics, model smells, and model refactorings.
They are combined in an overall process for structured model quality assurance fo-
cusing on syntactical model issues. We start our presentation by presenting selected
model quality aspects in software development that serve as the basis for our general
approach.

2.1 The 6C model quality goals presented by Mohagheghi et al.

In their article, Mohagheghi et al. (2009) present the results of a systematic review of
literature discussing model quality in model-based software development. Among
others, the purpose of the review was to identify what model quality means, i.e.
which quality goals are defined in literature. The review was performed systemati-
cally by searching relevant publication channels for papers published from 2000 to
2007. From 40 studies covered in the review, the authors identified six classes of
quality goals, called 6C goals, in model-based software development. They state that
other quality goals discussed in literature can be satisfied if the 6C goals are in place.
The remainder of this section shortly introduces the identified 6C goals.

Correctness A model is correct if it includes the right elements and correct
relations between them, and if it includes correct statements about the domain.
Furthermore, a model must not violate rules and conventions. This definition in-
cludes syntactic correctness relative to the modeling language as well as semantic
correctness related to the understanding of the domain.

Completeness A model is complete if it contains all relevant information, and if
it is detailed enough according to the purpose of modeling. For example, require-
ment models are said to be complete when they specify all the black-box behavior
of the modeled entity, and when they do not include anything that is not in the
real world.

Consistency A model is consistent if does not contain contradictions. This def-
inition covers horizontal consistency concerning models/diagrams on the same
level of abstraction, vertical consistency concerning modeled aspects on different
levels of abstraction as well as semantic consistency concerning the meaning of
the same element in different models or diagrams.

Comprehensibility A model is comprehensible if it is understandable by the
intended users, being humans or tools. In most of the literature, the focus is
on comprehensibility by humans including aspects like aesthetics of a diagram,
model simplicity or complexity, and the use of the correct type of diagram for the
intended audience. Several authors also call this goal pragmatic quality.

Confinement A model is confined if it suits to the modeling purpose and the type
of system. This definition also includes relevant diagrams on the right abstraction
level. Furthermore, a confined model does not have unnecessary information and
is not more complex or detailed than necessary. Developing the right model for a

144 Autom Softw Eng (2013) 20:141–184

Fig. 1 Process for the
application of project-specific
model quality assurance
techniques

system or purpose of a given kind also depends on selecting an adequate modeling
language. This means that the modeler uses language concepts that are suitable
for the intended purpose of the modeling activity. Further concepts should be used
very sparsely or even omitted deliberately.

Changeability A model is changeable if it can be evolved rapidly and contin-
uously. This is important since both the domain and its understanding as well
as system requirements evolve over time. Furthermore, changeability should be
supported by modeling languages and modeling tools as well.

2.2 Specification and application processes for customized model quality assurance
techniques

The increasing use of model-based or model-driven software development processes
induces the need for high-quality software models. Therefore, we propose a model
quality assurance process that consists of two sub-processes: a process for the spec-
ification of project-specific model quality assurance techniques, and a process for
applying them on concrete software models during a model-based software develop-
ment process as shown in Fig. 1.

For a first rough model overview, a report on model metrics might be helpful.
Furthermore, a model can be checked against the existence (respectively absence)
of specified model smells. Each model smell found has to be interpreted in order
to evaluate whether it should be eliminated by a suitable model modification (either
by a manual model change or a refactoring). However, we have to take into account
that also new model smells can be induced by refactorings and care should be taken
to minimize this effect. This check-improve cycle should be performed as long as
needed to get a reasonable model quality.

Ideally a quality assurance process is fully specified before using it within model-
based software development projects. However, it is not seldom that the process has
to be adapted during the model development phase. Our process allows the straight
adaptation to new model checks and refactorings.

Figure 2 shows the process for specifying new model quality assurance techniques.
After having identified the intended modeling purpose the most important quality

Autom Softw Eng (2013) 20:141–184 145

Fig. 2 Process for the
specification of project-specific
model quality assurance
techniques

goals are selected. Here, we have to consider several conditions that influence the
selection of significant quality aspects being the most important ones for modeling
in a specific software project. The first issue to consider is that the selection of sig-
nificant quality aspects highly depends on the modeling purpose. There is a variety
of purposes for modeling in software projects. For example, models can be used for
communication purposes between stakeholders, being customers and requirements
engineers or project managers and software designers. In other projects, software
models may be used for code generation purposes, to generate the application code
and/or code that is used in tests for implemented software components. Since model-
ing purposes are quite different and vary in several software projects, a quality aspect
that is very important in one software project might be less important in other ones. In
projects that use software modeling for communication purposes the comprehensibil-
ity of the model might be the most relevant quality aspect whereas aspects correctness
and completeness are more important for models that are used for the generation of
application or test code, respectively.

Another factor that influences the significance of a model quality aspect is the cor-
responding application domain. This means that software models are used in various
domains like web applications or embedded systems having different impacts on the
significance of a certain model quality aspect. For example, models of safety-critical
embedded systems need to be more correct than models of usual web applications.

The preceding discussions show that it is appropriate to set up a specific model
quality assurance process for each software project being dependent on the modeling
purpose as well as the corresponding modeling domain.

In the next step, static syntax checks for these quality aspects are defined. This
is done by formulating questions that should lead to so-called model smells hinting
to model parts that might violate a specific model quality aspect. Here, we adopt the
goal-question-metrics approach (GQM) that is widely used for defining measurable
goals for quality and has been well established in practice (Basili et al. 1994). In our
approach, we consider the syntax of the model in order to give answers to these
questions. Some of these answers can be based on metrics. Other questions may
be better answered by considering specific patterns which can be formulated on the
abstract syntax of the model. However, further static analysis techniques could be
incorporated to find out additional potential model smells. Furthermore, the project-
specific process can (re-)use general metrics and smells as well as special metrics and
smells specific for the intended modeling purpose.

Refactoring is the technique of choice for fixing a recognized model smell. A spec-
ified smell serves as precondition of at least one model refactoring that can be used

146 Autom Softw Eng (2013) 20:141–184

to restructure models in order to improve model quality aspects but appreciably not
influence the semantics of the model. In this context, it is also recommended to an-
alyze the specified refactorings whether the application of a certain refactoring may
cause the occurrence of a specific model smell.

Since the process of manual model reviews is very time consuming and error
prone, several tasks of the proposed project-specific model quality assurance process
should be automated as effectively as possible. The following tasks of the process can
be automated:

– Support for the implementation of new model metrics, smells, and refactorings
using several concrete specification languages.

– Calculation of implemented model metrics, detection of implemented model
smells, and application of implemented model refactorings.

– User-friendly support for project-specific configurations of model metrics, smells,
and refactorings.

– Generation of model metrics reports.
– Suggestion of suitable refactorings in case of specific smell occurrences.
– Provision of warnings in cases where new model smells come in by applying a

certain refactoring.

The following sections present a flexible tool environment for model metrics re-
ports, smell detection, and refactoring for models that is based on the Eclipse Model-
ing Framework (EMF) (Steinberg et al. 2008).

3 Running example

After giving an overview on our approach for model quality assurance, this section
discusses a simple example of this process that serves as running example through-
out this paper. After presenting the application of a sample model quality assurance
process and the used modeling language, we describe the definition of such a process
in detail.

3.1 Application of a project-specific model quality assurance process

In our example, we consider a software project for the development of an accounting
system of a vehicle rental company. This company has a headquarter and owns some
cars, trucks, and motorbikes which can be rented by customers via a vehicle rental ser-
vice. A car is specified by its manufacturer, its registration number, its engine power,
and the number of provided seats. A truck is specified by its manufacturer, its regis-
tration number, its engine power, and its weight. Finally, a motorbike is specified by
its manufacturer, its registration number, its engine power, and its cylinder capacity.
Each customer has a name and an email address and is related to a consultant being an
employee of the company. Furthermore, the company has some subcontractors being
specific employees and customers.

We assume that software models are used in the domain analysis phase in order to
get an overview on real world entities in the problem domain. The modeling of this

Autom Softw Eng (2013) 20:141–184 147

Fig. 3 Example SCM model showing the first version of domain model Vehicle Rental Company (before
model review)

problem domain is done using SCM, a simple domain specific modeling language
(DSML) being simplified UML class models (UML 2012). We discuss this language
in more detail in the next section.

Figure 3 shows a first SCM example model that has been developed in an early
stage of the problem analysis. Here, the example model is displayed in concrete
model syntax using a graphical editor that was generated for SCM by means of the
Graphical Modeling Project (GMP 2012).

Concerning quality issues, the model contains several suspicious parts. For exam-
ple, information on the vehicles (cars, trucks, and motorbikes) are modeled redun-
dantly (like power). Furthermore, class RentalPeriod is not associated to any
other class at all (which hints for some incompleteness). During a model review (see
Fig. 1) this initial model is analyzed with respect to project-specific model metrics
and model smells. Several refactorings in combination with additional model changes
are applied subsequently. Figure 4 shows the improved model after this review. The
afore mentioned dependencies have been eliminated and incomplete model parts have
been supplemented with further information. We discuss the concrete applied tech-
niques, i.e. detected model smells and applied model refactorings, in Sect. 6.

3.2 Domain specific modeling language SimpleClassModel (SCM)

In addition to the modeling domain and the intended purpose of modeling, another
important choice has to be done before initializing the proposed model quality as-
surance process: the selection of an appropriate modeling language. In our example,
we use a domain specific modeling language (DSML) to be used for modeling in
early phases of software development, e.g. for modeling the corresponding problem

148 Autom Softw Eng (2013) 20:141–184

Fig. 4 Improved sample SCM model after model review

domain. The language is called SimpleClassModel (SCM) and is used to model the
main static aspects of a given domain. SCM is based on the Essential MOF (MOF
2012) standard and the class diagram part of the UML but it is much simpler since
it omits concepts like operations, interfaces, enumerations, and association classes.
It is specified using the meta model approach and a set of well-formedness rules us-
ing OCL constraints (OCL 2012). Figure 5 shows the SCM meta model specified in
Ecore, the meta-meta model of EMF. Please note that in our example we use the SCM
language in order to demonstrate the application of our tool set to an arbitrary EMF-
based DSML. However, our tool set comes along with a number of implemented
model quality assurance techniques for the widely-used and more general languages
Ecore and UML (see Sects. 8 and 9).

A SimpleClassModel consists of a number of ScmPackages where each
one consists of a number of packaged elements being Types or Associations.
A Type is either a PrimitiveType, e.g. Integer or String, or an ScmClass.
A (potentially abstract) class can have an arbitrary number of parent classes re-
alized by model element Generalization. The derived reference superclasses
subsumes the total set of ancestor classes of a given class in its inheritance hierarchy.
Furthermore, a class can have several (potentially constant) Attributes, whereas
attributes inherited from ancestor classes are subsumed by a corresponding derived
reference. Each attribute has a visibility and an optional type. Additionally, an at-
tribute can redefine another attribute within the inheritance hierarchy of the owning
class. Relationships between classes can be modeled using unidirectional Associ-
ations.

As mentioned above, valid SCM instance models must conform to some additional
well-formedness constraints, e.g. unique names of owned elements in a ScmPackage,
or acyclic inheritance hierarchies.

Autom Softw Eng (2013) 20:141–184 149

Fig. 5 Meta model of DSML SimpleClassModel (SCM)

3.3 Specification of project-specific model quality assurance techniques

In this section, we demonstrate how the specification process for the used model
quality assurance techniques (see Fig. 2) is applied along our running example. Please
note that this process does not need to be applied for each individual project in its full
extent. Once these techniques are defined they can be reused in future projects as
well.

3.3.1 Specification of relevant model quality aspects

In our example, we use the 6C quality goals described in Sect. 2.1 as quality model
and determine those aspects which are most relevant as follows.

The most important property of a domain analysis model is that it models the
problem domain in the right way, i.e. choosing the right elements and claiming the
right statements. So, 6C goal Correctness is an essential quality aspect that has to
be considered when applying a model quality assurance process. Since an analysis
model is used for communicating with problem domain experts who are typically
inexperienced in software modeling, it is also important that the model is easily un-
derstandable. This implies that the model must not allow different interpretation re-
sults. Furthermore, the analysis model must not have unnecessary information that
make it more complex as necessary. So, 6C goals Comprehensibility, Consistency,
and Confinement can be seen as essential quality aspects.

Since the modeling purpose in our example is to get an overview on the problem
domain, it is rather crucial if less important information is missing. So, 6C goal Com-
pleteness is a less important quality aspect in our example. Furthermore, since SCM
is very simple and manageable, model reviewers do not have to prioritize the quality
goal Changeability.

150 Autom Softw Eng (2013) 20:141–184

Please note that we are arguing from a very specific point of view only to keep the
argumentation compact. Of course, the selection of main quality aspects may vary
dependent on the intended modeling purpose and demonstrates the complexities and
challenges of this basic task.

3.3.2 Formulation of questions leading to static quality checks

After having specified relevant quality aspects we have to think about how to check
the compliance with these aspects during the concrete modeling activity. This is done
by formulating questions to lead to so-called model smells. In the following, we con-
centrate on one single quality aspect, namely Confinement, and present a selection of
appropriate questions. A more detailed discussion on this task and on the complete
example can be found on the complementary website of this article (Arendt 2012).
Example questions are:

Q1: Are there classes being not used by any other model element? This is a typical
case of unnecessarily modeled information.

Q2: Are there classes inheriting from another class several times? This would indi-
cate that the modeler uses the inheritance concept in a too complex way, i.e. the
model is more detailed than necessary.

Q3: Are there abstract classes not doing much? Again, this might be an indicator for
unnecessary information within the model.

Q4: Are there at least three similar attributes staying together in more than one
class? This might be a hint that the modeler does not use the inheritance concept
of the SCM language which might be more suitable in this case.

Q5: Are there attributes redefining other ones within the inheritance hierarchy?
Since the purpose of the model is to get an overview about the problem domain
the use of this language construct might be too complex, i.e. it does not suit to the
modeling purpose.

3.3.3 Specification of project-specific SCM smells

The questions formulated in the previous section lead to model smells that hint to
model parts that are possibly violating the quality aspect Confinement. A structured
definition of each smell including a name, the corresponding question, an informal
description, an example, affected 6C quality goals, and ways to detect the smell can
be found on the complementary website of this article. The deduced SCM smells
are:

Unused Class (deduced from question Q1): Unused classes often stand alone in the
model without any references to other classes. This smell is adapted from Riel
who analyzed object-oriented design (Riel 1996) and can be detected by two dif-
ferent mechanisms. First, we can define the absence of child classes, associated
classes, and attributes with class type as anti-patterns based on the abstract syntax
of SCM and check whether they do not match on a concrete instance class. Sec-
ond, we can define a constraint that uses three metrics (Number of direct children,
Number of associated classes, and Number of times the class is externally used

Autom Softw Eng (2013) 20:141–184 151

as attribute type) and that checks whether each metric is evaluated to zero. Nev-
ertheless, the former alternative seems to be the most appropriate one. We discuss
this pattern in Sect. 7.

Diamond Inheritance (deduced from question Q2): This smell is based on the mul-
tiple inheritance concept of SCM. It occurs when the same predecessor is inher-
ited by a class several times and is known in literature as ‘diamond’ inheritance
problem for object-oriented techniques using multiple inheritance and was first
discussed by Sakkinen (1989). An adequate mechanism to detect this smell is to
specify a corresponding pattern on the abstract syntax of SCM and to find matches
in concrete SCM instance models.

Speculative Generality (deduced from question Q3): This smell occurs if there is an
abstract class inherited by one single class only. It is based on the corresponding
code smell introduced by Fowler (1999) and refined by Zhang et al. (2008). To
detect this smell we can use metric Number of direct children and check whether
this metric is evaluated to 1 on an arbitrary SCM class. Of course, the correspond-
ing constraint must check whether this class is abstract. Furthermore, it is possible
to specify this smell by a corresponding pattern based on the abstract syntax of
SCM and try to match this pattern on classes of a concrete SCM instance model.

Data Clumps (deduced from question Q4): A SCM model holds this smell if interre-
lated data items often occur as ‘clump’. More precisely, this smell can be defined
as follows:

– At least three attributes stay together in more than one class.
– These attributes should have the same signatures (same names, same types, and

same visibility).
– The order of these attributes may vary.

Again, this smell is also based on the corresponding code smell introduced by
Fowler (1999) and refined by Zhang et al. (2008). To detect this smell there must
be a mechanism to detect similarities in SCM models. This is due to the fact that
one can not predict how many attributes are involved in this smell. Furthermore,
there might be variants w.r.t. similar attributes when using a more general defini-
tion of this smell than here (think of attribute names that need not to be equal but
just similar or attributes with different visibilities). Another possibility to detect
this smell is to define a metric for an ScmClass counting all equal attributes with
other classes. Nevertheless, using a strict definition with exactly three attributes
and equal signatures it is possible to define this smell as pattern based on the
abstract syntax of SCM.

Redefined Attribute (deduced from question Q5): SCM allows for redefining at-
tributes owned by ancestor classes. However, using this language feature could
lead to misunderstandings of the modeled aspect and so might be confusing for
model readers. It can be checked by matching a corresponding pattern or by eval-
uating metric Number of redefined attributes to zero.

3.3.4 Specification of project-specific SCM refactorings

After having specified appropriate model smells as done in the previous section, suit-
able refactorings have to be defined in order to support the handling of ‘smelly’ mod-
els. Table 1 gives an overview on refactoring alternatives to eliminate the SCM smells

152 Autom Softw Eng (2013) 20:141–184

Table 1 Suitable SCM refactorings to erase specific SCM model smells

Unused
Class

Diamond
Inheritance

Speculative
Generality

Data
Clumps

Redefined
Attribute

Extract Class ×
Extract Superclass ×
Extract Intermediate Superclass ×
Extract Subclass ×
Remove Superclass × ×
Remove Intermediate Superclass × ×
Remove Redefined Attribute ×
Remove Unused Class ×

presented above. An entry × in cell (i, j) indicates that SCM refactoring i can be used
to eliminate smell j .

To eliminate SCM smell Unused Class suitable refactorings can hardly be deduced
since one can not determine whether this class is either useless or if there are some
missing relationships. So, this smell can either be eliminated by removing the class
(i.e. by using the simple refactoring Remove Unused Class) or by adding further
information to the model not indicated as refactorings.

Smell Diamond Inheritance can be eliminated by applying refactorings Remove
Superclass or Remove Intermediate Superclass. Both refactorings can also be used
to eliminate SCM smell Speculative Generality. Here, the unnecessarily modeled
abstract class has to be removed by one of those refactorings, depending on whether
this class has a parent class or not. A further applicable refactoring addresses missing
information, more precisely missing subclasses of the abstract class. This refactoring
is called Extract Subclass. It creates a new subclass and applies refactoring Push
Down Attribute to a set of attributes of the contextual class (which is empty in our
case).

The elimination of smell Data Clumps can be done in two different ways, either by
moving corresponding attributes to a new associated class or by moving them to a new
class that is a common superclass of the owning classes. The first option uses SCM
refactoring Extract Class that internally uses refactorings Create Associated Class
and Move Attribute. The second alternative uses either refactoring Extract Superclass
or Extract Intermediate Superclass if the owning classes have a common superclass
already. Besides the creation of an empty (intermediate) superclass, both refactorings
use refactoring Pull Up Attribute to move equal attributes to this newly created class.

Last but not least, SCM smell Redefined Attribute can be eliminated using refac-
toring Remove Redefined Attribute that removes the redefinition relationship as well
as the contextual attribute if and only if the redefined attribute is visible to the owning
class of the redefining attribute.

On the complementary website of this article, you find a structured definition of
each SCM refactoring including a name, a short description, an illustrating example,
the contextual meta model element for applying the refactoring, and the input param-
eters. Furthermore, we use a three-part specification preparing the implementation of

Autom Softw Eng (2013) 20:141–184 153

Table 2 Possible impacts of SCM refactorings on SCM model smells

Unused
Class

Diamond
Inheritance

Speculative
Generality

Data
Clumps

Redefined
Attribute

Extract Class ×
Extract Superclass ⊗ ×
Extract Intermediate Superclass ×
Extract Subclass ⊗ ⊗ ×
Remove Superclass ⊗
Remove Intermediate Superclass ⊗
Remove Redefined Attribute ⊗
Remove Unused Class

refactorings in Eclipse using the Language Toolkit (LTK) technology (Frenzel 2006).
The parts of a refactoring specification reflect a primary application check for a se-
lected refactoring without input parameters, a second one with parameters, and the
proper refactoring execution steps. Please note that some of the SCM refactorings are
adapted from corresponding UML refactorings, for example discussed in Thongmak
and Muenchaisri (2004), Zhang et al. (2005), and Markovic and Baar (2008).

As last topic in this section we discuss relations between SCM refactoring and
SCM model smells. Inter-relations are presented in Table 2. An entry in cell (i, j)

indicates that SCM refactoring i can cause the occurrence of SCM smell j .
Each Extract . . . Class refactoring may cause SCM smell Data Clumps if appro-

priate attributes are moved to the newly created class. Please note that this smell
already existed before the refactoring but in another context (without the newly in-
serted class). We mark this kind of smell with × whereas completely new smell
occurrences are marked with ⊗. Furthermore, smell Data Clumps can also be intro-
duced by refactorings Remove Superclass and Remove Intermediate Superclass when
moved attributes complete an equivalent set of attributes in some subclasses.

The application of refactoring Extract Superclass can introduce smell Diamond
Inheritance if the contextual classes have a common subclass. Refactoring Extract
Subclass can lead to an unused class if no attribute is pushed down to the new class.
Furthermore, if this refactoring is applied on an abstract class not inherited so far,
SCM smell Speculative Generality is introduced. Refactoring Remove Redefined At-
tribute can lead to an unused class if the type class of the removed attribute has been
the only use of this class. Finally, refactoring Remove Unused Class does not cause
any smell from the analyzed list.

4 Tool environment: general approach

In this section, we present the general concepts of our tool environment for quality
assurance of EMF-based models. After giving an overview on the state-of-the-art of
model quality assurance tooling, we discuss the requirements on our tool set which
are deduced from this survey and from the model quality assurance process presented
in Sect. 2.2.

154 Autom Softw Eng (2013) 20:141–184

4.1 State-of-the-art: tool support for model quality assurance

The existing tool support for model quality assurance is mainly aiming at UML and
EMF modeling.

4.1.1 UML modeling

Considering UML modeling, quality assurance tools are integrated in standard UML
CASE tools to a certain extent. In the following, we give a rough overview on existing
UML model quality assurance tools: In UML CASE tools such as the IBM Rational
Software Architect (RSA 2012) and MagicDraw (MD 2012), a number of metrics
and validation rules are predefined and can be configured in metrics and validation
suites. MD supports class model metrics (e.g. measuring the number of classes, in-
heritance tree depth, and coupling), so-called system metrics such as Halstead and
McCabe, and requirements metrics based on function points and use cases. Valida-
tion rules comprise completeness and correctness constraints such as all essential
information fields are filled, properties have types specified, etc. Further validation
rules can be specified using Java or a restricted form of OCL. RSA also supports
predefined metrics. In addition, models can be checked against validation rules being
based on metrics. A tool dedicated to the calculation of model metrics is SDMetrics
(SDM 2012). SDMetrics analyzes the structural properties of UML models and uses
object-oriented measures as well as design rule checking to automatically detect de-
sign and style problems in UML models. Measurement data is displayed in different
views (e.g., tables, histograms, and kiviat diagrams) and can be exported in various
formats like HTML and XML. Furthermore, SDMetrics supports custom definitions
of UML metrics and design rules using XML-based configuration files.

Considering UML model refactoring, there is no mature tool support available yet.
However, some research prototypes for model refactoring are discussed in the litera-
ture, e.g. in Porres (2003), Boger et al. (2003), Markovic and Baar (2008). Most of
them are no longer maintained. For example, Porres (2003) describes the execution of
UML model refactorings as sequence of transformation rules and guarded actions. He
presents an execution algorithm for these transformation rules and constructed an ex-
perimental, meta-model driven refactoring tool that uses SMW, a scripting language
based on Python, for specifying the UML model refactorings.

To summarize, UML CASE tools and further model analysis tools for UML pro-
vide model analyses by predefined metrics and validation rules and support the cus-
tom configuration of metrics and validation suites as well as the definition of further
custom techniques but do not offer an integrated, custom configured quality assur-
ance environment for UML models based on metrics, smells (validations), and refac-
torings.

4.1.2 EMF modeling

Since EMF has evolved to a well-known and widely used modeling technology, it is
worthwhile to provide model quality assurance tools for this technology. To the best
of our knowledge, explicit tool support for metrics calculation on EMF-based models

Autom Softw Eng (2013) 20:141–184 155

is not yet available. However, there is the EMF Model Query Framework (EMF Query
2012) to construct and execute query statements that can be used to compute metrics
and to check constraints. These queries have the form of select statements similar
to SQL and can also be formulated based on OCL. Specified queries are triggered
from the context menu. The configuration of queries in suites as well as reports on
query results in various forms are not provided. The EMF Validation Framework
(EMF Validation 2012) supports the construction and assurance of well-formedness
constraints for EMF models. Two modes are distinguished: batch and live. While
batch validations are explicitly triggered by the client, live validations listen to change
notifications to model objects to immediately check that the change does not violate
any well-formedness constraint.

The Epsilon language family (Epsilon 2012) provides the Epsilon Validation Lan-
guage (EVL) to validate EMF-based models with respect to constraints that are, in
their simplest form, quite similar to OCL constraints. Furthermore, EVL supports de-
pendencies between constraints, customizable error messages to be displayed to the
user and the specification of fixes to be invoked by the user to repair inconsisten-
cies. For reporting purposes, EVL supports a specific validation view reporting the
identified inconsistencies in a textual way. Suitable quick fixes are formulated in the
Epsilon Object Language (EOL) being the core language of Epsilon and therefore
not specifically dedicated to model refactoring. Here, Epsilon provides the Epsilon
Wizard Language (EWL) (Kolovos et al. 2007), a textual domain-specific language
for in-place transformations of EMF. We compare our first refactoring prototype with
EWL in Arendt et al. (2009). The comparison shows that refactoring EMF-based
models using EWL has some strengths but also weaknesses. Refactoring specifica-
tions in EWL are very compact, each refactoring is triggered from within the con-
text menu of a contextual model element, and redo/undo functionality is supported.
Nevertheless, EWL does not follow the homogeneous refactoring execution structure
used in Eclipse. For example, a refactoring is provided only if all preconditions hold
(i.e., no meaningful error message is provided), and a preview of the results of a refac-
toring is missing. Furthermore, EWL does not support reuse of existing refactoring
specifications. Finally, there are no predefined EVL inconsistency checks and EWL
refactorings (for more general languages like Ecore and UML2, for example) as well
as no support for custom configurations of validation suites.

Another approach for EMF model refactoring is presented in Reimann et al.
(2010), Refactory (2012). Here, the authors propose the definition of EMF-based
refactoring in a generic way, however do not consider the comprehensive specifi-
cation of preconditions. Our experiences in refactoring specification show that it
is mainly the preconditions that cannot be defined generically. (See Arendt et al.
(2010b) for a more complex refactoring with elaborated precondition checks.) Fur-
thermore, there are no attempts to analyze EMF models w.r.t. model smell detection.

Finally, the MoDisco framework (Barbier et al. 2010) provides a model-driven
reverse engineering process for legacy systems in order to document, maintain, im-
prove, or migrate them. Here, several specific models are deduced (for example, Java
models are deduced from Java code) which can be analyzed in order to detect anti-
patterns and then be manually improved, for example by refactorings. As the UML
and EMF tooling discussed so far, MoDisco supports the specification and computa-
tion of custom metrics and queries on models as well as metrics visualization. The

156 Autom Softw Eng (2013) 20:141–184

main difference between MoDisco and our tool suite is the intended purpose (reverse
engineering vs. modeling).

Similar as for UML modeling, there is various tool support to perform EMF model
analyses and to improve EMF models by refactoring. However, there is not yet a
comprehensive tool environment for specifying and applying predefined and custom
metrics, smells, and refactorings to EMF models in an integrated way where metrics,
smells, and refactorings are tightly inter-related. We are heading towards such a tool
environment in the following.

4.2 Requirements on the tool environment for quality assurance in EMF

The analysis of existing model quality assurance tools presented in the previous sec-
tion and the definition of the proposed model quality assurance process presented in
Sect. 2.2 lead to the following requirements on our supporting tool set concerning
model metrics, model smells, and model refactorings.

4.2.1 Requirements common to all model quality assurance tools

Generality Each tool should be based on the Eclipse Modeling Framework (EMF),
i.e. the corresponding functionality should be provided on any model that is based
on EMF since EMF is a well-established format for models.

Reuse The tool environment should reuse existing Eclipse respectively EMF compo-
nents as far as possible, e.g. EMF Compare (EMF Compare 2012) for refactoring
preview and BIRT (BIRT 2012) for metric reporting. Furthermore, quality assur-
ance techniques implemented should be reusable since many of them recur most
likely in several projects even if modeling purposes may differ.

Integration It should be possible to integrate QA plugins into EMF-based UML
CASE tools like the IBM Rational Software Architect (RSA 2012).

4.2.2 Requirements on the application of specific model quality assurance tools
(metrics calculation, smell detection, and refactoring execution)

Configurability The modeler (respectively model reviewer) should be provided with
a project-specific configuration of model metrics, smells, and refactorings suites.
For model smells being based on metrics it should be possible to specify project-
specific thresholds.

Integrated application The corresponding functionality should be triggered from
within several views in Eclipse like files in the project explorer (for metrics cal-
culation and smell detection) and model elements in the standard tree-based EMF
instance editor (for refactoring execution).

Reporting Calculated metric values and detected model smells should be reported
in specific integrated views. Model elements being involved in a specific smell
occurrence should be highlighted in the standard tree-based EMF instance editor.
Furthermore, it should be possible to export metric results in various formats (e.g.,
HTML, PDF, and XML).

Autom Softw Eng (2013) 20:141–184 157

Refactoring features The application of refactorings should follow the homoge-
neous refactoring execution structure in Eclipse including a preview of the re-
sulting model. This includes a transactional execution of refactorings. Further-
more, the refactoring tool should provide undo and redo functionality as well as
an optional analysis of smell occurrences before and after refactoring application.
Finally, smells should be related to refactorings being suitable to erase the smell,
and refactorings should be related to smells potentially occurring after applying
the refactoring.

Quick-fix mechanism It should be possible to invoke a suitable refactoring from
within the context menu of a concrete smell occurrence in the smell results view.

4.2.3 Requirements on specification components for metrics, smells, and refactoring

Flexible specification approaches It should be possible to define custom metrics,
smells, and refactorings for arbitrary EMF-based models. Here, the tools should
support various concrete specification approaches like OCL, Java, and the EMF
model transformation language Henshin (Arendt et al. 2010b; Henshin 2012).
Furthermore, a designer should be provided with tool support for composing met-
rics and refactorings from existing ones.

QA tool code generation The tools should provide a comfortable input mechanism
for specification-related information like the meta model, the name, and a descrip-
tion of an arbitrary metric, smell, or refactoring. Afterwards, each tool should
generate Java code that can be used by the application component in order to
provide the corresponding functionality (metrics calculation, smell detection, and
refactoring execution).

5 Tool environment: architecture

This section discusses the architecture of our tool environment for EMF model qual-
ity assurance and summarizes the used components. Each tool is based on the Eclipse
Modeling Framework (Steinberg et al. 2008; EMF 2012), i.e. each tool can be used
for arbitrary models whose meta models are instances of EMF Ecore, for example
domain-specific languages, common languages like UML21 used by Eclipse Pa-
pyrus (Papyrus 2012) and the Java EMF model used by JaMoPP (JaMoPP 2012)
and MoDisco (Barbier et al. 2010; MoDisco 2012), or even Ecore instance models
themselves.

Our tool environment mainly consists of two kinds of modules: For calculating
model metrics, detecting smells, and executing refactorings there is an application
module each. Similarly there are three specification modules for generating metrics,
smell, and refactoring plugins containing Java code that can be used by the corre-
sponding application module. For simplicity reasons, we refer to these plugins as
custom QA plugins in the remainder of this section.

1In this article, we refer to UML2 being the standard EMF-based representation of UML2, i.e. org.
eclipse.emf.uml2.uml.

158 Autom Softw Eng (2013) 20:141–184

Fig. 6 UML component model of a specification module

Figure 6 shows the architecture of a specification module using a UML compo-
nent model. The specification module provides the generation of custom QA plugins
containing the metric-, smell-, or refactoring-specific Java code. Using the Eclipse
plugin technology, libraries consisting of model quality assurance techniques can be
provided. So, already implemented techniques can be reused. Currently, the following
specification technologies are supported:

– Java (Java 2012); version 6.
– OCL (OCL 2012) provided by the Eclipse Modeling Project (EMP 2012).
– Henshin (Henshin 2012), a model transformation engine for the Eclipse Modeling

Framework based on graph transformation concepts. Henshin uses pattern-based
rules that can be structured into nested transformation units with well-defined op-
erational semantics. For further information about Henshin we refer to Arendt et al.
(2010b).

– CoMReL (Arendt and Taentzer 2012b), a model-based language for the combina-
tion of EMF model refactorings.

More concretely, the following techniques can be used in a concrete specification
of a new EMF model metric, smell, or refactoring:

1. Model metrics can be concretely specified in Java, as OCL expressions, by Hen-
shin pattern rules, or as a combination of existing metrics using a binary operator.

2. Model smells can be concretely specified in Java, as OCL invariants, by Henshin
pattern rules, or as a combination of an existing metric and a comparator like
greater than (>).

3. The three parts of a model refactoring can be concretely specified in Java, as OCL
invariants (only precondition checks), in Henshin (pattern rules for precondition
checks; transformations for the proper model change), or as a combination of ex-
isting refactorings using the CoMReL language.

Autom Softw Eng (2013) 20:141–184 159

Table 3 Extension point descriptions for EMF model metrics, smells, and refactorings

Field name Extension point

org.eclipse.emf.refactor.metrics

Type Description

metric_name String Name of the EMF model metric

id String Unique identifier of the EMF model metric

metric_description String Description of the EMF model metric (optional)

metric_metamodel String Namespace URI of the corresponding meta model

metric_context String Name of the context element type

metric_calculate_class Java Java class that implements IMetricCalculator

Element name Extension point

org.eclipse.emf.refactor.smells

Type Description

modelsmell_name String Name of the EMF model smell

id String Unique identifier of the EMF model smell

modelsmell_description String Description of the EMF model smell (optional)

modelsmell_metamodel String Namespace URI of the corresponding meta model

metric_finderclass Java Java class that implements IModelSmellFinder

Field name Extension point

org.eclipse.emf.refactor.refactorings

Type Description

menulabel String Name of the EMF model refactoring

id String Unique identifier of the EMF model refactoring

namespaceUri String Namespace URI of the corresponding meta model

controller Java Java class that implements IController

gui Java Java class that implements IGuiHandler

The specification module provides wizard-based specification processes (compo-
nent Specification Wizard in Fig. 6). After inserting specific information (like the
name of the metric, smell, or refactoring, and the corresponding meta-model) the
code generator uses the Java Emitter Templates framework (JET 2012) to generate
the specific Java code required by the corresponding extension point. Table 3 shows
the extension point descriptions for EMF model metrics, smells, and refactorings.

Besides basic information like the name, id, or the corresponding meta model
of a concrete model quality assurance technique the following interfaces have to be
implemented:

IMetricCalculator This interface provides the calculation of the correspond-
ing EMF model metric on a given model element. Here, two methods have
to be implemented: method void setContext(List<EObject> con-
text) for maintaining the model element on which the metric should be cal-

160 Autom Softw Eng (2013) 20:141–184

Fig. 7 UML component model of an application module

culated on, and method double calculate() for the proper calculation of
the metric value on this element.

IModelSmellFinder This interface provides the detection of the corresponding
model smell in a given EMF model. It has one method which must be imple-
mented by the corresponding Java class: LinkedList<LinkedList <EOb-
ject>> findSmell(EObject root). Here, the model is specified by pa-
rameter root. The method returns a list of detected smell occurrences where
such an occurrence is given by a list of model elements which are involved in the
detected smell.

IController This interface is responsible for executing the corresponding model
refactoring. Here, the main method which has to be implemented is Refactor-
ingProcessor getLtkRefactoringProcessor() that returns an in-
stance of class RefactoringProcessor from the Language Toolkit (LTK)
API (Frenzel 2006). Within this class, the refactoring specific preconditions are
checked by methods checkInitialConditions(...) and checkFi-
nalConditions(...) whereas the refactoring is finally executed by method
createChange(...).

IGuiHandler This interface checks whether the refactoring can be executed on the
given context elements (method boolean showInMenu(List<EObject>
selection)) and the process is started by method RefactoringWizard
show(). As above, RefactoringWizard is a class of the LTK API.

Figure 7 shows the architecture of an application module. It uses the Java code of
the custom QA plugins generated by the corresponding specification module (com-
pare right-hand side of Fig. 6 and left-hand side of Fig. 7) and consists of two compo-
nents. The configuration component maintains project-specific configurations of met-

Autom Softw Eng (2013) 20:141–184 161

rics, smells, and refactorings. The runtime component is responsible for metrics cal-
culation, smell detection, and refactoring execution. Depending on the concrete spec-
ification approach, the runtime component uses the appropriate components Java,
OCL, Henshin, or the internal CoMReL interpreter. Further languages, especially
model transformation languages like EWL (Kolovos et al. 2007), may be integrated
by suitable adapters (Gamma et al. 1995). For exporting calculated model metrics,
the reporting engine BIRT (BIRT 2012) is used. Finally, the Language Toolkit (LTK,
Frenzel (2006)) is used for homogeneous refactoring execution and EMF Compare
(EMF Compare 2012), a tool that provides comparison and merge facility for any
kind of EMF models, for refactoring preview.

For manually defining the relationships between model smells and model refactor-
ings, our tool environment uses the Eclipse extension point technology again to pro-
vide information about these relationships globally. Therefore, two extension points
for the manual definition of relations between model smells and model refactorings
are provided. Since our tools identify smells respectively refactorings by distinct
identifiers (see Table 3), these extension points require relations from smell IDs to
a list of refactoring IDs (in case of providing suitable refactorings for a given smell)
and relations from refactoring IDs to a list of smell IDs (in case of possible new smells
when applying a given refactoring). To serve these extension points in a user-friendly
way, we extend the property page of a certain Eclipse plugin project in the workspace
by providing graphical user interfaces for (de-)activating appropriate relations.

In the following two sections, we present how to work with both kinds of mod-
ules. For simplicity reasons and to relate the application of our tools to the process
presented in Sect. 2.2, we first present how to work with the application module and
its implemented quality assurance techniques. Thereafter, Sect. 7 presents how to
specify new metrics, smells, and refactorings for our example language SCM.

6 Tool environment: application of project-specific model quality assurance
techniques in EMF

In this section, we present the application of the model quality assurance techniques
defined in Sect. 3.3 on our example model as described in Sect. 3.1 supported by our
tool environment for EMF model quality assurance.

6.1 Calculation of project-specific SCM model metrics

For the first overview on a model, a report on project-specific model metrics might
be helpful. In Sect. 3.3, several metrics for SCM models have been identified that
can be used for detecting corresponding smells. In the following, we do not calculate
those smell-related metrics only but also other common metrics to get an overview
on interesting model properties.

To calculate relevant metrics only, our tool environment supports a project-specific
configuration for the metrics suite. Figure 8 shows the project-specific configuration
page for our example project. Here, all existing model metrics for EMF-based models
are listed. They are structured with respect to the corresponding meta-model (e.g.,

162 Autom Softw Eng (2013) 20:141–184

Fig. 8 Project-specific
configuration dialog for selected
metrics for SCM models

Fig. 9 Reporting of metric values calculated on SCM package VehicleRentalCompany

UML and SCM in Fig. 8) and to the corresponding element type the metrics are
calculated on. In Fig. 8 for example, we activate model metrics for SCM packages
concerning abstractness (TNCP, NACP, NCCP, and A) and inheritance issues (TNAP,
NOAP, NIAP, AvNAtP, and AIF).

The metrics tool provides two ways for triggering the calculation of configured
model metrics. On the one hand, the calculation of metrics on a specific model ele-
ment is started from its context menu. On the other hand, a metrics analysis on the en-
tire model (i.e., on each element in the model) is started from the context menu of the
corresponding file in the Eclipse project explorer. Figure 9 shows the results of cal-
culating the configured SCM metrics on package VehicleRentalCompany (see
Fig. 3). The results view shows that there are altogether 11 classes (9 concrete and
two abstract classes) in package VehicleRentalCompany. The concrete classes
own altogether 17 attributes from which 2 are inherited from parent classes (attributes
name and email of class Subcontractor).

The first three metrics within the results view in Fig. 9 are calculated using these
‘basic’ metrics. The abstractness (A) of the package is 0.18 (ratio between the number
of abstract classes in the package and the total number of classes in the package),
the attribute inheritance factor (AIF) is 0.12 (ratio between the number of inherited
attributes in all concrete classes in the package and the total number of attributes in
all concrete classes in the package), and the average number of attributes in concrete
classes within the package (AvNAtP) is 1.89. As a first evaluation of these metrics

Autom Softw Eng (2013) 20:141–184 163

Fig. 10 Excerpt of a generated PDF report concerning calculated metrics results using a pie diagram (left)
and a bar diagram (right)

results, one can state that the model might not be complete since (1) there are only
11 classes modeled for the vehicle company domain, and (2) these classes have less
than two attributes on average. Furthermore, language concepts of abstractness and
inheritance are not used too exhaustively. So the model is less complex and easier
to understand. On the other hand, the low values of A and AIF can be interpreted
as a hint that the modeling purpose is not yet achieved since the modelers use the
provided language features insufficiently only.

The metrics tool provides the export of calculated results for reporting purposes.
The following output formats are supported: XML (default), HTML, PDF, Postscript,
MS DOC, MS PPT, MS XLS, ODP, ODS, and ODT. Furthermore, several output de-
signs are provided but also custom designs can be imported. Figure 10 shows two
PDF exports of our example metrics calculation. On the left-hand side, metrics NACP
(number of abstract classes in the package) and NCCP (number of concrete classes in
the package) are depicted using a pie diagram. The right-hand side of Fig. 10 shows
an exported bar diagram containing the former discussed metrics AvNAtP, A, and
AIF.

6.2 Detection of project-specific SCM model smells

The discussion of metrics results shows that a manual interpretation of metric values
seems to be unsatisfactory and error-prone. So, another static model analysis tech-
nique is required, more precisely an automatic detection of specific smells for SCM
models specified in Sect. 3.3.3. As for model metrics, our tool environment provides
a configuration of specific model smells that are relevant for the current project. Fig-
ure 11 shows the configuration dialog listing all existing smells with respect to their
meta-model. For a metric-based model smell, a corresponding threshold can be con-
figured. In our example, SCM smell Data Clumps is the only metric-based smell. It
relies on metric NEAC (number of equal attributes with further classes) and compara-
tor ≥ (greater or equal). We set the limit for smell Data Clumps to 3, i.e. this smell
occurs if a class owns more than two attributes with same name, type, and visibility
in at least one other class.

164 Autom Softw Eng (2013) 20:141–184

Fig. 11 Project-specific
configuration dialog for selected
SCM smells

Fig. 12 Manual configuration
of SCM refactorings suitable to
erase a given SCM smell

Given a concrete model smell occurrence, several refactorings can be suitable to
erase it. Our tool environment provides the ability to configure this relationship be-
tween model smells and model refactorings. Figure 12 shows the property page for
(de-) activating appropriate relations. Here, we address smell Data Clumps for SCM
models and select altogether three refactorings (namely Extract Superclass, Extract
Intermediate Superclass, and Extract Class) as suitable to erase smell Data Clumps
(according to Table 1).

Similar to the calculation process for model metrics, a smell analysis can be trig-
gered either for the entire model or for a concrete model element. In the latter case,
all smells are reported occurring within the containment hierarchy of the selected
model element. Nevertheless, it has to be considered that there are model smells
which might be distributed along several subtrees (like Multiple Definition of Classes
with equal Names, looking for equally named classes in different packages). How-
ever, our framework provides smell analysis on subtrees only in order to narrow the
scope of the analysis, for example on large-scale models.

Analyzing the example SCM model as shown in Fig. 3, the smell detection anal-
ysis discovers the existence of altogether six concrete smells which affect quality
aspect Confinement. The left-hand side of Fig. 13 shows the results of this analysis
in a dedicated results view. The report shows that smell Data Clumps occurs three
times, more concretely in classes Car, Truck, and Motorbike. Smell Diamond
Inheritance occurs once. Here, the involved elements are classes Subcontractor
and Person. Another detected smell is Speculative Generality since abstract class
Service has one single child class only. Furthermore, there is the unused class
RentalPeriod.

Autom Softw Eng (2013) 20:141–184 165

Fig. 13 Report of concrete smell occurrences in our example SCM model (left) and highlighting of in-
volved elements in smell Diamond Inheritance within the EMF instance editor (right)

Concerning concrete smell occurrences, the smell detection tool provides a high-
lighting mechanism for involved model elements within the standard tree-based EMF
instance editor. For example, selecting the occurrence of smell Diamond Inheritance
in the smell view (compare left-hand side of Fig. 13) highlights classes Subcon-
tractor and Person in the instance editor as shown in the right-hand side of
Fig. 13.

The next step during a model review is to interpret the results of the smell detection
analysis. Potential reactions on detected smells are:

– Use refactoring Extract Superclass on classes Car, Truck, and Motorbike
to insert a common parent class Vehicle and pull up attributes manufacturer,
power, and regNo to it.

– The diamond inheritance smell detected on class Subcontractor should not be
eliminated since this seems to be an important detail that has to be addressed in the
domain model.

– Smell Speculative Generality should be removed by using refactoring Remove Su-
perclass on class Service since the company does not offer further services.

– Class RentalPeriod is unused up to now. It should be associated to class Ve-
hicleRental and shall refer a new class Date twice (named from and to).

6.3 Application of project-specific SCM model refactorings

Besides manual changes, model refactoring is the technique of choice to eliminate
occurring smells. In our tool environment for model quality assurance, this task is
provided by the primary functionality of EMF Refactor as presented in Arendt et al.
(2010a). Again, this component provides a configuration mechanism to select refac-
torings being relevant for the given modeling project. The configuration user interface
is similar to that of the metrics component (see Fig. 8) and is not shown here.

Since the application of a given refactoring poses a risk for inserting new model
smell occurrences, our tool environment supports the manual configuration of this re-

166 Autom Softw Eng (2013) 20:141–184

Fig. 14 Manual configuration
of potentially new SCM smells
after applying an SCM
refactoring

lationship between model refactorings and model smells. Figure 14 shows the prop-
erty page for (de-)activating appropriate relations. For example, in Fig. 14 we specify
that the application of SCM refactoring Extract Superclass can cause an occurrence
of SCM smells Diamond Inheritance or Data Clumps according to Table 2. Please
note that this relationship need not be set for each project. Instead, our tool set uses
again the Eclipse extension point technology to provide information about smell-
refactoring relationships throughout the entire Eclipse system.

The application of a certain model refactoring can be triggered by using two al-
ternative ways: First, it can be invoked from within the context menu of at least one
model element in the standard tree-based EMF instance editor. Dependent on the se-
lected element(s), only those refactorings are provided in the menu being defined for
the corresponding model element type(s).

The second way to trigger a model refactoring is to use the quick fix mechanism
of the smell results view as shown on the left-hand side of Fig. 13. Starting from this
view, our tool environment provides a suggestion for potential refactorings according
to pre-defined smell-refactoring relations (see Fig. 12) and a dynamic analysis of
applicable model refactorings.

The suggestion dialog is started from within the context menu of a smell occur-
rence (e.g., occurrence {Car}, see Fig. 13) and consists of two tabs. The first tab (see
top of Fig. 15) suggests all model refactorings that have been manually defined as
being suitable to erase the corresponding model smell. Furthermore, the dialog in-
forms about possible new smells potentially inserted when applying the refactoring
(according to the manual configuration in Fig. 14). The second tab (see bottom of
Fig. 15) lists all those model refactorings which have been proven to be applicable
on at least one model element in the selected smell occurrence. Please note that this
does not necessarily mean that each presented refactoring would improve the model
quality by erasing a model smell. It simply means that the target model structure al-
lows the application of that refactoring. Again, the dialog informs about potentially
inserted smells according to the manual configuration.

After invoking a refactoring, either from within the EMF instance editor or by
the provided quick fix mechanism, refactoring-specific basic conditions are checked
(initial precondition check). Then, the user has to set all needed parameters. Figure 16
shows the parameter input dialog for refactoring Extract Superclass that is invoked
on classes Car, Truck, and Motorbike. Here, the name for the new parent class
of Car, Truck, and Motorbike has to be specified.

Autom Softw Eng (2013) 20:141–184 167

Fig. 15 Quick fix mechanism: manually defined refactorings (top) and actually applicable refactorings
(bottom)

Fig. 16 Parameter input dialog
of SCM refactoring Extract
Superclass

Then, EMF Refactor checks whether the user input does not violate further con-
ditions (final pre-condition check). In case of erroneous parameter input a detailed
error message is shown. If the final check has passed, a preview of model changes
to be performed by the refactoring is provided using EMF Compare (EMF Compare
2012). Figure 17 shows the resulting EMF Compare dialog using a tree-based model
view. The left-hand side shows the original example model (see Fig. 3) whereas the
right-hand side presents the refactored model. Model changes are highlighted by col-
ored connections. Here, the right-hand side shows the newly created class Vehicle
owning attributes manufacturer, power, and regNo being pulled up from classes Car,
Truck, and Motorbike. These classes have a new generalization relationship to
class Vehicle each now.

Besides the model change preview, our tool environment provides the opportunity
to get a quantitative analysis on changes of model smell occurrences. In contrast to
the manual configuration of potential refactoring-smell-relations, this preview pro-
vides a concrete overview on smell occurrence changes when applying the refactor-
ing. For a detailed discussion of model refactoring-smell-relations respectively their
implementation in our tool environment we refer to Arendt and Taentzer (2012a).

168 Autom Softw Eng (2013) 20:141–184

Fig. 17 Preview dialog during the application of SCM refactoring Extract Superclass

Fig. 18 Smell analysis during
the application of SCM
refactoring Extract
Superclass

Figure 18 shows the information dialog when applying SCM refactoring Extract
Superclass on classes Car, Truck, and Motorbike in our example model. Before
the refactoring, SCM smell Data Clumps occurs three times; after the refactoring
these occurrences would be eliminated and no further smell would be inserted. How-
ever, smells Unused Class, Diamond Inheritance, and Speculative Generality would
remain. Last but not least, all model changes can be committed and the refactoring
can take place.

Figure 19 shows our example SCM model after performing several model changes,
being refactorings and manual changes, as described at the end of Sect. 6.2. Now,

Autom Softw Eng (2013) 20:141–184 169

Fig. 19 Example SCM model after several model changes during a first model review

classes Car, Truck, and Motorbike have a common superclass Vehicle own-
ing the afore redundant attributes manufacturer, power, and regNo. Class Service
has been removed so that VehicleRentalService is the only offered service
left. Finally, class RentalPeriod has been completed by additional information,
i.e. class Date and associations period, from, and to.

From the detected smell occurrences only one is left (smell Diamond Inheri-
tance in class hierarchy Subcontractor ⇒ Person). Nevertheless, there are
model parts remaining suspicious with respect to several model quality aspects. For
example, there are two elements indicating incorrect modeling. First, class Vehi-
cle is concrete even though it should represent a generic term for concrete ve-
hicle kinds, hence should be abstract. Moreover, the association between classes
Company and VehicleRentalService has a too general name and should be
named vehicleRentalService instead. Furthermore, there are associations from class
Company to classes Car, Truck and Motorbike respectively from class Vehi-
cleRentalService to these classes hinting to some kind of redundant model-
ing.

The former discussion shows that project-specific model quality assurance tech-
niques need not be completely defined before a project starts. In our example, the
quality assurance process should be adapted during the model development phase
in order to be steadily improved. SCM smells Concrete Superclass and Association
Clumps as well as SCM refactorings Rename Association and Pull Up Association
would extend the suite of project-specific model quality assurance techniques in a
meaningful way.

170 Autom Softw Eng (2013) 20:141–184

Fig. 20 Wizard dialog for the
specification of metrics for
EMF-based models

7 Tool environment: specification of project-specific model quality assurance
techniques in EMF

Our tool environment for EMF model quality assurance provides a wizard-based
specification process for each supported quality assurance technique model metrics,
model smells, and model refactorings. In this section, we present several supported
concrete specification mechanisms for model quality assurance techniques discussed
along the SCM example.

7.1 Specification of project-specific model metrics

For the specification of model metrics, our tool environment currently supports four
concrete techniques. As basic approaches, pure Java code using the modeling lan-
guage API generated by EMF and OCL expressions can be used. Another approach
is to define a pattern using the abstract model syntax first and to count its occur-
rences in a concrete model thereafter. These patterns are formulated as rules in a lan-
guage included in the EMF model transformation tool Henshin (Arendt et al. 2010b;
Henshin 2012). To define compositional metrics, our tool environment supports a
combination of existing ones. Here, the involved metrics as well as appropriate arith-
metic operations have to be specified.

Figure 20 shows an example wizard dialog concerning the specification of SCM
metric TNCP (total number of classes in a package). After inserting metric-specific
information like the name or the corresponding meta-model, our tool environment
generates Java code to be completed by the actual metrics calculation. After this
completion, we obtain a module with all metrics features as described in Sect. 6.1.
The list of supported model metrics is extended using the extension point technology
of Eclipse.

Autom Softw Eng (2013) 20:141–184 171

ScmPackage p = (ScmPackage) c o n t e x t ;
i n t numberOfClasses = 0 ;
f o r (P a c k a g e a b l e E l e m e n t pe : p . getOwnedElement ())

i f (pe i n s t a n c e o f ScmClass) numberOfClasses ++;
re turn numberOfClasses ;

Listing 1 Java specification for SCM metric TNCP (total number of classes in a package)

c o n t e x t ScmPackage
def : getNACP () : I n t e g e r = s e l f . ownedElement
−> s e l e c t (e . oclAsType (ScmClass) | e . o c l I s T y p e O f (ScmClass))
−> s e l e c t (c l | c l . i s A b s t r a c t = t r u e) −> s i z e ()

Listing 2 OCL specification for SCM metric NACP (number of abstract classes in a package)

Fig. 21 Henshin pattern rule
specifying metric NCCP

Listing 1 shows a Java code snippet specifying SCM metric TNCP. Starting from
the contextual package element, the Java API of SCM generated by EMF is used. Ac-
cording to the SCM meta-model in Fig. 5, a package owns several elements, either of
type Association, PrimitiveType, or ScmClass. The code in Listing 1 fil-
ters the owned elements and returns the number of occurrences of type ScmClass.
This code snippet can be inserted into the generated Java code when selecting speci-
fication mode Generate Skeleton (see Fig. 20).

Since EMF models can be queried well using the Object Constraints Language
(OCL 2012), our tool environment supports model metrics specifications formulated
as OCL queries. Listing 2 shows an OCL specification of SCM metric NACP (number
of abstract classes in a package). Similar to the Java specification of metric TNCP in
Listing 1, the owned elements of the contextual package are filtered on type Scm-
Class. Then, only abstract classes are selected and their number is returned. To
insert the OCL query, the specification wizard provides a dedicated page after select-
ing this specification mode.

Figure 21 shows a Henshin pattern rule specifying SCM metric NCCP (number of
concrete classes in a package) using the graphical syntax of Henshin. The upper node
context of type ScmPackage represents the contextual model element for calculat-
ing metric NCCP whereas the remaining rule elements represent the pattern that has
to be found in the model. Here, this pattern defines an owned element of the package
with type ScmClass whose meta-attribute isAbstract has value false (i.e., the class

172 Autom Softw Eng (2013) 20:141–184

Fig. 22 Compositional
specification for SCM metric A

is concrete). To calculate metric NCCP, our metrics tool uses the Henshin interpreter
to find and count matches of this pattern rule on concrete SCM instance models.

For defining compositional metrics, the specification wizard provides a dedicated
page after selecting specification mode Composite. Here, the metric designer sim-
ply has to select the involved existing metrics as well as the appropriate arithmetic
operation. Currently, binary arithmetic operations sum, subtraction, multiplication,
and division are supported. For specifying e.g. SCM metric A (Abstractness), metrics
NACP (number of abstract classes in a package) and TNCP (total number of classes in
a package) are combined using the binary arithmetic operation division (see Fig. 22).
Of course, only those metrics are presented whose contextual elements correspond
to the contextual element of the new compositional metric (ScmPackage in our
example).

7.2 Specification of project-specific model smells

Our tool environment currently supports four concrete mechanisms for model smell
specification. Again, pure Java code and OCL expressions can be used as basic ap-
proaches. Some smells can be detected well by metric benchmarks. Here, appropri-
ate model metrics are used together with suitable benchmarks being set by project-
specific configurations. Pattern-based smells (i.e., smells that are detectable by the
existence of specific anti-patterns) can be specified by Henshin rules. The specifica-
tion process for model smells is similar to that for metrics specification as shown in
Fig. 20. After inserting smell-specific information like the name or the corresponding
meta-model, our tool environment generates Java code to be completed. Again, the
list of supported model smells is extended using the extension point technology of
Eclipse.

Listing 3 shows the core Java specification of SCM smell Speculative Gen-
erality. According to Sect. 3.3.3, this smell occurs if there is an abstract class

Autom Softw Eng (2013) 20:141–184 173

L i s t <ScmClass > c l a s s e s = g e t A l l C l a s s e s (scmModel) ;
f o r (ScmClass c l : c l a s s e s)

i f (c l . i s A b s t r a c t () && g e t C h i l d r e n (c l) . s i z e () == 1)
addToSmel lOccu r r ences (c l) ;

Listing 3 Excerpt of Java specification for SCM smell Speculative Generality

c o n t e x t ScmClass
def : hasDiamond () : Boolean =

s e l f . g e n e r a l i z a t i o n
−> s e l e c t (gen1 , gen2 | gen1 . g e n e r a l . s u p e r c l a s s e s −>

i n t e r s e c t i o n (gen2 . g e n e r a l . s u p e r c l a s s e s))
−> notEmpty ()

Listing 4 Excerpt of OCL specification for SCM smell Diamond Inheritance

Fig. 23 Henshin pattern rule specification for SCM smell Unused Class

inherited by one single class only. The condition in the if-clause exactly checks these
features. Please note that the code snippet is not complete since we use auxiliary
methods getAllClasses(), getChildren(), and addToSmellOccurrences() that are not
discussed in detail here.

The use of OCL is also an adequate approach to specify model smells. Listing 4
shows an excerpt of the OCL specification for SCM smell Diamond Inheri-
tance: It defines a boolean operation that checks whether two direct parent classes
of the contextual class have at least one common ancestor class.

As described in Sect. 3.3.3, SCM smell Unused Class can be detected by match-
ing an appropriate anti-pattern to a concrete SCM class. Figure 23 shows a Hen-
shin pattern rule defining this smell. The pattern specifies an SCM class (tagged by
〈〈preserve〉〉) and altogether four different application condition patterns that must not
be found in the model (tagged by 〈〈forbid:. . . 〉〉).

The first negative application condition (NAC) 〈〈 forbid:subclass〉〉 looks for a di-
rect subclass of the contextual class; the second NAC 〈〈 forbid:attributetype〉〉 looks
for an attribute owned by another class that has the contextual class as type; NAC
〈〈 forbid:outgoingassociation〉〉 looks for an outgoing association of the contextual
class that is targeted in another class; the last NAC 〈〈 forbid:incomingassociation〉〉
looks for an incoming association of the contextual class originating from another
class. All NACs have to hold, e.g. if one of the specified relations is found the SCM

174 Autom Softw Eng (2013) 20:141–184

Fig. 24 Specification of SCM
smell Data Clumps using
metric NEAC

class is not unused, i.e. the Henshin rule is not applicable on that class. Our smell
detection tool uses Henshin’s pattern matching algorithm to detect rule matches. The
matches found represent the existence of model smells in the model.

For the specification of metric-based model smells, our tool environment provides
a dedicated wizard page. The metric designer simply has to select the corresponding
metrics as well as the appropriate comparator. For specifying e.g. SCM smell Data
Clumps, metric NEAC (number of equal attributes with further classes) is combined
with comparator ≥ as discussed in Sects. 3.3.3 and 6.2. Figure 24 shows the corre-
sponding wizard. Please note that the threshold value is not pre-set. This is done in
the project-specific configuration as described in Sect. 6.2.

7.3 Specification of project-specific model refactorings

The specification process for model refactorings is started from the context menu of
an arbitrary model element. Doing this, several required information like the meta-
model and the type of the contextual element is obtained automatically. Its wizard is
similar to that for metrics specification as shown in Fig. 20.

Since EMF Refactor uses the LTK technology (Frenzel 2006) as described in
Sect. 6.3, a concrete refactoring specification requires up to three parts (i.e., specifi-
cations for initial checks, final checks, and the proper model changes). EMF Refactor
currently supports four concrete mechanisms for EMF model refactoring specifica-
tion. As for metrics and smells, refactorings can be specified using Java and OCL.
A way to specify a model refactoring straight forwardly is to use Henshin. Here,
EMF Refactor uses Henshin’s model transformation engine for executing the refac-
toring as well as Henshin’s pattern matching algorithm to detect violated precondi-
tions. Finally, our current work concentrates on a combination of existing refactorings
to more complex ones by using a domain-specific language, called CoMReL (Arendt
and Taentzer 2012b).

In Sect. 6.3, SCM model refactoring Extract Superclass is applied to eliminate
smell Data Clumps. In the following, we demonstrate the use of each specification
approach mentioned above for specifying this refactoring.

Refactoring Extract Superclass only makes sense, if each contextual class owns at
least one attribute that can be pulled up to a new parent class. The Java specification of
this initial precondition check is shown in Listing 5. Here, reference ownedAttribute

Autom Softw Eng (2013) 20:141–184 175

boolean c h e c k E a c h C l a s s H a s A t t r i b u t e s (L i s t <ScmClass > c l s) {
f o r (ScmClass c l : c l s)

i f (c l . g e t O w n e d A t t r i b u t e () . i sEmpty ())
re turn f a l s e ;

re turn t rue ;
}

Listing 5 Excerpt of Java specification for the initial precondition check of SCM refactoring Extract
Superclass

def : c l a s s W i t h N a m e E x i s t s (s u p e r c l a s s N a m e : S t r i n g) : Boolean =
ScmClass : : a l l I n s t a n c e s ()
−> s e l e c t (c l | c l . name = s u p e r c l a s s N a m e)
−> notEmpty ()

Listing 6 Excerpt of OCL specification for the final precondition check of SCM refactoring Extract
Superclass

Fig. 25 Henshin amalgamation rule specification for the model change part of SCM refactoring Pull
Up Attribute

of each contextual class is checked to be empty. If a class does not have any owned
attributes, the Java method returns false (otherwise true).

In the final precondition check, our refactoring tool checks whether the user in-
put does not violate further conditions. SCM refactoring Extract Superclass has one
parameter superclassName that defines the name of the new parent class. One final
check is to ensure that there is no class in the model with the same name. Listing 6
shows an OCL query operation that can be used to specify this check.

SCM refactoring Extract Superclass internally uses refactoring Pull Up Attribute
to move equal attributes to the newly created parent class (compare Sect. 3.3.4). The
model change part of Pull Up Attribute moves the contextual attribute to the specified
superclass and removes all equal attributes from their corresponding sibling classes.
To specify these changes we can use the amalgamation concept provided by Henshin.
This concept contains an interaction scheme consisting of one rule acting as a ker-
nel rule and multiple rules acting as multi-rules. The effect is that the modification
defined in the kernel rule is applied exactly once while modifications defined in the
multi-rules are applied as often as matches are found.

Figure 25 shows both, the kernel rule as well as a multi-rule of Pull Up Attribute,
in an integrated way. Here, kernel rule nodes have a single-lined border whereas

176 Autom Softw Eng (2013) 20:141–184

Fig. 26 CoMReL specification for the model change part of composite SCM refactoring Extract Su-
perclass

nodes of the multi-rule are double-bordered. In the kernel rule, the contextual attribute
is moved to the superclass specified by parameter superclassName. The multi-rule
deletes the equal attributes from the sibling classes. Equal attributes are determined
using an internal parameter attributeName being set by the match of the contextual
attribute. Please note that this check for equality is sufficient since other checks have
been performed before the model change.

Refactorings like Pull Up Attribute are rarely applied in isolation. Instead, they are
part of refactoring groups needed to perform a larger change in design. For example,
refactoring Extract Superclass uses simpler refactorings Insert Superclass and Pull
Up Attribute. Therefore, our current work concentrates on a combination of existing
refactorings to more complex ones by using a dedicated domain-specific language,
called CoMReL, and a tool set for editing and interpreting CoMReL models. Fig-
ure 26 shows the CoMReL model specification for the model change part of compos-
ite SCM refactoring Extract Superclass. Existing refactorings Insert Super-
class and Pull Up Attribute are executed in so-called QueuedUnits each represent-
ing a looping execution. These units are executed in a sequential order (specified by
CoMReL element SequentialUnit). Furthermore, there are two auxiliary units
that are needed to obtain the owned attributes of the first contextual class. Queued
unit InsertSuperclassForClasses must be successfully executed for each contextual
class (Insert Superclass either creates a new superclass for a given class, or a gener-
alization relationship to an existing but empty class). Instead, queued unit PullUpAt-
tributes needs to be executed successfully for those attributes of the first contextual
class having equal attributes in sibling classes. These facts are specified by unit at-
tributes strict respectively non-strict. For a more detailed presentation of CoMReL
we refer to Arendt and Taentzer (2012b).

Autom Softw Eng (2013) 20:141–184 177

Table 4 Number of
proof-of-concept
implementations of metrics,
smells, and refactorings for
Ecore, UML2, and SCM models

Model Metrics Model Smells Model Refactorings

Ecore 17 10 22

UML2 106 30 33

SCM 19 11 14

Table 5 Used specification
approaches for UML2 metrics,
smells, and refactorings

Java OCL Henshin Combin. Metric CoMReL

UML2 Metrics 10 4 52 40 – –

UML2 Smells 9 3 14 – 4 –

UML2 Refactorings 24 2 11 – – 16

8 Tool environment: evaluation

In this section, we evaluate our tool environment for EMF model quality assurance
along two different perspectives: suitability and performance (resp. scalability). More
information about the test design and results can be found on the complementary
website of this article.

8.1 Suitability

To evaluate whether our tool environment is suitable to support the techniques of our
proposed model quality assurance process as discussed in Sect. 2.2, we implemented
a comprehensive catalog of model metrics, smells, and refactorings. In this proof-
of-concept implementation, we consider the EMF core meta-model (Ecore), a com-
monly used meta-model (UML2), and a domain-specific meta-model (SCM). Each
metric, smell, and refactoring has been tested extensively. Table 4 summarizes the
implemented techniques. As can be seen, the vast majority of implemented QA tech-
niques are for UML2 models. For example, we provide metrics concerning coupling
or inheritance issues like afferent coupling, efferent coupling, and MaxDIT. Example
UMl2 smells and refactorings are Multiple Definition of Classes with equal Names
and Primitive Obsession respectively Introduce Parameter Object and Remove Iso-
lated State. Lists of implemented metrics, smells, and refactorings for UML2 models
can be found of the complementary website of this article.

Furthermore, we implemented the afore mentioned quality assurance techniques
using different specification approaches. Table 5 summarizes the used approaches
for concrete specifications of metrics, smells, and refactorings for UML2 models.
For comparison purposes, we implemented some refactorings using alternative ap-
proaches. Please note that we did not evaluate the suitability of the supported ap-
proaches for each technique, i.e. the used approach has been selected freely by the
designer.

Java specifications of UML2 metrics use 15.2 LoC (Lines of Code) on average
(min. 1 LoC; max. 36 LoC), whereas UML2 smells are implemented in 20.5 LoC on
average (min. 13 LoC; max. 74 LoC). Refactoring specifications require 99.7 LoC

178 Autom Softw Eng (2013) 20:141–184

on average (min. 8 LoC; max. 269 LoC). Here, about 20 % (20.2 LoC on average)
are used for specifying the model change part only, but almost 80 % (79.5 LoC on
average) for specifying the initial and final precondition checks. This shows that the
complexity of refactoring specifications is particularly hidden in checking the corre-
sponding preconditions.

As a last topic in our proof-of-concept implementation we have related altogether
16 UML2 smells to 18 potentially suitable refactorings and 14 refactorings to 6 po-
tentially occurring smells.

In summary, our implementations show that our tool environment supports met-
rics calculation, smell detection, and refactoring of EMF-based models to a high ex-
tent. Specifications are compact and concentrate purely on the QA technique to be
specified. All further functionalities such as metrics reports, etc. are provided by the
framework. Furthermore, it is shown that each supported specification approach is
suited to specify metrics, smells, and refactorings which can be used by our tool en-
vironment. Our experiences in using the various specification approaches show that
using Java has been the favorite approach for implementing specifications, especially
for implementing refactoring specifications. In fact, this may be due to the prefer-
ences of the designer and the progress of supported approaches by the correspond-
ing tool. Independent of the preferred specification language, we feel confident that
OCL is particularly suited for specifying metrics which can be directly deduced from
the contextual model element using adequate meta attributes respectively references.
Henshin transformations have been proven well-suited especially for specifying the
model change part of a refactoring. The specification of new metrics, smells, and
refactorings is a straightforward task since it is highly supported by comfortable wiz-
ards and several concrete specification languages.

8.2 Performance and scalability

To evaluate the scalability of our tool environment, we implemented several perfor-
mance tests of all three application modules. We performed our tests on a Lenovo
ThinkPad W500, Intel Centrino vPro 2.8 GHz, 4 MB RAM.

8.2.1 Metrics calculation

For evaluating the metrics calculation module we calculated a selected set of ten
UML2 metrics on model instances with 100, 500, 1 000, 5 000, 10 000, 50 000 and
100 000 elements and measured the time needed for metrics calculation. The selected
metrics are:

1. TNME—Total number of elements in the model.
2. MaxDIT—Maximum of all depths of inheritance trees (context: model).
3. MaxHAgg—Maximum of aggregation trees (context: model).
4. DNH—Depth in the nesting hierarchy (context: package).
5. NATIP—Number of inherited attributes in classes within the package.
6. NOPIP—Number of inherited operations in classes within the package.
7. HAgg—Length of the longest path to the leaves in the aggregation hierarchy (con-

text: class).

Autom Softw Eng (2013) 20:141–184 179

Table 6 Results of the
performance tests for calculating
10 UML2 metrics on model
instances with 100 to 100 000
elements

Elements Calculated UML2 metrics Average time needed

100 42 0.365 sec

500 201 0.563 sec

1 000 399 1.472 sec

5 000 2 008 8.494 sec

10 000 4 016 37.705 sec

50 000 20 068 8 min 36 sec

100 000 40 136 33 min 54 sec

8. MaxDITC—Depth of Inheritance Tree (maximum due to multiple inheritance;
context: class).

9. NSUBC2—Number of all children of the class.
10. NSUPC2—Total number of ancestors of the class.

We selected these metrics to cover inheritance and nesting issues. Furthermore, they
are calculated on different context types (model, package, and class). We consider
UML2 models only due to the variety of implemented metrics and similarities be-
tween SCM metrics and those for UML2.

The model instances are created by using a basic model similar to our running
example model in Sect. 3 (see Fig. 3) and duplicating respectively nesting the root
package. Doing this, we assure that the number of calculated metrics grows nearly
linearly compared to the model size. For each case, we repeated the metrics calcula-
tion ten times. Table 6 shows the results of these performance tests.

8.2.2 Smell detection

For evaluating the smell detection module we analyzed UML2 models with 100,
500, 1 000, 5 000, 10 000, 50 000 and 100 000 elements with respect to a set of seven
selected smells for UML2 models and measured the time needed for smell detection.
The selected smells are:

1. Concrete Superclass—The model contains an abstract class with a con-
crete superclass.

2. Equal Attributes in Sibling Classes—Each sibling class of the
owning class of an attribute contains an equal attribute.

3. Specialization Aggregation—The model contains a generalization hi-
erarchy between associations.

4. Speculative Generality (Abstract Class)—The model contains an
abstract class that is inherited by one single class only.

5. Speculative Generality (Interface)—The model contains an inter-
face that is implemented by one single class only.

6. Unused Class—The model contains a class that has no child or parent classes,
that is not associated to any other classes, and that is not used as attribute or
parameter type.

7. Unused Interface—The model contains an interface that is not specialized
by another interface, and not realized or used by any classes.

180 Autom Softw Eng (2013) 20:141–184

Table 7 Results of the
performance tests for the
detection of 7 UML2 model
smells on model instances with
100 to 100 000 elements

Elements Detected UML2 smells Average time needed

100 12 0.475 sec

500 60 0.550 sec

1 000 120 0.607 sec

5 000 600 2.834 sec

10 000 1 200 10.716 sec

50 000 6 000 5 min 05 sec

100 000 12 000 20 min 50 sec

We selected the model smells with respect to their influence on quality aspect con-
finement. Smells 1 to 3 use consistent language concepts being more complex than
necessary. Smells 4 and 6 are known from corresponding smells for SCM in our run-
ning example (see Sect. 3.3.3). Finally, smells 5 and 7 are similar to smells 4 and 6
but consider interfaces instead of classes. Again, we consider UML2 model smells
only due to the same reasons mentioned above.

The model instances are constructed in the same way as in the metrics calculation
case. For each model size, we repeated the smell detection ten times. Table 7 shows
the results of these performance tests.

8.2.3 Refactoring execution

For evaluating the refactoring execution module we applied 7 pretty complex UML2
refactorings on models with a larger refactoring context (e.g., the application of
UML2 refactoring Extract Superclass on 10 classes having altogether 10 equal at-
tributes and 10 equal operations each) instead of large-scale models. We measured
the time in-between committing the refactoring (i.e., after parameter input) and fin-
ishing the corresponding model change. Moreover, we repeated each refactoring ap-
plication ten times to address potential side effects. The maximum time needed to
apply a refactoring (without parameter input) has been 236 ms. Table 8 summarizes
the results of these performance tests.

8.2.4 Interpretation of results

The results show that the application modules for metrics calculation and smell detec-
tion are well-suited for small and mid-sized EMF-based models. For large-scale mod-
els, reporting of a high number of calculated metrics (respectively detected smells)
is provided in a satisfying time only. However, since static analyses normally do not
need to be performed time-critically, this is no crucial limitation of our tool set. Fur-
thermore, the configuration mechanism of our tools can be used even to deal with
large-scale models efficiently. For example, the configuration of only a small number
of relevant metrics and smells reduces the overall execution time. Moreover, a smell
search can be performed on a subtree of the model only, again reducing the overall
execution time. Concerning model refactoring, the results show that the refactoring
execution module is well-suited for applying refactorings even on large-scale refac-
toring contexts.

Autom Softw Eng (2013) 20:141–184 181

Table 8 Results of the performance tests for the application of 7 UML2 model refactorings on model
instances having a larger refactoring context

Refactoring Context Min. time Max. time Aver. time

Extract Class Refactoring application on a class having
10 attributes and 10 operations

43 ms 110 ms 66 ms

Extract Subclass Refactoring application on a class having
10 attributes and 10 operations. The selected
class has 10 child classes already. Each child
class has 10 attributes and 10 operations

178 ms 236 ms 196 ms

Extract
Superclass

Refactoring application on 10 classes having
10 equal attributes and 10 equal operations

91 ms 119 ms 105 ms

Inline Class Refactoring application on a class having
10 attributes and 10 operations

17 ms 47 ms 34 ms

Introduce
Parameter Object

Refactoring application on 9 parameters of an
operation with 10 input parameters. The owning
class has altogether 10 operations with
10 parameters each. Each operation has
parameters equal to the selected ones

85 ms 101 ms 93 ms

Merge States Refactoring application on a state with
5 incoming transitions. The parameter state has
entry, doAction, and exit behaviour. The
parameter state has 5 incoming transitions equal
to the selected state. The owning region has
20 further states

78 ms 107 ms 88 ms

Remove
Superclass

Refactoring application on a class having
10 attributes and 10 operations. The selected
class has 10 child classes already. Each child
class has 10 attributes and 10 operations

143 ms 231 ms 182 ms

9 Conclusion

In this article, we present a tool environment for model quality assurance based on the
Eclipse Modeling Framework (EMF), a common open source technology in model-
based software development. It has been designed to support a syntax-oriented model
quality assurance process that can be easily adapted to specific needs in model-based
projects. This means that dependent on the modeling language and the modeling
purpose, specific quality goals, and hence specific metrics, smells, and refactorings
may be defined. In such a tailored process, smell detection and model refactoring can
be iterated as long as a reasonable model quality has not been reached.

Our tool environment supports the model designer respectively reviewer by ob-
taining metrics reports, by checking for potential model deficiencies (called model
smells) and by systematically restructuring models using refactorings. Automatically
proposed refactorings as quick fixes for occurring smells and information on impli-
cations of a selected refactoring concerning new model smells widen the provided
functionality and support an integrated use of the quality assurance tools.

182 Autom Softw Eng (2013) 20:141–184

Model checks and refactorings can be specified by several specification mecha-
nisms. In this paper, we present Java, OCL, and the model transformation language
Henshin as possible specification approaches. However, other model transformation
approaches such as EWL (Kolovos et al. 2007) are interesting alternatives to be used.
In our tool environment, metrics can be composed to more complex metrics and refac-
torings can be composed by using a dedicated language named CoMReL. It is up to
future work to analyze the preconditions of component refactorings w.r.t. to their ex-
ecution order and to deduce a composite precondition therefrom. A first approach for
in-depth composition of refactorings is available for Henshin-specified ones using
algebraic graph transformations and critical pair analysis (Ehrig et al. 2006).

As a next step, we plan to evaluate the proposed model quality assurance process
in larger case studies using UML models. To do so, we intend to use the UML2 model
as language definition and to provide a set of well-known smells and refactorings for
class models. A comprehensive catalog of UML metrics, smells and refactorings that
have been extracted from literature has already been implemented. A list of imple-
mented techniques can be found on the complementary website of this article (Arendt
2012).

The entire tool set presented belongs to the Eclipse incubation project EMF Refac-
tor (EMF Refactor 2012) and is available under the Eclipse public license. Further-
more, we integrated our tool environment into the widely used EMF-based UML
CASE tool IBM Rational Software Architect. Here, each version additionally pro-
vides a highlighting of model elements for smells in the graphical model view. It
is up to future work, to present the preview of refactoring effects also graphically.
Both the version for the open source UML tool Eclipse Papyrus and the version for
the commercial tool IBM RSA can be installed from the download area of the EMF
Refactor homepage. Further information about the integration in Papyrus and RSA
can be found at Arendt and Taentzer (2012c).

In future releases, we will continue with making our quality assurance tools still
more user-friendly. Besides support for further available QA techniques and fur-
ther specification languages, performance and scalability shall be further optimized.
Here, potential inefficiencies in the framework need to be analyzed and performance-
oriented technologies for metric computation and smell detection need to be dis-
cussed. Another open issue is how to deal with false positives during model smell
detection. These are concrete smell occurrences being actually non-issues to be ig-
nored. Here, we think of using mechanisms like @SupressWarnings in Java to
indicate areas to be elided during a specific smell search. In the context of EMF,
EAnnotations might be useful.

We are convinced that performing quality assurance processes is an essential task
to obtain software products of high quality. Using the structured model quality as-
surance process and the corresponding tools presented in this article, model-based
and model-driven development can be made more mature yielding software of higher
quality.

Acknowledgements This work has been partially funded by Siemens Corporate Technology, Germany.
Furthermore, we thank the students Jan Baart, Matthias Burhenne, Gerrit H. Freise, Florian Mantz, Pawel
Stepien, and Alexander Weber for their work on our tools. Last but not least, we like to thank the anony-
mous reviewers for their valuable comments on the previous version of this article.

Autom Softw Eng (2013) 20:141–184 183

References

Arendt, T.: A tool environment for quality assurance based on the Eclipse Modeling Framework: additional
material. http://www.mathematik.uni-marburg.de/~arendt/mqa/ (2012). Accessed 29 Aug 2012

Arendt, T., Taentzer, G.: Integration of smells and refactorings within the Eclipse Modeling Framework.
In: Proceedings of the 5th Workshop on Refactoring Tools Co-Located with ICSE 2012 (2012a). To
appear in ACM Digital Library 2012

Arendt, T., Taentzer, G.: Composite refactorings for EMF Models. Technical report. http://www.uni-
marburg.de/fb12/forschung/berichte/berichteinformtk (2012b). Accessed 29 Aug 2012

Arendt, T., Taentzer, G.: Besser modellieren: Qualitätssicherung von UML-Modellen. Objektspekt-
rum 06 (2012c). http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2012/06/
arendt_taentzer_OS_06_12_lo66.pdf

Arendt, T., Mantz, F., Schneider, L., Taentzer, G.: Model refactoring in Eclipse by LTK, EWL, and EMF
refactor: a case study. In: Model-Driven Software Evolution, Workshop Models and Evolution (2009).
http://www.modse.fr/modsemccm09/doku.php?id=Proceedings. Accessed 29 Aug 2012

Arendt, T., Mantz, F., Taentzer, G.: EMF refactor: specification and application of model refactor-
ings within the Eclipse Modeling Framework. In: 9th Edition of BENEVOL Workshop (2010a).
http://rmod.lille.inria.fr/benevol/pier. Accessed 29 Aug 2012

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced concepts and tools for
in-place EMF model transformation. In: Proceedings of the 13th International Conference on Model
Driven Engineering Languages and Systems, MoDELS 2010. LNCS, pp. 121–135. Springer, Berlin
(2010b)

Arendt, T., Kranz, S., Mantz, F., Regnat, N., Taentzer, G.: Towards syntactical model quality assurance in
industrial software development: process definition and tool support. In: Software Engineering. LNI,
vol. 183, pp. 63–74 (2011). GI

Barbier, G., Brunelière, H., Jouault, F., Lennon, Y., Madiot, F.: MoDisco, a model-driven platform to
support real legacy modernization use cases. In: Information Systems Transformation: Architecture-
Driven Modernization Case Studies, pp. 365–400. Morgan Kaufmann, San Mateo (2010)

Basili, V., Caldiera, G., Rombach, D.H.: The goal question metric approach. In: Marciniak, J. (ed.) Ency-
clopedia of Software Engineering. Wiley, New York (1994)

BIRT: BIRT Project. http://www.eclipse.org/birt/ (2012). Accessed 29 Aug 2012
Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for UML. In: Aksit, M., Mezini, M., Un-

land, R. (eds.) Objects, Components, Architectures, Services, and Applications for a Networked
World. LNCS, vol. 2591, pp. 366–377. Springer, Berlin (2003)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Mono-
graphs in Theoretical Computer Science. Springer, Berlin (2006)

EMF: Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/ (2012). Accessed 29
Aug 2012

EMF Compare: EMF Compare Project. http://www.eclipse.org/emf/compare/ (2012). Accessed 29 Aug
2012

EMF Query: EMF Query. http://www.eclipse.org/projects/project.php?id=modeling.emf.query (2012).
Accessed 29 Aug 2012

EMF Refactor: EMF Refactor. http://www.eclipse.org/modeling/emft/refactor/ (2012). Accessed 29 Aug
2012

EMF Validation: EMF Validation. http://www.eclipse.org/projects/project.php?id=modeling.emf.validation
(2012). Accessed 29 Aug 2012

EMP: Eclipse Modeling Project (EMP). http://www.eclipse.org/modeling/ (2012). Accessed 29 Aug 2012
Epsilon: Epsilon. http://www.eclipse.org/epsilon/ (2012). Accessed 29 Aug 2012
Fowler, M.: Refactoring—Improving the Design of Existing Code. Addison-Wesley, Reading (1999)
Frenzel, L.: The Language Toolkit: an API for automated refactorings in Eclipse-based IDEs. Eclipse-Mag.

5 (2006)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading (1995)
Genero, M., Piattini, M., Calero, C.: A survey of metrics for UML class diagrams. J. Object Technol. 4(9),

59–92 (2005)
GMP: Graphical Modeling Project (GMP). http://eclipse.org/modeling/gmp (2012). Accessed 29 Aug

2012
Henshin: EMF Henshin. http://www.eclipse.org/modeling/emft/henshin/ (2012). Accessed 29 Aug 2012
JaMoPP: JaMoPP. http://www.jamopp.org (2012). Accessed 29 Aug 2012

http://www.mathematik.uni-marburg.de/~arendt/mqa/
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2012/06/arendt_taentzer_OS_06_12_lo66.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2012/06/arendt_taentzer_OS_06_12_lo66.pdf
http://www.modse.fr/modsemccm09/doku.php?id=Proceedings
http://rmod.lille.inria.fr/benevol/pier
http://www.eclipse.org/birt/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/projects/project.php?id=modeling.emf.query
http://www.eclipse.org/modeling/emft/refactor/
http://www.eclipse.org/projects/project.php?id=modeling.emf.validation
http://www.eclipse.org/modeling/
http://www.eclipse.org/epsilon/
http://eclipse.org/modeling/gmp
http://www.eclipse.org/modeling/emft/henshin/
http://www.jamopp.org

184 Autom Softw Eng (2013) 20:141–184

Java: Oracle. Java. http://www.java.com (2012). Accessed 29 Aug 2012
JET: JET. http://www.eclipse.org/modeling/m2t/ (2012). Accessed 29 Aug 2012
Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the Small with the Epsilon

Wizard Language. J. Object Technol. 6(9), 53–69 (2007)
Lange, C.F.J.: Assessing and improving the quality of modeling: a series of empirical studies about the

UML. Ph.D. thesis, Department of Mathematics and Computing Science, Technical University Eind-
hoven, The Netherlands (2007). Accessed 29 Aug 2012

Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. Softw. Syst. Model. 7, 25–47
(2008)

MD: No Magic. MagicDraw. http://www.nomagic.com/products/magicdraw.html (2012). Accessed 29
Aug 2012

MoDisco: MoDisco. http://www.eclipse.org/MoDisco/ (2012). Accessed 29 Aug 2012
MOF: Meta Object Facility (MOF). http://www.omg.org/spec/MOF/2.4.1/ (2012). Accessed 29 Aug 2012
Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches to model quality in model-based soft-

ware development—a review of literature. Inf. Softw. Technol. 51(12), 1646–1669 (2009)
OCL: Object Constraint Language (OCL). http://www.omg.org/spec/OCL/ (2012). Accessed 29 Aug 2012
Papyrus: Papyrus. http://www.eclipse.org/modeling/mdt/papyrus/ (2012). Accessed 29 Aug 2012
Porres, I.: Model refactorings as rule-based update transformations. In: Stevens, P., Whittle, J., Booch, G.

(eds.) Proc. UML 2003: 6th Intern. Conference on the Unified Modeling Language. LNCS, pp. 159–
174. Springer, Berlin (2003)

Refactory: Refactory. http://www.modelrefactoring.org/index.php/Refactoring (2012). Accessed 29 Aug
2012

Reimann, J., Seifert, M., Aßmann, U.: Role-based generic model refactoring. In: Proceedings of the 13th
International Conference on Model Driven Engineering Languages and Systems, MoDELS 2010.
LNCS, pp. 78–92. Springer, Berlin (2010)

Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, Boston (1996)
RSA: IBM Rational Software Architect. http://www-01.ibm.com/software/awdtools/swarchitect/ (2012).

Accessed 29 Aug 2012
Sakkinen, M.: Disciplined inheritance. In: Cook, S. (ed.) Proceedings of ECOOP’89, pp. 39–56. Cam-

bridge University Press, Nottingham (1989)
SDM: SDMetrics. http://www.sdmetrics.com/ (2012). Accessed 29 Aug 2012
Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling Framework, 2nd edn.

Addison-Wesley, Reading (2008)
Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.: Refactoring UML models. In: Gogolla, M., Ko-

bryn, C. (eds.) Proc. UML 2001—the Unified Modeling Language. Modeling Languages, Concepts,
and Tools. LNCS, vol. 2185, pp. 134–148. Springer, Berlin (2001)

Thongmak, M., Muenchaisri, P.: Using UML metamodel to specify patterns of design refactorings. In: Pro-
ceedings of the 8th National Computer Science and Engineering Conference (NCSEC 2004) (2004)

UML: Unified Modeling Language (UML). http://www.uml.org (2012). Accessed 29 Aug 2012
Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a model transformation

engine. In: Model-Driven Software Development, pp. 199–217. Springer, Berlin (2005)
Zhang, M., Baddoo, N., Wernick, P., Hall, T.: Improving the precision of Fowler’s definitions of bad smells.

In: Software Engineering Workshop, Annual IEEE/NASA Goddard, pp. 161–166 (2008)

http://www.java.com
http://www.eclipse.org/modeling/m2t/
http://www.nomagic.com/products/magicdraw.html
http://www.eclipse.org/MoDisco/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/OCL/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.modelrefactoring.org/index.php/Refactoring
http://www-01.ibm.com/software/awdtools/swarchitect/
http://www.sdmetrics.com/
http://www.uml.org

	A tool environment for quality assurance based on the Eclipse Modeling Framework
	Abstract
	Introduction
	Model quality and quality assurance
	The 6C model quality goals presented by Mohagheghi et al.
	Specification and application processes for customized model quality assurance techniques

	Running example
	Application of a project-specific model quality assurance process
	Domain specific modeling language SimpleClassModel (SCM)
	Specification of project-specific model quality assurance techniques
	Specification of relevant model quality aspects
	Formulation of questions leading to static quality checks
	Specification of project-specific SCM smells
	Specification of project-specific SCM refactorings

	Tool environment: general approach
	State-of-the-art: tool support for model quality assurance
	UML modeling
	EMF modeling

	Requirements on the tool environment for quality assurance in EMF
	Requirements common to all model quality assurance tools
	Requirements on the application of specific model quality assurance tools (metrics calculation, smell detection, and refactoring execution)
	Requirements on specification components for metrics, smells, and refactoring

	Tool environment: architecture
	Tool environment: application of project-specific model quality assurance techniques in EMF
	Calculation of project-specific SCM model metrics
	Detection of project-specific SCM model smells
	Application of project-specific SCM model refactorings

	Tool environment: specification of project-specific model quality assurance techniques in EMF
	Specification of project-specific model metrics
	Specification of project-specific model smells
	Specification of project-specific model refactorings

	Tool environment: evaluation
	Suitability
	Performance and scalability
	Metrics calculation
	Smell detection
	Refactoring execution
	Interpretation of results

	Conclusion
	Acknowledgements
	References

