
Customizing Model Migrations by Rule Schemes

Florian Mantz
Høgskolen i Bergen

Bergen, Norway
fma@hib.no

Gabriele Taentzer
Philipps-Universität Marburg

Marburg, Germany
taentzer@informatik.uni-

marburg.de

Yngve Lamo
Høgskolen i Bergen

Bergen, Norway
yla@hib.no

ABSTRACT
Model-driven engineering (MDE) is a software engineering
discipline focusing on models as the primary artifacts in the
software development process while programs are mainly
generated by means of model-to-code transformations. In
particular, modeling languages tailored to specific application
domains promise to increase the productivity and quality
of software development. Nevertheless due to e.g. evolving
requirements, modeling languages and their meta-models
evolve which means that existing models have to be mi-
grated correspondingly. In our approach, such co-evolutions
are specified as related graph transformations ensuring well-
typed model migration results. Based on our earlier work on
co-transformations, we now consider the automatic deduction
of migration rule schemes from given meta-model evolution
rules. Rule schemes form the basis for user customizations on
a high abstraction level. A rule scheme deduction algorithm
is presented and several customized migration schemes for
different co-evolution examples are discussed.

Categories and Subject Descriptors
D.3.2 [Model Transformation]: Model Migration

General Terms
Languages

Keywords
Meta-model co-evolution, graph transformation

1. INTRODUCTION
Model-driven engineering [8] (MDE) is a software engineer-

ing discipline which raises the level of abstraction by using
models as primary artifacts. In particular, domain-specific
modeling languages (DSMLs) aim at increasing productiv-
ity and quality of software development. Developers can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE ’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2311-6/13/08 ...$15.00.

focus on their essential tasks while repetitive and technology-
dependent artifacts are automatically generated by transfor-
mations specified by experts in these areas. To keep this
high level of abstraction, modeling languages have to evolve
together with the evolving practice and understanding of
target domains. However, this often causes trouble since
existing models need to co-evolve with their languages (see
Fig. 1).�� ��Modeling Language

evolution // �� ��Modeling Language′

�� ��Model

conforms to

OO

migration +3 �� ��Model′

conforms to

OO

��

Figure 1: Model co-evolution: Modeling language
evolution and model migration

This migration challenge has been studied and different
kinds of approaches [27, 3, 13] to (partially) automate the
tedious and error-prone process of meta-model co-evolution
have been proposed. In this paper, we present an approach
that supports the coupled evolution of meta-models and
models by coupled rules. The main contribution of this
paper is an approach that automatically deduces rule schemes
for model migration from meta-model evolution rules. In
addition, migration rule schemes can be customized on a
high-level of abstraction.

In other approaches that support such coupled evolutions,
operators for both i.e. for meta-model evolution and model
migration, need to be specified by a tool developer. We try
to simplify the second step. In our approach we generate
default migration rule schemes automatically from arbitrary
meta-model evolution rules using a general heuristic. This
has the advantage that, besides standard evolution operators,
also individually needed coupled ones can be implemented
easier. In this paper we focus on the generation of such rule
schemes and refer to our earlier work [20] for details about
their application. To our best knowledge, this approach is the
only one supporting automatic migration scheme generation
yet.

Since desired model migrations are not always completely
determined by related meta-model evolution operations, i.e.
different migration strategies are possible, we support a
form of high-level customization of generated migration rule
schemes. In particular, we generate schemes and allow cus-
tomizations as long as the schemes remain well-formed. In
other approaches, languages designers are not guided in the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

IWPSE’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2311-6/13/08...$15.00
http://dx.doi.org/10.1145/2501543.2501545

1

process of migration operator specification.
Meta-model evolutions and related model migrations have

to be defined consistently. In contrast to other approaches
the work presented here ensures such consistency. We employ
the formal framework of algebraic graph transformations [6]
and consider co-evolutions of models and their meta-models
as sequences of coupled graph transformations ensuring well-
typed migration results. Well-typedness means that after
applying an evolution rule, i.e. a graph transformation rule,
to the meta-model and a corresponding migration rule to
an instance model, the resulting model can be typed by
the changed meta-model even if the transformations are
applied independently of each other. Coupled evolution and
migration rules means that they are formally related by
typing morphisms.

Note that our approach requires model-specific migra-
tion rules. We construct such rules by amalgamating basic
migration rules coming from model-independent migration
schemes. By formalizing model co-evolutions as related
graph transformations we have the possibility to statically
type check model migration schemes. In addition, gener-
ated migration schemes can warn language designers about
situations where elements are deleted without replacement
causing an information loss.

Approaches either transform in-place, i.e. by changing
the existing model or out-place by generating a new one.
Models are often migrated using out-place transformations.
In this case, well-typed migration results can be ensured
trivially by creating instances of types of the evolved meta-
model only, like e.g. in [25]. However, we also support
in-place transformations here. In-place transformations have
the advantage that model elements may not be “forgotten”
during the transformations but have to deal with the fact
that all elements of a model that need to be migrated, are
considered by the migration.

In the rest of this paper, we consider graphs to be synonym
with models in abstract syntax. In the next section, we recall
the main concepts of co-transformations on graphs. In Sec-
tion 3, we present an algorithm for automatically deducing
migration schemes. Section 4 presents derived migration
schemes for some well-known meta-model changes. Some of
these migrations need to be customized to get the intended
meaning, others are directly provided by the deduction al-
gorithm. Section 5 compares with related work while we
conclude in Section 6.

2. CO-TRANSFORMATIONS
In this section, we introduce co-transformations of graphs

on an informal level. The interested reader can find the
formal definitions of these concepts in [30, 21, 20]. Graph
transformation is the rule-based manipulation of graphs.
There exists a variety of graph transformation approaches,
differing mainly in the kind of transformation rules allowed
and the way in which they are applied.

Graphs are often used as an abstract representation of
models. When formalizing object-oriented modeling, graph
structures are used to represent model and meta-model struc-
tures leading to instance and type graphs. A fixed type graph
TG serves as an abstract representation of a meta-model. As
in object-oriented modeling, types can be structured by a
generalization relation. Multiplicities and other annotations
are not formalized by type graphs, but have to be expressed
by additional graph constraints [11, 26]. When considering

meta-model conformance, we neglect constraints for now, but
we will take them into account in the future. Instance graphs
define model structures and have structure-compatible map-
pings to their type graphs. The attribution of graph vertices
and edges can be achieved by using data algebras (for details
on typed attributed graphs see [5, 6]). In the following, we
use the terms “graph” and “model structure” synonymously.

In the algebraic graph transformation approach, rules are
roughly expressed by two graphs L and R, where L is the
left-hand side of a rule and R is its right-hand side, which are
usually overlapping in graph parts. Rule graphs may contain
variables for attributes. The left-hand side L represents
the pre-conditions of a rule, while the right-hand side R
describes its post-conditions. The intersection L ∩ R (the
graph part that is not changed) and the union L ∪R should
both form graphs, i.e., they must be structure-compatible
wrt. source, target mappings as well as type-compatible,
in order to apply the rule. L \ (L ∩ R) defines the part
that is to be deleted, and R \ (L ∩ R) defines the part to
be created. Furthermore, the application of a graph rule
may be restricted by so-called negative application conditions
(NACs) prohibiting the existence of certain graph patterns
in the current instance graph. Graph elements common to L
and R or common to L and a NAC, are indicated by equal
names or numbers.

Given a rule r : L → R, a direct graph transformation

G
r,m +3 H between two instance graphs G and H is defined

by first finding a match m of the left-hand side L of the rule
r in graph G such that m is structure- and type-compatible,
and satisfies the NACs (i.e., the forbidden graph patterns
are not found in G). Attribute variables used in a graph
element e ∈ L are bound to concrete attribute values of
graph element m(e) in G. The resulting graph H is usually
constructed by first removing all graph elements from G that
are in L but not in R and then adding all those new graph
elements that are in R but not in L. This kind of graph
transformation is formalized by the standard double pushout
(DPO) approach as presented in [6].

However, this is not the only possible order to perform
graph changes. It is possible to reverse this order which
seems to better fit the needs of model co-evolution. By
first adding new meta-model elements while keeping the
ones to be deleted, the intermediate meta-model can be
used for both, continuous typing of migrating models as
well as synchronizing required migration changes (see also
[30, 22]). Meta-model elements that should be deleted, are
removed in the second step. This form of transformation
can be formalized by the so-called co-span DPO approach as
presented in [7].

L

m

��

l //

(POA)

I

i

��
(POB)

R

m′

��

roo

G
g // U H

hoo

Note that the name“co-span trans-
formation” comes from the formal-
ization of rules as co-span of graph

morphisms L
l−→ I

r←− R.

A schematic notation of a co-span graph transformation
is presented above, the application is done by constructing
two pushouts (POA and POB). Furthermore, we assume
that match m is injective. A co-span rule consists of a (not
necessarily injective mapping) l and an injective mapping
r which are jointly surjective. Hence, merging of graph
elements is allowed but not their splitting (beside creating
and deleting).

2

G U H

L I R

m

l r

m'i

g h

1,2,3:Class

6:7DataType

4:Class

1:Class

2:Class 3:Class

4:Class

5:Ref

1,2,3:Class

6:7DataType

4:Class

5:Ref

11 12

@11 @12

1@Page

2@DynamicPage 3@StaticPage

4@WebModel

href

data

5@startPage

pages

Entity entities

1,2,3@Page

6@startPage:7@Boolean

Entity

4@WebModel
href

data

pages

entities

5@startPage

1,2,3@Page

6@startPage:7@Boolean

Entity

4@WebModel
href

data

pages

entities

Figure 2: Example: A co-span graph transformation

Example 2.1. Figure 2 shows an example of a co-span
graph transformation applying all supported kinds of graph
changes. Model graph G in the figure shows a part of the
meta-model in Figure 3 for modeling simple web applications.
In this language the navigation between web pages can be
modeled. They show information about data entities. Pages
can either be static or dynamic. The entry page is a static
page and marked by a reference “startPage”. In addition data
entities can be referenced by dynamic pages. Data entities
contain the data that should be displayed on a page and which
can be modified by simple CRUD operations. Pages, entities
and datatypes are contained in class “WebModel”. Most of
the following examples are concerned with the evolution of
similar meta-models.

Page

DynamicPage StaticPage

Entity
WebModel

startPage

Feature data

Attribute

features

DataType

Reference

type

type

href

pages

entities

datatypes

Figure 3: Meta-element for a simple web modeling
language

In the presented evolution step (see graph H in Figure 2)
all page classes are merged, reference “startPage” is replaced
by a boolean flag in class “Page” i.e. reference “startPage” is
deleted and flag “startPage” created.

While the rule in the upper layer shows all type names, type
information is omitted in the lower layer. This is possible
since the typing is expressed by a unique graphical represen-
tation: Classes are represented as rectangles, references and
inheritance relations as different kinds of arrows, attribute
names as strings before “:”, and data types as strings af-
ter “:”. All mappings are indicated by numbers. Note that
all mappings are structure- and type-compatible. Classes
matched by Classes “1” to “3” are merged by the rule since
they are all mapped to Class “1,2,3” in I. Furthermore, I
defines a new attribute, since attribute “6” with data type

“7” is not in L. In addition, the reference matched by “5” is

deleted by the rule application since it is in L but not in R.
Note that the co-span rule also contains inheritance edges
(“11” and “12”). On the formal level, the class mapped by
“1,2,3” should contain an inheritance self reference due to the
specified merge, however such references are not shown since
they implicitly exist for all nodes in the used formalization
of graphs (compare [12]).

Co-transformations are defined based on co-span trans-
formations. Figure 4 presents a schematic notation of a
co-transformation. While the top faces of the double cube
form a co-span transformation that transforms type graph
TG to type graph TH (representing meta-models), the bot-
tom faces form a co-span transformation of instance graph
G to graph H (representing models). All type and instance
graphs are related by corresponding typing morphisms so
that we get a double cube. Since all faces of the cube com-
mute, such co-transformations ensure a correct typing. In
previous work [30, 21], we studied under which conditions
such co-transformations can be constructed. Given a type
graph transformation representing a meta-model evolution
step, there are suitable instance graph transformations rep-
resenting model migrations such that a type and an instance
graph transformation together form a co-transformation. In
Figure 7, an example of the essential graphs in co-trans-
formations is shown for the case of a non-deleting co-trans-
formation. The upper part of the figure shows a graph
transformation representing a meta-model evolution while
the lower part of the figure shows a graph transformation
representing a migration (more details in Section 4).

3. DERIVING MIGRATION SCHEMES
In co-transformations, migration rules (specified by in-

stance graph rules) have to match all elements to be deleted
or retyped to ensure well-typed migration results and thus,
are model-specific. If e.g. an attribute is moved between
meta-model classes, this movement has to be reflected in mod-
els as often as there are instances of this attribute. Obviously,
two different models do not need to have the same number
of attribute instances. Hence, corresponding migration rules
would be different.

In the following, we are heading towards a model-
independent specification of model migrations. For a given
meta-model evolution rule, we generate a migration rule

3

TG

TL

TU

TI

TH

TR

PO1tt PO2tt

tm

tl
tr

G

L

U

I

H

R

PO1t PO2t

m

l
r

Figure 4: Co-transformation

scheme consisting of rules for simple changes that can be
used to construct individual migration rules for all affected
models. In particular, we focus on the left-hand sides of
migration rules being responsible for creating and merging
model elements and leaving space for customizations. The
right-hand sides are constructed by a standard construction
that projects out the maximal model part of I that can be
typed by TR (representing the evolved meta-model). To
generate migration rules from arbitrary evolution rules, we
use a heuristic: We assume that a meta-model change needs
to be repeated as often as the specified pattern appears on
the instance level. Elements in a connected graph are consid-
ered to be related, hence derived migration rules deal with
connected graphs only. Generally, we assume that related
parts of a model are replaced by related parts and claim that
it does not make sense to replace unrelated model elements
in one step, in general.

Algorithm 1 shows pseudo code for generating a model-
independent scheme of non-deleting migration rules. To
apply a migration scheme to a model, all migration rules are
intended to be matched as often as possible, therefore we call
them multi-rules. We produce a copy of a multi-rule for each
of its match and amalgamate these copies to a model-specific
migration rule.

In Algorithm 1, the “largest” left-hand sides are generated
first (line 7) by method generateAllMaximalLHS. This
method structurally copy the LHS of the evolution rule to the
migration rule LHSs such that they are as large as possible
but still connected. Furthermore, the method ensures that
each type is instantiated at least once. Due to inheritance
and the fact that the left-hand side of TL is not required to
be a connected graph, there may be more than one “largest”
left-hand side. Afterwards, additional left-hand sides are gen-
erated by computing all connected subgraphs of the largest
ones. This is done by method generateAllPossibleSub-
graphs (lines 10-12). In addition, separate left-hand-sides
are added for all loop edges (having the same source and
target vertex) by method generateRulesForLoopsInT-
Graph (line 15). These are added since an instance of a loop
edge in the meta-model can type also non-loops in models.
In the next step (lines 18-33), right-hand sides are generated
by taking a copy of each left-hand side, retyping it if nec-
essary, and extending it with instances of newly introduced
types (specified by the meta-model evolution rule). Note that
elements can be glued by morphism tl of the meta-model evo-
lution rule. This gluing is reflected by gluing corresponding

instance elements in a migration rule (line 21). The extension
of right-hand-sides is done by method extendRHS (line 24).
This method takes an instance graph I and all new types
of TI without TL. This difference specifies all types newly
introduced by the meta-model evolution rule. The method
extends graph I by instances of new element types as long as
graph I stays connected. This method ensures that there is
at most one instance per type. Rules saved in the migration
scheme (lines 29-32) are those that either create new elements
or match elements that later needs to be deleted due to the
fact that their type will be deleted. In the final step, we (par-
tially) order these rules such that rules with larger left-hand
sides and more specialized types have higher priorities and
are matched first since they describe more specific migration
cases. Method sortBy SubgraphIncl TypeSpec (line 34)
does this.

Algorithm 1 Generate Migration Scheme

1: function generateMigrationScheme(eRule:Rule)
2: // eRule = TL→ TI ← TR
3: val mRules := new List[NonDeletingRule]()
4: val lhsMRules := new Set[Graph]()
5:
6: //Generate maximal LHSs:
7: lhsMRules+ =generateAllMaximalLHS(TL)
8:
9: //Generate subgraph LHSs

10: for all L : Graph in lhsMRules do
11: lhsMRules+ =generateAllPossibleSubgraphs(L)
12: end for
13:
14: //Generate LHSs for loop edges in TL: (unfold)
15: lhsMRules+ =generateRulesForLoopsInTGraph(TL)
16:
17: //Generate RHS for each LHS in lhsMRules:
18: for all L : Graph in lhsMRules do
19: val I : Graph = copy(L)
20: retype I to TI //by use of morphisms L→ TL→ TI
21: glue elements in I analog to the gluing of TL→ TI
22:
23: //Extend I by connected instances of new types:
24: extendRHS(I, (TI without TL)))
25: //map elements of L to their copies in I
26: val l : Morphism = map(L,I)
27:
28: //Add multi-rule:
29: val r = new NonDeletingRule(L− l→ I)
30: if r contains elements to create, merge or delete then
31: mRules+ = r
32: end if
33: end for
34: return sortBy SubgraphIncl TypeSpec(mRules)
35: end function

The resulting migration rule scheme may be customized
to special needs: Well-typed multi-rules may be added or
deleted. In addition, multi-rules may be customized by
adding or deleting elements while keeping the rule well-typed
over the given evolution rule. This way, new meta-model
elements may be reflected in various way in migration rules.
Furthermore, so-called kernel rules may be added. They are
used to relate multi-rules. They may identify new elements
to be added only once for a group of multi-rule matches. Of
course, kernel rules need to be typed by a given meta-model
evolution rule. Furthermore, kernel rules need to fulfill the
following well-formedness condition: If a kernel rule relates
the left-hand sides of two multi-rules, it also has to relate their

4

right-hand sides in a compatible way. Finally, the priority of
multi-rules may be changed to adapt the migration strategy.
However, it may happen that rules become unreachable that
way.

In the following, we show how a migration rule scheme
can be applied to an individual model: For this purpose,
an individual migration rule is generated for a model, the
rule can be applied as usual. A model-specific migration
rule is constructed as follows: Multi-rules are matched to a
given model as often as possible obeying relations by kernel
rules if existing. Multi-rules li : Li → Ii for 1 ≤ i ≤ n are
matched one after the other (along their priorities). A new
match is not allowed to fully cover an already matched model
part. Therefore, the priorities of multi-rules are important.
If priorities are set in a “wrong” order, more special or larger
multi-rules cannot be applied. The left part of the model-
specific migration rule l : L→ I is constructed by taking a
copy of each multi-rule for each match and by gluing those
elements that are related due to their matches. In addition,
new elements introduced by multi-rules are glued along their
relating kernel rules lij : Lij → Iij for 1 ≤ i < j ≤ n if exist-
ing. Furthermore, we extend L by all unmatched elements
that are typed by TL and I by their retyped counterparts
typed by TI. The right part of the model-specific migration
rule r : I ← R is constructed by deleting the elements of
R = I that cannot be typed by TR anymore. A schematic
illustration is presented in Figure 5. It extends the double
cube in Figure 4. (For the formal underpinning of this dia-
gram we refer to [20].)

TL

TI

TR

TG

Li

Lj

TU

Ii

Ij

TH

Lij

Iij

G

U

H

L

I

R

Lc

Ic

tl

tr

lij

l

r

li

lj

tG

tL

tI

tR

tm

m

Figure 5: Co-transformation using a migration
scheme

4. CUSTOMIZING MIGRATION SCHEMES
The literature on meta-model co-evolution contains several

case studies. In particular, the evolution history of open
source project have been studied and recurring evolution
steps have been observed. An outcome of this work is that
there exist several catalogs and list of such evolution steps
such as presented in [14]. In this section we will use some
prominent examples of such steps to illustrate our approach.

Table 1 on the right shows some typical changes that
are listed in related research [14, 3]. Usually these changes

Table 1: Selected meta-model changes
Name

1. Rename meta-element
2. Delete meta-element
3. Add meta-element
4. Move meta-property
5. Pull up meta-property
6. Push down meta-property
7. Flatten hierarchy
8. Inline meta-class

are classified into non-breaking, breaking and resolvable, and
breaking and unresolvable ones [10]. However, not taking
additional constraints into account, we can state that all
additions are non-breaking, while all deletions, renames and
merges are breaking and resolvable. Breaking and unresolv-
able changes actually require that there is an additional
non-solvable constraint satisfaction problem.

4.1 Rename meta-element.
A meta-element is renamed and model elements need to

be retyped. This change is trivial since the type as well as
instance graph structure do not change. Therefore, such evo-
lutions can be considered as identity transformations where
the name attribute of the meta-element changes and models
are not subject of change. Model updates in some modeling
frameworks, such as EMF, are due to the fact that type
names are often used to encode the typing morphism. How-
ever, the only reason why this change is named here is that it
is a prominent example. But since their corresponding model
migrations are mostly trivial, we do not further elaborate on
them.

4.2 Delete meta-element.
Another trivial meta-model change is “Delete meta-

element”. Therefore, we also do not elaborate on this kind of
changes. The derived migration scheme establishes model mi-
gration rules with left morphisms being identity morphisms
id := L→ (I = L). The right-hand side R is determined by
deleting all elements from I that cannot be typed anymore.
Customization of the rule scheme is usually not required.
More elaborated migration schemes are possible however, if
the meta-model evolution rule is extended in TL (and TI).
For example, deleted elements may be replaced by new ele-
ments of new or existing types. The case is discussed in the
following.

4.3 Add meta-element.
“Add meta-element” is often classified as a “non-breaking”

change since models do not need to be migrated. Often
it is desired however, that new instances of new elements
are also added to models in certain ways. On the left of
Figure 6, a meta-model evolution rule is shown (in dashed
boxes) that creates a new class with two references pointing
to existing ones. Note that this evolution rule is non-deleting.
Therefore, the figure shows the left part TL→ TI only. The
mappings within meta-model evolution rules are given by
names to facilitate their understanding as well as the typing of
migration rules. For this example rule, the derivation strategy
generates exactly two migration rules r1 : L1 → I1 and
r2 : L2 → I2 shown in the middle of Figure 6. We have two
“largest” multi-rules since TL is unconnected. Applications of

5

TL TI

tl

Meta-Model-Evolution Rule Customized Migration Rule Scheme

L I

l
1:C1

2:C3

1:C2

:r2

C1:Class

C2:Class

C3:Class

r1:CRef

r2:CRef

L

l

L I

l

Derived Migration Rule Scheme

1:C2

:C3

1:C2

:r2

:C3

1:C1

:r11:C1

I

C2:Class

C1:Class

1:C2

L I

l

2:C3

1:C1

:r1

1

1

1

2

2

2

2

2

2

1

1

1

I

l

k

k
2:C3

L
k

Figure 6: Add meta-element: meta-model evolution rule and migration rule schemes

the derived migration scheme create new referenced instances
typed by “C3” for each instance of type “C1” respectively
“C2”. Sometimes, this migration scheme is already useful as
it is. In other cases, the language designer might want to
customize it. For example, if class “C3” is meant to be a
container class, it should be created only once. In this case,
the language designer has to extend the derived migration
scheme by a kernel rule as shown on the right of Figure 6
(where the kernel rule has a gray background). The new class
“C3” is mapped to class “C3” in both multi-rules. Hence,
all the new instances of “C3” added to a model by multi-
rule applications are glued so that only one instance of “C3”
is created finally. In this customization as well as in all
following ones, we do not change the initial rule priorities.
In total, only one customization has to be done here.

Figure 7 shows the main graphs of a complete co-trans-
formation (see Figure 4). A container class “WebModel”
is added to a meta-model describing web pages. While
in the top of the figure, a meta-model evolution step is
shown, the bottom part of the figure contains the migration
of a concrete model. In the meta-model evolution step, a
new container class “WebModel” is introduced containing all
pages and entities. Therefore, multi-rule r1 is matched three
times and multi-rule r2 two times creating five references
and five “WebModel” instances in total. However, these
five “WebModel” instances are glued to one according to
the single kernel match leading to the individual migration
transformation presented rule L→ R. (Note that the kernel
rule is matched only once since its LHS is empty.)

4.4 Move meta-property.
The top row of Figure 8 shows a meta-model evolution

rule that moves an attribute from class “C1” to an associated
class “C2”. An example where such a rule can be applied is
presented on the right of this figure. A security level is moved
from class “Server” to class “Service”. Below the meta-model
evolution rule, the migration scheme is shown consisting of
three multi-rules. The first multi-rule copies exactly the
behavior of the evolution rule to the instance level (focusing
on the left part L→ I). The second derived multi-rule has a
left-hand side with LHS=RHS and is matching elements that
need to be deleted. This means the original second rule can
be used to match all attribute values that have to be deleted
from isolated instances of class “C1” i.e. in the example
server instances. The rule is marked by an exclamation sign.
A tool can and should mark such rules since they specify a

A
p

p
li
c

a
ti

o
n

 o
f

In
d

iv
id

u
a

l
m

o
d

e
l-

m
ig

ra
ti

o
n

 r
u

le

A
p

p
li
c

a
ti

o
n

 o
f

m
e

ta
-m

o
d

e
l-

e
v
o

lu
ti

o
n

 r
u

le

TI=TRTL

1@SearchFlight:Page

startPage=true

4@SearchResult:Entity

2@Booking:Page

startPage=false

3@Confirmation:Page

startPage=false

5@Customer:Entity

6@:WebModel

:href

:data

:href

:data:data

9@:pages

7@:pages

8@:pages

10@:entities

11@:entities

:data

C1@Page

startPage:Boolean

C2@Entity

href

data

1@SearchFlight:Page

startPage=true

4@SearchResult:Entity

2@Booking:Page

startPage=false

3@Confirmation:Page

startPage=false

5@Customer:Entity

:href

:data

:href

:data:data :data

G U=H

2:C1

3:C1

4:C2

5:C2

2:C1

3:C1

4:C2

5:C2

8:r1

10:r2

9:r1

11:r2

C1@Page

startPage:Boolean

C2@Entity

C3@WebModel
href

data

r1@pages

r2@entities

1:C1
1:C1 6:C3

7:r1
L I=R

TU=THTG

C1:Class

C2:Class

C3:Class

r1:CRef

r2:CRefC2:Class

C1:Class

Figure 7: Add meta-element: examples for a co-
transformation

real information loss. Figure 8 already shows a customized
migration rule scheme and not the derived one. Multi-rule
2 has been customized. The right-hand-side of multi-rule
2 is extended by a referenced class of type “C2” as shown
in the figure. It looks similar to multi-rule 1 but differs in
class “C2” that is not mapped, but newly created here. In an
example model, the security value can e.g. be transfered to
a new default service “remote-login”. Multi-rule 3 has been
added. It can be used to assign a default security level to
each service not being connected to a server.

4.5 Pull up meta-property.
The well-known refactoring “Pull up property” is often

listed as a recurring meta-model evolution change. In Fig-
ure 9, a meta-model evolution rule is presented that pulls
up a reference of two subclasses to their super class. The
meta-model evolution step is specified by mapping the old
references to a new one from the super class. This is allowed
in the used formalization of models (see [7]). It is a kind of

6

TI TR

tl tr

l2=id (before customization)

C1:Class

a1:DT

C2:Class

a2:DT

r:Ref C1:Class C2:Class

a2:DT

r:Ref

1:C1

a1=Variable1

2:C2

3:r

1:C1

a1=Variable1

2:C2

a2=Variable1

3:r

1:C1

a1=Variable1

:C2

a2=Variable1

:r

M
e

ta
-m

o
d

e
l

I

l

I

l Added

E
v
o

lv
e

d
 M

e
ta

-m
o

d
e

l

1

1

1:C1

a1=Variable1

2

2

1:C2

a2=DefaultValue

1:C2 C1@Server

name:String

C2@Service

name:String

Employee

no:Int
name:String
securityLevel:String

r@provideshasAccess

L1

L2

C1@Server

name:String
a1@securityLevel:DT@String

C2@Service

name:String

Employee

no:Int
name:String
securityLevel:String

r@provideshasAccess

a2@securityLevel:DT@String

 TL

Generated Rule:

Changed Rule:

Added Rule:

I

l3

3
L3

C
u

s
to

m
iz

e
d

 M
ig

ra
ti

o
n

 S
c

h
e

m
e

M
e

ta
-m

o
d

e
l

E
v
o

lu
ti

o
n

 R
u

le

C1:Class

a1:DT

C2:Classr:Ref

Figure 8: Move meta-property

merge operation and requires only the retyping of instances
of r1 and r2. Our derived migration scheme is the empty
one. The required retyping of model elements is achieved
by the standard construction. However, e.g. a rule may be
added that extends direct instances of superclass “SC”, which
were not allowed to have a reference of type “r1,r2” before
the meta-model change. Such instances may get a reference
to a new or existing class. An example for a meta-model
change is shown on the right of Figure 9.

4.6 Push down meta-property.
In contrast to“Pull up meta-property”, the opposite change

“Push down meta-property” cannot be presented by a non-
deleting rule. Therefore model migration is not solved by
retyping here. This is due to the fact that references cannot
be mapped to references of subclasses (see [7]). This time,
references have to be replaced by new ones. See the evolution
rule at the top of Figure 10. The default migration is reflected
by rules r1, r2 and r3. The deletion in right-hand sides is
not shown since it is standard (deleting all references of
type “r3” in this case). Note that one rule is again marked
by an exclamation sign warning against information loss.
However, this time the information loss is hard to avoid. One
possibility is to retype direct instances of class “SC” to a
subtype. This can be a customization.

4.7 Flatten hierarchy.
Figure 11 shows a meta-model evolution rule for “Flatten

hierarchy”. Subclasses are merged into their superclass. The
derived customization scheme is also in this case empty.

4.8 Inline meta-class.
Figure 12 shows a meta-model evolution rule similar to

the flatten hierarchy rule but without inheritance. This time,
a class and an associated class are merged. Interestingly, the
derived migration scheme is not empty. Instead, the derived
migration scheme specifies also the merge of instances that
are related by a corresponding link. If this is not the intended
migration, a customization can be e.g. to delete multi-rule
r1 so that instances are retyped only. In the figure, no
customizations is applied.

5. RELATED WORK
Co-evolution of structures has been considered in several

areas of computer science such as for database schemes,
grammars, and meta-models [19, 17, 23, 28]. Especially
database schema evolution has been a subject of research in
the last decades. Recently, research activities have started to
consider meta-model evolution and to investigate the transfer
of schema evolution concepts to meta-model evolution (see
e.g. [13]). Current co-evolution approaches can be classified
into manual specification, operator based and meta-model
matching approaches [24].

Manual specification approaches like [27, 25] consider two
meta-model versions as given and migrate models by copying
as much as possible from a previous model version to a new
one, according to the types of the evolved meta-model. Ele-
ments automatically copied are those that have unchanged or
compatibly changed types. New elements in the meta-model
are basically not considered during model migration and
therefore have to be taken into account in manually defined
migration specifications. The reuse of migration knowledge
in different meta-models is usually not supported. In [27]
Sprinkle et al. propose a manual specification approach
that has been implemented in the model change language
(MCL) [18]. MCL allows the domain designers to express
model migrations in graphical syntax on a high abstraction
level similar as our proposed language. However, MCL sup-
ports only a small set of language primitives that allow a
limited number of migrations only, addressing changes to spe-
cific model elements locally. While such migration definitions
for a concrete meta-model are easy to understand, they are
not reusable, in contrast to ours. Rose et al. presents their
tool Epsilon Flock in [25]. It is also a manual specification
approach that targets to the migration of models only but
has a textual syntax. Similarly to MCL, rules for unchanged
or slightly unchanged meta-model elements do not need to be
defined. Such model elements are automatically copied to a
new model conforming to the new meta-model if they pass a
conformance test. In contrast to our approach, Epsilon Flock
rules are not type checked. Moreover, there is no warning
if elements are deleted without replacement. This occurs
if a migration script is not valid according to the typing
morphism or incompletely defined.

7

M
e

ta
-m

o
d

e
l

TI=TR

tl

TL

M
e

ta
-m

o
d

e
l

E
v
o

lu
ti

o
n

 R
u

le
 M

ig
ra

ti
o

n
 S

c
h

e
m

e

E
v
o

lv
e

d
 M

e
ta

-m
o

d
e

l

SC@DynamicPage

C1@IndexPage C2@DetailsPage

C3@Entity

href

r1,r2@data

i1@ i2@

SC@DynamicPage

C1@IndexPage C2@DetailsPage

C3@Entity

href

r1@data r2@data

i1@ i2@

i1 i2

C1:Class

SC:Class

C2:Class

C3:Class

r1,r2:Ref

i1 i2

C1:Class

SC:Class

C2:Class

C3:Class

r2:Refr1:Ref

no rules required

Figure 9: Pull up meta-property

l

TR

tr

I

I

TI

C1:Class

SC:Class

C2:Class

C3:Class
r3:Refr2:Ref

r1:RefC2:ClassC1:Class

SC:Class

C3:Class

r1:Ref

C1:Class

SC:Class

C2:Class

C3:Class

r3:Refr2:Ref

1:C1 2:C3

:r2

3:r1
1:C1 2:C33:r1

1:C2 2:C33:r1

1:SC 2:C33:r1

1:C2 2:C3

:r3

3:r1

l

M
e

ta
-m

o
d

e
l

E
v
o

lu
ti

o
n

 R
u

le

tl

TL

L

L

L

M
ig

ra
ti

o
n

 S
c

h
e

m
e

l3=id

1
1

1

2 2

2

3

i1 i2 i1 i2 i1 i2

M
e

ta
-m

o
d

e
l

E
v
o

lv
e

d
 M

e
ta

-m
o

d
e

l

SC@DynamicPage

C1@IndexPage C2@DetailsPage

C3@Entity

href

r1@data

i1@ i2@

SC@DynamicPage

C3@Entity

href

r2@data r3@data

C1@IndexPage C2@DetailsPage

i1@ i2@

l

I3

3 1:SC 2:C33:r1

Can be deleted:

Figure 10: Push down meta-property

In operator-based approaches, a meta-model is evolved us-
ing pre-defined operators. The evolution history is tracked
as a sequence of changes. Usually a library of coupled
evolution-migration operators is supported similarly as for
database schema migration (see e.g. [13, 4]). However, re-
searchers in MDE realized that a fixed set of reusable coupled
evolution-migration operations is not enough for meta-model
co-evolution [13]. Therefore, current approaches allow to
extend model migration transformations by manually writ-
ten code using a general purpose or a special transformation
language. Cope/Edapt [13] is a meta-model evolution tool
for EMF that have been used in industrial projects. As our
approach, Cope/Edapt allows the coupled evolution of meta-
models and models by operators. Coupled operations are
implemented according to a textual specification in Groovy/
Java. The tool provides already a rich library of useful
coupled operators which can be applied if the required pre-
conditions are satisfied. If an evolution operation is missing
or the migration is not the desired one, the migration op-
eration has to be implemented as Groovy/Java program
without any support to ensure well-defined migration rules.

In contrast, we support the specification of custom evolution
rules coupled to generated migration schemes that can be
adapted. As our approach, Cope/Edapt supports in-place
transformations.

Meta-model matching approaches consider two versions of
a meta-model as given. An evolution history [3, 9, 24, 15]
i.e. a sequence of semantic evolution steps, is (semi-)auto–
matically derived from the difference of two meta-model ver-
sions. Afterwards, all detected meta-model evolution steps
are (semi-)automatically mapped to predefined migration op-
erations. Meta-model differencing and detecting meta-model
evolution operations automatically has been considered by
Ciccetti et al. in [3] and is also in the focus of the Atlas
Matching Language (AML) [9, 24]. In both approaches, a
migration script in ATL (Atlas Transformation Language)
is generated. Ciccetti et al. focus in [3] on ordering a set of
detected meta-model evolution operations so that sequence
of migration operations can be applied. Garces et al. focus
in [9] on heuristics to detect applied meta-model evolution
operations by inspecting simple changes. In [15] Kehrer et
al. present an algorithm to deduce edit operations from a

8

M
ig

ra
ti

o
n

 S
c

h
e

m
e

TI=TR

M
e

ta
-m

o
d

e
l

E
v
o

lu
ti

o
n

 R
u

le

TL

C1,C2,SC:Class

C1:Class

SC:Class

C2:Class

i1 i2

C1,C2,SC@Page

startPage:Boolean

Entity

href

data

SC@Page

C1@DynamicPage C2@StaticPage

Entity

href

data

i1@ i2@

M
e

ta
-m

o
d

e
l

E
v
o

lv
e

d
 M

e
ta

-m
o

d
e

l

no rules required

Figure 11: Flatten hierarchy

TI

tl

TL

L I

l

TR

tr
C1,C2:ClassC1:Class C2:Classr:Ref

C1,C2:Class

r:Ref

1:C1 2:C23:r

1,2:C1,C2

3:r
1 1

1

M
e

ta
-m

o
d

e
l

E
v
o

lu
ti

o
n

 R
u

le
M

ig
ra

ti
o

n
 S

c
h

e
m

e

E
v
o

lv
e

d

M
e

ta
-m

o
d

e
l

M
e

ta
-m

o
d

e
l

C2@Token

count=Int

C1@PlaceTransition

r@tokens

ArcTP

ArcPT

C1,C2@Place

count=Int

Transition ArcTP

ArcPT

Figure 12: Inline meta-class

given set of model changes. This algorithm is implemented
on the basis of the Eclipse Modeling Framework.

König et al. present in [16] a formal approach for induced
data migration after data model refactoring. It can also be
used for model migration. In contrast to our approach, their
approach migrates data fully automatically. However, model
migrations cannot always be fully automatically determined.
Different migration variants may be possible.

The concept of amalgamation in graph transformation was
introduced in the 1980s in [2]. In [1], the classical concept of
amalgamated graph transformations [2, 29] is extended to
multi-amalgamation and applied to model transformation.
Here we use amalgamated graph transformation differently
to the traditional approach where kernel-rules are matched
first and the complete amalgamated match does not cover
all elements of specific types.

6. CONCLUSION
To support the continuous evolution of domain-specific

modeling languages, an approach for automatic deduction of
model migration schemes from meta-model evolution rules is
presented. The deduction algorithm implements a general
heuristic ensuring that resulting migration rule schemes fit
to their meta-model evolution rules. The automatically de-
duced migration rule schemes are able to migrate all models
of a given modeling language so that resulting models are
well-typed. In addition, rule schemes may be customized

to special needs. It is allowed to change rules as well as
to create and delete them as long as the resulting scheme
still fits to its meta-model evolution rule and do not specify
conflicts. All main concepts of customizable migration rule
schemes and their automatic deduction are formally defined
based on graph transformation ensuring well-definedness of
deduced schemes. A number of well-known meta-model evo-
lution operations are considered as examples including a
discussion of suitable customizations for each one. It turns
out that (1) meta-model evolution rules may be individual,
(2) automatically deduced migration schemes are meaningful
in considered cases, and (3) intended customizations can
be expressed within migration rule schemes. In the future,
systematic case studies should be performed to get a clearer
picture of the potentials and limitations of this approach.
Furthermore we are working on a prototypical implemen-
tation. In addition it could be interesting to combine our
approach with a meta-model differencing technique.

7. ACKNOWLEDGMENTS
This work was partially funded by NFR project 194521

(FORMGRID).

8. REFERENCES
[1] E. Biermann, H. Ehrig, C. Ermel, U. Golas, and

G. Taentzer. Parallel Independence of Amalgamated
Graph Transformations Applied to Model
Transformation. In Graph Transformations and

9

Model-Driven Engineering, volume 5765 of LNCS,
pages 121–140. Springer, 2010.

[2] P. Boehm, H.-R. Fonio, and A. Habel. Amalgamation
of graph transformations: a synchronization mechanism.
J. Comput. Syst. Sci., 34(2-3):377–408, June 1987.

[3] A. Cicchetti, D. Di Ruscio, R. Eramo, and
A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In EDOC 2008, pages
222–231. IEEE, 2008.

[4] C. Curino, H. J. Moon, M. Ham, and C. Zaniolo. The
PRISM Workwench: Database Schema Evolution
without Tears. In Y. E. Ioannidis, D. L. Lee, and R. T.
Ng, editors, ICDE 1999, pages 1523–1526. ICDE 1999,
2009.

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamental Theory for Typed Attributed Graphs and
Graph Transformation based on Adhesive HLR
Categories. Fundam. Inform., 74(1):31–61, 2006.

[6] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation.
Springer, March 2006.

[7] H. Ehrig, F. Hermann, and U. Prange. Cospan DPO
Approach: An Alternative for DPO Graph
Transformation. EATCS Bulletin, 98:139–149, 2009.

[8] M. Fowler. Domain-Specific Languages. Addison-Wesley
Professional, 2010.

[9] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin.
Managing model adaptation by precise detection of
metamodel changes. In R. F. Paige, A. Hartman, and
A. Rensink, editors, ECMDA-FA 2009, volume 5562 of
LNCS, pages 34–49. Springer, 2009.

[10] B. Gruschko, D. Kolovos, and R. Paige. Towards
Synchronizing Models with Evolving Metamodels. In
D. Tamzalit, editor, MoDSE 2007, March 2007.

[11] A. Habel and K.-H. Pennemann. Correctness of
high-level transformation systems relative to nested
conditions. MSCS, 19(2):245–296, 2009.

[12] F. Hermann, H. Ehrig, and C. Ermel. Transformation
of Type Graphs with Inheritance for Ensuring Security
in E-Government Networks. In M. Chechik and
M. Wirsing, editors, FASE 2009, volume 5503 of LNCS,
pages 325–339. Springer, 2009.

[13] M. Herrmannsdoerfer, S. Benz, and E. Jürgens. COPE -
Automating Coupled Evolution of Metamodels and
Models. In S. Drossopoulou, editor, ECOOP 2009,
volume 5653 of LNCS, pages 52–76. Springer, 2009.

[14] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth.
An Extensive Catalog of Operators for the Coupled
Evolution of Metamodels and Models. In B. A. Malloy,
S. Staab, and M. van den Brand, editors, SLE 2010,
volume 6563 of LNCS, pages 163–182. Springer, 2010.

[15] T. Kehrer, U. Kelter, and G. Taentzer. A rule-based
approach to the semantic lifting of model differences in
the context of model versioning. In ASE 2011,
Lawrence, KS, USA, November 6-10, 2011. IEEE, 2011.

[16] H. König, M. Löwe, and C. Schulz. Model
Transformation and Induced Instance Migration: A

Universal Framework. In A. da Silva Simão and
C. Morgan, editors, SBMF 2011, volume 7021 of LNCS,
pages 1–15. Springer, 2011.

[17] R. Lämmel. Grammar Adaptation. In FME, pages

550–570, 2001.

[18] T. Levendovszky, D. Balasubramanian, A. Narayanan,
F. Shi, C. Buskirk, and G. Karsai. A semi-formal
description of migrating domain-specific models with
evolving domains. Software and Systems Modeling,
pages 1–17, January 2013.

[19] X. Li. A Survey of Schema Evolution in
Object-Oriented Databases. In TOOLS, pages 362–371.
IEEE Computer Society, 1999.

[20] F. Mantz, G. Taentzer, and Y. Lamo. Well-formed
Model Co-evolution with Customizable Model
Migration. ECEASST, page (accepted paper).

[21] F. Mantz, G. Taentzer, and Y. Lamo.
Co-Transformation of Type and Instance Graphs
Supporting Merging of Types with Retyping. In GCM
2012, pages 47–58, September 2012.
gcm2012.imag.fr/proceedingsGCM2012.pdf.

[22] B. Meyers, M. Wimmer, A. Cicchetti, and J. Sprinkle.
A generic in-place transformation-based approach to
structured model co-evolution. ECEASST, 42, 2011.

[23] M. Pizka and E. Juergens. Automating Language
Evolution. In TASE 2007, pages 305–315, Washington,
DC, USA, 2007. IEEE Computer Society.

[24] L. Rose, M. Herrmannsdoerfer, J. R. Williams,
D. Kolovos, K. Garcés, R. F. Paige, and F. A. C.
Polack. A Comparison of Model Migration Tools. In
D. C. Petriu, N. Rouquette, and Ø. Haugen, editors,
MoDELS 2010, volume 6394 of LNCS, pages 61–75.
Springer, 2010.

[25] L. Rose, D. Kolovos, R. F. Paige, and F. A. C. Polack.
Model Migration with Epsilon Flock. In L. Tratt and
M. Gogolla, editors, ICMT 2010, volume 6142 of LNCS,
pages 184–198. Springer, 2010.

[26] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A
formal approach to the specification and transformation
of constraints in MDE. JLAP, 81(4):422–457, 2012.

[27] J. Sprinkle and G. Karsai. A Domain-Specific Visual
Language for Domain Model Evolution. Journal of
Visual Languages and Computing, 15(3–4):291–307,
2004.

[28] J. Sprinkle and G. Karsai. A domain-specific visual
language for domain model evolution. J. Vis. Lang.
Comput., 15(3-4):291–307, 2004.

[29] G. Taentzer. Parallel and Distributed Graph
Transformation: Formal Description and Application to
Communication-Based Systems. PhD thesis, TU Berlin,
1996.

[30] G. Taentzer, F. Mantz, and Y. Lamo.
Co-Transformation of Graphs and Type Graphs With
Application to Model Co-Evolution. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
ICGT 2012, volume 7562 of LNCS, pages 326–340.
Springer, 2012.

10

