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Abstract: Algebraic graph transformation is a well-known rule-based approach
to manipulate graphs that can be applied in several contexts. In this paper we use
it in the context of model-driven engineering. Graph transformation rules usually
specify changes to only one graph per application, however there are use cases such
as model co-evolution where not only a single graph should be manipulated but
also related ones. The co-transformation of type graphs together with their instance
graphs has shown to be a promising approach to formalize model and meta-model
co-evolution. In this paper, we extend our earlier work on co-evolution by allowing
transformation rules that have less restrictions so that graph manipulations such as
merging of types and retyping of graph elements are allowed.

Keywords: Meta-model evolution, model migration, graph transformation

1 Introduction

Model-driven engineering (MDE) [BCW12] is a software engineering discipline that uses mod-
els as the primary artifacts throughout the software development process and adopt model trans-
formation for both, model optimization as well as model and code generation. In particular, MDE
is a suitable approach for automating recurring development tasks in many areas of software en-
gineering that require application-specific system designs. A commonly used technique to define
modeling languages is meta-modeling. An effective means to describe the application-specific
part of a software system are domain-specific modeling languages since they focus on the essen-
tial concepts of a domain. In contrast to traditional software development where programming
languages rarely change, domain-specific modeling languages, and therefore meta-models, can
change frequently: modeling language elements may be, e.g., renamed, extended by additional
attributes, merged, or refined by a hierarchy of sub-elements. The evolution of a meta- model re-
quires the consistent migration of all its instance models (See Figure 1) which is still considered
to be a research challenge in MDE see e.g. [SRVK10].

Previous work in e.g. [RKPP10, HBJ09, Mig] has mainly focused on the development of
useful tools to define and execute model migrations. The relation between meta-model changes

∗ This work was partially funded by NFR project 194521 (FORMGRID)
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Figure 1: Meta-model evolution and model migration

and model migrations has been studied little on a formal level.
In our work, we focus on a formal setting of meta-model and model co-evolution to study

their relations. Models are specified in a suitable category of graphs while model relations are
defined by graph morphisms. The type conformance of models to their meta-models is specified
by morphisms from instance to type graphs. Graph manipulations can be described by graph
transformation [EEPT06] and category theoretical constructs [BW95]. In particular, the pro-
posed approach is based on the co-span double pushout [EHP09] approach which is a variant
of the “traditional” double pushout (DPO) approach where transformation rules are co-spans.
Equivalence between the two approaches has been shown in [EHP09]. We prefer the alternative
DPO approach since migrations can be easier synchronized over an joint-type graph instead of a
difference type graph [TML12a]).

The aim of our work is to understand the co-evolution problem better so that future tool support
can profit from this formalization. In particular, we are interested under which conditions we can
perform different manipulations on type graphs and its instances by categorical constructions so
that we get a well-typed and unique result. A resulting graph is considered to be well-typed if
there is a suitable morphism to its evolved type graph. A corresponding model migration has
to fit to its meta-model evolution such that the resulting model is well-typed over the evolved
meta-model. By our formalization, we get formal criteria for consistently defined meta-model
evolutions and related model migrations.

In [TML12a] we propose a framework that relates co-span DPO transformations [EHP09] of
type graphs and their instance graphs. The framework is defined for weak adhesive categories
i.e. it can be applied to different kinds of graphs. The framework clarifies the conditions model
migrations need to satisfy and explains how the fully determined part of migration transforma-
tions can be derived. Variants of instance graph migrations are still possible and can be specified
choosing a proper migration strategy. While our earlier work considers injective rules with in-
jective matching only, we show in this paper that these conditions can be relaxed so that one
morphism of the rule may be non-injective. In contrast to [TML12a], it is now possible to merge
elements in type graphs and to retype and optionally merge instance nodes and edges accord-
ingly. This is a quite useful feature when it comes to model co-evolution since the context of
merged elements is preserved. Note that in the following, we call a co-span transformation of
the type graph “evolution”, while co-span transformations of instance graphs are considered to
be “migrations”. An “evolution” transformation together with its related “migration” transfor-
mation are considered as “co-transformation”. The paper is structured as follows: In Section 2
we motivate merging as a useful co-evolution action, in Section 3 a running example is presented
using merging before the theory to support a merge operation is extended in Section 4. Section 5
presents related work while we conclude in Section 6.
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2 Basic Co-evolution Actions

Domain-specific modeling languages are effective means to describe domain knowledge on an
abstract level. Their models can be used to generate software artifacts such as executable pro-
grams. Usually domain-specific modeling languages are defined by use of the concept of meta-
modeling where one meta-model serves as language description for the next abstraction level.
The most prominent meta-modeling architecture used for this purpose is Meta Object Facility
(MOF) [Obj06] standardized by the Object Management Group (OMG) [Obj]. The syntax of
MOF-based modeling languages is defined in terms of class diagrams. Elements of the language
become classes that are related to other language elements by references. Models of these lan-
guages are instances of these class models. For a more intuitive usage of modeling languages,
language elements are usually mapped to a different (visual) presentation. However, the con-
crete presentation of modeling languages is basically syntactic sugar and will be neglected here.
Class diagrams and hence meta-models can be naturally formalized by type graphs. Basic object-
oriented concepts such as classes, references, attributes, and even, inheritance can be described
by graph elements (e.g. using the category AIGraphs [EHP09]): classes are presented as nodes,
references as arrows, inheritance relations as special arrows and attributes as arrows that have
a data type as target. Hence changes in modeling languages and models can be represented by
graph changes. Therefore, we specify meta-models and instance models by type and instance
graphs.

In this section, we first present possible basic change actions on type and instance graphs.
Afterwards, we assign the required basic change actions to typical meta-model evolutions found
in related research and their migrations. We will see that a merge operation is highly desirable
and should be supported by a co-evolution approach.

Graph transformation approaches support different kinds of basic change actions. Elements,
i.e. nodes and edges may be:

1. Renamed (N)
2. Created (C)
3. Deleted (D)

4. Merged (M) or
5. Split (S)

Considering type graphs together with their instances, however, more kinds of changes can be
distinguished since their typing relations may also be manipulated. A type graph change action
may induce a retyping of instances. Elements may be retyped (T) for four reasons. Induced
retypings are:

1. Types are renamed (TN).
2. Types are merged (TM) and instance elements have to be retyped accordingly.

In addition, graph elements may be optional retyped:

3. A graph element may be retyped to a subtype (Tsub) of its current type.
4. A graph element may be retyped to a supertype (Tsup) of its current type. This can trigger

deletion actions since the supertype need not support all references or attributes of its subtype.

When a type graph includes attributes, attribute values may be changed in addition by calcu-
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lating a new value using a suitable data algebra. Since attribute values are usually considered as
a given set of special nodes [EEPT06], the calculation of a new attribute value results into the
deletion and creation of arrows: an arrow to an old value is replaced by an arrow to a new one.

Model co-transformation approaches may support a subset of these operations: The most
simple change actions are renaming and retyping after type renaming. They do not change
the graph structure, hence migration is trivial. In [TML12a], we introduce a co-transformation
approach where the manipulation of graphs was restricted to renaming, creation, and deletion
of graph elements. In this work, we extend the set of possible change actions to also include
merging of graph elements.

However, meta-model evolutions are usually not considered on the level of such atomic changes
but on the level of patterns. Some of these meta-model changes have been classified [GKP07]
into non-breaking (NB), breaking and resolvable (BR), and breaking and unresolvable changes
(B¬R). In this classification, non-breaking changes do not require model migration while break-
ing and resolvable changes require model migration that can be fully automated. Breaking and
unresolvable changes can only be partially automated since they require user interaction. These
patterns can be and have to be realized by the basic change actions above. To give some exam-
ples of meta-model evolution patterns, consider the following list which is inspired by the one
presented by Cicchetti et al. in [CDEP08]:

1. Add meta-element: An element e.g. class (node), reference (arrow), or attribute is added to
the meta-model. As long as there is no constraint in addition that requires the existence of
instance elements, its models do not need to be migrated, but nevertheless can be adapted.
For example, default attribute values may be added.

2. Rename meta-element: A meta-element i.e. a type is renamed. The model migration is
trivial since there is no structural change.

3. Eliminate meta-element: A meta-element is deleted and all its direct instances need to be
deleted as well.

4. Push down meta-property: A meta-property being either a reference or an attribute (arrow),
is cloned to all its subclasses (nodes). Migration is required, property instances have to
be replaced by instances of the new types. If the superclass had direct instances, these
instances loose their “value”.

5. Flatten hierarchy: A class and its superclass are merged. Their instances need to be retyped.
6. Move meta-property: A meta-property e.g. attribute (arrow) is copied from a class A (node)

along a reference (arrow) to another class B. Models need to be migrated correspondingly:
Property values have to be deleted from the instances of class A, and if existing, copied to
all related instances of class B. Values may be duplicated. Instances of elements without
an attribute value may get a default value.

7. Inline meta-class: Two associated meta-classes A and B are merged. Instances of type A
and B have to be retyped. Linked instances of type A and B are merged. Optionally, the
reference between A and B and its instances are deleted.

8. Pull up meta-property: A meta-property (arrow) of one or more subclasses are represented
by a new property (arrow) of the superclass. Instances of this attribute need to be retyped.
Direct instances of the superclass may get a new attribute.
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Table 1 shows how these changes can be related to the basic model change actions. The
classification in Table 1 differs from the one by Ciccetti et al. since they consider the KM3 meta-
model [JB06] while we are working with a graph-based formalization. Furthermore, we do not
consider constraints by now and summarize equivalent changes like e.g. “Eliminate meta-class”
and “Eliminate meta-property” by “Eliminate meta-element”. While many patterns and migra-
tions can be expressed by creations and deletions of elements, we will show in the following
how our new formalization facilitates the description of these patterns using merging in addi-
tion. Note that optional model changes are given in squared brackets. E.g. if a new element is
created, it does not have a name but may be (re)named afterwards. Evolution operation “Add
meta-element” requires a renaming action since a new type should have a name but its migration
operations do not need renaming since instances of a new type may be created without names.

Type Pattern name Evolution operation Migration operation
1. NB Add meta-element C, N [C],[N]
2. BR Rename meta-element N TN

3. BR Eliminate meta-element D D
4. BR Push down meta-property C,D,N C,D,[N]
5. BR Flatten hierarchy M,N TM

6. BR Move meta-property C,D,N C,D,[N]
7. BR Inline meta-class M,D,N M,[D],[N], TM

8. BR Pull up meta-property M,N TM,[C],[N]

Table 1: Classification of change patterns

In particular, change actions 5, 7, and 8 in Table 1 above can be easier specified with merging
since already existing elements may be retyped. The retyping of elements is always easier than
recreating them together with their context. This would be necessary if we could only create and
delete. Note that all evolution patterns of Table 1 can be expressed in our proposed formalization.
In the next section, we will illustrate merging at an example.

3 Merging Meta-model Elements: An Example

In the following we illustrate an application of the proposed co-transformation framework in the
context of meta-model evolution with model migration by a running example. In particular we
will see the advantage of a merge operation.

Figure 2a shows the meta-model of SWAL1, a simple domain-specific modeling language
for development of interconnected web pages. The meta-model mainly distinguishes between
different kinds of web pages which are connected by hyper references. There are two types
of web pages, static and dynamic ones. While instances of static pages result in plain HTML
pages after code generation i.e. in pages that contain HTML tags only, instances of dynamic

1 The development of SWAL was initiated by Manuel Wimmer and Philip Langer at the Technische Universität Wien
and reimplemented for its use in modeling courses at Philipps-Universität Marburg.
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pages result in Java Server Pages (JSP). Note that static pages may contain static HTML forms.
In addition, the meta-model defines two special types of dynamic pages, both referring to data
entities being further specified in a data model not presented here. An instance of the type
IndexPage is translated to a JSP handling a list index needed to manage a data entity containing
a list of values in a browsable table widget. Each instance of type DetailsPage is translated to a
JSP showing the full content of a data entity as well as offering the typically CRUD operations
like insert and update. Figure 2b shows a SWAL model of a simple address book application.
The application starts with a page for address search and prints its results to an address list page.
Furthermore, the user can navigate to a page where address details may be updated and stored in
a corresponding data entity.

(a) SWAL meta-model

  SearchAddress:
StaticPage

  AddressList:
IndexPage

AddressBook:
HypertextModel

SearchResult:
Entity

  CompleteAddress:
DetailsPage

result:href

newSearch:href
back:href

detail:href

data:entity

data:entity

start:startPage

(b) AddressBook model

Figure 2: Meta-model with instance model

The meta-model evolution step: Initially, it was decided
that the start page should be a plain HTML page. However,
we might realize that the distinction between dynamic pages
and static ones is unnecessary and even annoying. For ex-
ample, in the address book application the search page cannot
show previous search parameters because of this decision. The
search page is the start page and therefore must be a StaticPage
which cannot save any information in the session environment.
Therefore, we decide to merge class StaticPage and Dynamic-
Page in the meta-model (see Figure 3). Figure 3: Evolved meta-model

The model migration step: For the model of the address book application, means the evolu-
tion step that class SearchAddress must be retyped. This can be achieved in two ways:
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1. A new instance SearchAddress of type Dy-
namicPage is created together with its con-
text edges i.e. its incoming and outgo-
ing arrows resembling the context of the
old instance SearchAddress. Afterwards the
old instance SearchAddress is deleted to-
gether with its context edges. This ap-
proach is supported by our old formalization
in [TML12a].

2. Instance SearchAddress is retyped to Dynam-
icPage. The context is not changed. This ap-
proach is supported by the formalization pre-
sented in this paper.

Figure 4: Migrated model

After the introductory example, co-transformations are presented on a formal level in the next
section. We will pick up the example and show graph transformations with and without merging
of types.

4 Merging of Elements in Theory

In this section, we extend the theory on co-transformations. Co-transformations are defined
as coupled co-span transformations related by typing morphisms. First, we relax the defini-
tion of co-span transformation given in [TML12a] and hence also implicitly the definition of
co-transformation. The relaxed co-span transformations also allow merging of elements. In
[TML12a] co-span transformations support the creation and deletion of elements only. After-
wards we show that the main results of [TML12a] hold also in this generalized setting. In partic-
ular, we also presented a deduction algorithm for migration transformations in [TML12a] where
the left-back face of the co-span transformation (see Figure 5) is required to be a pullback. Here,
we also relax this condition so that this face of the double cube only needs to be commuting.
This gives us more freedom to define or derive migration rules.

Since the theory should be applicable to different kinds of graphs, the theory is formulated in
the context of (weak) adhesive High-Level-Replacement (HLR) categories [EEPT06, LS04]. We
find this appropriate since the required concepts needed to formalize models in MDE, like in-
heritance, can not be described by classical graphs and graph homomorphisms. (Weak) adhesive
High-Level-Replacement (HLR) categories are categories that satisfy specific conditions i.e. ob-
jects do not need to be classical graphs and morphisms do not need to be graph homomorphisms
(for details see Definition 12 and Remark 1 in the appendix). Instead of injective morphisms,
we will refer to morphisms in a suitable class of monomorphisms M in the following. The in-
tuitive idea of such categories is that we have compatible pushout and pullbacks in the sense of
van Kampen squares [EEPT06]. To make it easier to understand the proofs, we put the required
theorems and definitions of (weak) adhesive HLR categories in the appendix. In the following,
we will give the necessary definitions of co-span transformations. Afterwards we will use these
definitions to define co-transformations.
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Definition 1 (Co-span transformation rule) Let C be a (weak) adhesive HLR category (see
Definition 12 in the appendix). A co-span transformation rule p = L l−→ I r←− R consists of
objects L, I and R and two jointly epimorphic morphisms l and r where r is in M .

Note, that l is not required to be in M anymore which makes merging of elements possible.

Definition 2 (Co-span transformation)

Given a co-span transformation rule p = L l−→ I r←− R together
with an M -morphism m : L→ G, called match, rule p can be ap-
plied to G if a co-span double-pushout exists as shown in the dia-
gram on the right. t : G

p,m
=⇒ H is called a co-span transformation.

L

m
��

l //

(PO1)

I

i
��

(PO2)

R

m′

��

roo

G g
// U H

h
oo

A co-span transformation rule is applied to a match m by first constructing the pushout PO1
before constructing a pushout complement of i ◦ r to make PO2 a pushout. A co-span trans-
formation rule is only applicable iff the gluing condition is satisfied since pushout comple-
ments are not in general unique. Furthermore co-span transformations are not allowed to in-
troduce dangling edges by deleting nodes. The gluing condition presented here is the same as in
[EHP09, TML12a].

Definition 3 ((Co-span) gluing condition)
Given morphism m : L→ G, let b : B→ L be the boundary of m (i.e., the “smallest” morphism
such that there is a pushout complement of b and m, for details see
Definition 10 in the appendix), then m satisfies the co-span glu-
ing condition wrt. rule p = L l−→ I r←− R if there is a morphism
b′ : B→ R with r ◦b′ = l ◦b.

B
b
//

(=)

b′

''
L

l
// I Rr
oo

Based on co-span transformations (rules), we now define co-transformation (rules).

Definition 4 (Co-transformation rule)

A co-span rule t p = T L tl−→ T I tr←− T R and a co-span rule
p = L l−→ I r←− R form a co-transformation rule (t p, p), if there
are graph morphisms tL : L→ T L, tI : I→ T I and tR : R→ T R such
that both squares in the diagram on the right commute.

T L
tl //

(1)

T I

(2)

T R
troo

L
l
//

tL

OO

I

tI

OO

Rr
oo

tR

OO

In such a co-transformation rule (tp,p), rule t p is called an evolution rule while rule p is called a
migration rule wrt. t p. We also say that migration rule p is well-typed wrt. t p.

We now give properties that ensures that corresponding creations and deletions are reflected
by the migration rule.

Definition 5 (Reflecting migration rules) Consider a co-transformation rule (t p, p) like in the
figure above. A co-transformation rule (t p, p) is called

1. creation-reflecting if T L tl−→ T I tI←− I is a pushout (left square).
2. deletion-reflecting if I r←− R tR−→ T R is a pullback (right square).
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We also say that the migration rule p is creation-reflecting or deletion-reflecting wrt. t p.

A co-transformation rule applied to a meta-model and a model forms a co-transformation.

Definition 6 (Match of a co-transformation rule)
A match (tm,m) of a co-transformation rule (t p, p) is given by the corre-
sponding matches tm : T L→ T G of the evolution rule t p and m : L→ G of
the migration rule p so that the matches together with the typing morphisms
tL : L→ T L and tG : G→ T G construct a commuting square: tm◦ tL = tG ◦m.
If G m←− L tL−→ T L is a pullback then the match is called complete.

T L
tm // T G

L m
//

tL

OO

G

tG

OO

Definition 7 (Co-transformation) A co-transformation (tt, t) is defined by graph transformation
tt : T G

t p,tm
=⇒ T H and graph transformation t : G

p,m
=⇒ H that apply a co-transformation rule (t p, p)

via match (tm,m) simultaneously to type graph T G and its instance graph G, so that there are
morphisms tU : U → TU and tH : H → T H such that all faces of Figure 5 commute. In such
a co-transformation (tt, t), the type graph transformation tt : T G

t p,tm
=⇒ T H is called an evolution

while the instance graph transformation t : G
p,m
=⇒ H is called a migration wrt. tt.

T G

T L

TU

T I

T H

T R

PO1tt PO2tt
tm ti tm′

tg

tl

th

tr

G

L

U

I

H

R

PO1t PO2t
m i m′

g

l

h

r

tG

tL

tU

tI

tH

tR

Figure 5: Co-transformation

Note that PO2t exists only if the gluing condition is satisfied for p (see Definition 3). The
gluing condition has to hold for both transformations of the co-transformation. In specific cases,
however, a satisfied gluing condition on the meta-model level implies a satisfied gluing condition
on the model level [MTL12].

Proposition 1 Let (tt, t) with tt : T G
t p,tm
=⇒ T H and t : G

p,m
=⇒ H be a co-transformation with

migration rule p deduced by the following construction:

1. Construct G m←− L tL−→ T L as pullback of G
tG−→ T G tm←− T L.

2. Complete L tL−→ T L tl−→ T I by L l−→ I tI−→ T I to a commuting square.
3. Construct I r←− R tR−→ T R as pullback of I tI−→ T I tr←− T R.
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If tm satisfied the gluing condition wrt. to rule t p, then m satisfies the gluing condition wrt.
rule p.

Proof.
If tm satisfies the gluing condition wrt. rule t p, there is a boundary tb : T B→ T L of tm, i.e., there
is a morphism tbr : T B→ T R with tr◦ tbr = tl ◦ tb. Let T B tB←− B b−→ L be the pullback of tb and
tL. In the diagram on the right (1) and (2) are commuting and (3) is a pullback (by assumption 3).

By assumption tr◦ tbr = tl ◦ tb and since (1) and (2) are commuting,
we have tr ◦ tbr ◦ tB = tI ◦ l ◦ b. Thus, there is a unique morphism
br : B→ R with r ◦br = l ◦b, according to the universal property of
pullback (3).

T B
tb
//

(1)

(=)

tbr

))
T L

tl
//

(2)

T I

(3)

T Rtr
oo

B
b //

tB

OO

br

66L
l //

tL

OO

I

tI

OO

R
roo

tR

OO

Note that in [TML12b], this proposition is shown for a slightly different migration deduction
where both back faces in Definition 7 are pullbacks.

Example 1 (Co-transformation) Now we pick up the example of the previous section to illus-
trate the concept of co-transformation. First we consider a meta-model change by creating and
deleting elements only, i.e. with co-span rules consisting of injective morphism only following
the approach of [TML12a]. Hence, we have to replace elements in the type graph as well as in
the instance graph. In the instance graph we have to recreate nodes together with their context
edges considering their new types. By using our new approach we will later give a simplified
version of this particular transformation.

In Figure 6, a co-span graph transformation is shown describing the meta-model evolution
step from Figure 2a to Figure 3 using injective rule morphisms i.e. tl and tr are injective. Note
that morphisms tm, ti and tm′ are always injective since we consider injective matchings only.
Mappings are indicated by numbers. Furthermore, all morphisms run between AIGraphs i.e.
attributed, typed graphs with node type inheritance (compare category AIGraphs in [HEE09]).
The co-span graph transformation in Figure 6 shows how class StaticPage as well as reference
startPage in the SWAL meta-model are deleted and a new reference startPage is created. This
is done in two steps: First, a second reference startPage is created in the meta-model (see TU).
Formally, this is done by a pushout construction. Second, the former reference startPage and
class StaticPage are deleted from the meta-model (see T H). This is done by subtracting T I−T R
from TU . Formally, we construct a second pushout by its complement which results in a unique
graph T H (up to isomorphism) for the case of co-span transformation rules (see [EEPT06]). Note
that the additional subclasses with mapping 5 and 6 in the rule of Figure 6 are needed since the
formalization requires an AIGraph morphism to be “subtype”-reflective [HEE09]. In addition,
we add a further class and another reference to the rule to match class Page and reference href
since we need to consider the full context of StaticPage during instance migrations. Since we
aim at having meta-model independent rules, however, the required “subtype”-reflective property
of AIGraph morphisms makes a rule more complex. It would be better to automatically extend
given rules to subtype-reflective ones when being matched to concrete meta-models. Such an
extension of rules is easy to automate and straight forward to implement. Since, besides these
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context elements, additional context elements are needed here, this solution for type restructuring
is not convincing.

tl

TI

tr

TL TR

9=startPage

titm tm'

tg

TH

th

TUTG

1=HypertextModel

2=Page

3=DynamicPage 4=StaticPage

Entity

5=IndexPage 6=DetailsPage

entity

12=startPage

7=href

8

13=startPage

9

1110

entity

2

43

5 6

9

1110

8

1

13 12

7

1=HypertextModel

2=Page

3=DynamicPage 4=StaticPage

Entity

5=IndexPage 6=DetailsPage

entity

12=startPage

7=href

8 9

1110

entity

2

43

5 6

9

1110

8

1

12

7

1=HypertextModel

2=Page

3=DynamicPage

Entity

5=IndexPage 6=DetailsPage
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Figure 6: Evolution co-span transformation Delete sub-class and create reference

Figure 7 shows the new version of the meta-model evolution “Merge class”. The evolution
rule is more compact since the context of the class StaticPage e.g. reference startPage, does not
need to be considered by the rule. The merge is achieved by the non-injective morphisms tl and
tg. The morphisms th and tr in the right pushout are identity morphisms i.e. nothing is deleted
here. Note that the outgoing inheritance arrows from classes DynamicPage and StaticPage
are also merged. This merge of inheritance arrows results from the property of the used category
AIGraphs (see [HEE09]). Using this revised approach, instance elements only need to be retyped
and we do not need to consider their context during the migration.

In Figure 8 a model migration for the new meta-model evolution operation “Merge class” is
shown. The migration rule can be deduced in a similar way as discussed in [TML12a]. This
means by implementing a migration strategy that respects the formal properties as discussed in
Proposition 1. The model migration (shown in Figure 8) basically does nothing except that class
SearchAddress is retyped. Retyping in the instance graph is performed in the first pushout.
Hence the graphs in the middle and the right side of the rule are the same. To save space we
do not show these graphs in Figure 8 twice. If we had no retyping facilities available, page
SearchAddress would have to be recreated with the new type DynamicPage. In addition, its
context references have to be recreated. Note that the corresponding migration rule would have
to be a classical graph transformation rule, while the rule in Figure 8 is not: There, graphs are
not changed but only their typing morphisms. The migration rule contains two pages not being
changed. These are included since we derived L by pullback, a construction that ensures that all
elements typed by T L are matched by the migration rule. The transformations in Figure 7 and 8
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Figure 7: Evolution co-span transformation Merge class

together form a co-transformation.

Figure 8: Migration co-span transformation Merge class

In the following, we will prove that a match-complete co-transformation always exists.

Theorem 1 (existence of match-complete co-transformation) In any (weak) adhesive HLR cat-
egory: given a co-span graph transformation tt : T G

t p,tm
=⇒ T H (describing the evolution of type

graph T G, see Figure 5) and a graph G typed by T G with typing morphism tG : G→ T G then
there exists a co-span graph transformation t : G

p,m
=⇒ H (describing a corresponding model mi-

gration) such that:
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1. migration rule p is deletion-reflecting wrt. evolution rule t p
2. (tt, t) forms a match-complete co-transformation

Proof.

• First, we show that, given an evolution transformation tt : T G
t p,tm
=⇒ T H with evolution rule

t p and match tm : T L→ T G, we can always construct a deletion-reflecting migration rule p
that is match-complete applicable to a given graph G with type graph T G: A match-complete
left-hand-side L of migration rule p can be deduced by letting G m←− L tL−→ T L be a pullback
of G

tG−→ T G tm←− T L. Since tm is a M -morphism such a pullback always exists (see Re-
mark 1 in the appendix). The rest of the rule we get by constructing a commutative square
using l = id, I = L and tI = tl ◦ tL in the left back face, as well as a pullback I r←− R tR−→ T R
of co-span I tI−→ T I tr←− T R in the right back face. Note that we only need the left back face
to be commuting, it does not need to be a pullback as required in [TML12a].

• Second, we show that the migration rule p is applicable so that (tt, t) forms a co-transformation.
We now consider the left cube of Figure 5. Pushout PO1t of rule t can be directly constructed,
however we have to show that there is a morphism tU : U→ TU such that the cube commutes.
This we get by the pushout property of PO1t (see Figure 9):

L
l //

m

��

PO1t

I

i

�� ti◦tI

��

G g
//

tg◦tG
++

U

tU

  
TU

Figure 9: left-bottom face

ti◦ tI ◦ l = ti◦ tl ◦ tL back face is commuting: tI ◦ l = tl ◦ tL
= tg◦ tm◦ tL top face is a pushout: ti◦ tl = tg◦ tm
= tg◦ tG ◦m left face is a pullback: tm◦ tL = tG ◦m

Due to the universal property of PO1t , there exists a unique morphism tU wrt. tg ◦ tG and
ti ◦ tI such that the front and the right faces of the left cube commute. Note the existence of
PO1t is ensured by properties of (weak) adhesive categories (see Remark 1 in the appendix):
pushouts along M -morphisms always exist and morphism m ∈M since tm ∈M and M -
morphisms are stable under pullback and the left face of the cube is a pullback.

Additionally, we show that the right face of the left cube in Figure 5 is a pullback since it
is required in the next part of the proof. In (weak) adhesive categories pushouts along M -
morphisms are also pullbacks (see again Remark 1 in the appendix) and match tm ∈M , we
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get that the top face of the cube is also a pullback. Furthermore, we know that m ∈M (see
above). This means that the bottom face is also a pullback since it is also a pushout along an
M -morphism. In addition, we know that ti and i are M -morphisms because tm and m are
M -morphisms and M -morphisms are also stable under pushout in weak adhesive categories
(see Remark 1 in the appendix). Now consider Figure 10: we can compose the left (1) and
the top face (2) of the left cube in Figure 5 to a pullback (1+2). By special pushout-pullback
decomposition (see Figure 11 and Theorem 2 in the appendix) we get that the right face (4) of
the left cube is a pullback since (3) is a pushout and m, i, ti ∈M .

L
tL //

(1)m

��

T L
tl //

(2)tm

��

T I

ti

��
G tG

// T G tg
// TU

Figure 10: left face and top face of the
left cube in Figure 5

L
l //

(3)m

��

I
tI //

(4)i

��

T I

ti

��
G g

// U tU
// TU

Figure 11: bottom face and right face
of the left cube in Figure 5

Now, we consider the right cube of Figure 5 and show that we can construct this cube with a
pushout in the bottom face. The front face of the cube can be directly constructed as pullback
of co-span U tU−→ TU th←− T H. It remains to show that a morphism m′ : R→ H exists such
that the cube commutes and the bottom face is a pushout. The existence of an unique m′ is
shown by the pullback property (see Figure 12) of the front face:

TU

PB

T H
thoo

U

tU

OO

H
h

oo

tH

OO

R

tm′◦tR

\\

i◦r

dd

m′

``

Figure 12: front face

th◦ tm′ ◦ tR = ti◦ tr ◦ tR top face is a pushout: th◦ tm′ = ti◦ tr
= ti◦ tI ◦ r back face is a pullback: tr ◦ tR = tI ◦ r
= tU ◦ i◦ r left face is commuting: ti◦ tI = tU ◦ i

Note that the left face2 of the right cube commutes as shown above. This means it exists
an unique m′ wrt. tm′ ◦ tR and i ◦ r due to the universal property of pullbacks, moreover the
right face and hence the whole cube commutes.

2 The left face of the cube is the middle face of the cube in Figure 5 i.e. the right face of the left cube.
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It remains to show that the bottom face of the right cube is a pushout (PO2t). This follows by
the (weak) van Kampen property of the category. tr ∈M by assumption, hence, the top face
of the right cube is a pushout along an M -morphism and therefore also a pullback. Because
M -morphisms are also stable under pullback (see Remark 1) and ti ∈M (see above) we get
tm′ ∈M . Hence, the top face of the cube is a pushout along two M -morphisms. Since the
back and the front face of the cube are pullbacks by construction and we also showed that
the left face of the cube is a pullback, we only need to show that the right face of the cube
is also a pullback to apply the van Kampen property. Consider Figure 13, we know that we
can compose the left (1) and back (2) face of the right cube in Figure 5 to a pullback (1+2) by
pullback composition. By pullback decomposition (see Figure 14) follows that the right face
(4) of the right cube in Figure 5 is also a pullback since the front face (3) is pullback. Hence
the bottom face is a pushout by the van Kampen property.

TU

(1)

T I
tioo

(2)

T R
troo

U

tU

OO

I
ioo

tI

OO

R
roo

tR

OO

Figure 13: left face and back face of
the right cube in Figure 5

TU

(3)

T H
thoo

(4)

T R
tm′oo

U

tU

OO

H
hoo

tH

OO

R
m′oo

tR

OO

Figure 14: front face and right face of
the right cube in Figure 5

Note that the evolution and migration given in the example in Section 3 form a match-complete,
deletion-reflecting co-transformation. See Figure 7 together with Figure 8.

Corollary 1 (unique typing of co-transformation) Given a deletion-reflecting co-transformation
rule (t p, p) with an applicable and complete match (tm,m): the migration t is uniquely typed by
evolution tt (up to isomorphism), i.e. tU and tH are uniquely determined (see Figure 5).

Proof. The typing morphisms of the left face and the back faces of the cube in Figure 5 are given,
moreover the double cube commutes as shown in Theorem 1. Furthermore it has been already
shown in the proof of Theorem 1 that the right cube in Figure 5 fulfills the van Kampen property.
Hence the right front face of the cube in Figure 5 is a pullback. It remains to prove that tU and
tH are unique. The uniqueness of tH follows directly from the fact that U h←− H tH−→ T H is a
pullback. However, tH is only unique with respect to morphism th : T H → TU and morphism
tU : U → TU . The uniqueness of morphism tU follows by the fact that the left cube is commut-
ing and by the universal pushout property of the bottom face PO1t (see Figure 9 and proof of
Theorem 1).

5 Related Work

Co-evolution of structures has been considered in several areas of computer science such as for
database schemes, grammars, and meta-models [Li99, Läm01, PJ07, SK04]. Especially database
schema evolution has been a subject of research in the last decades.
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5.1 Comparison to database schema evolution

However, the challenge of schema evolution differs slightly from meta-model evolution with
model migration for various reasons. To mention a few: (1) While models usually are held in
the main memory, database tables often cannot. Hence schema evolution is often considered
on the level of implementation focusing on the efficiency of the migration. (2) Data should be
retrieved from databases via queries. This means that the structure of stored information has to
be considered when formulating a query, but the query response is one joint relation even con-
taining duplicate entries. Hence, research considering schema evolution is often concerned with
the relation between database queries and database schemes [CMHZ09, CMDZ10]. In MDE,
structural information usually has to be reflected in generated artifacts. (3) The basic constraints
of relational databases are only a few, i.e. primary key constraint, foreign key constraint and
typing [CMDZ10]. In modeling, different constraints may be needed e.g., to specify business
rules. (4) In relational models, retyping of tuples ( i.e. tables) is slightly different since there
is no concept of inheritance. However, merging of types has been also considered in database
schema evolution. For example in [Bré96, PK97], list operators for the merging of types in
object-oriented databases are presented. The mentioned approaches provide basic merge op-
erators based on textual implementation descriptions using retyping, creation, and deletion of
elements. In object-oriented database schema evolution, merging of types is considered on the
level of set theory [AP03]. Furthermore, merging of types has also been considered in the con-
text of relational databases [CMHZ09] and ontology evolution [NK04]. (5) Only two layers are
considered in database schema evolution i.e., the schema definition and the actual tables with
data entries, while modeling hierarchies may have several layers. Our formalization is stepwise
applicable to more than two layers.

5.2 Related work to co-evolution of models and meta-models

Recently, research activities have started to consider meta-model evolution and to investigate
the transfer of schema evolution concepts to meta-model evolution (see e.g. [HBJ09]). Her-
rmannsdoerfer et al. provide an overview of approaches in [HVW10] that considers the coupled
evolution of meta-models and models. In particular, the model migration challenge has been
studied. Several approaches to (partially) automate the tedious and error-prone process of model
co-evolution have been proposed. Generally, our work differs from other work on model co-
evolution in the sense that we focus on formal criteria rather than tool development. Our focus is
a formal framework supporting the specification of meta-model evolutions and related model mi-
grations that guarantee modeling language consistency. In [RHW+10], co-evolution approaches
are classified into meta-model matching, manual specification and operator-based approaches.
In the following, we consider related work wrt. these approaches.

Meta-model matching approaches consider two versions of meta-models as input. An evolu-
tion history [CDEP08, RHW+10] i.e. a sequence of semantic evolution steps, is (semi-)auto–
matically derived from the difference of two meta-model versions. Afterwards, all detected
meta-model evolution steps are (semi-)automatically mapped to predefined migration functions.
It can happen that some changes need to be manually handled by user-defined migration scripts.

Selected Revised Papers from GCM 2012 16 / 24



ECEASST

Meta-model differencing and the automatic detection of meta-model evolution operations has
been considered by e.g. Ciccetti et al. in [CDEP08] and is also in the focus of the Atlas Matching
Language (AML) [RHW+10]. Considering current modeling frameworks however, the detection
of inter-related changes is a topic of on-going research [RKPP10, KKT11]. I.e. fully satisfying
solutions are not yet available.

In [CDEP08, RHW+10], a predefined set of meta-model evolution operations can be detected.
In both approaches, a migration script is generated using the textual model transformation lan-
guage ATL (Atlas Transformation Language) [Atl]. If a meta-model change does not correspond
to a pre-defined operation, a new matching strategy and a new migration definition have to be
implemented. The customization of model migration scripts has to be done on the level of such
ATL scripts. There are no formal criteria ensuring that migration scripts are consistently defined
wrt. the meta-model evolutions detected. Furthermore, it is also not ensured that a migration is
complete, e.g. covers the whole model, as in our approach. Merging of model elements is not
supported by ATL and hence has to be simulated by “create” and “delete” change actions.

The tool EMFMigrate [Mig] is currently under development picking up ideas from [CDEP08].
It also aims at migrating other depending artifacts such as ATL transformations. EMFMigrate
employs out-place transformations for migration. Migration rules can be assembled to reusable
libraries as well as customized by overriding or refinement. However, there is no support to check
that migration rules are defined consistently to a meta-model change. To the best knowledge of
the authors, merging of elements is not natively supported and has to be implemented by “create”
and “delete” change actions.

Manual specification approaches like [SK04, RKPP10] follow a different idea. Instead of de-
tecting semantic changes, these approaches migrate models by copying as much as possible from
a previous model version to a new one, according to the types of the evolved meta-model. Ele-
ments are automatically copied if they have not changed or have compatibly changed types. New
elements in the meta-model are basically not considered during model migration and have to be
taken into account in manual migration scripts. In such approaches, well-typed migration results
are ensured trivially by performing out-place transformations that create instances of evolved
meta-models only. In-place transformations have the advantage that model elements may not be
“forgotten” during model migrations but have to deal with the fact that all model elements need
to be migrated. Our formalization abstracts from in-place and out-place transformations i.e., can
be used as formal basis for both.

In [SK04] Sprinkle et al. propose a manual specification approach that has been implemented
in the model change language (MCL) [LBN+13]. MCL allows the domain designers to express
model migrations in graphical syntax on a high abstraction level. However, MCL supports only
a small set of language primitives allowing not all kinds of migrations. They address changes
to specific model elements locally. Thereby, model migrations rules map changed meta-model
elements to their corresponding counter elements. MCL migrates models using out-place trans-
formations. Model migration rules for unchanged types are not required to be defined explicitly,
elements of such types are automatically copied. MCL does not support a real merge operation.
If types have been merged, MCL allows to recreate instances of such types by instances having
the same merged type.
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Rose et al. presents their tool Epsilon Flock in [RKPP10]. It offers also a manual specification
approach that targets to the migration of models only. In contrast to MCL, textual migration
scripts have to be written in Epsilon Flock. Similarly to MCL, rules for unchanged or slightly
changed meta-model elements do not need to be defined. Such model elements are automatically
copied to a new model conforming to the new meta-model if they pass a conformance test. In
contrast to our formal framework, Epsilon Flock rules are not type checked. If a migration script
is not valid according to the typing morphism, elements may be forgotten without any warning.
Reuse of migration knowledge is supported by locally defined migration functions only. Flock
does not support merging of model elements, however retyping of model elements by recreating
them with a different type is supported.

Operator-based approaches evolve meta-models using pre-defined operators. The evolution
history is tracked as a sequence of changes. Usually, a library of coupled evolution-migration
operators is supported, similarly to database schema migration (see e.g. [HBJ09, CMHZ09]).
Hence, traced changes are automatically bound to migration procedures. However, researchers
in MDE realized that a fixed set of reusable coupled evolution-migration operations is not enough
for model co-evolution [HBJ09]. Therefore, current approaches allow to extend model migration
transformations by manually written code using a general purpose or transformation language.

In this paper, we propose a formalization fitting to an operator-based approach that supports the
coupled evolution of meta-models and models where each coupled operator is given by two re-
lated graph transformations. However, such operators may also be used in a meta-model match-
ing approach if a sequence of applied meta-model evolution rules can be derived.

Cope/Edapt [HBJ09] is a meta-model evolution tool for EMF that have been used in industrial
projects. As in our formal framework, Cope allows the coupled evolution of meta-models and
models by operators. Coupled operations are implemented according to a textual specification in
Groovy/Java. The tool provides a rich library of useful coupled operators which can be applied
if the required preconditions are satisfied. If an evolution operation is missing or the migration
is not the desired one, the migration operation has to be implemented in Groovy/Java without
any support to ensure well-defined migration rules. Merging of types is partly supported by
predefined operators that implements merging by “create” and “delete” actions. However, a real
merge operation is not supported. Edapt supports in-place transformations. Even though the tool
implements an operator-based approach, it can also be used in a meta-model matching manner.

5.3 Formal approaches to model co-evolution

König et al. present a formal framework to data migration in [KLS11] based on categorical con-
structions. It can also be used as formal basis for model migration due to meta-model evolution.
In contrast to our framework, their framework does not support reusable evolution operations
yet and use a fixed construction for migration while we allow to implement different migration
strategies. However, the approach in [KLS11] supports merging of elements as well as splitting.

In [LBN+13] MCL is presented as semi-formal approach. MCL rules are formalized by clas-
sical DPO graph transformation rules consisting of injective morphisms only where the left rule
morphism is the identity. Hence only the creation of model elements is supported but not merg-
ing. Furthermore theorems are presented concerning termination and confluence of MCL trans-
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formations specified by a given set of MCL rules. MCL transformations always terminate but are
not always confluent. However, confluence is decidable in MCL. In our framework we deduce
each migration step from a meta-model evolution step, hence our migrations trivially terminate.

To the best of our knowledge, merging of types and related retyping of instances have not been
considered in the context of algebraic graph transformations before.

6 Conclusion

After having introduced co-span co-transformations that allow creation and deletion of elements
in type and instance graphs, this approach is extended by co-evolution rules that allow to specify
also merging of types with corresponding retyping and optionally merging of model elements.
By applying this extension to model co-evolution, meta-model evolutions as well as model mi-
grations can be specified easier since the merging of elements does not have to be emulated by
creation and deletion actions but is supported in a natural way. In Theorem 1 we show that it
is always possible to construct a match-complete and deletion-reflecting co-transformation for
a given type graph evolution and an instance graph. In addition, we relaxed the conditions for
such a construction so that we have more freedom when we define or derive migration rules.
Corollary 1 states that the application of a deletion-reflecting co-transformation always results in
a unique typing.

The usefulness of a merge operation has been motivated by discussing change patterns that
are easier formulated with merging. In addition, a running example has been presented which
shows a typical co-evolution case where merging of types is useful. Basic change actions on
(meta-)model elements are renaming, creating, deleting, merging, and splitting as well as four
different retype change actions. We support all these change actions in our formalization except
of splitting, subtyping, and supertyping. It is up to future work to extend our formalization to
these remaining change actions. One approach to support element splitting can be to switch from
the (co-span) DPO approach to the (co-span) Sesqui-Pushout approach [CHHK06].

While the presented formalization considers co-transformations on a theoretical level, provid-
ing criteria for consistent model migrations, we plan to develop suitable tools in future. Further-
more, we also plan to take meta-model constraints into account.
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Appendix

Definition 8 (Pushout complement)

Let a : A→ B and b : B→ D be two morphisms, morphisms c : A→ C
and d : C→D are called a pushout complement of a and b if b and d are
the pushout of a and c.

B
b // D

A c
//

a

OO

C

d

OO

Definition 9 (Pullback complement)

Let a : A→ B and b : B→ D be two morphisms, morphisms c : A→ C
and d : C→D are called a pullback complement of a and b if a and c are
the pullback of b and d.

B
b // D

A c
//

a

OO

C

d

OO

Definition 10 (Initial pushout) Given a morphism f : A→ A′ in a (weak) adhesive HLR cat-
egory, a morphism b : B→ A with b ∈M is called the boundary over f if there is a pushout
complement of f and b such that (1) is a pushout which is initially over f . Initially of (1) over
f means, that for every pushout (2) with b′ ∈M there exist unique morphisms b∗ : B→ D and
c∗ : C→ E with b∗,c∗ ∈M such that b′ ◦b∗ = b, c′ ◦c∗ = c and (3) is a pushout. B is then called
the boundary object and and C the context wrt f .

B
b //

��
(1)

A

f
��

C c
// A′

B b∗ //

b

$$

��
(3)

D b′ //

��
(2)

A

f
��

C c∗ //

c

99E c′ // A′

Definition 11 (Van Kampen square) A pushout (1) is a van Kampen square if, for any commu-
tative cube (2) with (1) in the top and where the back faces are pullbacks, the following statement
holds: the bottom face is a pushout iff the front faces are pullbacks:
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For graph transformations (weak) Adhesive High-Level Replacement (HLR) categories are
considered as suitable framework. Therefore we recall the definition of Adhesive HLR category
from [EEPT06]:

Definition 12 (Adhesive HLR category) A category C with a morphism class M is called an
adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition ( f : A→ B ∈M ,
g : B→C ∈M ⇒ g◦ f ∈M ), and decomposition (g◦ f ∈M ,g ∈M ⇒ f ∈M ).

2. C has pushouts and pullbacks along M -morphisms, and M -morphisms are closed under
pushouts and pullbacks.

3. Pushouts in C along M -morphisms are VK squares.

Remark 1

1. Recall Remark 4.10 from [EEPT06]: A pushout along an M -morphism is a pushout where
at least one of the given morphisms is in M . Pushouts are closed under M -morphisms if, for
a given pushout (1) (see Figure 15), m ∈M implies that n ∈M . Analogously, pullbacks are
closed under M -morphisms if, for a pullback (1), n ∈M implies that m ∈M .

2. Weak adhesive HLR categories are adhesive HLR categories where the third condition is
replaced by a stricter one:

3. Pushouts in C along M -morphisms are weak VK squares, i.e. the VK square property
holds for all commutative cubes with m ∈M and f ∈M or b,c,d ∈M .

3. Note that already in weak adhesive HLR categories pushouts along one M -morphism are
pullbacks (compare Theorem 4.26 in [EEPT06]). This means if f ∈M or m ∈M in Fig-
ure 16 the pushout is also a pullback.

Theorem 2 (Special pushout/pullback composition and decomposition)

Given the commutative diagram to the right with square (1)
being a pushout and square (1+2) being a pullback, and f1,
f2, f3 being monomorphisms. Then, squares (1) and (2) are
pullbacks.

A1
g1 //

(1)f1

��

A2
g2 //

(2)f2

��

A3

f3

��
B1 h1

// B2 h2

// B3

Remark 2 Proof: See Property A.8 in [Erm06].
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