
Tool Support for Clustering Large Meta-Models

Daniel Strüber, Matthias Selter, Gabriele Taentzer
Philipps-Universität Marburg

Fachbereich Mathematik und Informatik
Hans-Meerwein-Str., 35032 Marburg

{strueber, selterm, taentzer}@mathematik.uni-marburg.de

ABSTRACT
Ever-growing requirements, long-term evolution and mod-
ernization of software projects lead to meta-models of re-
markable size, being difficult to comprehend and maintain.
This paper presents a tool that supports the decomposition
of a meta-model into clusters of model elements. Methods
proposed in the research area of graph clustering, aiming
at the desired properties of high cohesion and low coupling,
have been integrated in the tool. The methods are cus-
tomized not only to utilize the underlying graph structure,
but also the semantic information given in meta-models. An
evaluation of the tool is provided in terms of a case study.

Categories and Subject Descriptors
D.2.1 [Sw. Engineering]: Requirements / Specifications;
D.2.8 [Sw. Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Design, Algorithms

1. INTRODUCTION
Incrementally evolving requirements and inflating soft-

ware evolution steps such as the compilation of models from
multiple sources are reflected in monolithic meta-models of
remarkable size. In software modernization projects, meta-
models for systems obtained from reverse engineering tech-
niques may be inscrutable at all due to their bulkiness. Cru-
cial challenges to be dealt with facing such large models are
model comprehension, synchronization in collaborative edit-
ing as well as time and memory efficiency of analysis per-
formed on these models.

In terms of standardized meta-modeling frameworks such
as the Eclipse Modeling Framework (EMF) [1], a meta-
model is manifested by a tree-like structure of nested pack-
ages comprising sets of classes. To facilitate comprehension
and convenient editing, diagrams corresponding for whole

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigMDE ’13, June 17, 2013 Budapest, Hungary
Copyright 2013 ACM 978-1-4503-2165-5 ...$15.00.

meta-models or sub-models can be automatically derived.
Diagrams have a graph-like structure with classes as nodes
and references or associations running between the classes
as edges. Diagrams provide a convenient facility for the
comprehension of small to medium-scale models. However,
as for large-scale diagrams, comprehension is often hindered
by the lack of appropriate modularization structures that
allow examining a model in parts.

This paper is based on the claim that providing a mean-
ingful splitting of a monolithic model into sub-models is ben-
eficial for the comprehension and maintenance of the model.
In the scope of this work, we define meaningful as taking into
account the structural information present in a meta-model :
On the one hand, cohesion and coupling. On the other hand,
the semantic information provided by inheritance and con-
tainment relations.

The problem of decomposing a graph into sub-graphs with
high cohesion and low coupling has been adressed by graph
clustering. A plethora of graph clustering methods has been
proposed and employed in domains such as database en-
gineering, social, biological and information networks, and
stock market analysis. An overview is provided in [2].

The main contribution of this paper is a tool that utilizes
graph clustering in order to establish a meaningful grouping
of meta-models into sets of sub-models. The individual parts
of the contribution can be summarized as follows:

• We provide a tool for customizable clustering support
for meta-models, comprising a graphical user interface
and a clustering engine. An overview on the tool and
its usage is provided in Sect. 2.

• We discuss how graph clustering can be made applica-
ble to meta-models. This is the subject of Sect. 3.

• We evaluate the tool in terms of a small case study.
Sect. 4 elaborates how the tool can be used to examine
a sample model from the domain of adaptive multi-
agent system engineering.

As the discussion of related work in Sect. 5 points out,
graph clustering has been applied to models and meta-mo-
dels in particular before. However, a configurable and user-
oriented graph clustering tool has not been invested yet.
Preliminary work on the subject of model splitting has been
done in the context of a distributed modeling process [3].
While this former contribution provides a formalization for
the result of splitting a model into a set of components, it
does not describe a method of automation.

Monolithic
input model Configuration

Load
model

Derive
clustering Analysis +

Postprocessing

Save
models

models
Output
models

Figure 1: Tool workflow with artifacts (rectangles), automated activities (pentagons) and user activities (rounded rectangles)

2. TOOL OVERVIEW
The clustering tool takes a model as input, performs a

clustering on its elements, displays the result and option-
ally allows saving the resulting sub-models. Its workflow
is executed as shown in Fig. 1: At first, an input model is
loaded. A wizard allows configuring the clustering according
to the user’s needs. It is possible to select the clustering algo-
rithm being used and to adjust the weighting parameters for
all edge kinds: reference, containment, and generalization.
Then, the clustering is performed. The presentation of the
result can either be used for analytical purposes (e.g., com-
prehension) or for saving the sub-models as interconnected
individual models. For this use case, the wizard provides
postprocessing capabilities such as naming the sub-models.

3. GRAPH CONVERSION
This section gives an insight on how the core component of

the tool, the cluster derivation, works. The actual clustering
is perfomed by selectable algorithms from graph clustering
research [4] operating on a distance matrix of nodes. Hence,
the tool converts a model into a distance matrix: Firstly,
the model is converted into an undirected weighted graph.
Secondly, distances between the nodes are computed.

Figure 3: Class diagram of a Company Structure

3.1 Directed Graph with Edge Kinds
Fig. 3 shows a prototypical meta-model for a company

management system with store and employee management
capabilities. Our aim is to convert this model into a graph
that can be used as input for graph clustering while preserv-
ing as much information from the model as possible.

Figure 4: Directed Unweighted Graph

We first derive a directed graph with distinguished kinds
of edges. Classes of the model become nodes in the graph.
As for edges, in general terms, three different kinds occur:
containment, reference, and generalization. The result of
transforming the example model, shown in Fig. 4, contains
the first two mentioned kinds only: Containment edges are
painted bold, reference edges are painted thin.

3.2 Weighted Undirected and Distance Graph
The clustering algorithms employed by the tool are based

on node similarity being expressed as node distance. Hence,
a graph that provides node distances, i.e., a weighted graph,
is required. Since similarity is a symmetric relation, we can
neglect directionality. The first step to obtain such a graph
is to assign a quality for each edge. The quality is a positive
integer which depends on the edge kind. If there is more
than one edge between two nodes, we sum up their qual-
ities to combine them to one edge. Consequently, a high
edge quality between two vertices indicates a close distance
between the vertices. The second step is to derive a dis-
tance graph. Our distance function ∆ inverts the quality of
an edge by subtracting it from the highest quality present:
∆(e) = q(emaxq) + 1 − q(e). The upper half of Fig. 5 shows
the weighted undirected graph for the example. We chose
edge qualities of 4 for containment and 2 for reference, tak-
ing containment as a strong type of reference into account.
The lower half shows the corresponding distance graph.

Figure 5: Weighted Undirected and Distance Graphs

3.3 Building a Distance Matrix
In order to build the distance matrix, we need to get the

shortest pairwise distances between all vertices. The matrix
can then be used as input for clustering algorithms.

Figure 2: Result of clustering the ADELFE meta-model

0 1 2 3 4 5 6

0 0 1 1 1 1 2 3

1 1 0 2 2 2 3 4

2 1 2 0 2 2 3 4

3 1 2 2 0 2 3 4

4 1 2 2 2 0 1 2

5 2 3 3 3 1 0 1

6 3 4 4 4 2 1 0

The matrix indexes correspond to classes as follows: 0: Store,
1: StoreBackOffice, 2: Employee, 3: CashRegister, 4: Com-
pany, 5: CorporateHQ, 6: CorporateHQBackOffice.

3.4 Application of a Clustering Algorithm
The implementation currently provides support for three

hierarchical bottom-up clustering algorithms known for good
performance: Single Linkage, Complete Linkage and Aver-
age Linkage. They work as follows: Initially, one cluster
for each node is maintained. Then, a series of iterations is
performed where two clusters are merged in each iteration.
The algorithm terminates when a target number of clusters
or an upper bound for the number of elements per cluster has
been reached. The algorithms differ in the distance function
employed for the comparison of clusters: Single Linkage in
each step merges the two clusters maintaining the one pair
of elements of overall minimal distance. Complete Linkage
merges two clusters where the maximum pair-wise element
distance is minimal. Average Linkage merges clusters based
on minimal mean distance of elements. Further explanation
is found in one of the excellent publications on graph clus-
tering [4]. As our running example is too small to cluster
usefully, an example is shown in the following section.

4. CASE STUDY
This section presents a small case study to evaluate how

the clustering tool fulfills its functional requirements: (R1)
the decomposition of a model into a set of sub-models with
high coherence and low coupling; (R2) the ability to cus-
tomize this decomposition based on generalization and con-
tainment properties. We chose a sample model large enough
to contain some more and some less coherent parts, but small
enough to be suited for presentation: ADELFE, shown in

Fig. 2, is a meta-model devoted to the development of adap-
tive multi-agent systems [5].

Figure 6: Configuration Dialog showing default values

4.1 Configuration
Fig. 6 shows the configuration dialog. Its upper left-hand

part displays a set of metrics that have been applied on
the input model: total numbers of classifiers, containments,
generalizations, and references. Changing the quality pa-
rameters in the upper right part determines which parts of
the model will be estimated as showing a high cohesion.

Our rationale for the assignment of the parameters is the
following: Containment is a strong kind of reference and
thus should always rate higher than plain references. Gen-
eralization, in contrast, is orthogonal to references. From
the observation of multiple large meta-models, we witnessed
that some meta-models, especially for technical domains,
comprise a continuous generalization hierarchy while others
do not. We assume that the information given by generaliza-
tion is more meaningful if only a subset of model elements is
subject to generalization. As suggested by the metrics, this
is the case in ADELFE. Hence, we adjust the generalization
quality from the default value of 2 to 6.

Further customizations available in the lower part are
choice of algorithm, number of clusters, and maximal num-
ber of elements per cluster. Clustering algorithms have an
inherent tradeoff between runtime and quality: Single Link-
age, for instance, is known to be efficient, but likely to pro-

duce chains as it combines heterogenous clusters if they con-
tain a pair of two closely related nodes. Limiting cluster size
is useful to avoid large size differences between clusters.

4.2 Splitting Result
Fig. 7 shows the wizard view of resulting clusters, cor-

responding to the graphical view in Fig. 2. The clustering
yields three clusters; two with eight elements and one with
three elements. The cluster labeled as Unit1 is recognizable
as highly cohesive through inheritance. It comprises one
superclass with seven children subclasses. Unit2 comprises
three classes which on the one hand have a strong cohesion
through forming a containment hierarchy, on the other hand
belong to the same inheritance structure. Unit3 mainly in-
cludes classes sharing containment and ordinary references.
For postprocessing, the user can use this wizard to add ad-
ditional clusters or rename, remove, or regroup the existing
ones. Please note that the implementation of the graphical
view provided in Fig. 2 is a concern of future work.

Figure 7: Clustering Result and Postprocessing Dialog

5. RELATED WORK
A tool with functionality similar to the one described here

has been deployed as part of the Democles project [6, 7].
The supported use cases are vastly the same as in our tool:
comprehension, decomposition and pruning operations for a
given model. However, in contrast to our approach, the De-
mocles tool does not perform a clustering, but an analysis for
strongly connected components. It cannot be configured to-
wards component number and component size as supported
by our tool. Furthermore, Democles does not utilize the in-
formation given by containment and generalization as it is
not specialized on meta-models.

Streekmann and Hasselbring propose an architecture re-
structuring process involving graph clustering [8]. Their use
case is to substitute a legacy system architecture with an im-
proved architecture. A modeler defines the target architec-

ture and, furthermore, an initial mapping of legacy architec-
ture classes to target architecture components. Hierachical
clustering is applied in order to assign the model elements
neglected by the initial mapping. Our tool, in contrast, does
not rely on the manual effort of defining an architecture and
an initial mapping. The trade-off is that predefining these
artifacts may give a more appropriate result.

Model comprehension is one of the main use cases of the
large body of work that has been accomplished on model
slicing, a survey being presented in [9]. The goal of model
slicing is to extract sub-models from a model following some
pre-defined slicing criteria. One use case for model slicing is
to examine the relationships and dependencies of one par-
ticular class. Model slicing can be thought of as a comple-
mentary bottom-up approach to the top-down approach of
model clustering: model clustering provides an outline view
on a model in terms of an overview of distinct neighbor-
hoods. Slicing then allows tracing one class of interest.

6. CONCLUSION
The contribution of this paper is a tool that allows per-

forming a cluster analysis on a large meta-model. Its main
use case is to improve model maintainability by facilitating
model comprehension. For this sake, modularity is estab-
lished by means of decomposing the input model to a set of
sub-models. A concern of future work is not only to derive a
set of sub-models, but also explicit export and import inter-
faces for the sub-models. The tool could then be integrated
into the distributed modeling process proposed in [3]. Fur-
thermore, splitting of model instances along the meta-model
decomposition is to be investigated. Another concern of fu-
ture work is to evaluate the tool on larger examples with
significant cross-dependencies such as UML.

7. REFERENCES
[1] Eclipse Consortium. Eclipse Modeling Framework

(EMF) – Version 2.5. http://www.eclipse.org/emf.

[2] Satu Elisa Schaeffer. Graph clustering. Computer
Science Review, 1(1):27–64, 2007.

[3] Daniel Strüber, Gabriele Taentzer, Stefan Jurack, and
Tim Schäfer. Towards a distributed modeling process
based on composite models. In Fundamental
Approaches to Software Engineering, pages 6–20.
Springer, 2013.

[4] Trevor Hastie, Robert Tibshirani, and J Jerome H
Friedman. The elements of statistical learning,
volume 1. 2001.

[5] Adelfe. http://www.irit.fr/ADELFE.

[6] Democles. http://democles.lassy.uni.lu.

[7] Pierre Kelsen, Qin Ma, and Christian Glodt. Models
within models: taming model complexity using the
sub-model lattice. In Fundamental Approaches to
Software Engineering, pages 171–185. Springer, 2011.

[8] Niels Streekmann and Wilhelm Hasselbring.
Model-based architecture restructuring using graph
clustering. In Workshop Proceedings of the 13th
European Conference on Software Maintenance and
Reengineering.

[9] Arnaud Blouin, Benôıt Combemale, Benoit Baudry,
and Olivier Beaudoux. Kompren: modeling and
generating model slicers. Software & Systems Modeling,
pages 1–17, 2012.

