
From Core OCL Invariants

to Nested Graph Constraints�

Thorsten Arendt1, Annegret Habel2, Hendrik Radke2, and Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany
{arendt,taentzer}@informatik.uni-marburg.de

2 Universität Oldenburg, Germany
{habel,radke}@informatik.uni-oldenburg.de

Abstract. Meta-modeling including the use of the Object Constraint
Language (OCL) forms a well-established approach to design domain-
specific modeling languages. This approach is purely declarative in the
sense that instance construction is not needed and not considered. In
contrast, graph grammars allow the stepwise construction of instances
by the application of transformation rules. In this paper, we consider
meta-models with Core OCL invariants and translate them to nested
graph constraints for typed attributed graphs. Models and meta-models
are translated to instance and type graphs. We show that a model sat-
isfies a Core OCL invariant iff its corresponding instance graph satisfies
the corresponding nested graph constraint. The aim of this work is to
establish a first formal relation between meta-modeling and the theory
of graph transformation including constraints to come up with an inte-
grated approach for defining modeling languages in an optimal way in
the future.

Keywords: Meta modeling, OCL, graph constraints, application
conditions.

1 Introduction

The trend towards model-based and model-driven software development causes
a need of new, mostly domain-specific modeling languages with well-designed
tool support. Therefore we need methods and techniques to define modeling lan-
guages and their tooling precisely and also intuitively. A comprehensive language
definition needs the declarative as well as the constructive paradigm to specify
language properties, to construct and recognize language instances as well as
to modify them. Nowadays, modeling languages are typically defined by meta-
models following purely the declarative approach. In this approach, language
properties are specified by the Object Constraint Language (OCL) [1].

� This work is partly supported by the German Research Foundation (DFG), Grant
HA 2936/4-1 (Meta modeling and graph grammars: integration of two paradigms
for the definition of visual modeling languages).

H. Giese and B. König (Eds.): ICGT 2014, LNCS 8571, pp. 97–112, 2014.
c© Springer International Publishing Switzerland 2014

98 T. Arendt et al.

In contrast, graph grammars have shown to be suitable and natural to spec-
ify visual languages in a constructive way, by using graph transformation [2].
Recently, nested graph constraints [3] have been developed to include also the
declarative element into graph grammars. To ensure that a graph grammar ful-
fills a set of graph constraints, they can be translated to application conditions
of graph rules such that all graphs fulfilling the constraints in the beginning
keep on fulfilling them after applying graph rules being extended by translated
application conditions.

While typed attributed graphs form an adequate formalization of instance
models that are typed over a meta-model [4], the relation of OCL constraints
to nested graph constraints has not been considered yet. We are interested in
investigating this relation, since the translation of graph constraints to applica-
tion conditions for rules opens up a way to combine declarative and constructive
elements in a formal approach. By translating OCL to nested graph constraints,
such an integration of declarative and constructive elements becomes possible
also in the meta-modeling approach. It shall open up a way to translate OCL
constraints to application conditions of model transformation rules making appli-
cations as e.g. auto-completion of model editing operations to consistent models
possible.

As a basis, models and meta-models (without OCL constraints) are trans-
lated to instance and type graphs. In this paper, we investigate the relation of
meta-models including OCL constraints and nested graph constraints for typed
attributed graphs. It turns out that Core OCL invariants [5], i.e. Boolean ex-
pressions over navigations based on the type system, can be well translated to
nested graph constraints. The aim of this work is to establish a first formal re-
lation between meta-modeling and the theory of graph transformation to come
up with an integrated approach for defining modeling languages in an optimal
way in the future.

This paper is structured as follows: The next section presents OCL in a nut-
shell focusing on Core OCL invariants. Section 3 shows typed attributed graphs
and graph morphisms as well as nested graph conditions. Section 4 presents our
main contribution of this paper, the translation of Core OCL invariants to nested
graph constraints. Section 5 discusses how Core OCL invariants can be trans-
lated to equivalent application conditions of graph rules. Section 6 compares to
related work and concludes the paper.

2 Core OCL Invariants

In this section, we recall Core OCL constraints presenting a small example first
and formally defining their syntax and semantics thereafter, according to the
work by Richters [6] that went into the OCL specification by the OMG [1]. For
illustration purposes, we use the following meta-model for simple Petri nets to
recall OCL.

Example 1. A Petri net (PetriNet) is composed of places (Place) or transitions
(Transition) which are linked together by arcs (ArcTP for linking exactly one

From Core OCL Invariants to Nested Graph Constraints 99

transition to one place; ArcPT for linking exactly one place to one transition).
Places and transitions can have an arbitrary number of incoming (preArc) and
outgoing (postArc) arcs. Finally, Petri net markings are defined by the token
attribute of places. However, this meta-model allows to build invalid models. For
example, one can model a transition having no incoming arc, i.e., the transition
can never be fired. Therefore, we complement the meta-model with invariants
formulated in OCL.

1. A transition has incoming arcs.
context Transition inv: self.preArc -> notEmpty()

2. The number of tokens on a place is not negative.
context Place inv: self.token >= 0

3. Each two places of a Petri net have different names.
context Petrinet inv: self.place -> forAll(p1:Place |

self.place -> forAll(p2:Place | p1 <> p2 implies p1.name <>

p2.name)) or alternatively
context Petrinet inv: self.place -> forAll(p1:Place,p2:Place |

p1 <> p2 implies p1.name <> p2.name)

Now, we consider Core OCL invariants in more detail. The Core OCL com-
prises the OCL type system and the language concepts that realize model nav-
igation. The only kind of collections we consider are sets which conform well
with using OCL for meta-modeling. Furthermore, we concentrate on selected
Boolean-typed set operations only (isEmpty, notEmpty, exists, and forAll). This
also means that user-defined operations are not allowed.

For Core OCL, we straiten the kind of object models being allowed: attributes
have primitive types only, there are no operations defined, associations are bi-
nary, roles are the default ones indicating source and target, and multiplicities
are not set, i.e. range between 0 and *. (It is obvious, however, that multiplicities
can be expressed by Core OCL invariants.)

Definition 1 (Core Object Model). Let DSIG = (S,OP) be a data
signature with S = {Integer,Real, Boolean, String} and a family of corre-
sponding operation symbols OP . A core object model over DSIG is a structure
M = (CLASS,ATT,ASSOC, associates, rsrc, rtgt,≺) where CLASS is a finite

100 T. Arendt et al.

set of classes, ATT = {ATTc}c∈CLASS is a family of attributes att : c → S
of class c, ASSOC is a set of associations, associates is a function that maps
each association to a pair of participating classes with associates : ASSOC →
(CLASS × CLASS), rsrc and rtgt are functions that map each association
to a source respectively target role name with rsrc, rtgt : ASSOC → String
and rsrc(assoc) = c1 and rtgt(assoc) = c2 for each assoc ∈ ASSOC with
associates(assoc) = (c1, c2), and ≺ is a partial order on CLASS reflecting its
generalization hierarchy.

Since the evaluation of an OCL invariant requires knowledge about the complete
context of an object model at a discrete point in time, we define a system state of
a core object modelM . Informally, a system state consists of a set of class objects,
functions assigning attribute values to each class object for each attribute, and
a finite set of links connecting class objects within the model.

Definition 2 (System State). A system state of a core object model M
is a structure σ(M) = (σCLASS, σATT , σASSOC) where for each class c ∈
CLASS, σCLASS(c) is a finite subset of the (infinite) set of object identifiers
oid(c) = {c1, c2, . . . }, for each attribute att : c → t ∈ ATT≺

c , σATT (att) :
σCLASS(c) → I(t) is an operation from class objects to some interpretation of
the primitive data type t where ATT≺

c :=
⋃

c≺c′ ATTc′ is the set of all owned
and inherited attribute symbols of a class c, for each assoc ∈ ASSOC with
associates(assoc) = (c1, c2), σASSOC(assoc) ⊂ σ≺

CLASS(c1)×σ≺
CLASS(c2) where

σ≺
CLASS(c) :=

⋃
c′≺c σCLASS(c

′) is the set of all objects with type or super type
c. The set States(M) consists of all system states σ(M) of M .

Definition 3 (Core OCL Expressions). Let T be a set of types consisting of
all basic types S, all class types CLASS, and the collection type Set(t) for an
arbitrary t ∈ T . Let Ω be a set of operations on T consisting of OP , ATT , appro-
priate association end operations, and set operations. Let V ar = {V art}t∈T be
a family of variable sets. The family of Core OCL expressions over T and Ω is
given by Expr = {Exprt}t∈T of sets of expressions. An expression in Expr is a
VariableExpression v ∈ Exprt for all variables v ∈ V art, OperationExpressions
e := ω(e1, · · · , en) ∈ Exprt for each operation symbol ω : t1 × · · · × tn → t ∈ Ω
and for all ei ∈ Exprti(1 ≤ i ≤ n), IfExpressions e := if e1 then e2 else e3
∈ ExprBoolean for all e1, e2, e3 ∈ ExprBoolean and IteratorExpressions e := s →
exists(v | b) ∈ ExprBoolean and e := s → forAll(v | b) ∈ ExprBoolean, for all
s ∈ ExprSet(c), v ∈ V arc, and b ∈ ExprBoolean.
Let Env = {τ | τ = (σ, β)} be a set of environments with system states σ and
variable assignments β : V art → I(t) which map variable names to values. The
semantics of a Core OCL expression e ∈ Exprt is a function I �e� : Env → I(t)
for t ∈ CLASS or t ∈ S. The corresponding semantics definition can be found
in [6] and adapted to Core OCL in [7].

As mentioned above, we concentrate on invariants being formulated in Core
OCL. Therefore, we consider invariants and OCL-constraints as synonyms in
the remainder of this paper.

From Core OCL Invariants to Nested Graph Constraints 101

Definition 4 (Core OCL Invariant). A Core OCL invariant is a Boolean
Core OCL expression with a free variable v ∈ V arC where C is a classifier type.
The concrete syntax of an invariant is: context v:C inv : <expr>. The set
InvariantM denotes the set of all Core OCL invariants over M .

Remark 1. The following properties hold for Core OCL invariants: (1) Naviga-
tion expressions to collections are not contained in other navigation expressions,
e.g., somePetriNet.arcTP.place -> notEmpty() is replaced by somePetriNet.

arcTP -> exists(a:ArcTP|a.place->notEmpty()). (2) Iterator expressions are
completed, i.e. the iterator variable is explicitly declared.Moreover, a variable dec-
laration is always complete, i.e. consists of a variable name and a type name. (3) If
nav op nav occurs for the same navigation expressionnav and op(nav, nav) = true
then nav op nav can be replaced by true. (4) Note that constraints v1 = v2.r and
v1 <> v2.r (for objects v1,v2 and reference r) are not possible since the result of
v1 is an object and v2.r yields a set of objects.

3 Nested Graph Conditions

In the following, we recall the formal definition of typed, attributed graphs as
presented in [8]. They form the basis to define attributed graph conditions.
Attributed graphs as defined here allow to attribute nodes only while the original
version [8] supports also the attribution of edges.

Definition 5 (A-graphs). An A-graph G = (GV , GD, GE , GA, srcG, tgtG,
srcA, tgtA) consists of setsGV andGD, called graph and data nodes (or vertices),
respectively, GE and GA, called graph and node attribute edges, respectively,
and source and target functions: srcG : GE → GV , tgtG : GE → GV for graph
edges and srcA : GA → GV , tgtA : GA → GD for node attribute edges. Given two
A-graphs G1 and G2, an A-graph morphism f : G1 → G2 is a tuple of functions
fV : G1

V → G2
V , fD : G1

D → G2
D, fE : G1

E → G2
E and fA : G1

A → G2
A such that f

commutes with all source and target functions, e.g. fV ◦ src1G = src2G ◦ fE .
We assume that the reader is familiar with the basics of algebraic specification.
The definition of attributed graphs generalizes largely the one in [9] by allow-
ing variables and a set of formulas that constrain the possible values of these
variables. The definition is closely related to symbolic graphs [10].

Definition 6 (Attributed graphs). LetDSIG = (S,OP) be a data signature,
X = {Xs}s∈S a family of variables, and TDSIG(X) the term algebra w.r.t.DSIG
and X . An attributed graph over DSIG and X is a tuple AG = (G,D,Φ) where
G is an A-graph, D is a DSIG-algebra with

∑
s∈S Ds = GD, and Φ is a finite set

of DSIG-formulas1 with free variables in X . A set {F1, . . . , Fn} of formulas can
be regarded as a single formula F1∧. . .∧Fn. An attributed graph AG = (G,D, ∅)
with an empty set of formulas is basic and is shortly denoted by AG = (G,D).

1 DSIG-formulas are meant to be DSIG-terms of sort BOOL. One may consider e.g.
a set of literals.

102 T. Arendt et al.

Given two attributed graphs AG1 and AG2, an attributed graph morphism
f : AG1 → AG2 is a pair f = (fG, fD) of an A-graph morphism fG : G1 → G2

and a DSIG-homomorphism fD : D1 → D2 such that for all s ∈ S, fG,GD |D1
s
=

fD,s, fG,GD =
∑

s∈S fD,s, and Φ2 ⇒ f(Φ1) where f(Φ1) is the set of formulas
obtained when replacing in Φ1 every variable x in G1 by f(x).

Remark 2. We are interested in the case where D1
s is a DSIG-term alge-

bra and D2
s is a DSIG-algebra (without variables). In this case the DSIG-

homomorphism assigns values to variables and terms.

Attributed graphs in the sense of [9] correspond to basic attributed graphs. The
results for basic attributed graphs can be generalized to arbitrary attributed
graphs: attributed graphs and morphisms form the category AGraphs. The
category has pushouts and E ′-M pair factorization in the sense of [9].

Definition 7 (Typed attributed graph over ATGI). An attributed type
graph ATGI = (TG,Z, Φ′) consists of an A-graph and a final DSIG-algebra
Z. A typed attributed graph (AG, type) over ATGI, short ATGI-graph, consists
of an attributed graph AG = (G,D,Φ) and a morphism type : AG → ATGI2.
Given two ATGI-graphs AG1 = (G1, type1) and AG2 = (G2, type2), an ATGI-
morphism f : AG1 → AG2 is an attributed graph morphism such that type2◦f =
type1.

Typed attributed graphs and morphisms form a category that has pushouts
and E ′-M pair factorization.

Fact 1 ([7]). ATGI-graphs and morphisms form the category AGraphsATGI

with pushouts and E ′-M pair factorization.

In [7], also typed attributed graphs typed over attributed type graphs with
inheritance [11] are considered.
Nested graph conditions [3] are nested constructs which can be represented as
trees of morphisms equipped with quantifiers and Boolean connectives. In the fol-
lowing, we introduce ATGI-conditions as conditions over ATGI-graphs, closely
related to attributed graph constraints [10] and E-conditions [12].

Definition 8 (nested graph conditions). A (nested) graph condition on typed
attributed graphs, short ATGI-condition, over a graph P is of the form true,
∃(a, c), or ∃(P � C, c)3 where a : P → C is an injective morphism and c is an
ATGI-condition over C. Boolean formulas over ATGI-conditions over P yield
ATGI-conditions over P , that is ¬c and

∧
i∈I ci are ATGI-conditions over P .

Conditions over ∅ are also called constraints.

Notation. Graph conditions may be written in a more compact form: ∃a ab-
breviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), ∨i∈Ici abbreviates ¬∧i∈I ¬ci,
2 We usually set Φ′ = false for ATGI so that Φ′ ⇒ Φ is true regardless of Φ.
3 Conditions of the form ∃(P � C, c) are syntactic sugar, i.e. they can be expressed
in terms of the other constructs. See long version [7].

From Core OCL Invariants to Nested Graph Constraints 103

and c ⇒ c′ abbreviates ¬c ∨ c′. For an injective morphism a : P ↪→ C in a con-
dition, we just depict the codomain C, if the domain P can be unambiguously
inferred, i.e. if it is known over which graph a condition is.

Example 2 (OCL constraints as graph constraints). OCL constraint
context Place inv: self.token >= 0 in Example 1 is represented as an at-
tributed graph constraint in full and in abbreviated form. The last graph in the
condition is decorated by the formula x ≥ 0, with the notation as in [12]. The
attributing DSIG-algebra is the quotient term algebra TDSIG≡(X) where ≡ is
the congruence relation on TDSIG(X) induced by ≥ (x, 0).

¬∃
(
∅ → self:Place ,¬∃

(
self:Place → self:Place

token = x | x ≥ 0

))

or, in short form: ∀
(
self:Place , ∃ self:Place

token ≥ 0

)

Definition 9 (Semantics of nested graph conditions). Let p : P → G be
a morphism. Satisfiability of a condition over P is inductively defined as follows:
Every morphism satisfies true. Morphism p satisfies ∃(P → C, c) if there exists
an injective morphism q : C ↪→ G such that the left diagram below commutes and
q satisfies c. Morphism p satisfies ∃(P � C, c) if there exist injective morphisms
b : C ↪→ P and q : C ↪→ G such that q = p ◦ b and q satisfies c (see right diagram
below). Morphism p satisfies ¬c if p does not satisfy c, and p satisfies

∧
i∈I ci if

p satisfies each ci (i ∈ I). We write p |= c if p : P → G satisfies the condition c
over P .

P C

G

a

p q

∃ c
=

P C

G

∃ c

p q

b
=

Satisfiability of a constraint (i.e. a condition over ∅) by a graph is defined as
follows: A graph G satisfies a constraint c, short G |= c, if the morphism p : ∅ ↪→
G satisfies c.

4 Translation of Meta-Models with Core OCL Invariants

To translate Core OCL invariants, we first show how to translate the type in-
formation of meta-models, i.e. core object models, to attributed type graphs
with inheritance [11] are considered. Thereafter, system states are translated to
typed attributed graphs. Having these ingredients available, our main contri-
bution, the translation of Core OCL invariants is presented, together with two
example translations. Finally, completeness and correctness of the translation
are shown.

104 T. Arendt et al.

4.1 Type and State Correspondences

To define the translation of Core OCL invariants to graph constraints, we trans-
late a given object model to its corresponding type graph.

Definition 10 (Type Correspondence). Let DSIG = (S,OP) be a data sig-
nature and Z the final DSIG-algebra. Given a core object model M = (CLASS,
ATT,ASSOC, associates,≺) over DSIG, it corresponds to an attributed type
graph with inheritance ATGI = ((TG,Z), Inh) with type graph TG = (TGV ,
TGD, TGE , TGA, srcG, tgtG, srcA, tgtA) and inheritance relation Inh if there
is a correspondence relation corrtype = (corrCLASS , corrATT , corrASSOC) with
bijective mappings

– corrCLASS : CLASS → TGV with ∀c1, c2 ∈ CLASS :
c1 ≺ c2 ⇐⇒ (corrCLASS(c1), corrCLASS(c2)) ∈ Inh,

– corrATT : ATT → TGA with
srcA(corrATT (att)) = corrCLASS(c) for c ∈ CLASS and
tgtA(corrATT (att)) = x if att : c → s ∈ ATTc and {x} = Zs with s ∈ S,

– corrASSOC : ASSOC → TGE with srcG ◦ corrASSOC = corrCLASS ◦ pr1
and tgtG ◦ corrASSOC = corrCLASS ◦ pr2 with associates(a) = 〈c1, c2〉,
pri(a) = ci for i = 1, 2, c1, c2 ∈ Class and a ∈ ASSOC.

To show the correctness of our Core OCL invariant translation, we also need to
establish a correspondence relation between system states and typed attributed
graphs.

Definition 11 (State Correspondence). Let M be a core object model and
ATGI an attributed type graph, both defined over data signature DSIG =
(S,OP). We assume that I(s) = Ds for all sorts s ∈ S. Furthermore, let
corrtype(M) = ATGI be a type correspondence.
Given a system state σ(M) = (σCLASS , σATT , σASSOC), it corresponds to an at-
tributed graph AG = (G,D) with G = (GV , GD, GE , GA, srcG, tgtG, srcA, tgtA)
typed overATGI by clan morphism type if there is a state correspondence relation
corrstate = (cCLASS , cATT , cASSOC) : States(M) → GraphATGI defined by the
following bijective mappings:

– cCLASS : σCLASS → GV with
typeGV (cCLASS(o)) = corrCLASS(c) with o ∈ σCLASS(c) and c ∈ CLASS,

– cATT : σATT → GA with srcA(cATT (a)) = cCLASS(o) and
tgtA(cATT (a)) = d as well as typeGA(cATT (σATT (att))) = corrATT (att) and
a ∈ σATT (att) if att : c → s ∈ ATT≺

c , σATT (att) : σCLASS(c) → Ds,
o ∈ σCLASS(c), c ∈ CLASS and σATT (att)(o) = d,

– cASSOC : σASSOC → GE with
srcG ◦ cASSOC = cCLASS ◦ pr1 and tgtG ◦ cASSOC = cCLASS ◦ pr2
with l = (o1, o2) ∈ σASSOC(assoc) and pri(l) = oi for i = 1, 2.
Furthermore, typeGE ◦ cASSOC(σASSOC) = corrASSOC(ASSOC) .

From Core OCL Invariants to Nested Graph Constraints 105

4.2 Translation of Core OCL Invariants

To get an initial understanding on how Core OCL invariants shall be translated
to graph conditions, we take a pattern-based approach. The principle idea is that
navigation expressions are translated to graphs and graph morphisms while the
usual Boolean operations correspond to each other directly. The subset-operator
of graph conditions is useful to correspond to iterating variables in iterator ex-
pressions. In Figure 1, basic OCL patterns and their corresponding graph con-
straint patterns are depicted. In these patterns, “Class”, “v”, “v1”,“v2”, “b” ,
“c”, and “r” are variables for model elements. Non-terminal <op> can be replaced
by some comparator such as =, <>,<. Non-terminal <expr> may be replaced
by any Core OCL expression.

Fig. 1. Translation of basic OCL patterns to graph constraint patterns

In the following, we define the translation of Core OCL invariants as out-
lined in the beginning of this section. The translation is basically structured
along the definition of Core OCL expressions given in Def. 3. However, opera-
tion expressions, If expressions and iterator expressions are distinguished along
their result type yielding navigations (with Set(t), t ∈ CLASS as result type)
and (Boolean) expressions. In the following definition, rules 1 and 2 translate
the header of a CoreOCL invariant, rules 4 - 12 translate Boolean expressions,
rules 13 - 15 translate basic object comparisons, rules 16 - 17 translate attribute
value comparisons, and rules 18 - 19 translate basic navigation expressions and
variables.

Definition 12 (Constraint translation). Let M = (CLASS,ATT,ASSOC,
associates,≺) be a core object model with ATGI = corrtype(M) being the cor-
responding attributed type graph and t : Expr → T a typing function which
returns the type of an OCL expression (for T see Section 2). Let furthermore
InvariantM be the set of Core OCL invariants over M as defined in Def. 4 and
GraphConstraintATGI be the set of all graph constraints as defined in Defini-
tion 8. Then, the translation functions

106 T. Arendt et al.

– invariant translation: trI : InvariantM → GraphConstraintATGI

– expression translation trE : ExprBoolean → GraphConstraintATGI

– navigation translation trN : Exprc → GraphATGI with c ∈ CLASS
– variable translation trV : V arc → GraphATGI with c ∈ CLASS

are defined as follows:

1. trI(’context’ C ’inv:’ expr) = ∀ (self:C , trE(expr))
2. trI(’context’ var ’:’ C ’inv:’ expr) = ∀ (trV (var), trE(expr))
3. trE (expr) = trE(setOpCallExpr) | trE(basicExpr)

| trE(boolExpr) | trE(iteratorExpr)
4. trE(boolExpr) = true if boolExpr ::= ’true’
5. trE(boolExpr) = (¬ trE(expr)) if boolExpr ::= ’(’ ’not’ expr ’)’
6. trE(boolExpr) = (trE(expr1) opg trE(expr2)) with opg ∈ {∧,∨}

if boolExpr ::= ’(’ expr1 opb expr2 ’)’ with opb ∈ { ’and’, ’or’}
7. trE(boolExpr) = (¬ trE(expr1) ∨ trE(expr2))

if boolExpr ::= ’(’ expr1 ’implies’ expr2 ’)’
8. trE(boolExpr) = ((trE(cond) ∧ trE(expr1)) ∨ (¬ trE(cond) ∧ trE(expr2)))

if boolExpr ::= ’(’ ’if’ cond ’then’ expr1 ’else’ expr2’)’
9. trE(setOpCallExpr) = ¬∃ (trN (navExpr))

if setOpCallExpr ::= navExpr ’→ isEmpty()’
10. trE(setOpCallExpr) = ∃ (trN (navExpr))

if setOpCallExpr ::= navExpr ’→ notEmpty()’
11. trE(iteratorExpr) = ∃ (trN (navExpr) � trV (var), trE(expr))

if iteratorExpr ::= navExpr ’→’ exists (’ var ’|’ expr ’)’
12. trE(iteratorExpr) = ∀ (trN (navExpr) � trV (var), trE(expr))

if iteratorExpr ::= navExpr ’→’ forAll (’ var ’|’ expr ’)’
13. (a) trE(basicExpr) = ∃ (v:t(v) v2:t(v2) → v,v2:t(v))4

if basicExpr ::= v ’=’ v2

(b) trE(basicExpr) = ∃ (v:t(v) v2:t(v2))

if basicExpr ::= v ’<>’ v2

14. (a) trE(basicExpr) = ∃ (trV (v ’:’ t(v))
as

as2
:t(r))

if basicExpr ::= v ’.’ r ’=’ v ’.’ r2, r is a role of as, r2 is a role of as2,
and t(r) = t(r2) ∈ CLASS

(b) trE(basicExpr) = ∃ (trV (v ’:’ t(v))
as−→ :t(r)

as2←− trV (v2 ’:’ t(v2)))

if basicExpr ::= v ’.’ r ’=’ v2 ’.’ r2, r is a role of as, r2 is a role of as2,
and t(r) = t(r2) ∈ CLASS

15. (a) trE(basicExpr) = ∃ (:t(r)
as←− trV (v)

as2−→ :t(r2))

if basicExpr ::= v ’.’ r ’<>’ v ’.’ r2, r is a role of as, r2 is a role of as2,
and t(r) = t(r2) ∈ CLASS

4 Note that this a “non-injective” condition in the sense of [3], i.e. a condition with non-
injective morphism. By [13], for each non-injective condition c and each morphism
p = m ◦ e with e surjective and m injective, there is an injective condition Shift(e, c)
in the sense of Definition 8 such that we have p |= c ⇔ m |= Shift(e, c). Whenever a
non-injective morphism occurs in a condition, we have to replace the whole condition
by Shift(e, c).

From Core OCL Invariants to Nested Graph Constraints 107

(b) trE(basicExpr) = ∃ (trV (v)
as−→ :t(r) trV (v2)

as2−→ :t(r2))

if basicExpr ::= v ’.’ r ’<>’ v2 ’.’ r2, r is a role of as, r2 is a role of as2,
and t(r) = t(r2) ∈ CLASS

16. trE(basicExpr) = ∃ (v:t(v)
attr op x)5 if basicExpr ::= v ’.’ attr op x and x is a

constant or a variable

17. (a) trE(basicExpr) = ∃ (v:t(v)
attr = x
attr2 op x

)

if basicExpr ::= v ’.’ attr op v ’.’ attr2, attr �= attr2, and x is a new
variable with t(x) = t(attr) = t(attr2).

(b) trE(basicExpr) = ∃ (v:t(v)
attr = x

v2:t(v2)
attr2 op x)

if basicExpr ::= v ’.’ attr op v2 ’.’ attr2, v �= v2, and x is a new variable
with t(x) = t(attr).

18. trN (navExpr) = trV (v)
as−→ :t(r)

if navExpr ::= v ’.’ r and r is a role of as

19. trV (var) = v:t(v)

for var::= v ’:’ t with t = t(v) or var::= v

where expr, expr1, expr2, boolExpr, setOpCallExpr, basicExpr, iteratorExpr ∈
ExprBoolean,var ∈ V arc,navExpr, navExpr1, navExpr2 ∈ Exprc, c ∈ CLASS,
v, v2 ∈ V art, t ∈ TM , as, as2 ∈ ASSOC, r = rtgt(as), r2 = rtgt(as2), op ∈
{<,>,≤,≥,=, <>}, attr ∈ ATTc and w.l.o.g., corrCLASS(c) = c for c = t(r),
c = t(r2), c = t(v) or c = t(attr), corrASSOC(as) = as, corrASSOC(as2) = as2,
and corrATT (attr) = attr.

In the following, we show two example translations using OCL invariants of
Example 1. Small numbers behind equality signs denote the rules being used.

Example 3 (Translation of OCL constraint 1).
trI(’context Transition inv: self.preArc→notEmpty()’) =1

∀ (self:Transition trE(’self.preArc→notEmpty()’)) =10

∀ (self:Transition , ∃ (trN (’self.preArc’))) =18

∀ (self:Transition , ∃ (trV (’self:Transition’)
preArc−→ :ArcPT)) =19

∀ (self:Transition , ∃ (self:Transition
preArc−→ :ArcPT))

Example 4 (Translation of OCL constraint 3.1).
trI(’context Petrinet inv: self.place→forAll(p1:Place | self.place →

forAll(p2:Place | p1 <> p2 implies p1.name <> p2.name))’) =1

∀ (self:Petrinet , trE(’self.place→forAll(p1:Place | self.place →
forAll(p2:Place | p1 <> p2 implies p1.name <> p2.name))’)) =12

∀ (self:Petrinet , ∀ (trE(’self.place’) � trV (’p1:Place’),
trE(’self.place→forAll(p2:Place |p1<>p2 implies p1.name<>p2.name)’)))=18,12

5 Compare the short notation of attribute conditions in Example 2.

108 T. Arendt et al.

∀ (self:Petrinet , ∀ (trV (’self’)
place−→ :Place � p1:Place ,

∀ (trE(’self.place’) � trV (’p2:Place’),
trE(’p1 <> p2 implies p1.name <> p2.name’)))) =19,18,6

∀ (self:Petrinet , ∀ (self:Petrinet
place−→ :Place � p1:Place ,

∀ (trV (’self’)
place−→ :Place � p2:Place ,

¬ trE(’p1 <> p2’) ∨ trE(’p1.name <> p2.name’)))) =19

∀ (self:Petrinet , ∀ (self:Petrinet
place−→ :Place � p1:Place ,

∀ (self:Petrinet
place−→ :Place � p2:Place ,

(¬ trE(’p1 <> p2’) ∨ trE(’p1.name <> p2.name’))))) =10,13.b,17.b

∀ (self:Petrinet , ∀ (self:Petrinet
place−→ :Place � p1:Place ,

∀ (self:Petrinet
place−→ :Place � p2:Place ,

¬ ∃ (p1:Place p2:Place) ∨ ∃ (p1:Place
name = x

p2:Place
name <> x))))

4.3 Correctness and Completeness

To be sure that the translation of Core OCL invariants is well-defined, we show its
correctness and completeness. Moreover, we want to ensure that each translation
terminates. The proofs of all the following results are given in [7] in their complete
form. Here, we just present the main proof ideas.

Proposition 1 (Termination). The invariant translation trI as defined in
Definition 12 terminates.

trI terminates since all invariants are finite and each application of a translation
rule decreases the number of syntactic tokens in an invariant.

Theorem 1 (Completeness of translation). Given a core object model M
and its corresponding attributed type graph ATGI = corrtype(M), all Core OCL
invariants over M are translated to some graph constraint over ATGI.

We have to show that all Core OCL invariants can be translated to graph con-
straints. The proof is performed by induction on the structure of Core OCL
invariants. First, we start to translate Core OCL invariants and continue to
show the completeness of the translation for Core OCL expressions.
To show that the translation of Core OCL invariants is correct, we consider
their semantics and the semantics of graph constraints. If an invariant holds for a
system state, the corresponding graph constraint is fulfilled by the corresponding
graph.

Theorem 2 (Correct Translation of Core OCL invariants). Given an ob-
ject modelM and its corresponding attributed type graphATGI = corrtype(M),

From Core OCL Invariants to Nested Graph Constraints 109

the following statement holds for all Core OCL invariants inv ∈ InvariantM : For
all environments env = (σ, β) ∈ Env

I �inv� (env) = true ⇐⇒ G = corrstate(σ) |= trI(inv).

The proof is performed by induction on the translation rules given in Def. 12.

5 From Core OCL Invariants to Application Conditions

After having translated Core OCL invariants to graph constraints, we connect
this new result with the existing theory on graph constraints [3,14]. A main result
shows how nested graph constraints can be translated to right, and thereafter, to
left application conditions of transformation rules. In the following, we illustrate
at an example how a Core OCL invariant is translated to a left application
condition.

By the results in [3,13], for each category with pushouts and E ′-M pair fac-
torization, nested conditions in this category can be shifted over morphisms and
rules. By Fact 1,ATGI-graphs and morphisms form the categoryAGraphsATGI

with pushouts and E ′-M pair factorization. Consequently, ATGI-conditions can
be shifted over ATGI-morphisms and rules.

Lemma 1 (shift of ATGI-conditions over morphisms and rules [7]).
1. There is a Shift-construction such that, for each ATGI-condition c over P and
for each ATGI-morphism b : P → P ′, n : P ′ → H , n◦b |= c ⇐⇒ n |= Shift(b, c).
2. There is a construction Left such that, for eachATGI-rule 	 = 〈L ←↩ K ↪→ R〉,
each ATGI-condition ac over R, and each direct transformation G ⇒�,g,h H , we
have g |= Left(, ac) ⇐⇒ h |= ac.

In the following, we illustrate at an example how a Core OCL invariant is trans-
lated to a left application condition.

We present a simple rule to create places in a Petri net. The graph constraint
from Example 2 shall be translated to a left application condition. The con-
ditions are given in abbreviated form (i.e. whenever it is unambiguous, only
the codomain of a morphism is shown); node mappings are obvious from their
relative position. Edge labels are omitted for brevity.

Constraint: ∀
(
self:Place , ∃ self:Place

token ≥ 0

)
Rule: :Petrinet ⇒ :Petrinet

:Place
token = 0

Right application condition:

∀ (
self:Place
token = 0:Petrinet ,∃ (

self:Place
token = 0:Petrinet

))∧
∀

⎛
⎜⎝ :Petrinet

:Place
token = 0 → :Petrinet

:Place
token = 0

self:Place
,∃ (

:Petrinet
:Place

token = 0
self:Place
token ≥ 0

)⎞
⎟⎠

110 T. Arendt et al.

This condition states that new and existing places have to come with non-
negative numbers of tokens. The left application condition looks as follows (after
trivial simplifying):

∀ (
:Petrinet→ :Petrinetself:Place ,∃ (

:Petrinet
self:Place
token ≥ 0

))

This states that every place in the Petri net has a non-negative token count.

6 Related Work and Conclusion

In the literature, there are several significant approaches to define a formal se-
mantics for OCL. The motivations for a formal OCL semantics are manifold
and include defining a clear semantics, generating model instances, and per-
forming formal verification of UML/OCL models. All main approaches are logic-
oriented, in contrast to ours being the first one that relates OCL to a graph-based
approach. In the following, we sketch logic-oriented approaches using the Key
prover, the Alloy project, and Constraint Logic Programming, respectively.

In [15], Beckert et al. present a translation of UML class diagrams with OCL
constraints into first-order logic; the goal is logical reasoning about UML models.
The translation has been implemented as a part of the KeY system, but can
also be used stand-alone. Formal methods such as Alloy [16] can be used for
instance generation: After translating a class diagram to Alloy, an instance can
be generated or it can be shown that no instances exist. This generation relies on
the use of SAT solvers and can also enumerate all possible instances. In [17], UML
models are automatically transformed to corresponding Alloy representations.
Alloy models can then be analyzed automatically, with the help of the Alloy
Analyzer. A recent work translating OCL to relational logic is presented in [18]
covering more features than UML2Alloy. The USE tool [6,19] can be used for
generating snapshots that conform to the model or for checking the conformity of
a specific instance. In [20], Cabot et al. present UMLtoCSP, a tool that is able
to automatically check correctness properties of UML class model with OCL
constraints based on Constraint Logic Programming.

All these approaches have in common that they translate class models with
OCL constraints into logical facts and formulas forgetting about the graph prop-
erties of class models and their instances. Hence, the reasoning is performed on
the level of model elements. Translating OCL invariants to graph constraints
allows to keep graph structures as units of abstraction while checking for satisfi-
ability. Pennemann has shown in [14] that a theorem prover for graph conditions
works more efficient than theorem provers for logical formulas being applied to
graph conditions. The key idea is here that graph axioms are always satisfied by
default when using a theorem prover for graph conditions. Furthermore, a trans-
lation of OCL to graph constraints yields a new visualization of OCL which can
help understanding. And finally, our translation offers a way to translate Core
OCL invariants to application conditions of transformation rules. This is a new
form to apply an OCL translation which might lead to number of new applica-
tions including test model generation as well as auto-completion of model editing

From Core OCL Invariants to Nested Graph Constraints 111

operations. The backward translation from graph conditions to OCL might also
be interesting to come up with model transformation rules restricted by OCL.
In future work, we plan to extend this work towards the whole range of OCL
invariants being translated to more powerful graph conditions.

Acknowledgement. We are grateful to Christoph Peuser and the anonymous
referees for their helpful comments on a draft version of this paper.

References

1. OMG: Object Constraint Language, http://www.omg.org/spec/OCL/
2. Bardohl, R., Minas, M., Schürr, A., Taentzer, G.: Application of Graph Transfor-

mation to Visual Languages. In: Handbook of Graph Grammars and Computing
by Graph Transformation, vol. 2, pp. 105–180. World Scientific (1999)

3. Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. Mathematical Structures in Computer Science 19,
245–296 (2009)

4. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Software and System Model-
ing 11(2), 227–250 (2012)

5. Chiorean, D., Bortes, M., Corutiu, D.: Proposals for a Widespread Use of OCL.
In: Workshop on Tool Support for OCL and Related Formalisms, Technical Report
LGL-REPORT-2005-001, EPFL, 68–82 (2005)

6. Richters, M.: A Precise Approach to Validating UMLModels and OCL Constraints.
PhD thesis, Universität Bremen, Logos Verlag, Berlin (2002)

7. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core OCL Invariants to
Nested Graph Constraints: Extended version (2014),
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/

pdfbi/bi2014-01.pdf

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental Theory of Typed At-
tributed Graph Transformation based on Adhesive HLR Categories. Fundamenta
Informaticae 74(1), 31–61 (2006)

9. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. Springer
(2006)

10. Orejas, F.: Symbolic Graphs for Attributed Graph Constraints. J. Symb. Com-
put. 46(3), 294–315 (2011)

11. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating Meta-modelling As-
pects with Graph Transformation for Efficient Visual Language Definition and
Model Manipulation. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 214–228. Springer, Heidelberg (2004)

12. Poskitt, C.M., Plump, D.: Hoare-Style Verification of Graph Programs. Funda-
menta Informaticae 118(1-2), 135–175 (2012)

13. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive Transforma-
tion Systems with Nested Application Conditions. Part 1: Parallelism, Concurrency
and Amalgamation. Mathematical Structures in Computer Science 24 (2014)

14. Pennemann, K.H.: Development of Correct Graph Transformation Systems. PhD
thesis, Universität Oldenburg (2009)

112 T. Arendt et al.

15. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Object Constraint Language
into First-order Predicate Logic. In: VERIFY, Workshop at Federated Logic Con-
ferences, FLoC (2002)

16. Jackson, D.: Alloy Analyzer website (2012), http://alloy.mit.edu/
17. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-

mation from UML to Alloy. Software and System Modeling 9(1), 69–86 (2010)
18. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:

France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012)

19. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL models in USE
by automatic snapshot generation. SoSyM 4(4), 386–398 (2009)

20. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification
of UML/OCL Models using Constraint Programming. In: 22nd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pp. 547–548
(2007)

