
A Static Analysis of Non-Confluent Triple Graph
Grammars for Efficient Model Transformation

Anthony Anjorin1?, Erhan Leblebici1, Andy Schürr1, and Gabriele Taentzer2

1Technische Universität Darmstadt,
Real-Time Systems Lab, Germany

{anjorin,leblebici,schuerr}@es.tu-darmstadt.de

2Philipps-Universität Marburg,
Fachbereich Mathematik und Informatik, Germany

taentzer@mathematik.uni-marburg.de

Abstract. Triple Graph Grammars (TGGs) are a well-known bidirec-
tional model transformation language. All actively developed TGG tools
pose restrictions to guarantee efficiency (polynomial runtime), without
compromising formal properties. Most tools demand confluence of the
TGG, meaning that a choice between applicable rules can be freely made
without affecting the final result of a transformation. This is, however, a
strong restriction for transformations with inherent degrees of freedom
that should not be limited at design time. eMoflon is a TGG tool that
supports non-confluent TGGs, allowing different results depending on
runtime choices. To guarantee efficiency, nonetheless, a local choice of
the next source element to be translated, based on source context de-
pendencies of the rules, must not lead to a dead end, i.e., to a state
where no rule is applicable for the currently chosen source element to be
translated, and the transformation is not yet complete. Our contribution
in this paper is to formalize a corresponding property, referred to as local
completeness, using graph constraints. Based on the well-known trans-
formation of constraints to application conditions, we present a static
analysis that guarantees dead end-freeness for non-confluent TGGs.

Keywords: bidirectionality, triple graph grammars, static analysis

1 Introduction and Motivation

Model synchronization is a crucial task in numerous application domains. In a
current research project, we have investigated and implemented a tool for syn-
chronizing two textual languages used in the domain of Concurrent Manufactur-
ing Engineering (CME). The tool1 is able to propagate changes incrementally
from documents in one language to documents in the other, thus enabling a
concurrent engineering workflow.

? The project on which this paper is based was funded by the German Federal Ministry
of Education and Research, funding code 01IS12054. The authors are responsible for
all contents.

1 A screencast demonstrating the tool is available at www.emoflon.org

www.emoflon.org

Triple Graph Grammars (TGGs)[13] are a formally founded rule-based bidi-
rectional model transformation language, and were used in the CME research
project to realize the synchronization of models formulated in different modelling
languages. We have identified TGGs to be the typical performance bottle-neck
in such transformation chains [11] meaning that improving the efficiency (i.e.,
achieving polynomial runtime in model size) of TGG-based transformations is
a current and crucial challenge. To the best of our knowledge, all TGG tools
strive to guarantee efficiency by posing certain restrictions on the class of sup-
ported TGGs. The specification for the synchronization tool in the CME research
project consists of about a 100 TGG rules, which means that manually checking
all such restrictions is practically infeasible. For specifications of this size and
larger, an automated and comprehensive static analysis of all required restric-
tions becomes crucial.

A common strategy to achieve efficiency is to demand confluence, meaning
that choices between applicable TGG rules do not influence the final result of
the transformation. This improves efficiency as wrong choices that might lead to
dead ends, i.e., states where no rule is applicable but the transformation is not
yet complete, are no longer possible [8].

In many application scenarios such as for the CME research project, however,
the required transformations often have an inherent degree of freedom, which
cannot always be restricted at design time to ensure confluence. In the CME
research project, for example, the end-user (or a configuration module) must
guide the synchronization appropriately, making choices based on case-by-case
preferences. Adjusting the underlying TGG and rebuilding the synchronization
tool for each possible set of choices is simply infeasible.

To support non-confluent TGGs and nonetheless ensure efficiency without
compromising formal properties, the TGG tool eMoflon (www.emoflon.org) [12]
determines a sequence in which source elements can be translated based only on
source context dependencies of the TGG rules. This strategy has been shown to
be efficient in [9], if a local choice of the next source element to be translated
cannot lead to a dead end in the transformation. “Local” means that the entire
source model is never searched globally for the next translatable element.

There is currently no static analysis for this required property of non-confluent
TGGs referred to as local completeness [9], meaning that an exception is thrown
whenever the condition is violated at runtime. As only suitable tests can reveal
this, local completeness violations are currently one of the most common and
frustrating mistakes made by eMoflon users, especially beginners.

Our main contribution in this paper is to formulate the condition for local
completeness as a set of graph constraints, thus providing a constructive formal-
ization and a static analysis for local-completeness of non-confluent TGGs. We
apply well-known techniques, e.g., for transforming constraints to sufficient and
necessary application conditions [4], which have already been shown in previous
work [1,8] to be applicable in general to TGGs.

www.emoflon.org

The paper is structured as follows: in Sect. 2 we provide a running example
and recall basic definitions and results for TGGs. Our main contribution is pre-
sented in Sect. 3, providing a static analysis for non-confluent TGGs. Section 4
gives an overview of related approaches, while Sect. 5 concludes the paper with
a brief summary and discussion of future work.

2 Running Example and Preliminaries

As a running example, we consider a Platform-Independent Model (PIM) to
Platform-Specific Model (PSM) transformation from the CME domain. An ex-
ample is depicted in Fig. 1. The PIM is represented as a Cutter Location Source
(CLS) file, which specifies the manufacturing process as a series of operations.
CLS files can be executed in a simulator that visualizes the specified manufac-
turing process. The PIM is used to generate machine-specific G-code, depicted as
the PSM to the right of Fig. 1. G-code programs can be executed on appropriate
machines that realize the manufacturing process. In practice, G-code programs
are sometimes optimized manually. For example, the sequence of operations used
to move the machine to its initial position can be shortened for a particular ma-
chine and set-up. Manual updates to G-code programs that can be expressed on
the PIM level must be propagated back to CLS as they would otherwise be over-
written and lost during code generation. This propagation must be incremental
as CLS files contain information, which is discarded during code generation and
cannot be regained from G-code.

In our example, we consider only the most basic operation used to move the
tip of the current machine. It is specified in two different ways: (i) the machine
performs a linear interpolation between its current and the target location main-
taining a constant feedrate (speed), and (ii) the machine is free to realize the
movement to be as rapid as possible. In the CLS syntax, this basic operation is
specified via a GOTO/ X, Y, Z operation, where (X, Y, Z) are the coordinates
of the target location. As a safety feature, an additional RAPID command is
required to indicate that the next GOTO is to be executed in rapid mode. After
such a “rapid” GOTO, the machine reverts to the default feedrate mode.

In G-code, a series of “G” switches are used to influence how the current
and all following operations are executed by the machine. The switches G0 and
G1 correspond to rapid and feedrate mode, respectively. In contrast to the CLS

�	��

�
�
����������
�
�
����������
�
�
����������

���������������
�������
���������������

Simulator Manufacturing
Machine

PIM: Cutter Location
Source (CLS) file

PSM: G-Code Program

code generation

incremental update

Fig. 1. An example of a PIM-to-PSM transformation in the CME domain

format, G-code is optimized for efficient interpretation, only requiring the actual
changes from the previous line to be specified on each new line. On the second
line, for example, G1 X135 is equivalent to G1 X135 Y51, G1 X135 Z26, or G1 X135
Y51 Z26. The G-code program depicted in Fig. 1 is, therefore, only one of 32
correct G-code programs! Is this flexibility required? Why not enforce the most
efficient G-code program as depicted in Fig. 1? The reason is that efficiency
is sometimes traded for maintainability of the templates used to generate G-
code programs, i.e., values are repeated so that transformation templates can be
reused in a different context. Before we specify TGG rules that appropriately
capture this degree of freedom of the transformation, we have to establish a basic
understanding of models, metamodels, and rule-based model transformation.

2.1 Consistency Specification with Triple Graph Grammars

In line with the algebraic formalization according to [3], models and metamodels
are formalized as typed graphs and type graphs, respectively:

Definition 1 (Graph and Graph Morphism).
A graph G = (V,E, s, t) consists of finite sets V of nodes and E of edges, and
two functions s, t : E → V that assign each edge source and target nodes.
A graph morphism h : G → G′, with G′ = (V ′, E′, s′, t′), is a pair of functions
h := (hV , hE) where hV : V → V ′, hE : E → E′, hV ◦s = s′◦hE ∧ hV ◦t = t′◦hE.

Definition 2 (Typed Graph and Typed Graph Morphism).
A type graph is a graph TG = (VTG, ETG, sTG, tTG).
A typed graph is a pair (G, type) of a graph G together with a graph morphism
type: G → TG. Given (G, type) and (G′, type′), g : G → G′ is a typed graph
morphism iff type = type′ ◦ g.
L(TG) := {G | ∃ type : G→ TG} denotes the set of all graphs of type TG.

Remark 1 (The Category of Typed Graphs)
Typed graphs and typed graph morphisms form a category Graphs with the set
M of injective typed graph morphisms (cf. [3]).

Remark 2 (Attributed Typed Graphs with Inheritance)
As we formulate our definitions and theorems on the level of typed graphs and
typed graph morphisms, they can be extended to attributed typed graphs with
node type inheritance in a straightforward manner.

Next, rule-based model transformation is formalized, where rules have pre- and
post-conditions with constraints that either hold globally for all models, or are
used to guard rule application (as application conditions). As we only require
creating (monotonic) rules for TGGs, the following definitions from [3] are thus
simplified appropriately.

Definition 3 (Rule, Graph Grammar, and Derivation).
A rule is a typed graph morphism r : L → R ∈ M, where TG is a type graph
and L,R ∈ L(TG). A graph grammar is a pair GG = (TG,R) of a type graph
TG and a finite set R of rules.

L R

PO

G G0

m m0

r

g

A direct derivation G
r@m
=⇒ G′ (or G

r
=⇒ G′) is given by a pushout

in Graphs (cf. diagram to the right).

A derivation G
∗

=⇒ G′ of length n ≥ 0 in GG = (TG,R) is a

sequence of n direct derivations G
r1=⇒ G1

r2=⇒ · · · rn=⇒ G′, with
r1, r2, · · · , rn ∈ R. In case of length n = 0, we have G′ = G.
L(GG,G∅) := {G ∈ L(TG) | G∅ ∗

=⇒ G} denotes the language generated by a
graph grammar GG, where G∅ ∈ L(TG) denotes the start typed graph.
L(GG) := L(GG, ∅), where ∅ is the empty typed graph.

Definition 4 (Conditional Constraints).
A conditional constraint c is a typed graph morphism c : P → C.
For conditional constraints ci with i ∈ I for some index set I, ∨i∈Ici is also a
conditional constraint.
A typed graph G satisfies a conditional constraint c, denoted by G |= c, if either
c : P → C and ∀p : P → G ∈M, ∃q : C → G ∈M such that q ◦ c = p, or
c = ∨i∈Ici and ∃i ∈ I : G |= ci.
A graph grammar GG = (TG,R) satisfies a conditional constraint c, denoted by

GG |= c, if for all derivations G
∗

=⇒ G′ with G ∈ L(GG,G∅), G′ |= c.

Definition 5 (Conditional Application Conditions).
A conditional application condition over a typed graph L is a pair ac = (a,∨i∈Ici),
where a : L→ P and ci : P → Ci with i ∈ I, for some index set I.
A typed graph morphism m : L → G ∈ M satisfies a conditional application
condition ac, denoted by m |= ac, if ∀p : P → G ∈ M with p ◦ a = m, ∃i ∈ I
and qi : Ci → G ∈M such that qi ◦ ci = p.
A conditional application condition for r : L → R is a conditional application
condition over L.
A rule r with a set of conditional application conditions AC is denoted by (r,AC).
A graph grammar GG = (TG,R) is a graph grammar without conditional appli-
cation conditions, if all rules in R do not have conditional application conditions.
A conditional application condition ac is trivial, i.e., always satisfied, if ∃i ∈ I
such that ci : P → P is the identity.
A Negative Application Condition (NAC) ac = (a,∨i∈Ici) is a conditional ap-
plication condition where a : L→ P and I is the empty index set.
A NAC is, therefore, simply denoted by a typed graph morphism a : L→ P .

Given a TGG and a set of global constraints that must hold for all models, ap-
propriate application conditions can be automatically generated for every TGG
rule, ensuring that the constraints are never violated.

Fact 1 (Construction of Application Conditions from Constraints)
Given a graph grammar GG = (TG,R) without conditional application condi-
tions, and a set C of conditional constraints.
There is a construction A producing a set of rules with conditional application
conditions R′ = A(GG, C) = {(r,AC) | r ∈ R} s.t. ∀c ∈ C : GG′ |= c, with
GG′ = (TG,R′). The constructed conditional application conditions are suffi-
cient and necessary.

L R

P

C

P 0

Ci

R + P

D

Di

c

di

PO

PO

PO

r

a

r0
a0

p

p0

c0

ci

d0i

Proof. This is a special case of Thm. 7.23 in [3],
proven on the basis of adhesive HLR categories, here
for conditional constraints and monotonic rules.
The diagram to the right shows the main steps of
the construction, namely: (1) constructing all possi-
ble gluings R+P of the right-hand side R of the rule
and the premise P of each constraint, (2) produc-
ing for each gluing a post-condition via a pushout,
where Di represents all possible further gluings of
elements in D, and finally (3) constructing a pre-
condition from the post-condition by reversing the
application of the rule (determining pushout complements P ′ and Ci). If this is
not possible (i.e., a pushout complement does not exist) then the post-condition
does not result in an equivalent pre-condition.

The central idea with TGGs [13,9] is to specify the consistency of source and tar-
get models by providing rules that define a language of consistent source and tar-
get models, connected by a correspondence model. Rules in a TGG thus describe
the simultaneous evolution of triples of source, correspondence and target mod-
els, from which various operational transformations such as forward/backward
transformations can be automatically derived. In the following, we denote typed
triple graphs with single letters, e.g., G, which consist of typed graphs with an
index X ∈ {S,C, T}, e.g., GS , GC , GT .

Definition 6 (Typed Triple Graph and Typed Triple Morphism).

A triple graph G = GS
σG← GC

τG→ GT consists of graphs GS , GC and GT , and
graph morphisms σG : GC → GS, τG : GC → GT .

A triple morphism g = (gS , gC , gT) : G→ G′, G′ = G′S
σG′← G′C

τG′→ G′T
is a triple of graph morphisms gX : GX → G′X , X ∈ {S,C, T},
s.t. gS ◦ σG = σG′ ◦ gC and gT ◦ τG = τG′ ◦ gC .
Given a triple graph TG = TGS

σTG← TGC
τTG→ TGT called type triple graph, a

typed triple graph is a pair (G, type) of a triple graph G and triple morphism
type : G→ TG.
Analogously to Def. 2, L(TG) denotes the set of all triple graphs of type TG.
Given (G, type), (G′, type′) ∈ L(TG), a typed triple morphism g : G → G′ is a
triple morphism such that type = type′ ◦ g.
The source-correspondence graph sc(G) of typed triple graph GS

σG← GC
τG→ GT

is defined as GS
σG← GC

τG→ Im(τG), where Im(τG) ⊆ GT is the codomain of τG.
Given g : G → G′ the source-correspondence morphism sc(g) : sc(G) → sc(G′)
is defined by sc(g) = (gS , gC , Im(gC)) with Im(gC) = τG′ ◦ gC ◦ τG−1
(τG
−1 exists as it is bijective).

Example 1. Figure 2 depicts a possible type triple graph and a typed triple
graph, representing the consistent pair of PIM and PSM models of our running
example (Fig. 1). A UML-like syntax is used and attributes (for coordinates in
the running example) are excluded for presentation purposes. Finally, the types
of edges in the typed triple graph are omitted as they can be uniquely determined

4:Rapid
1:Op

2:Op
5:Feed3:Op
6:Feed

:Com

:Com

:Com

:G0

:G1

:O2C

:O2C

:O2C

:M2S

:M2S
:M2S

Op O2C Com

Modus SwitchM2S

Rapid Feed G0 G1

next
switchmodus

next

src

src trg

trg

Fig. 2. A type triple graph (left), and a typed triple graph (right)

from the type triple graph. According to the type triple graph, a CLS model
is represented as an ordered sequence of operations (Op), each equipped with
a Modus, which can be either of type Rapid or Feed. The CLS specification in
Fig. 1 is, therefore, represented by a sequence of three Ops: the first with a Rapid
modus, and the subsequent two with Feed modi (the kind of CLS operation is
given by the connected Mode of the Op). Similarly, a G-code model is represented
by an ordered sequence of commands (Com) each equipped with a Switch either
of type G0 or G1. The G-code model for the running example is a sequence of
three Coms, where the first one has a G0 switch and the other two “share” a
G1 switch. The sharing of the G1 switch represents the omission of unchanged
information (the switch) on the last line of the G-code program (Fig. 1). Finally,
the correspondence model consists of O2C and M2S links connecting related
source and target elements.

As not all typed graph triples represent consistent pairs of CLS and G-code mod-
els, TGG rules are, therefore, required to further specify the actual language of
meaningful CLS and corresponding G-code models. Due to the following Fact. 2,
rules, derivations and graph grammars can be defined as in Def. 3, but for typed
triple graphs and typed triple morphisms.

Fact 2 (The Category of Typed Triple Graphs)
The class of all typed triple graphs and typed triple morphisms form a category
called TriGraphs with the set M of injective typed triple morphisms.

Proof. For the proof we refer the interested reader to Fact. 4.18 in [3].

Definition 7 (Triple Rules, Triple Graph Grammar).
Let TG be a type triple graph, and L,R ∈ L(TG).
A typed triple morphism r : L→ R is a triple rule if rS , rC , and rT are rules.
A triple graph grammar TGG = (TG,R) consists of a type triple graph TG and
a finite set R of triple rules.
The source-correspondence grammar sc(TGG) of a triple graph grammar
TGG = (TG,R) is a pair (sc(TG), sc(R)), where sc(R) = {sc(r) | r ∈ R} is
the respective set of source-correspondence morphisms (rules).
A conditional application condition ((aS , aC , aT),∨i∈Ici) is a conditional source
application condition if aC and aT are identities (conditional target and corre-
spondence application conditions are defined analogously).

:Op :Com:O2C
++ ++ ++

ComRule

:Rapid

:Op :Com

:G0

:O2C

:M2S
++ ++ ++ ++++

G0Rule

:Op :Com:O2C

:Feed
++

:M2S
++

:G1
++

:Op

:Rapid

++++

G0G1Rule

:Com

:G0:M2S

:O2C
:Rapid

:Op :Com

:G0

:O2C

:M2S
++ ++ ++++

:Com

G0G0Rule

:Feed

:Op :Com

:G1

:O2C

:M2S
++ ++ ++++

:Com

G1G1Rule

:Op

:Op :Com

:Com

:O2C

:O2C
++ ++ ++ ++++

ComComRule

Fig. 3. Triple rules for running example

Example 2. The six TGG rules for the running example are depicted in Fig. 3.
Every triple rule r : L→ R is depicted in a compact syntax by denoting created
elements, i.e., R\L, with a ++ markup (and by displaying them in green). Com-
Rule creates an Op and a Com connected by an O2C correspondence, depicted
as a hexagon to improve readability. ComComRule also creates a corresponding
pair of Op and Com elements, requiring a preceding triple as context to which
the new elements are connected. The remaining rules handle the creation of cor-
responding Modi and Switches. The rules show that we have decided to allow
possibly redundant repetitions of G0 switches with G0Rule, as well as reusing
the G0 switch from the previous Com with G0G0Rule. This degree of freedom is,
therefore, not restricted by the TGG and can be decided upon at runtime. For
G1 switches, however, we have chosen to forbid redundant repetitions already at
design time, i.e., a new G1 switch can only be created with G0G1Rule if it is im-
possible to reuse the G1 switch of the previous Com with G1G1Rule. The running
example (Fig. 2) is consistent as it can be created by the following derivation:
ComRule→ G0Rule→ ComComRule→ G0G1Rule→ ComComRule→ G1G1Rule.

2.2 Operationalization of Triple Graph Grammars

Although TGG rules can be used directly to generate consistent source and
target models, e.g., for testing purposes, TGGs are often operationalized to de-
rive unidirectional forward and backward transformations [13,9]. To this end, a
forward rule is derived from each TGG rule according to the following definition.

Definition 8 (Derivation of Forward Rules).
A TGG = (TG,R) without conditional application conditions can be forward
operationalized by deriving FWD(TGG) := (TG, RF), where RF consists of
forward rules. A forward rule (rF : FL → FR,NF) for triple rule r ∈ R is
defined by the diagram below (the triangle denotes a set of NACs):

LS

RS

LC

RC

LT

RT

�L

rS

⌧L

rT

�R ⌧R

rS � �LLC

RC

LT

RT

⌧L

rT

�R ⌧R

RS

RS

rC rC

L

R

FL

FR

r

=

= =

=

NF

idrF

NF consists of correspondence NACs (id, nC , id) : FL → (RS
σFN← NC

τFN→ NT)
for every node vC ∈ VRC

\ VLC
(cf. Def. 7). NC and NT are extensions of LC

and LT by vC and τRC
(vC), respectively.

Remark 3 (Avoiding Conflicts in Forward Rules)
For presentation purposes, we assume that TGG rules are always constructed
so that every created source and target element is connected to at least one new
correspondence element. With this assumption, forward rules with correspon-
dence NACs derived according to Def. 8 “translate” every source element ex-
actly once and simplify the formalization as compared to introducing translation
attributes [8], or bookkeeping [9]. To avoid unnecessary create/forbid conflicts,
NF can be further extended by application conditions to avoid obvious dead-ends
when applying forward rules. We only give an intuition of how this works with
our running example and refer to [9,8] for a description of filter NACs.

Example 3. Figure 4 depicts the forward rules derived from the triple rules in
Fig. 3, where labels indicate the original triple rules (e.g., ComFwdRule derived
from ComRule). Forward rules “translate” the source elements that are created
in the respective triple rules by attaching correspondence elements to them, but
only if the correspondence elements do not already exist, i.e., the elements have
not already been translated. Similarly, context elements of source models in triple
rules are required to be already translated in forward rules by demanding an
attached correspondence element. ComFwdRule, for example, “translates” an Op
by connecting it to a new O2C and a Com in the target model. This should only
be possible if the Op has not been translated already (hence the correspondence
NAC denoted here as a crossed out (forbidden) element). An additional source
NAC in ComFwdRule forbids the existence of a previous Op, i.e., this forward
rule can translate only the first Op in a sequence of connected Ops. If this is not
prevented, the incoming edge from a previous Op would no longer be translatable
as the original triple rules cannot create such an edge between two existing Ops.
This is automatically detected and prevented by generating a source “filter”
NAC (cf. Remark 3).

:Op :Com:O2C
++ ++

ComFwdRule

:Op :O2C

:Op

:Op :Com

:Com

:O2C

:O2C
++ ++ ++

ComComFwdRule

:O2C

:Rapid

:Op
:Com

:G0

:O2C

:M2S
++ ++

:Com

G0G0FwdRule

:M2S

:Rapid

:Op :Com

:G0

:O2C

:M2S
++ ++ ++

G0FwdRule

:M2S

:Feed

:Op
:Com

:G1

:O2C

:M2S
++ ++

:Com

G1G1FwdRule

:M2S

:Op :Com:O2C

:Feed :M2S
++

:G1
++

:Op

:Rapid

++

G0G1FwdRule

:Com

:G0:M2S

:O2C

:M2S

Fig. 4. Derived forward rules for the running example

The forward rule ComComFwdRule requires a translated previous Op by de-
manding an O2C as context, which can only exist if the connected Op has already
been translated. All other forward rules are constructed analogously.

3 Efficient Model Transformation with TGGs

In addition to forward rules, a control algorithm is required to determine in what
order source elements can be translated by forward rules. The challenge is to
accomplish this translation efficiently without compromising formal properties.
This has been shown in [9] for the algorithm depicted in Alg. 1. The algorithm
consists of a main loop on Line 4 where a derivation with a source-correspondence
rule is searched for. If none can be found, the loop is terminated and the resulting
triple graph is expected to be consistent with respect to the TGG (Line 11). If
this is not the case, an error is thrown on Line 12. Every derivation with a source-
correspondence rule is extended to a derivation with a forward rule on Line 5.
Note that this is done locally by extending m and not searching the whole triple
graph for some suitable m′ globally. If this extension is not possible, an error is
thrown on Line 8. For non-confluent TGGs, the algorithm requires a choice (user
or runtime configuration module) in the procedure chooseAndApplyFWDRule.

Algorithm 1 TGG-Based Forward Transformation

Require: TGG = (TG,R) without application conditions, ∃G ∈ L(TGG).

1: procedure FwdTransform(TGG,GS
∅← ∅ ∅→ ∅) : GS ← GC → GT

2: TGGF = (TG,RF)← FWD(TGG)

3: G← (GS
∅← ∅ ∅→ ∅)

4: while ∃ (G
sc(r)@m

=⇒ H) in sc(TGGF), r : FL→ FR ∈ RF do

5: if ∃(G r′@m′
=⇒ H ′) in TGGF , r

′ : FL′ → FR′ ∈ RF :
6: ∃ e : sc(FL)→ FL′ ∈M,m = m′ ◦ e then
7: G← chooseAndApplyFwdRule(m)
8: else Error: No applicable forward rule at m
9: end if

10: end while
11: if G ∈ L(TGG) then return G
12: else Error: No applicable source-correspondence rule sc(r) for G
13: end if
14: end procedure

In the worst case, every source element is visited exactly once in the main loop,
i.e., as often as there are elements in the source model (nS times). Each time,
a source-correspondence derivation must be determined and extended. This is
bounded by |RF | · nk, where k is the number of elements of the largest forward
rule, and n is the size of the resulting triple. With nk as the upper bound for
pattern matching, the resulting complexity is O(nS · |RF | ·nk) = O(nk) (cf. [9]).

Our goal in this paper is to provide a static analysis for a class of TGGs for
which this algorithm never fails (as on Lines 8 and 12). To avoid non-applicability
of source-correspondence rules to not fully translated graphs (error on Line 12),

we have to guarantee that every derivation G
∗

=⇒ H in sc(TGGF) can be pro-
longed if G 6∈ L(TGG), i.e., not all source elements have been translated. This
is a well-known property that follows from confluence (of sc(TGG) in this case)
and can be checked statically via a critical pair analysis (cf., e.g., [3]), i.e., with
well-known techniques already applied in the context of TGGs as in [8].

Definition 9 (Confluence, Source-Correspondence Confluence).

A pair P1
∗⇐= K

∗
=⇒ P2 of derivations in a graph grammar is confluent if there

exists an X together with derivations P1
∗

=⇒ X and P2
∗

=⇒ X. A graph grammar
is confluent if all pairs of its derivations are confluent. A triple graph grammar
TGG is source-correspondence confluent if sc(TGG) is confluent.

To prevent dead ends (error on Line 8), it must be possible to extend every
source-correspondence derivation locally to a forward derivation. The following
definition formulates a TGG property that prevents the errors thrown in Alg. 1.

Definition 10 (Efficiency of Triple Graph Grammars).
Let TGG = (TG,R) without conditional application conditions and
FWD(TGG) = (TG, RF). TGG is forward efficient for G ∈ L(TGG) if:
(1) It is source-correspondence confluent, and with TGGF = (TG,RF)

(2) ∀G′ ∈ L(TGGF , GS
∅← ∅ ∅→ ∅) : ∃(G′ sc(r)@m=⇒ H) with r : FL→ FR ∈ RF

⇒ ∃(G′ r
′@m′

=⇒ H ′), r′ : FL′ → FR′ ∈ RF such that m′ extends m, i.e.,
∃ e : sc(FL)→ FL′ ∈M such that m = m′ ◦ e.

Example 4. Considering the translation of the CLS model in Fig. 2, not all its
direct derivations with source-correspondence rules can be extended locally to
direct derivations with forward rules. For example, indicating the source elements
translated by each application after the @ sign, the sequence sc(ComFwdRule)-
@1:Op →1 sc(G0FwdRule)@4:Rapid →2 sc(ComComFwdRule)@2:Op →3 sc(Com-
ComFwdRule)@3:Op →4 sc(G1G1FwdRule)@6:Feed →5 sc(G0G1FwdRule)@5:Feed
is a derivation of source-correspondence rules that translates the CLS model.
However, the fifth direct derivation sc(G1G1FwdRule)@6:Feed cannot be extended
locally to a direct derivation with any forward rule. This is because the forward
translation of 6:Feed before 5:Feed is not possible, although “parsing” them, i.e.,
the source-correspondence translation is. When translating 6:Feed, G1G1FwdRule
requires a G1 switch, which can only be present if 5:Feed has already been
translated. In general, this hidden dependency on 5:Feed cannot be accounted
for when parsing the source model with source-correspondence rules. The TGG,
therefore, does not fulfil the efficiency requirement of Def. 10 and can lead to a
runtime error in Alg. 1. The formulation of Condition (2) in Def. 10, however,
can only be checked at runtime. The following definition introduces the concept
of a local completeness constraint, which can be statically checked, leading to a
condition that will be shown to be sufficient for Condition (2) in Def. 10.

Definition 11 (Local Completeness Constraints, Local Completeness).
Let TGG = (TG, R) be a triple graph grammar without conditional application
conditions, TGGF = FWD(TGG) = (TG, RF).
For a forward rule rF : FL → FR ∈ RF , the set lcc(rF) of local completeness
constraints is defined as:

lcc(rF) := {c ∈M | ∃ r′F : FL′ → FR′ ∈ RF , c : sc(FL)→ FL′}
The local completeness constraint lcc(TGGF) is defined as:

lcc(TGGF) := ∧rF∈RF
(∨c∈lcc(rF)c)

TGGF is locally complete if TGGF |= lcc(TGGF).

:Feed

1:Op
3:Com

:G1

2:O2C

:Com

1:Op 3:Com2:O2C

:Feed

:Op

:Rapid

:Com

:G0:M2S

:O2C
FL0

FL

c0c

:Feed

1:Op 2:O2C

sc(FL)

3:Com

Fig. 5. Set of local completeness constraints lcc(G1G1FwdRule)

Example 5. Figure 5 depicts the set {c, c′} of local completeness constraints for
G1G1FwdRule, i.e., lcc(G1G1FwdRule). In the middle, the premise of the con-
straint is constructed as the source-correspondence graph sc(FL) of the left-
hand side FL of G1G1FwdRule. The two constraints result from the two possible
conclusions constructed by determining all left-hand sides of forward rules (FL
of G1G1FwdRule itself, and FL′ of G0G1FwdRule) into which this premise can be
injectively mapped. At least one of these constraints must be fulfilled, i.e., the
local completeness constraint lcc(TGGF) is a disjunction of all such constraints.
For the running example, the constraint demands that every occurrence of the
source-correspondence context of G1G1FwdRule imply the context of at least one
forward rule, i.e., in this case the context of G1G1FwdRule or of G0G1FwdRule.
This means that an operation has to be already translated into a command with
a preceding G0- or G1-command, before the feed of the operation is translated.

Local completeness constraints can be transformed to application conditions
using the construction given in Fact. 1. In this manner, the forward rules of a
TGG can be statically checked for local completeness by demanding that only
trivial application conditions are generated. This idea is stated in the following.

Corollary 1 (Enforcing Local Completeness).
Let TGG = (TG,R) be a triple graph grammar without conditional application
conditions and TGGF = FWD(TGG) = (TG, RF). For every forward rule
rF : FL→ FR ∈ RF , there is a construction A producing application conditions
A(lcc(TGGF), rF). (TG,R′F) with forward rules with the constructed application
conditions (rF , A(lcc(TGGF), rF)) is locally complete.

Proof. Follows directly from Fact. 1 as the given construction has been shown
in [1] to be applicable for TriGraphs.

1:Op

:Op 5:Com:O2C

L

1:Op

:Op 5:Com

3:Com

:O2C

2:O2C

R

:Feed

1:Op
3:Com

:G1

2:O2C

4:Com

C

1:Op

:Op 5:Com

3:Com

:O2C

2:O2C

R+P

:Feed
:Feed

1:Op 2:O2C

P

3:Com

1:Op

:Op 5:Com

3:Com

:O2C

2:O2C

D

:Feed

4:Com

:G1

1:Op

:Op 4_5:Com

3:Com

:O2C

2:O2C

D'

:Feed :G1

1:Op

:Op 5:Com:O2C

C1

:Feed :G1

1:Op

:Op 5:Com:O2C

P'

:Feed
c

ComComFwdRule

a

c1

d'

d

c'

p'

p

a'

c2

1:Op

:Op 5:Com:O2C

C2

:Feed

:Rapid :G0:M2S

Fig. 6. Construction of local completeness application condition for ComComFwdRule

Example 6. To check if the TGG for the running example is locally complete, the
application condition (a, c1∨c2) depicted in Fig. 6 is constructed for the forward
rule ComComFwdRule, from the local completeness constraints lcc(G1G1Fwd-
Rule) (cf. Fig. 5). The steps of the construction are only shown for c1. As the
generated application condition is not trivial, the forward rules of the TGG are
not locally complete. For the running example, the application condition states
that if an Op has a Feed, then it can only be translated with ComComFwdRule, if
the Modus of the previous Op has already been translated. Note that c1 is a bit
subtle, only demanding that a G1 be present and not caring how it is connected.
The problematic sequence, obtained by translating 6:Feed with ComComFwdRule
before 5:Feed, violates c1 as the Com of the previous Op does not yet have a G1.

We can now present our main contribution, a static analysis to check forward
efficiency as defined in Def. 10 using Algorithm 2.

Theorem 1 (Static Analysis of Non-Confluent TGGs).
TGG = (TG, R) is forward efficient if LCA(TGG) = true.

Proof. ∀G ∈ L(TGG), we must show forward efficiency for TGG (Def. 10):
(LCA(TGG) = true) =⇒ TGGF = FWD(TGG) is source-correspondence conflu-
ent due to the check on Line 3 of Alg. 2, and is locally complete as the generated
application conditions for local completeness are trivial (Line 5 of Alg. 2).

Let sc(r) : SL→ SR ∈ sc(RF), r ∈ RF , with TGGF = (TG,RF).

∀G′ ∈ L(TGGF , GS
∅← ∅ ∅→ ∅) : ∃ (G′

sc(r)@m
=⇒ H)

Cor.1
=⇒ ∃ r′ : FL′ → FR′ ∈ RF ,∃ c : SL→ FL′ ∈ lcc(r) : G′ |= c
Def.4
=⇒ ∃m′ : FL′ → G′,m = m′ ◦ c Def.3=⇒ ∃ (G′

r′@m′

=⇒ H ′) in TGGF
Def.10
=⇒ TGGF is forward efficient. ut

Algorithm 2 Local Completeness Analysis (LCA)

Require: TGG = (TG,R) without conditional application conditions.
1: procedure LCA(TGG) : Boolean
2: TGGF ← FWD(TGG)
3: if isSourceCorrConfluent(TGGF) then
4: ACLC ← constructLocalCompAppConditions(TGGF)
5: return isTrivial(ACLC)
6: else return false
7: end if
8: end procedure

Example 7. The TGG for the running example can be made forward efficient by
stating the hidden dependency on the previous modus explicitly in ComComRule.
The corrected version of this rule is depicted to the left of Fig. 7. To the right,
the derived application condition (a∗, c1∗ ∨ c2∗) is now trivial, i.e., is always
fulfilled as a Switch is either G0 or G1, meaning the previous problem is solved.

a*

c1*
1:Op

:Op :Com:O2C

C1*

:Feed

:Mode 2:G1:M2S

1:Op

:Op :Com:O2C

P*

:Feed

:Mode 2:Switch:M2S

1:Op

:Op :Com:O2C

L*

:Mode 2:Switch:M2S

1:Op

:Op :Com:O2C

C2*

:Feed

:Mode 2:G0:M2S

c2*:Op

:Op :Com

:Com

:OToC

:OToC
++ ++ ++ ++++

ComComRule*

:Mode :Switch:M2S

Fig. 7. Corrected TGG rule and trivial application condition for local completeness

4 Related Work

Schürr discusses the challenge of dealing with decision points in a TGG-based
transformation process proposing two solutions in [13]: backtracking wrong deci-
sions, or demanding confluence. For efficiency, the latter is the favoured strategy
taken by all existing TGG approaches we are aware of. Hermann et al. [8] per-
form a critical pair analysis of forward rules and generate filter NACs to resolve
critical pairs arising from obviously misleading (backtracking) paths. All other
critical pairs (conflicts) must either be manually checked to be confluent, or re-
moved by adjusting the TGG rules as required for confluence. More restrictively,
Giese et al. [6] require confluence without filtering backtracking paths automat-
ically. Although OCL constraints can be used to resolve critical pairs, this is
a manual process required for both forward and backward transformations and
it remains unclear how such OCL constraints must be restricted to guarantee
formal properties. The TGG approach taken by Greenyer and Rieke [7] does not
explicitly require confluence but, in case of decision points, the approach may
fail in finding a valid transformation result, i.e., completeness is not guaranteed
for non-confluent TGGs. Although confluence avoids backtracking (i.e., is used
to show efficiency), solves completeness problems, and can be statically checked
(cf. [8,6,7]), it can be too restrictive in practical scenarios (as in our running
example) as it forces a TGG to be a bijection (a function in both directions).

The TGG algorithm in [9] is the only efficient and complete approach we
are aware of that embraces non-confluent TGGs requiring local completeness
and only source-correspondence confluence, as discussed in this paper. As the
results in [9] do not provide any means to analyze this restriction statically, our
contribution fills this gap by exploiting a constraint-based formalization of the
required condition, making it amenable to well-known techniques.

Alternatives to a static analysis include analyses based on TGG rules and a
concrete input model triple such as the dangling edge check in [9], and checks
based on a precedence graph as presented in [10]. Although such analyses must be
repeated for every new input model, they allow violations of properties that are
not relevant for the current input model. Finally, using tools such as Groove [5]
or Henshin [2], complex properties can be checked by exploring the state space
generated by applying the rules of a TGG. This allows for checking arbitrarily
complex conditions but suffers from the usual problem of state space explosion.

5 Conclusion

Based on our running example, taken from an industrial project in the domain
of concurrent manufacturing engineering, we have argued that support for non-
confluent TGGs is required for many practical scenarios. With the proposed
static local completeness analysis, users can model degrees of freedom in con-
sistency relations with TGGs, integrating runtime (user) interaction to decide
between multiple applicable rules without compromising formal properties.

A limitation of our static analysis is that it is restricted to TGGs without
initial application conditions. To handle constraints in the source and target

metamodels, however, such application conditions are necessary and must also
be taken into account. Further tasks include providing corresponding tool sup-
port to fully automate the proposed static analysis. This requires addressing
the challenge of efficiently generating application conditions from constraints,
filtering out redundant results, and presenting the results in a helpful manner.

References

1. Anjorin, A., Schürr, A., Taentzer, G.: Construction of Integrity Preserving Triple
Graph Grammars. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.)
ICGT 12. LNCS, vol. 7562, pp. 356–370. Springer (2012)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 10, LNCS, vol. 6394, pp. 121–135.
Springer (2010)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series,
Springer (2006)

4. Ehrig, H., Habel, A., Ehrig, K., Pennemann, K.H.: Theory of Constraints and
Application Conditions : From Graphs to High-Level Structures. Fundamenta In-
formaticae 74(1), 135–166 (2006)

5. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and Analysis Using GROOVE. STTT 12 14(1), 15–40 (2012)

6. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. Tech. Rep. 37, Hasso-
Plattner Institute (2010)

7. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transfor-
mation of Sequence Diagram Specifications to Timed Game Automata. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 11. LNCS, vol. 7233, pp. 222–237. Springer
(2011)

8. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of
Correct and Complete Model Transformations Based on Triple Graph Grammars.
In: Bézivin, J., Soley, M.R., Vallecillo, A. (eds.) MDI 10. vol. 1866277, pp. 22–31.
ACM Press (2010)

9. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Schürr, A., Lewerentz, C.,
Engels, G., Schäfer, W., Westfechtel, B. (eds.) Festschrift Nagl, LNCS, vol. 5765,
pp. 141 – 174. Springer (2010)

10. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient Model Synchronization
with Precedence Triple Graph Grammars. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) ICGT 12. LNCS, vol. 7562, pp. 401–415. Springer, Bremen,
Germany (2012)

11. Leblebici, E., Anjorin, A., Schürr, A.: A Catalogue of Optimization Techniques
for Triple Graph Grammars. In: Fill, H.G., Karagiannis, D., Reimer, U. (eds.)
Modellierung 14. LNI, vol. 225, pp. 225–240. GI (2014)

12. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon. In: ICMT
14. LNCS, Springer (2014)

13. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 94. LNCS, vol. 903, pp. 151–163.
Springer (1995)

	A Static Analysis of Non-Confluent Triple Graph Grammars for Efficient Model Transformation

