Model-Driven Development of Mobile
Applications Allowing Role-Driven Variants*

Steffen Vaupel®, Gabriele Taentzer!, Jan Peer Harries', Raphael Stroh!,
René Gerlach?, Michael Guckert?

L Philipps-Universitat Marburg, Germany
{svaupel,taentzer,harries,strohraphael}@informatik.uni-marburg.de
2 KITE - Kompetenzzentrum fiir Informationstechnologie,
Technische Hochschule Mittelhessen, Germany
{rene.gerlach,michael.guckert}@mnd.thm.de

Abstract. Rapidly increasing numbers of applications and users make
the development of mobile applications to one of the most promising
fields in software engineering. Due to short time-to-market, differing plat-
forms and fast emerging technologies, mobile application development
faces typical challenges where model-driven development can help. We
present a modeling language and an infrastructure for the model-driven
development (MDD) of Android apps supporting the specification of dif-
ferent app variants according to user roles. For example, providing users
may continuously configure and modify custom content with one app
variant whereas end users are supposed to use provided content in their
variant. Our approach allows a flexible app development on different ab-
straction levels: compact modeling of standard app elements, detailed
modeling of individual elements, and separate provider models for spe-
cific custom needs. We demonstrate our MDD-approach at two apps: a
phone book manager and a conference guide being configured by confer-
ence organizers for participants.

Keywords: model-driven development - mobile application - Android

1 Introduction

An infrastructure for model-driven development has a high potential for ac-
celerating the development of software applications. While just modeling the
application-specific data structures, processes and layouts, runnable software
systems can be generated. Hence, MDD does not concentrate on technical de-
tails but lifts software development to a higher abstraction level. Moreover, the
amount of standardization in code as well as in user interfaces is increased. A
high quality MDD infrastructure can considerably reduce the time to market in
consequence.

* This work was partially funded by LOEWE HA project no. 355/12-45 (State Offen-
sive for the Development of Scientific and Economic Excellence).

Mobile application development faces several specific challenges that come
on top of commonplace software production problems. Popular platforms differ
widely in hardware and software architectural aspects and typically show short
life and innovation cycles with considerable changes. Moreover, the market does
not allow a strategy that restricts app supply to a single platform. Therefore
multi-platform app development is a very time and cost-intensive necessity. It
demands that apps have to be built more or less from scratch for each and every
noteworthy target platform. Available solutions try to circumvent this problem
by using web-based approaches, often struggling with restricted access to the
technical equipment of the phone and making less efficient use of the device
compared to native apps. Furthermore, web-based solutions require an app to
stay on-line more or less permanently which may cause considerable costs and
restricted usability.

Although there are already some approaches to model-driven development
of mobile apps, our contribution differs considerably in design and purpose of
the language. It allows a very flexible app design along the credo: “Model as
abstract as possible and as concrete as needed.” Data, behavior and user inter-
faces can be modeled on adequate abstraction levels meaning that behavior and
UI design are modeled in more detail only if standard solutions are not used.
Separating the model into an app model and one or several provider models, we
achieve the possibility of a two stage generation and deployment process. While
the app model defines the basic data structures, behavior and layout, these basic
elements may be used in provider models to define specific custom needs. Hence,
a provider model is an instance of the app model which in turn is an instance
of the meta-model defining the overall modeling language. This approach suits
very well to the kind of apps we consider here: While app models are developed
by software developers, provider models are usually constructed by customers
generally not being software experts. A typical example for such an app is a
museum guide. Here, the app model contains information about objects, cat-
egories, events, and tours in museums in general. It specifies possible behavior
like searching for museum objects, reading detailed information about them, and
following tours. General page styles are also provided by that model. Customers
may add one or more provider models containing information about objects be-
ing currently presented and additional categories to group objects semantically.
Specific functionality also be added such as reading upcoming events of the next
four weeks, reading details about a top object, and special page styles like one
for the next exhibition. Changing a provider model does not lead to deploying
the app anew. It only requires to make the modified instance model available. It
integrates into the app model providing a refreshed application with up-to-date
data and adapted functionality. Generated apps can work off-line without major
restrictions.

The paper is structured as follows: In the next section, the kind of apps
considered is presented. In particular, we explain the kind of mobile apps we
consider. In Section 3, we present our language design and discuss it along typi-
cal design guidelines. Section 4 presents the developed MDD-infrastructure con-

sisting of several model editors and a code generator for the Android operating
system. Section 5 reports on a case example. Finally, Sections 6 and 7 discuss
related work and conclude this paper.

2 The mobile applications domain

Mobile apps are developed for very diverse purposes ranging from mere enter-
tainment to serious business applications. We are heading towards a kind of busi-
ness app where basic generic building blocks are provided for a selected domain.
These building blocks can be used and refined by domain experts to customize
them according to their specific needs. The fully customized app is then ready
to be used by end users. Let’s consider concrete scenarios as they occur in our
collaboration with advenco, the industry partner of our project: key2guide is a
multimedia guide that can be configured without programming. Its typical ap-
plication lies in the context of tourism where visitors are guided through places
of interest, e.g. a museum, an exhibition, a town or a region. Objects of interest
(e.g. paintings, crafts and sculptures presented in a museum) are listed and ex-
plained by enriched information. Furthermore objects may be categorized and
ordered in additional structures, i.e. tours that guide visitors through an exhibi-
tion. As the reader might expect, such an app is pretty data-oriented. This data
usually changes frequently over time. In consequence, a typical requirement is to
offer a possibility that domain experts (e.g. museum administrators or tourism
managers) can refresh data regularly. Moreover, moving around in a region might
lead to restricted Internet connections. Hence, web apps would not be preferred
solutions. In contrast, apps shall typically run off-line but can download new
provider information from time to time.

A second product by advenco, called keyZoperate, allows to define manual
business processes with mobile device support to be integrated into a holistic
production process. E.g. in order to inspect machines of a production plant, the
worker gets a list of inspection requests that has to be executed sequentially.
Such an execution might include the collection of critical data (e.g. pressure
or temperature). Machines can be identified by scanning bar codes or reading
RFID chips. Control values might be entered manually by the worker. Moreover
start and end times of the execution may be taken. After finishing an inspection
request, the app shall display the next request to be executed and direct the
worker to the corresponding machine in line. Again, an app is required that may
be configured by users being production managers here defining their intended
business processes. As production processes have become very flexible nowadays,
manual processes with mobile device support also have to be continuously adapt-
able. key2operate allows such process adaptations without newly deploying it.
However, process definitions are pretty simple since they support simple data
structures only. Both apps work with a web-based backend content management
system to maintain configurations that are available for end users.

To summarize: We are heading towards model-driven development of mobile
business apps that support the configuration of user-specific variants. In this

scenario, there are typically several kinds of users, e.g. providers who provide
custom content, and end users consuming a configured app with all provided
information. Of course, the groups of providers and end users may be structured
more elaborately such that different roles are defined. For example, a tourist
guide for a town may cover sights in the town as well as several museums and
exhibitions. The guiding information is typically given by several providers with
different roles. Tourism managers of the town are allowed to edit information
about sights in the category town only, while e.g. administrators of the history
museum may edit all the information about objects in their museum. Role-
specific app variants shall be developed.

Throughout our project work, the mobile apps described above (key2guide
and keyZ2operate) were used as reference applications for the development of an
MDD infrastructure. In the beginning, we analyzed and optimized these apps in
order to approximate a best practice solution in prototypical re-implementations.
Thereafter, we used them to test the developed infrastructure by modeling them
and comparing the generated apps with the original ones. Due to space limi-
tations, we have chosen a smaller example to be used as demonstration object
throughout this paper. This example shows a number of important features of
our approach:

Example (A simple phone book app). One of the core apps for smart phones
are phone books where contacts can be managed. In the following, we show a
simple phone book app for adding, editing, and searching contact information
about persons. Moreover, phone numbers are connected to the phone app such
that selecting a phone number starts dialing it. Figure 1 shows selected screen
shots of the phone app, already generated by our infrastructure. Little arrows
indicate the order of views shown. In the following section, we discuss selected
parts of the underlying model.

3 Language design

The core of an infrastructure for model-driven development is the modeling
language. In the following, we first present the main design decisions that guided
us to our modeling language for mobile applications. Thereafter, we present the
defining meta-model including all main well-formedness rules restricting allowed
model structures. To illustrate the language, we show selected parts of a simple
phone book app model. Finally, the presented modeling language is discussed
along design guidelines for domain-specific languages.

3.1 Design decisions

Due to our domain analysis, we want to support the generation of mobile apps
that can be flexibly configured by providing users. This main requirement is
reflected in our modeling approach by distinguishing two kinds of models: app
models specifying all potential facilities of apps, and provider models defining

)
&) Phone Book

p Bo B Bo Bo Be Bo Bo Bo Bo

(b) Persons Location Process (c) Call Person Process

Fig. 1. Screen shots of phone book app

the actual apps. In Figure 2, this general modeling approach is illustrated. While
app models are used to generate Android projects (1) being deployed afterwards
(2), provider models are interpreted by generated Android apps (3), i.e., can
be used without redeploying an app. Instance models can be carried out in two
ways: usually this will be done at runtime, because the instance model does not
exist at build time, alternatively it can be done at build time, by adding the
instance model to the resources of the generated android projects.

The general approach to the modeling language is component-based: An app
model consists of a data model defining the underlying class structure, a GUI
model containing the definition of pages and style settings for the graphical user
interface, and a process model which defines the behavior facilities of an app
in form of processes and tasks. Data and GUI models are independent of each
other, but the process model depends on them. A provider model contains an
object model defining an object structure as instance of the class structure in
the data model, a style model defining explicit styles and pages for individual
graphical user interfaces, and a process instance model selecting interesting pro-
cesses and providing them with actual arguments to specify the actual behavior
of the intended app. Similarly to the app model, object and style models are
independent of each other but used by the process instance model.

| uses is instance of ‘
_uses, >

Infrastructure
developer >

Q
&
Data GUI =2
meta meta 4 / E—'
model model X generated to (1) |ﬁ| Android Projects =
................ — et g
Meta model (M2) g+ e C4 S ST ’D
Data GUI interpreted in
App developer model model Android App (3)
App model (M1) 7 & 7 =
Object Style 5
Providing user model model ; =
i End user %

Provider model (MO)

Fig. 2. Modeling approach

For the design of the modeling language, we follow the credo: “As abstract
as possible and as concrete as needed.” This means that standard design and
behavior of an app can be modeled pretty abstractly. The more individual the
design and behavior of the intended app shall be, the more details have to be
given in the app model. Especially, all special styles, pages and processes that
may be used in the intended app, have to be defined in the app model. Since
the provider model shall be defined by app experts, they are already completely
domain-specific and follow the pre-defined app model. Provider models support
the development of software product lines in the sense that a set of common
features are shared and some role-based variability is supported. Differences of
considered apps are modeled separately by different provider models.

As far as possible, we reuse existing modeling languages which applies to the
definition of data structures. Data modeling has become mature and is well sup-
ported by the Eclipse Modeling Framework (EMF')[22]. Hence, it is also used here
to define the data model of an app. Specific information to the code generator
(which is little up to now) is given by annotations.

The GUI model specifies views along their purposes as e.g. viewing and edit-
ing an object, searching objects from a list and showing them, doing a login
and choosing a use case from a set. A GUI model is usually not intended to
specify the inherent hierarchical structure of Ul components as done in rich lay-
out editors like the Interface Builder [20], Android Common XML Editor [12]
and Android Studio [25]. However, the model can be gradually refined to obtain
more specificity in the generated app. Style settings are specified independently
of views and follow the same design idea, i.e. the more default look-and-feel is
used, the more abstract the model can be.

Activities and services are modeled similarly along their purposes, i.e. dif-
ferent kinds of processes are available covering usual purposes such as CRUD
functionality (create an object, read all objects, update or edit an object, delete
an object) including searching, choosing processes as well as invoking GUI com-
ponents, operations and processes. More specific purposes may be covered by
the well-known concept of libraries, i.e. a basic language is extended by lan-
guage components for different purposes as done for LabView [10].

To support the security and permission concepts of mobile platforms, the
process model includes platform-independent permission levels. The permission
concept is fine granular (i.e. on the level of single tasks), nevertheless some
platforms like Android support only coarse granular permissions (i.e. on the level
of applications). Another security-related feature is the user-specific instantiation
of processes. Potentially, features of an application can be disabled by a restricted
process instance model.

3.2 Language Definition

After having presented the main design decisions for our modeling language, we
focus on its meta-model now. It is defined on the basis of EMF and consists of
three separated Ecore models bundled in one resource set. While the data model
is defined by the original Ecore model, two new Ecore models have been defined
to model behavior and user interfaces of mobile apps.

Given a data model with Ecore, it is equipped with domain-specific semantics.
Data models are not only used to generate the underlying object access but
influence also the presentation of data at the user interface. For example, sub-
objects lead to a tabbed presentation of objects, attribute names are shown
as labels (if not overwritten) and attribute types define the appropriate kind
of edit element being text fields, check boxes, spinners, etc. Furthermore, data
models determine the behavior of pre-defined CRUD processes in the obvious
way. Attribute names are not always well-suited to be viewed in the final app. For
example, an attribute name has to be string without blanks and other separators
while labels in app view may consist of several words, e.g. “Mobile number”. In
such a case, an attribute may be annotated by the intended label.

The meta-model for user interface models is shown in Figure 3. Different
views in user interfaces of mobile apps are modeled by different kinds of pages
(View Page, Edit Page,...) each having a pre-defined structure of UI components
and following a purpose. Only custom pages allow an individual structure of
UI components (not further detailed here). The indicated ones are considered
basic and may be accomplished with special-purpose ones in the future. The
look-and-feel of a user interface is specified in style settings.

Figure 4 shows the meta-model for behavior models of mobile apps. This
meta-model is influenced by the language design of BPMN [6] and (WS)-BPEL [5].
The main ingredients of a behavior model are processes which may be defined in
a compositional way. Especially the composition of existing processes promises
a scalable effort for process modeling. Each process has a name and a number
of variables that may also function as parameters. A parameter is modeled as a
variable with a global scope, contrary to locally scoped variables. The body of a
process defines the actual behavior consisting of a set of tasks ordered by typical
control structures and potentially equipped with permissions. There is a num-
ber of pre-defined tasks covering basic CRUD functionality on objects, control
structures, the invocation of an external operation or an already defined process
as well as the view of a page. While task CrudGui covers the whole CRUD func-
tionality with corresponding views, Create, Read and Delete just cover single

1 separatorColor H ListStyleSettings
listStyle0.1 § - © listStyle : ListStyle
H shieseting menuStyle 0.1 H MenuStyleSettings S showSeparator : EBoolean
= menuStyle : MenuStyle
rgbColors - = fixedMenu : EBoolean listablepageStyle 1
0.* backgroundColor 0.1 1 menuStyle
H RGBColor electi . l
- e | LfontColor selectionStyle styleSettings 1.* e
green : Eln - H SelectionStyleSettings |E PageContainer [N€NUes
S blue : EInt 1 selectionColor o
= red : Elnt o
selectablepageStyle 1 T selectablePages 0.* 0.* menu
frameColor 1 0.1
1 .y H SelectablePage listablePages
pagestyle : © multiSelection : EBoolean pages 0.* H ListablePage
H PageStyleSettings
e mageBostionkiEIt 4 H SelectableListPage
= textPosition : EInt pageStyle age. 44
© frame : Elnt 1 \Vi | B ListPage |
H Page
E CustomPage <7 I 47
0.* menuablePages
JAVAVAVAYAY, pem— 2
- H ViewPage H MenuablePage
E] LoginPage L >
—>
- H EditPage - :
H MediaPage L] < <enumeration>>| [<<enumeration>
£ MenuStyle 2 ListStyle
H ProcessSelectorPage | | = TILE = GRID
—— - GRID - usT

Fig. 3. Ecore model for defining graphical user interfaces of mobile apps

1 elseBod: 1body
i s o
I
bl 4 AN WAVAVAVAN 1 follower
T Hw permissions
— lg ProcessSelector,| 0.* o ission © issionKind
(S
[
B while V ~ 1‘|, contain
_ B PageReferringTask B ProcessContaine H InvokeProcess H EClass @
ﬁ“’"d"“’"l I | B e—— = synchronized : } | trom ecore
2 i *
Apression A processes 1.* 0.* processes subProcess 1
B Process 4 | Teclass1
1 startTask 5 SingleOutputTask |~ anchor 1
Assi 7
B Assign - E InvokeGUI return| variables £ EObject [
0.1 (from ecore)
pagel N
outputAction|
P jt] Delet: lue 1
(frogm 47(908re) 0.#| |input E Delete value
9 outputData 0.* E
0.* 5 Variable 1 return -
B e 7 S defaultValue : EString T object B InvokeOperation El EOperation @
(from ecore) o : H SingleOptionalOutputTas| = long : EBoolean (from ecore)
lhs 1| g scope : Scope 0.* arguments
I 0.1 return operation 1
<<enumeration>>
2 Privileges
— READ_ONLY < <enumeration> <<enumeration>>
- MODIFY 2 Scope £ PermissionKind
— MODIFY CREATE| | = LOCAL - PERMISSION_INTERNET
- AL - GLOBAL - PERMISSION_FILE_SYSTEM

Fig. 4. Ecore model for defining mobile app behavior

internal CRUD functionalities. When invoking a process, the kind of invocation
- synchronous or asynchronous - has to be specified.

Since all three meta-model parts are Ecore models, each model element can be
annotated to cover additional generator-relevant information or just comments.

To get consistent app models, we need a number of well-formedness rules in
addition. Especially the consistency between model components has to be taken
into account. The main ones are listed below formulated in natural language.
The complete list of rules formalized as OCL constraints can be found at [4].

1. There is exactly one process with name Main. This process is the first one
to be executed.

2. There is at least one task of type ProcessSelector in the Main process.

3. A Process being registered in a ProcessSelector, contains - potentially tran-
sitively - at least one task of type InvokeGUI or CrudGui.

4. Considering task InvokeGUI, number, ordering and types of input and out-
put data as well as output actions has to be consistent with the type of page
invoked. E.g. a MapPage gets two Double values as output data, a Login-
Page gets two strings as input to show the user name and password and a
Boolean value as output data representing the result of a login trial.

Example (App model of simple phone book app). In the following, we present
an instance model of the presented meta-model being the app model of the simple
phone book app introduced in Section 2. We concentrate on selected model parts;
the whole app model is presented at [4].

The simple data model is an Ecore model depicted in Figure 5. The struc-
turing of contact data in a Person and Address seems to have advantages, since
not too much information will be presented in one view. PhoneBook is just a
container for Persons and not intended to be viewed.

[Person
= Forename : EString £l Address
] PhoneBook = Surname : EString = City : EString
= MobileNumber : EString = ZIP : EString
= OfficeNumber : EString = Street : EString
allPersons @ callMobileNumber address S Number : EString
0.* @ toString 0.1

Fig. 5. Data model of simple phone book app

Next, the user interface of our phone book app is modeled. This part of the
app model is pretty simple, it just contains a default style setting, a default menu,
and four pages, namely a ProcessSelectorPage, an EditPage, a ViewPageand a
SelectableListPage for Person objects and a MapPage for Address objects. Note
that we just add these pages to the model but do not specify their structures (see
Figure 6).

The behavior of the phone book app is modeled by a process selector as main
process that contains processes for all use cases provided. Figures 7(a) and 7(b)

PROCESSSELECTORPAGE EDITPAGE VIEWPAGE SELECTABLELISTPAGE = MAPPAGE

A StyleSetting
<>| COLOR FRONTCOLOR (0,0,0)
Q COLOR BACKCOLOR (255,255,255)

| sy

= StyleListSettings
9 StyleMenuSettings e @ e @
", StyleSelectionSettings [¢) [} [}

ProcessesOverview EditPerson ViewPerson SelectPerson ShowAddress

MENU Menu

Fig. 6. User interface model of simple phone book app

show processes Main being a process selector and CRUDPerson covering the
whole CRUD functionality for contacts. Figure 7(c) shows the definition of a
search process where first a search pattern is created that may be edited in an
EditPage, then it is passed to a ReadProcess resulting in a list of persons being
viewed in a SelectableListPage. If a person is selected from that list, its details
are shown in a ViewPage. Figure 7(d) shows how to connect to the phone app
to call a person. After searching for a person, operation callMobileNumber is
invoked on the selected Person object. Just a few lines of code are needed to start
the corresponding Android activity. Ie. the operation is implemented manually.
At [4], process NearToMe is shown defining situation-dependent behavior in the
sense that all persons of my phone book with an address near to my current
position are displayed.

An initial provider model just contains an empty phone book as object model
and the main process as process instance model. The object model changes when-
ever the list of contacts is modified by the user.

3.3 Discussion

After having presented the main features of our modeling language for mobile
applications, we now discuss it along the design guidelines for domain-specific
languages stated in [17]. The main purpose of our language is code generation.
It shall be used mainly by software developers, perhaps together with domain
experts and content providing users. The language is designed to be platform-
independent, i.e. independent of Android or other mobile platforms.

A decision whether to use a textual or graphical concrete syntax does not
have to be taken since we design the language with EMF and therefore, have the
possibility to add a textual syntax with e.g. Xtext [9] or a graphical one with
e.g. the Graphical Modeling Framework (GMF) [13,21]. Currently, a graphical
editor is provided as presented in the next section. The development of a textual
one is less work and shall be added in the near future. We decided to reuse EMF
for data modeling since it is very mature. Since we define our language with
EMF, the Ecore meta-model can also be reused, together with its type system.

Next, we discuss the choice of language elements. Since all generated mobile
apps shall share the same architecture design (being detailed in the next sec-

10

% Main " CRUDPerson

| [% MainProcesses ” CRUDPerson
< >
gj ProcessesOverview : ProcessSelectorPage L#ALL
"5 CRUDPerson , SearchPerson , CallPerson , ShowPersonAddressOnMap , NearToMe |G Person |
(a) Main Process (b) CRUD Process
" SearchPerson
var PersonSearchPattern var PersonResultList var SelectedPerson
5 CreatePersonSearchPattern [¢" ReadAllPersons ViewSearchedPerson
(3 Person a Rse S e 2 e a SelectedPerson : Person
& PersonSearchPattern : Person = PersonResultList : Person n ViewPerson

N\

IPD SearchCriteriaPerson PD ChoosePersonFromResultList

(& PersonSearchPattern : Person & PersonResultList : Person

B EditPerson E SelectPerson
& PersonSearchPattern : Person SelectedPerson : Person

(c) Search Person

% CallPerson
var PersonSearchPattern VAR PersonResultList VA% SelectedPerson

B> foo callPerson

5 CreatePersonSearchPattern 65" ReadAllPersons B (s CALL
(9 Person é’ PersonSearchPattern : Person g g:{:s{::?:;:"m SRR g AN
PersonSearchPattern : Person ¢ PersonResultList : Person
L e SelectedPerson : Person (€2 SelectedPerson : Person
r=]

(d) Call Person

Fig. 7. Process model of simple phone book app

tion), the modeling language does not need to reflect the architecture. However,
data structures, behavior and user interface design are covered. Since we want
to raise the abstraction level of the modeling language as high as possible, we
have discussed each specific feature of mobile apps carefully to decide if it can
be set automatically by the generator or if the modeler should care about it.
For example, asynchronous execution of an operation is decided indirectly if the
operation is classified as long-lasting but can also be set directly. Permissions
are completely in the hand of the modeler since they depend on the operations
executed. The authors of [17] emphasize the simplicity of a language to be use-
ful. Our language follows this guideline by avoiding unnecessary elements and
conceptual redundancy, having a very limited number of elements in the core
language and avoiding elements that lead to inefficient code.

The concrete syntax has to be well chosen: For data modeling, we adopt
the usual notion of class diagrams since it has proven to be very useful. Pro-
cess models adopt the activity modeling style to define control structures on
tasks since well-structured activity diagrams map usual control structures very
well. Notations for pages and tasks use typical forms and icons to increase their
descriptiveness and make them easily distinguishable. Models are organized in

11

three separate sub-models wrt. different system aspects, i.e. data model, process
model and GUI model. Moreover, data structures can be organized in packages
and processes can be structured hierarchically. However, processes and pages
cannot be packaged yet. Not many usage conventions have been fixed up to now
(except of some naming conventions) but will be considered in the future.

There is especially one part where the abstract and the concrete syntax of our
language diverge, the definition of control structures for task execution. While
the concrete syntax follows the notion of activity diagrams, the abstract syntax
contains binary or ternary operations such as if clauses and while loops. This
allows an easier handling of operations for code generation, however, they are
unhandy during the modeling process. There are no places where the chosen
layout has any affect on the translation to abstract syntax. Our language pro-
vides the usual modularity and interface concepts known from other languages:
Packages and interface classes in data models as well as processes and process
invocations in behavior models.

4 MDD-infrastructure for mobile applications

Infrastructures for model-driven software development mainly consist of editors
and code generators. In the following, we present an MDD-infrastructure for
mobile applications as a prototypical implementation of the presented modeling
language, together with a multi-view graphical editor and a code generator to
Android. Another code generator to iOS will come soon. While the language
itself is based on EMF, the graphical editor is based on GMF [13]. Both code
generators are written in Xtend [9]. The editor and the code generator are de-
signed as separate Eclipse plug-ins. They use the common implementation of the
abstract language syntax including model validation, captured again in plug-ins.

Graphical editor for app models. The graphical editor for app models is designed
as a graphical editor consisting of three different views for data modeling, pro-
cess modeling and GUI modeling. The existing Ecore diagram editor has been
integrated for data modeling. Figures 6 and 7 show screen shots of depicted pro-
cesses and pages. As expected, changes in one view are immediately propagated
to the other ones accordingly.

While the concrete syntax of control structures for task execution follows
the notion of activity diagrams, the abstract syntax contains binary or ternary
operations such as if clauses and while loops instead. This diversion between the
abstract and the concrete syntax of our language cannot be covered directly by
mapping concrete model elements to abstract ones. Therefore, a slight extension
of the modeling language has been defined and is handled by the editor, i.e.
concrete models are mapped to extended abstract models that are translated
to non-extended ones by a simple model transformation. By application of the
well-known generation gap pattern [23, p.85-101], the standard presentation of
GMF-based editors has been adapted to special needs such as special labels and
icons.

12

Code generation to Android. Having edited an app model, it has to be validated
before code generation since the code generator is designed for correct models
only. The code generator produces two projects: an Android project containing
all the modeled activities, and an Android library project. Mobile apps shall be
generated that can be flexibly configured by content providing users, of course
without redeploying these apps. To realize this requirement, an Android library
project is generated being based on EMF. This library project is able to interpret
configurations written by providers. It is used by the main Android project. (See
Figure 8.) The main Android project follows the usual model-view-controller ar-
chitecture of Android apps. Packages model and crud form the data access
layer with the usual CRUD functionality, while package gui contains controllers
in form of activities, fragments, adapters, and services. Additionally, view com-
ponents are generated as app resources.

<<component>>
<Project>.Android

<cuse>> _ _ _ _| <<component>> = R
|

<Project>.android.gui | — — — — -
| E ; |
| | \
<<component>> = | | <<component>>
<Project>.android.adapter | | <Project>.android.util
|
I I
|
| I
|
I I
| |
<<component>> = (_<<ﬁsei> _ |<cuse>> <<component>>
<Project>.android.model &« — — — — L — — — | <Project.android.crud
| <<uses>
| <<use>s | <<use>s |
<<use>>
| | |
| | |
v v v
<<component>> T
<Project>.Lib
<<component>> &7 <<component>> &7 <<component>> &7
ecorel wecorel gcorel

Fig. 8. Architecture of generated apps

All these projects are usually immediately compiled and then, ready to start.
By default, the SD card of the mobile device contains an initial provider model
consisting of an empty object model, i.e., without any data, and an initial process
instance model containing the main process with all those processes assigned to
the main process by the app model. This provider model can be extended during
run time. After regeneration, it might become partly invalid, dependent on the
kind of app model changes. If, e.g., the process model has changed but the data
model has not, the object model is still readable, but the process instance model
is not. It is up to future work, to support automated migration of provider
models.

13

5 Case study

Our major case study is a guide app for conferences being configured to guide
participants through conferences like Models 2014. Depending on the user’s role,
i.e. provider or consumer, two different provider models are used leading to
two different app variants: one for conference organizers with the full range of
CRUD processes and one for participants with read and search processes only.
Participants use the app as a conference guide with the look-and-feel of a native
app. Besides searching for information, they may select sessions and add them
to a list of favorites. These sessions may be transferred to the selected Android
calendar so that reminders can be set. At [4], the interested reader can find
additional information about how the guide app is modeled and how data can
be entered. It shows a typical application of our two stage app development
by showing how to generate an app and how to specialize it to variants for
different custom needs. For a conference, quite some data has to be provided
which is usually tedious using a mobile device. Using an Android HDMI stick,
the app can be presented on an external screen and input can be given via
an external keyboard which leads to a very convenient way of editing provider
models directly by an app, suitable for providing larger amounts of data. The
models of this guide app as well as of the phone book app (used as running
example) are pretty small (less than 100 model elements) while the generated
code is comprehensive (thousands of code lines). Hence, one can see that the
abstraction level of development is raised considerably.

6 Related work

The model-driven development of mobile applications is an innovative subject
which has not been tackled much in the literature. Nevertheless, there are already
some approaches which we compare to ours in the following.

MD? [14] is an approach to cross-platform model-driven development [7] of
mobile applications. As in our approach, purely native apps for Android and
iOS shall be generated. However, the domain of data-driven business apps, dif-
fers from ours: While MD?-generated apps are based on a kind of app model
only, our approach offers provider models in addition. Moreover, the underlying
modeling languages differ in various aspects: The view specification by MD? is
structure-oriented and pretty detailed, i.e. views are specified on an abstraction
layer similar to UI editors. In contrast, the gcore language of our approach is
purpose-oriented and thus, lifted to a higher abstraction level. MD2-controller
specifications show some similarities and some differences to our process speci-
fication. Similarly to our approach, action types for CRUD operations are pro-
vided. But it is not clear how additional operations (different from CRUD func-
tionality) can be invoked, as e.g. starting a phone call by selecting a phone
number. The generated Android apps follow the MVC-architecture pattern as
well. While the data model is translated to plain (old) Java objects (POJOs)
in MD? with serialization facilities for server communication as well as a JEE
application to be run on a server, our approach also supports off-line execution.

14

Two further MDD approaches focusing on data-centric apps are applause 8,
2] and ModAgile [3]. Both support cross-platform development for mainly An-
droid and iOS. In contrast to our approach, behavior is nearly not modeled and
user interfaces are modeled rather fine-grained.

Another kind of development tools for Android apps are event-driven ap-
proaches such as App Inventor [1] providing a kind of graphical programming
language based on building blocks and Arctis [18] being based on activity dia-
grams. Both approaches focus on rather fine-grained behavior and/or UI speci-
fication and largely neglect the modeling of data structures.

Besides the generation of native apps, there are several approaches to the
model-driven development of mobile Web apps being originated in the genera-
tion of Web applications. Although Web apps show platform independence by
running in a Web environment, they have to face some limitations wrt. device-
specific features, due to the use of HTML5 [19, 24]. There are several approaches
to MDD of Web apps, such as mobl [16,15] and a WebML-based solution by We-
bRatio [11]. Since we are heading towards apps being most of the time off-line
as demanded by the domain considered, Web apps are not well-suited.

Our approach supports the model-driven development of native apps by high-
level modeling of data structures, behavior and user interfaces. In addition, the
role-based configuration of app variants is supported.

7 Conclusion

Model-driven development of mobile apps is a promising approach to face fast
emerging technology development for several mobile platforms as well as short
time-to-market with support for several if not all existing platforms. In this
paper, a modeling language for mobile applications is presented that allows to
model mobile apps as abstract as possible and as concrete as needed. Different
user roles are not combined in one app but lead to several app variants that
may be configured after code generation, i.e. by content providing users, for end
users. The considered domain are business apps being data or event-driven such
as tourist and conference guides as well as manual sub-processes in production
processes. A selection of example apps being developed with our MDD-tool en-
vironment, can be found at [4]. Future work shall cover further platforms, a
code generator to i0S is currently under development, and language extensions
towards flexible sensor handling and augmented reality. Moreover, generated
apps shall be evaluated wrt. software quality criteria, especially usability, data
management, energy efficiency and security.

References

1. App Inventor. http://appinventor.mit.edu
2. Applause. https://github.com/applause/applause
3. ModAgile. http://www.modagile-mobile.de

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

PIMAR: Model-driven development of mobile apps. http://www.uni-marburg.de/
fb12/swt/forschung/software/pimar/

Web Services Business Process Execution Language (WS-BPEL) Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html (2007)
Business Process Model And Notation (BPMN) Version 2.0. http://www.omg.org/
spec/BPMN/2.0 (Januar 2011)

Allen, S., Graupera, V., Lundrigan, L.: Pro Smartphone Cross-Platform Develop-
ment: iPhone, Blackberry, Windows Mobile and Android Development and Dis-
tribution. Apresspod Series, Apress (2010), http://books.google.de/books?id=
JKpKrwtoWNAC

Behrens, H.: MDSD for the iPhone: developing a domain-specific language and
IDE tooling to produce real world applications for mobile devices. In: Cook, W.R.,
Clarke, S., Rinard, M.C. (eds.) SPLASH/OOPSLA Companion. pp. 123-128. ACM
(2010)

Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd. (2013)

Bishop, R.: Learning with LabVIEW. Pearson Education (2011)

Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling
language for designing Web sites. Computer Networks 33(1-6), 137-157 (2000)
Goadrich, M.H., Rogers, M.P.: Smart smartphone development: iOS versus An-
droid. In: Proceedings of the 42nd ACM technical symposium on Computer science
education. pp. 607-612. SIGCSE '11, ACM, New York, NY, USA (2011)
Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Eclipse Series, Pearson Education (2009), http://books.google.de/
books?id=8CrCXVZXLjcC

Heitkotter, H., Majchrzak, T.A., Kuchen, H.: Cross-Platform Model-Driven De-
velopment of Mobile Applications with md?2. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC ’13, Coimbra, Portugal, March
18-22, 2013. pp. 526-533. ACM (2013)

Hemel, Z., Visser, E.: Declaratively programming the mobile web with Mobl. In:
Lopes, C.V., Fisher, K. (eds.) OOPSLA. pp. 695-712. ACM (2011)

Hemel, Z., Visser, E.: Mobl: the new language of the mobile web. In: Lopes, C.V.,
Fisher, K. (eds.) OOPSLA Companion. pp. 23-24. ACM (2011)

Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schneider, M., Vélkel, S.: De-
sign Guidelines for Domain Specific Languages. In: Rossi, M., Sprinkle, J., Gray,
J., Tolvanen, J.P. (eds.) Proceedings of the 9th OOPSLA Workshop on Domain-
Specific Modeling (DSM’09). pp. 7-13 (2009)

Kraemer, F.A.: Engineering Android Applications Based on UML Activities. In:
Model Driven Engineering Languages and Systems, 14th International Conference,
MODELS 2011, Wellington, New Zealand, October 16-21, 2011. Proceedings. Lec-
ture Notes in Computer Science, vol. 6981, pp. 183-197. Springer (2011)
Oehlman, D., Blanc, S.: Pro Android Web Apps: Develop for Android using
HTML5, CSS3 & JavaScript. Apresspod Series, Apress (2011), http://books.
google.de/books?id=pZ1F71QY5SQC

Piper, I.: Learn Xcode Tools for Mac OS X and iPhone Development. IT Pro,
Apress (2010)

Rubel, D., Wren, J., Clayberg, E.: The Eclipse Graphical Editing Framework
(GEF). Eclipse (Addison-Wesley), Addison-Wesley (2011), http://books.google.
de/books?id=GiKTAROM-L4C

16

22.

23.

24.

25.

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley, Boston, MA, 2 edn. (2009)

Vlissides, J.: Pattern hatching: design patterns applied. The software patterns se-
ries, Addison-Wesley (1998), http://books.google.de/books?id=4qRQAAAAMAAJT

Williams, G.: Learn HTML5 and JavaScript for Android. ITPro collection, Apress
(2012), http://books.google.de/books?id=PRlytmflmhoC

Zapata, B.: Android Studio Application Development. Packt Publishing (2013)

17

