

Coupled Transformations of
Graph Structures applied to

Model Migration

FlorianMantz

Coupled Transformations of
Graph Structures applied to

Model Migration

Dissertation

vorgelegt von
Dipl.-Inf. FlorianMantz

geboren am 25.10.78 in Schwalmstadt-Ziegenhain

Vom Fachbereich 12
– Mathematik und Informatik –

der Philipps-Universität Marburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Gutachter:
Prof. Dr. Gabriele Taentzer, Philipps-Universität Marburg
Prof. Dr. Juan de Lara, Universidad Autónoma de Madrid

Prüfungskommission:
Prof. Dr. Manfred Sommer, Vorsitzender und Dekan
Prof. Dr. Gabriele Taentzer
Prof. Dr. Juan de Lara
Prof. Dr. Bernhard Seeger

als Dissertation eingereicht am: 20.08.2014
Tag der mündlichen Prüfung: 15.10.2014

erschienen: Philipps-Universität Marburg, 2014
Hochschulkennziffer 1080

Originaldokument gespeichert auf dem Publikationsserver der
Philipps-Universität Marburg

http://archiv.ub.uni-marburg.de

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons
Namensnennung

Keine kommerzielle Nutzung
Weitergabe unter gleichen Bedingungen

3.0 Deutschland Lizenz.

Die vollständige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

http://archiv.ub.uni-marburg.de
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

To my mom

Contents

Preface xi

Scientific Environment xv

Abstract xvii

Abstract (Deutsch) xix

Abstract (Norsk) xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Results . 3
1.4 Overview . 5

2 Model-Driven Engineering 9
2.1 Introduction . 9
2.2 Modeling in Software Engineering 11
2.3 Meta-modeling . 12
2.4 Constraints . 14
2.5 Model Transformation . 18
2.6 Model Migration . 20

2.6.1 General Approaches to Model Migration 25
2.6.2 Correctness of Model Migrations 26
2.6.3 Reusability of Model Migrations 26
2.6.4 Customization of Model Migrations 27

3 Graph-based Modeling 29
3.1 Graphs supporting Attribution 29
3.2 Graphs supporting Inheritance 37
3.3 Graphs supporting Language Constraints 43

4 Adhesive Categories and Graph Transformations 47
4.1 Adhesive Categories . 47

vii

4.2 Properties of (Adhesive) Categories 50
4.3 Graph Transformations based on Cospans 52
4.4 Cospan Double Pushout Approach 53
4.5 Cospan Sesqui Pushout Approach 56
4.6 Summary of Approach Differences 58
4.7 Application Condition . 58
4.8 Transformation Variants . 59

5 Detecting Evolution Steps by Graph Transformation Rules 61
5.1 Introduction . 62
5.2 Detecting Evolution Steps with Cospan Rules 65
5.3 Detecting Evolution Steps with Span Rules 70
5.4 Advantages of Cospan Rule Detection 72

6 Coupled Transformations based on Graph Transformations 75
6.1 Coupled Transformations . 75
6.2 Constructing Coupled Transformations (Left Part) 81
6.3 Constructing Coupled Transformations (Right Part) 85
6.4 Standard Construction for Coupled Transformations 90
6.5 Span versus Cospan Transformations 97

7 Model Migration Schemes based on Coupled Transformations 101
7.1 Migration by Amalgamated Graph Transformations 101
7.2 Migration Rules from Migration Schemes 103
7.3 Default Migration Schemes 114

8 Co-Evolution of Object-Oriented Models 117
8.1 Introduction . 117
8.2 Supported Change Operations 118
8.3 Merging of Model Elements 119
8.4 Retyping Model Elements to Subtypes 123
8.5 Model Migration Schemes . 126
8.6 Classification of Meta-model Changes Revisited 130

9 Towards Model Migration Ensuring Constraint Satisfaction 135
9.1 Introduction . 135
9.2 Resolution Procedure . 136
9.3 Finitely Satisfiable Meta-models wrt. Multiplicities 141
9.4 Deriving Constraint Resolution Rules 143
9.5 Resolving Multiplicity Constraint Violations 150

10 Migrating UML Activity Models from Version 1.4 to 2.2 155
10.1 About the Transformations Tool Contest 2010 155
10.2 The Migration Task . 157
10.3 The DPF Text Modeling Framework 160

10.4 Model Migration by Coupled Transformations 163
10.5 On the Results of the Transformation Tool Contest 178

11 Related Work 181
11.1 Schema Evolution . 181
11.2 Meta-model Evolution . 182
11.3 Correctness Properties of Model Migrations 184
11.4 Reuse of Migration Knowledge 186
11.5 Deduction of Model Migration Specifications 187
11.6 Customization of Model Migration Specifications 188
11.7 Employed Model Transformation Approaches 188

12 Conclusion and Future Work 191
12.1 Summary . 191
12.2 Outlook . 193

Appendices 195

A Proofs of Auxiliary Propositions 197
A.1 Generalizing the Special Pullback-Pushout Property 197
A.2 On the Stability of Final Pullback Complements 202

B Case Study: Adhesiveness 209
B.1 Categories of Simple Directed Graphs 209

B.1.1 Pushouts/Pullbacks of Simple Directed Graphs 210
B.1.2 Van Kampen Property for Simple Graphs 212

B.2 Category of (Directed Multi-)Graphs 214
B.2.1 Pushouts/Pullbacks of Directed Multi-Graphs 214
B.2.2 Van Kampen Property for Directed Multi-Graphs . . 221

B.3 Category of DPF Specifications 224
B.3.1 Pushouts and Pullbacks in Spec 225
B.3.2 Van Kampen Property in Spec 227

B.4 The Category of Generalized DPF Specifications 228
B.4.1 Pushouts and Pullbacks in GSpec 230
B.4.2 Van Kampen Property in GSpec 236

B.5 Conclusion . 238

Bibliography 241

Preface

Finally, after more than four years of hard work but also lots of fun and
traveling, I am very happy and proud that I finished my doctoral thesis.
It has not always been easy and many times I was not sure if this day will
come but in the end everything turned out well. I have got some nice re-
sults which beautifully fit together as you will hopefully agree, if you find
the time to read it. If not, I hope you will at least enjoy reading this preface.

Bergen, 31st July 2014

Acknowledgements

Doing a PhD, or in my case a Dr. rer. nat, is seldom a process that one
can perform alone. Usually a lot of people are involved who provide
guidance, friendship, constructive critics or moral support. Therefore I
wanted to thank at this point all who in one way or another contributed
to the completion of this thesis.

First, I want to thank my supervisors Gabriele Taentzer, Yngve Lamo
and Uwe Wolter (in no particular order). Although each of them is affil-
iated with a different university, and I drove them sometimes crazy (or
they me), they helped me getting the job done. I learned a lot from them,
enjoyed fruitful discussions, dinners and conferences. Without their help,
I probably would have never understood the idea of category theory or the
fact that solutions to problems in software engineering cannot only be ex-
pressed in form of algorithms but also in form of mathematical structures
that can be constructed in one way or another. Furthermore, I want to
thank Gabriele Taentzer to support my decision to do a doctorate and yes,
also Adrian Rutle, who convinced me to apply for a position at Høgskolen
i Bergen. After meeting him in 2008 as visiting researcher in Marburg, he
become a good friend. I remember that I was not so sure at that time if
I should really move abroad, leaving my family and friends behind, but
finally it was a good decision and I enjoyed living in Norway a lot.

During my doctoral period I have had fruitful research discussions
with many other people beside my supervisors. Here, I want to thank in

xi

Preface

particular Harald König and Michael Löwe who I visited at FHDW Han-
nover. Furthermore, I want to thank Juan De Lara from the Universidad
Autónoma de Madrid (who also immediately agreed to be my second op-
ponent), Jon Eivind Vatne from Høgskolen i Bergen and Wendy MacCaull
at the St. Francis Xavier University in Canada.

I also want to thank Høgskolen i Bergen, the strategic research ini-
tiative DISTECH and the FormGrid project for providing a nice working
environment, a good salary and great funding, although my research has
not been in the focus of Grid computing. In particular, I want to thank
our department leader Carsten Helgesen, who always had an ear for our
problems and always found a solution. Moreover, I want to thank the
Philipps-Universität Marburg, who accepted me as doctoral candidate
and Universitetet i Bergen, where I took courses in category theory and
the Norwegian language.

In addition, I want to thank my former colleagues at Høgskolen i Bergen
and particularly those, I enjoyed teaching with, who are Lars Michael Kris-
tensen, Remy Monsen, Pål Ellingsen and Yngve Lamo as well as our for-
mer master students Øyvind Bech, Dag Viggo Lokøen, Anders Sandven,
Suneetha Sekhar, Petter Barvik and Ole Klokkhammer for their collabora-
tive work. Here, also my fellow (and former) doctoral students should not
be forgotten. We shared offices, lunch breaks, discussions about the world
or at least the goal of doing a doctorate: Adrian Rutle, Alessandro Rossini
(also for being a good flatmate for nearly two years), Piotr Kaźmierczak,
Erik Eikeland, Kent Fagerland Simonsen, Hege Erdal, Yi Wang, Xiaoliang
Wang, Ajith Admar Kumar Somappa, Atle Loneland, Fazle Rabbi, Bin
Wu, Camilla Hanquist Stokkevåg, Truls Pedersen, Thorsten Arendt, Ste-
fan Jurack, Daniel Strüber and Mischa Dieterle. Special thanks to those
of them giving me valuable comments on my thesis: Adrian Rutle, Piotr
Kaźmierczak and Thorsten Arendt.

Living in Norway I also learned skiing in Høgskolen’s alpine group.
Therefore I want to thank the members of the alpine group for the nice
skiing trips and “lessons” (we started at a red track), and in particular
Håvard Skibenes, who took us for several rides to Voss/Myrkdalen.

Embarking on a doctorate is a big decision and I would have had a
harder time without my family and friends. Lately I read somewhere in
the Internet that «during that time, the “great work” (i.e. the thesis) will
hover above the candidate like the sword of Damocles, even in moments
of supposed rest». I could not agree more. Therefore, I want to thank
my family and in particular my brother Tobias and his wife Suzana as
well as my father Harald and his wife Magret for their support. Not
less, I want to thank my friends, without them my life would have been
boring. First of all, I want to mention my closest friends in Norway, Mattia
Natali with whom I went out quite frequently and with whom I played
basketball, and Andreas Beck and Emma Bengtsson, who just become

xii

proud parents and liked my pancakes a lot. We had many nice trips and
dinners together, thank you especially for this. Also special thanks to Mikal
Carlsen Østensen, who helped us, e.g., to furnish an empty apartment.
Second, my friends in Germany, Francesco Henning, who was also the
only friend managing to visit me in Bergen and Frederick Kämpfer, who
also gave me valuable comments on my thesis. In addition, I also want to
thank all the other people I did not mention here but made my life as good
as it has been as well as the examination board and all those anonymous
reviewers who gave me valuable feedback on my articles.

xiii

Scientific Environment

The research presented in this thesis has been conducted as part of the
FormGrid project (NFR project 194521) in the Department of Computer
Engineering at Bergen University College, Norway, as well as within the
Department of Mathematics and Informatics at the Philipps-University
Marburg, Germany, during several monthly research visits.

xv

Abstract

Model-Driven Engineering (MDE) is a relatively new paradigm in soft-
ware engineering that pursues the goal to master the increased complexity
of modern software products. While software applications have been de-
veloped for a specific platform in the past, today they are targeting various
platforms and devices from classical desktop PCs to smart phones. In ad-
dition, they interact with other applications. To easier cope with these
new requirements, software applications are specified in MDE at a high
abstraction level in so called models prior to their implementation. After-
ward, model transformations are used to automate recurring development
tasks as well as to generate software artifacts for different runtime envi-
ronments. Thereby, software artifacts are not necessarily files containing
program code, they can also cover configuration files as well as machine
readable input for model checking tools. However, MDE does not only
address software engineering problems, it also raises new challenges.

One of these new challenges is connected to the specification of model-
ing languages, which are used to create models. The creation of a modeling
language is a creative process that requires several iterations similar to the
creation of models. New requirements as well as a better understanding of
the application domain result in an evolution of modeling languages over
time. Models developed in an earlier version of a modeling language often
needs to be co-adopted (migrated) to language changes. This migration
should be automated, as migrating models manually is time consuming
and error-prone. While application modelers use ad-hoc solutions to mi-
grate their models, there is still a lack of theory to ensure well-defined
migration results.

This work contributes to a formalization of modeling language evolu-
tion with corresponding model migration on the basis of algebraic graph
transformations that have successfully been used earlier as theoretical
foundations of model transformation. The goal of this research is to de-
velop a theory that considers the problem of modeling language evolution
with corresponding model migration on a conceptual level, independent
of a specific modeling framework.

xvii

Abstract (Deutsch)

Die modellgetriebene Softwareentwicklung (MSE) ist ein relativ neues
Paradigma in der Anwendungsentwicklung, welches zum Ziel hat die
gestiegene Komplexität moderner Softwareprodukte zu meistern.
Während Softwareanwendungen früher für eine bestimmte Laufzeitumge-
bung entwickelt wurden, sollen Anwendungen heute auf unterschiedlich-
sten Laufzeitumgebung und Plattformen vom klassischen Desktop-PC
bis hin zum Smartphone laufen und mit anderen Anwendungen inter-
agieren. Um diese neuen Anforderungen besser beherrschbar zu machen
werden Softwareanwendungen in der MSE zunächst vor ihrer Entwick-
lung auf einem hohen Abstraktionsniveau in sogenannten Modellen spez-
ifiziert. Anschließend kommen Modelltransformationen zum Einsatz,
die sowohl dafür genutzt werden können um wiederkehrende Entwick-
lungsaufgaben zu automatisieren, als auch um Softwareartefakte für ver-
schiedene Laufzeitumgebungen zu erzeugen. Hierbei sind Software-
artefakte nicht zwangsläufig auf Dateien die Programmcode enthalten
beschränkt, sondern können auch Konfigurationsdateien sowie maschinen-
lesebare Problembeschreibungen für Modellverifikationswerkzeuge um-
fassen. Allerdings geht die MSE nicht nur Softwareentwicklungsprobleme
an, sondern sie bringt auch neue Herausforderungen mit sich.

Eine dieser neuen Herausforderungen ist an die Entwicklung von
Modellierungssprachen geknüpft, die dazu verwendet werden um
Modelle zu erstellen. Die Entwicklung einer Modellierungssprache ist,
wie als auch die Entwicklung von Modellen, ein kreativer Prozess, der
gewöhnlich nicht nach einer Iteration abgeschlossen ist. Neue Anforder-
ungen sowie ein besseres Verständniss der Anwendungsdomäne, führen
dazu, dass Modellierungssprachen im Laufe der Zeit weiterentwickelt
werden. Modelle, die in einer früheren Version der Modellierungssprache
erstellt wurden, müssen oft anschließend entsprechend angepasst
(migriert) werden. Da die manuelle Migration von Modellen zeitauf-
wendig und fehleranfällig ist, ist es sinnvoll diese Migration zu auto-
matisieren. Während Modellierer ihre Modelle mit ad-hoc Lösungen mi-
grieren, fehlt es noch immer an einer Theorie, die ein wohldefiniertes
Migrationsergebnis garantiert.

In dieser Arbeit steht die Formalisierung der Modellierungssprachen-
evolution mit korrespondierender Modellmigration auf Basis von alge-

xix

Abstract (Deutsch)

braischen Graphtransformationen, welche in der Vergangenheit bereits
erfolgreich genutzt wurden um Modelltransformationen theoretisch zu
fundieren, im Vordergrund. Ziel der Arbeit ist es eine Theorie zu
entwickeln, die das Problem der Modellierungssprachenevolution mit
korrespondierender Modellmigration auf einer konzeptuellen Ebene be-
trachtet unabhängig von einem konkreten Modellierungsframework.

xx

Abstract (Norsk)

Modelldrevet systemutvikling (MDSE) er et relativt nytt paradigme i
programvareutvikling som har som målsetting å håndtere den økte
kompleksiteten i moderne programvare. Mens programvare tidligere
har blitt utviklet for en spesifikk plattform, utvikles det i dag for flere
plattformer og enheter, fra skrivebordmaskiner til smarttelefoner. I til-
legg skal disse programvarene integreres med andre applikasjoner. For
å imøtekomme disse nye kravene, spesifiseres applikasjonene i MDSE på
et høyt abstraksjonsnivå i såkalte modeller før de implementeres. Etterpå
brukes modelltransformasjoner for å automatisere gjentakende utviklings-
oppgaver, så vel som for å generere programvarekomponenter for ulike
platformer. Programvarekomponenter i denne sammenhengen er ikke
nødvendigvis bare kjørbar kode, men kan for eksempel også være kon-
figurasjonsfiler eller maskinlesbar input til et modellverifiseringsverktøy.
MDSE løser en del problemer i programvareutvikling, men det skaper
også noen nye utfordringer.

En av de nye utfordringene er forbundet med spesifiseringen av de
modelleringsspråkene som brukes til å definere modellene. I likhet med
modelleringsprosessen er utvikling av et modelleringsspråk en kreativ
prosess som krever mange iterasjoner. Nye krav og bedre forståelse for
applikasjonsdomenet, resulterer i en evolusjon av modelleringsspråket
over tid. Modeller utviklet i en tidligere versjon av et modelleringsspråk
må ofte tilpasses til endringer (migreres) i modelleringsspråket. Denne
migreringen bør automatiseres, ettersom manuell tilpasning er ofte tid-
krevende og fører til feil i modellene. Modellutviklerne bruker fremdeles
ad-hoc løsninger for å migrere modellene sine til de nye versjonene av
modelleringsspråkene, og dette mangler en teori som sikrer et veldefinert
resultat av migreringen.

Denne avhandlingen bidrar til å formalisere evolusjonen i model-
leringsspråk gjennom tilsvarende modellmigrering basert på algebraisk
graftransformasjon, en metode som tidligere har blitt brukt som teoretisk
fundament for modelltransformasjoner. Formålet med denne forsknin-
gen er å utvikle en teori som hensyntar problemet med at modeller-
ingsspråkene utvikler seg over tid, med tilhørende modellmigrering på et
konseptuelt nivå uavhengig av det spesifikke modelleringsrammeverket.

xxi

CHAPTER 1
Introduction

1.1 Motivation

Model-Driven Engineering [129] (MDE) is a relatively new paradigm in
software engineering, which has become an essential part in different ap-
plication areas during the past years. First, MDE is heavily used in the
area of embedded systems [82]. For example, models are used to describe the
control and data-flow of electrical devices used e.g. in cars. Errors in such
systems may be safety-critical or may result in high repair costs. There-
fore, their models are (automatically) tested or verified before they are
iteratively mapped into hardware or software implementations by means
of model transformations. Recently, easy to use tools to specify domain
specific languages [34, 35, 48, 76, 139] and to generate code from models
have been available. Therefore, second, MDE has become popular also in
other areas, where recurring development tasks need to be solved. This
is for example the case if a complex but homogeneous system shall be
developed or different applications of the same type e.g. data-driven web
applications [2, 148].

Nevertheless, though MDE has become more popular lately, there are
still many open problems putting the technology into action. One of
these open problems is that software engineers have the desire to develop
models and enhance modeling languages in parallel, in particular if they
are domain-specific. Modeling languages and models are developed for
specific domains and both are improved over time. The challenge occurs
with each modeling language evolution step: (usually) models need to
be migrated correspondingly (see Figure 1.1). As this challenge is time-
consuming and error-prone, it has become a hot topic in MDE research [21,
57, 118, 127, 132]. The result has been that the problem has been studied in

1

1. Introduction

the context of existing modeling frameworks for which initial tool support
has been developed.

☛

✡

✟

✠
Modeling
Language

evolution
☛

✡

✟

✠
Modeling
Language′

✄
✂

�
✁Model

conforms to

migration ✄
✂

�
✁Model′

conforms to

Figure 1.1: Modeling language evolution and model migration

However, MDE is not as mature as other areas in computer science
are. Databases [38], compilers [1] or operating systems [126] e.g. are
often highly reliable due to decades of research in theory and practice. In
particular, comprehensive theories exist for such areas that are consulted
and implemented in related tools to ensure specific application/system
properties. For example, the development of a compiler is standardized
and well-supported by auxiliary tools such as parser generators based
on the theory of context-free grammars [19, 20]. For modeling language
evolution with corresponding model migration, equivalent strong theories
and tools do not exist. The aim of this work, therefore, is to establish a
basic theory of modeling language evolution with corresponding model
migration that helps to ensure desired migration results and that can be
consulted if MDE tools should be built. The vision is that MDE becomes as
mature as the mentioned areas one day. Therefore, this thesis focuses on
formalization of and studying the problem of modeling language evolution
on a formal level, which is valuable for many reasons:

1. First, formalization helps to understand a problem. Ambiguous or
abstract terms in an area become concrete definitions that help re-
searchers to analyze and discuss problems and solutions efficiently.

2. Second, formalization allows development of solutions to problems
that are exact and that have provable properties. In particular, this
aspect contributes to the development of mature and robust tools.

3. Furthermore, if the abstraction is properly chosen, problems and
solutions can be described independently from a concrete tool and are
therefore more generally applicable than specific solutions.

1.2 Problem Statement

For modeling language evolution with corresponding model migration,
there is not much theory available. Existing theories classify modeling

2

1.3. Results

language changes [146], define model migration processes on a high ab-
straction level [127] leaving out how models shall be migrated or are only
limitedly suitable for model migration [71]. Furthermore, current research
focuses on popular modeling frameworks such as the Eclipse Modeling
Framework [34] and tool development supporting “best-practice” imple-
mentations of model migrations that have manually been developed ear-
lier. It is still open to show under which conditions developed model
migrations are well-defined. Moreover, model migrations are typically
programmed in a rather low-level language and we are looking for an
approach to raise the abstraction level of migration specifications for more
convenient migration definition and high reuse facilities. Accordingly, the
following requirements must be considered:

1. Migrated models must belong to the evolved modeling language.
This property is usually called soundness. It subdivides into well-
typedness and well-definedness wrt. language constraints. A migrated
model is well-typed if all of its elements are supported elements
of the evolved modeling language. Moreover, all well-definedness
rules of the evolved language have to be satisfied.

2. All models of the original modeling language can be migrated to
the evolved language ensuring that the migration is viable. This
property is usually referred to as completeness.

3. Model migration should be specified on a high abstraction level. This
means that a model migration is either automatically deduced from
its language evolution or specified using a high-level language.

4. The specification of model migrations is reusable (see also [57]). In
particular, equivalent migration steps are described only once.

5. General strategies for model migration are formulated independent of
a specific modeling framework.

1.3 Results

In this thesis, first steps towards a theory for modeling language evolution
with corresponding model migration for a specific class of models have
been taken. Note, we refer to this type of language evolution with mi-
gration in the following by the term model co-evolution. Many models are
graph-based structures [34, 107, 121] such as class models, state machine
models or activity models. This class of models is considered in this thesis
and for this class of models a theory that is proposed. In this theory, a
formalization of modeling languages and models based on category the-
ory [11] is employed, which allows for describing modeling languages

3

1. Introduction

and models by different types of graphs. To formulate modeling language
changes as well as model changes, algebraic graph transformations [36]
have been chosen. Algebraic graph transformations are a well-established
means to formally underpin model transformations [16, 36]. Moreover,
graph transformations have been lifted to high-level structures, not even
necessarily being graphs [36]. In this thesis, we present a formal approach
to model co-evolution that is first of all based on graphs but can be also
applied to other types of high-level structures. The contributions of the
thesis are:

1. We present a formal approach, where modeling language evolution
steps and their model migration steps are specified by coupled graph
transformations. This formal setting allows us to reason about com-
pleteness of model migrations and well-typedness of migrated models.
Moreover, well-definedness is (partly) considered. In particular, the
often used multiplicity constraints are examined.

n-1

tt

t

1

1

ML

M1

1 ML

M2

2
tt

t

2

2

ML

M3

3

t

ML

M

ML

M

tt

t

ML

Mn

n
n-1

n-1

n-1

n-2

ttn-2

n-2

n-2

Figure 1.2: Co-Evolution Steps

Modeling language evolution steps, we formulate by graph trans-
formations tti : MLi → MLi+1. Model migration steps are defined by
graph transformation steps ti : Mi → Mi+1 being typed over tti, i.e.
Mi is typed over MLi and Mi+1 is typed over MLi+1 (see Figure 1.2).
Note in Figure 1.2, black arrows denote modeling language evolu-
tion steps, model migration steps as well as typings. White arrows
denote that evolution steps lead to corresponding migration steps
(compare Figure 1.1). To migrate a model along several subsequent
modeling language evolution steps, all of these steps have to be taken
into consideration for model migrations.

Item 1 addresses Items 1 and 2 in the requirements list above. Partly,
Item 1 also addresses also Item 5 of the requirements list above, as the
approach is formulated on the level of category theory and algebraic
graph transformations.

2. To allow model migrations being specified on a high abstraction
level and to be reused, we introduce model migration schemes. They
support the pattern-based definition of model migrations. Once a
model migration scheme is specified, it can be applied completely

4

1.4. Overview

automatically to models yielding well-typed migrated results. Mi-
gration schemes lift the level of migration specification, as they focus
on the definition of migration pattern. Pattern recognition and its
synchronized replacement does not have to be specified but is de-
fined by the approach. In this context, reuse has two dimensions:
Migration schemes can be used for (1) different instance models and
also (2) for migrating models of different modeling languages being
evolved by the same evolution rules.

To increase the level of automation, we show how default migration
schemes can be derived from given modeling language evolution
rules1 by identifying related model patterns and reflecting modeling
language evolution steps on these patterns. Since default migration
schemes cannot always reflect the intended semantics of evolution
steps, we allow well-defined customizations of migration schemes.

Furthermore, migration schemes are used to classify modeling lan-
guage changes.

Item 2 addresses Items 3 to 5 in the requirements list above.

3. In addition, a first step towards a theory for detecting a sequence of
evolution steps given two versions of a modeling language is taken. In
particular, a procedure based on graph transformations is presented
that can be used to find such sequences.

4. Finally, the developed theory and the proposed approach is eval-
uated. Therefore, a “real” world scenario is considered. In a case
study, it is examined if the proposed approach is sufficient to express
desired changes on a concise and adequate level.

1.4 Overview

The thesis consists of 12 chapters and an additional appendix. The ap-
pendix includes one extra chapter on a related topic and proofs of auxil-
iary propositions. We assume a reader with a basic knowledge of algebraic
graph transformation [36] and category theory [11]. The thesis is struc-
tured as follows:

• Chapter 2 gives a general introduction into MDE and the subject of
modeling language evolution with corresponding model migration.

• Chapter 3 presents different types of graphs that can be used to
formalize models supporting various modeling concepts.

1which are defined manually or automatically

5

1. Introduction

• Chapter 4 abstracts away from graphs and introduce adhesive cate-
gories [77] and (weak) adhesive HLR categories [36]. Different types
of graphs are classified as adhesive, adhesive HLR or weak adhesive
HLR category. Furthermore, propositions and facts used in proofs
in subsequent chapters are recalled. In addition, special types of
algebraic graph transformations based on cospans are recalled as
respectively introduced. In particular, the cospan Double Pushout
Approach is recalled [37], while the Sesqui Pushout Approach [24]
is transfered to cospan rules.

• In Chapter 5, a new approach to detect sequences of modeling lan-
guage evolution steps by graph transformation rules is presented
with a running example.

• Chapter 6 introduces coupled transformations2 as coupled graph
transformations. Different constructions are discussed and proven
using propositions and facts from Chapter 4. Finally, we decide
on a standard construction, which is used in subsequent chapters.
Coupled transformations in particular allow to specify type-save
migration steps. Furthermore, the standard construction ensures
that migration steps are viable.

• Chapter 7 introduces model migration schemes based on coupled
transformations. Model migration schemes allow to specify cou-
pled transformation by migration pattern. Furthermore, a heuristic
to deduce default migration schemes from modeling language evo-
lution rules formalized by graph transformation rules on (directed
multi-)graphs is explained. Model migration schemes allow well-
defined customizations. In addition, the construction of coupled
transformations by migration schemes is shown to be complete and
sound wrt. to typing.

• Chapter 8 instantiates the framework of coupled transformations
and migration schemes for a type of graph supporting inheritance.
Inheritance is a well-known concept from object-oriented program-
ming that is frequently used also when defining modeling languages.
Further extensions of the framework are presented and proven for
these specific types of graphs. Finally, migration schemes are used
to classify modeling language changes in the context of a well-know
change classification [51].

• Chapter 9 considers coupled transformations and migration schemes
wrt. modeling language constraints such as multiplicity constraints
known from class models.

2In our previous work also called co-transformations [94, 95, 136].

6

1.4. Overview

• In Chapter 10, we reconsider a case-study on activity models to
evaluate the approach. The evolution challenge has been used in
a tool contest [119] as a real world scenario. We examine if the
proposed approach can be used to solve the given evolution problem
in a concise and appropriate manner using a suitable type of graph
presentation.

• In Chapter 11, related work on modeling language evolution and
model migration is presented.

• Chapter 12 concludes and outlines future work.

• In addition, the chapter in the appendix examines the adhesiveness
property of categories through an example.

Figure 1.3 shows an activity diagram modeling the proposed approach
of the thesis with references to related chapters.

Model Migration

Modeling Language Evolution

evolve

meta-model

detect

meta-model changes

meta-model(s)

meta-model

evolution sequence

unmigrated models

meta-model

evolution rules

model

migration schemes

model constraint

resolution schemes

migrated Models

possibly violating

language constraints

migrated models

m
ig

ra
te

 m
o
d
e
ls

migrate models

(ensuring correct typing)

migrate models

(ensuring constraint satisfaction)

see Chapter 4 see Chapter 5

see Chapter 6, 7, 8 + 10

see Chapter 9

see Chapter 2 + 3

see Chapter 4 + 10

see Chapter 7, 8 + 10

see Chapter 9

Figure 1.3: Activity diagram: chapter overview

7

1. Introduction

In the upper partition of the activity diagram in Figure 1.3, modeling
language evolution is considered. Evolution rules can be used for two
purposes: either they are used to evolve a modeling language or they are
used to detect changes between two versions of a modeling language.

In the lower partition of the activity diagram in Figure 1.3, model
migration is considered. Migrations are two-fold: first, models are adapted
respecting typing relations only, second, constraints such as multiplicities
are checked and violations are resolved.

The content of this thesis is mostly based on a sequence of publications
resulting from joint work with researchers from Philipps-Universität Mar-
burg, Bergen University College and the University of Bergen. We refer to
such publications in each chapter.

8

CHAPTER 2
Model-Driven Engineering

In the following, we recall and discuss some of the fundamental concepts,
techniques and standards in model-driven engineering [129]. In particular,
the challenge of model migration due to modeling language evolution is
explained.

2.1 Introduction

From the beginning of informatics, the diversity and capability of comput-
ing devices has been continuously evolving. While only a small number
of different computers with limited capability existed in the middle of last
century, there exist many different devices, from smart phones to work-
stations, covering multi-core CPUs today. Furthermore, devices are more
and more integrated into different types of networks such as the Inter-
net. Therefore, today’s software is more complex, often aims at different
platforms and interacts with other applications.

Along with this development, the way how to create software has also
been changed. There have been several shifts in programming paradigms; evolution of

software

development

e.g. from machine code to assembler programming and from imperative to
object-oriented programming, each step with the purpose to master more
complexity. The method to keep pace with this development has always
been to raise the abstraction level of the software development techniques.

During the past years, software engineers and computer scientists have
integrated the use of models and modeling languages into the develop-
ment processes. While models initially were introduced for documenta- model-driven

engineeringtion and communication purposes, they are also used as input for code
generators and model checkers today. In the literature, this discipline in

9

2. Model-Driven Engineering

informatics is referred to as model-driven engineering (MDE) [68], model-
driven development (MDD) [103] and model-driven software develop-
ment (MDSD) [129]. In this thesis, we adopt the term MDE to denote this
discipline.

MDE promotes models as the primary artifacts of the developmentadvantages of

MDE process and model transformation as the key technique to adapt them for
various purposes. Developers with domain knowledge can focus on the
problem domain rather than on implementation details. Due to a high
abstraction level, models may be easier built, understood, maintained
and analyzed [59] than implementations. Technical experts can specify
model transformations for repetitive tasks generating different artifacts
such as code for different runtime environments. This also affects the
quality of the code. Generated code is homogeneous due to the model-
to-text transformation and often of good quality, as transformations are
usually specified by experienced developers. Furthermore, models can
help to detect problems in a software system early by validation and
testing. Partly, models are also used to ensure invariants of software
systems by translating them into formal problem descriptions that can
be verified by model checking tools. In some application domains, such
as in the field of embedded systems, these techniques have enhanced
productivity, reusability and quality [67].

However, MDE is not a suitable development approach for all soft-disadvantages of

MDE ware engineering areas. To obtain benefits from MDE, models need to be
at a high abstraction level. This is usually only possible if models spec-
ify similar and recurring concepts. Furthermore, to specify models on a
high abstraction level, domain specific modeling languages are often built,
which implies notable effort to build and maintain the required tool chain
around the models. Hence, domain specific modeling language needs to
be used for a larger development task or for several projects for this effort
to pay off [67]. In addition, MDE is a young software engineering technol-
ogy, and many tools which exist for programming languages as e.g. for
versioning or refactoring are for models only partly available and subject
to current research [90, 120].

In the industry, the idea of MDE has been adopted and standardized
as Model-Driven Architecture (MDA) by the Object Management GroupModel-Driven

Architecture (OMG) [103] in late 2000 [43, 69, 104, 111]. The basic ideas of MDA are
closely related to generative programming [28], software factories [49]
and domain-specific languages [76]. MDA is based on multiple standards,
including the Meta-Object Facility (MOF) [110], the Unified Modeling Lan-
guage (UML) [107], the Object Constraint Language (OCL) [109] and the
XML Metadata Interchange (XMI) [108]. A reference implementation of
essential MOF is e.g. the Eclipse Modeling Framework (EMF) [34, 131].

10

2.2. Modeling in Software Engineering

2.2 Modeling in Software Engineering

The term model is used in many contexts with different meanings. Even
in informatics the meaning varies. According to the general model theory
by Stachowiak [128], a model is a (1) representation of an original, either a model

physical object or something artificial, (2) reduced to its relevant attributes
for a specific purpose that can (3) replace the original for a particular func-
tion or time. In the context of software engineering, a model denotes “an
abstraction of a (real or language-based) system allowing predictions or
inferences to be made” [74]. In this thesis, we interpret the term model
from the software engineering perspective. Furthermore, the models we
consider in this thesis are primary prescriptive and graph-based.

A prescriptive model specifies aspects of an original that is to be built, descriptive vs.
prescriptivee.g., a blueprint of a building. In contrast, a descriptive model describes an

existing original, e.g., a map of a real city with streets, buildings, etc. In
software engineering, models may be both: a model can be used to sketch
relevant aspects of a software system to be built (prescriptive) and later
serve as documentation (descriptive).

Graph-based may also have different meanings depending on the con-
text. In software engineering, a graph denotes a structure that is based graph-based vs.

visualon vertices and edges without a concrete visualization. Since graph-based
structures are often visualized in a natural way, graph-based and visual
models are often treated as synonyms. In this thesis, we distinguish be-
tween these terms. We consider graph-based models independent of an
intuitive representation for humans. This in particular means we focus
in this thesis on the migration of graph-based structures independent of
their visualization. In MDE, this difference is usually taken into account
by distinguishing between models in abstract and concrete syntax.

Models in abstract syntax consider only domain objects and their rela-
tionships, i.e. graphs of information. Models in concrete syntax visualize abstract vs.

concrete syntaxthe information of the model in abstract syntax (see Figure 2.1). Thereby,
the concrete syntax defines the physical appearance of language. A visual-
ization of a graph-based model is called a diagram of the model, e.g. a class
diagram visualizes a class model [107]. 1 Depending on the presentation
technique, auxiliary diagram models may be used to store model-specific
diagram and layout information. Other presentation techniques, e.g. tex-
tual or with fixed layouts such as Nassi-Shneiderman diagrams [101] do
not require auxiliary information.

Furthermore, models can be shown in domain-specific or generic pre- domain-specific
vs. generic
presentation

sentations. If models are shown by a generic presentation, e.g. as object
diagrams [107] in MOF, the diagram of the model is still called in abstract
syntax.

1Note that diagrammatic however, may also be used as a synonym for graph-based, e.g.
in [121].

11

2. Model-Driven Engineering

☛

✡

✟

✠
Orginal/Domain

information

represented by

☛

✡

✟

✠
Layout/Visual
information

represented by

refer to

☛

✡

✟

✠
Graph-based

model

encoded by

☛

✡

✟

✠
Presentation
(Diagram)

encoded by

depicts

✞
✝

☎
✆Abstract syntax

✞
✝

☎
✆Concrete syntax

refer to

Figure 2.1: Aspects of a model

Remark 2.2.1 (Abstract vs concrete syntax). The terms abstract syntax and
concrete syntax are loosely based on the terms abstract syntax tree and concrete
syntax tree in compiler construction, where the abstract syntax tree can
be obtained from the concrete syntax tree by forgetting syntactic sugar
elements that are only used to make a program easier to read for humans
(i.e. for presentation). In MDE however, these terms may be misleading,
as visualizations of models often hide elements of graph-based models in
their presentation. Hence, in MDE [129], it is debatable if the concrete
syntax is not “more abstract” than the abstract syntax.

Graph-based models [121] have already been adopted in software engi-
neering for some decades; e.g., flowcharts [130] (Seventies) for the descrip-
tion of behavioral properties of software systems; Petri nets [62] (Eighties)graph-based

models for the specification of discrete distributed systems; entity-relationship di-
agrams [10] (Eighties) for the conceptual modeling of data structures; the
unified modeling languages [107] (Nineties) as a collection of several mod-
eling languages for structural and behavioral modeling purposes. While
the unified modeling languages (UML) was promoted as a general pur-
pose modeling languages, domain specific modeling languages [42] have
become popular these days. Domain specific modeling languages are cre-
ated to serve a specific scope and help to truly gain advantages in MDE. The
state-of-the-art technique to create modeling languages is meta-modeling.

2.3 Meta-modeling

In MDE, meta-modeling [120, 121] is a technique to define a modeling lan-
guage by a model. Hence, a meta-model is a model of a modeling language.meta-model
The precise definition of the term meta-model is frequently debated in the

12

2.3. Meta-modeling

literature (see [4, 14, 15, 47, 60, 74, 75, 124] for a comprehensive discus-
sion). In particular, there is not a common agreement as to which artifacts
belong to a meta-model. In this thesis, a meta-model is a graph-based
model defining a modeling language syntax, which restricts the set of
valid models (see Figure 2.2).

☛

✡

✟

✠
Modeling
language

✄
✂

�
✁Meta-model

corresp.

meta-model of

✄
✂

�
✁Model

restricted by
specified by

Figure 2.2: Meta-model and model (adopted from [121])

Conceptually, each model can be considered as a modeling language
and the pattern can be applied many times (see Figure 2.3). For a more
detailed discussion, see [121].

. . .

☛

✡

✟

✠
Modeling
language

✄
✂

�
✁Modelmeta-model of

corresp.

restricted by

☛

✡

✟

✠
Modeling
language

✄
✂

�
✁Modelmeta-model of

corresp.

restricted byspecified by

. . .
✄
✂

�
✁Modelmeta-model of

corresp.

restricted byspecified by

Figure 2.3: Generic pattern: modeling languages and (meta-)models
(adopted from [121])

In practice, three level hierarchies are common with a reflexive model at
the top (see Figure 2.4). A reflexive model is a model that is at the same time model

hierarchiesa meta-model for itself. Since model hierarchies are in practice finite, this
technique prevents having a model that is not specified by any modeling
language. Models of different levels are denoted as meta-meta-model, meta-
model and model. In the UML infrastructure specification [107], which
bases on Meta-Object-Facility (MOF), the meta-modeling architecture of
the OMG, the original is added as an additional bottom-level. In the

13

2. Model-Driven Engineering

eclipse’s MOF implementation EMF, the levels are called meta-model, model
and instance instead, inspired by its close relationship to the programming
language Java. In this thesis, however, we are considering three level
hierarchies and use the terms meta-meta-model, meta-model and model to
denote models on different levels. To reflect that a model is restricted
by a meta-model, it is also usual to say that a model is an instance of its
meta-model or an instance model.

M3

☛

✡

✟

✠
Meta-modeling

language

☛

✡

✟

✠
Meta-meta-

modelmeta-model of

corresp.

restricted byspecified by

M2

☛

✡

✟

✠
Modeling
language

✄
✂

�
✁Meta-modelmeta-model of

corresp.

restricted byspecified by

M1
✄
✂

�
✁Model

restricted byspecified by

Figure 2.4: 3-layered modeling hierarchy illustrating (meta-)modeling lan-
guages and their corresponding models (adopted from [121])

In practice, meta-models are often based on MOF. The MOF meta-
meta-model defines a meta-modeling language that allows to specify class
models. Hence, it is natural to visualize them by class diagrams. ModelstheMOF model

hierarchy specified by such modeling languages can instead be naturally visualized
by object diagrams. This means in particular that class and object diagrams
used in this thesis are visualizations of models on different levels.

A meta-model restricts the set of valid instance models by their typings
(see Example 2.4.1). A model element can only be typed by an element
existing in the meta-model. Furthermore, source and target types of ele-
ments visualized as edges in an object diagram, such as links, need to be
compatible with the source and target elements of their type edge in the
corresponding class diagram. In this thesis, we call models that respectwell-typed

model/typed by this meta-model restriction well-typed or typed by a meta-model. Moreover,
typing the set of valid models can be further restricted by constraints.

2.4 Constraints

A meta-model restricts the set of possible instance models not only by
typing. Additionally, meta-models can be annotated by constraints (see

14

2.4. Constraints

Example 2.4.2). In MOF, some constraint annotations such as multiplicity
constraints are integrated in the meta-modeling language, i.e., hard coded
in the meta-meta-model. Their semantics are textually described in the
MOF specification [110] and verified by model editors. Such annotations
we call integrated constraints. In addition, MOF also supports attached con- integrated and

attached

constraints

straints in a textual constraint language called Object Constraint Language
(OCL). With OCL, the entire meta-model or model is annotated by a script
and models are verified by a OCL checker. For more details, see [121],
which also presents an alternate and flexible solution to annotate models
by constraints. In this thesis, we call well-typed models that satisfy all valid model/

conforms toconstraints valid instances of or conforming to a meta-model or well-defined.

15

2. Model-Driven Engineering

Example 2.4.1 (Meta-model and activity model). Figure 2.5 (a) shows a
simplified meta-model for activity models in the usual class diagram vi-
sualization. Classes are presented as vertices, while associations are pre-
sented as edges. A well-typed instance model visualized as object diagram
modeling a simple “research” workflow is shown in Figure 2.5 (b). Fig-
ure 2.5 (c) shows the same model visualized as UML activity diagram.

work

relax

[more work]

[work done]

Model: visualized as object diagram
Meta-model: visualized as class diagram

visualized as activity diagram

(a)

(b) (c)

:ActivityNode

name="work"

:DecisionNode

:InitialNode

:DecisionArrow

expr="work done"

:DecisionArrow

expr="more work"

:ActivityNode

name="relax"

:decision

:trg

DecisionArrow

expr:String

ActivityNode

name:String

FinalNode

InitialNode DecisionNode�rst

last

trg

next

decision

outgoing

previous

start

activity

src

darrow

stop

:src

:�rst

:outgoing

:trg

:start

:activity

:src :outgoing

:darrow

:darrow

"abstract syntax" "concrete syntax"

Figure 2.5: A simplified meta-model for activity models with two visual-
izations of an instance model

The meta-model defines different types of activity nodes that can be
connected by different types of arrows. Arrows are modeled as associa-
tions beside the arrow that connects the Decision with the Activity node,
which is modeled as class. This arrow is modeled as class, as the arrow
needs an attribute for storing an expression. Each association represents
two opposite references and is by default navigable in both directions. In-
stances of references are called links and are only navigable in one direction.
The model defines a simple workflow that does not allow a PhD student
to relax before the work is done.

16

2.4. Constraints

Example 2.4.2 (Meta-meta-model and meta-model for activity models).
Building upon Example 2.4.1, Figure 2.6 (a) shows a simplified meta-
meta-model based on MOF that allows for describing class models. Class
models are in MOF the technique to specify meta-models. Figure 2.6 (b)
shows the meta-model for activity models used in Example 2.4.1, an-
notated with multiplicity constraints to allow only well-defined activity
models. As multiplicity constraints are not enough to express all desired
restrictions, an OCL constraint has been attached in Figure 2.6 (c). In ad-
dition, Figure 2.6 shows partially the typing of meta-model elements by
dashed arrows.

(a)

Meta-model
Meta-meta-model

(b)

(c) Attached constraint context ActivityNode

inv:

 (self.decision->size()

 + self.next->size())

 + self.stop->size())=1

Association name: String
lower: Int
upper: Int
navigable: Bool

Property

DecisionArrow

expr:String

ActivityNode

name:String

FinalNode

InitialNode DecisionNode�rst

last

trg

next

decision

outgoing

0..1

1..1

0..1

0..1

2..2

1..1

Class

name: String

previous

start
activity

src

darrow

stop

1..1

1..*
1..1

0..*

0..*

Figure 2.6: A simplified MOF meta-meta-model and an activity meta-model

The meta-meta-model consists of three meta-classes, Class, Property

and Association, and two bidirectional associations between the meta-
classes. The meta-class Property has four attributes: lower, upper to
annotate multiplicity constraints and navigable to restrict the navigability
of associations. In addition, meta-class Property and meta-class Class
each has a name attribute. The activity meta-model below is annotated
with multiplicity constraints. In addition, edges that are arrows are used
to express the navigability of associations that are by default navigable in
both directions. In contrast to the activity meta-model in Example 2.4.1,
e.g. initial nodes need to be linked to exactly one activity node and decision
nodes are required to have exactly two outgoing arrows to activity nodes.
Because it is hard to specify with multiplicities that each Activity node

17

2. Model-Driven Engineering

instance should have exactly one outgoing arrow of any type, an OCL
constraint is attached.

2.5 Model Transformation

The key technique to automate recurring tasks in MDE are model transfor-
mations. Model transformations are used for many purposes [125] and can
generally be divided into model-to-text and model-to-model transformations.
Model-to-text transformations are, e.g., used to generate programming
code, configuration and deployment files. Model-to-model transforma-
tions are used e.g. for refactoring [90], language translations, model evolu-
tion and model migration. Since software artifacts such as source code can
also be considered as a model for a running software, model-to-text trans-
formations can be also considered as model-to-model transformations. A
general definition of model transformation can be found in [69, 96]:

«A transformation is the automatic generation of target modelsmodel-
transformation

definition

from source models, according to a transformation definition.
A transformation definition is a set of transformation rules that
together describe how a model in the source language can be
transformed into a model in the target language. A transfor-
mation rule is a description of how one or more constructs
in the source language can be transformed into one or more
constructs in the target language.»

To put it in a nutshell, a model transformation transforms a source
model into a target model. While it is highly desired that target mod-
els conform to their meta-models, conformance or well-typing of target
models are properties that are not always ensured by transformations.

There are many existing model transformation approaches and tools
available; the OMG for example provides a standard set of model transfor-
mation languages called Query View Transformation (QVT) [106]. QVT
consists of different imperative and declarative model transformation lan-
guages. While imperative model transformation languages are often moreclassification

criteria efficient, declarative languages may support bidirectionality and are often
theoretically well-founded. Model transformation languages can be fur-
ther classified along many other criteria [29, 96]. In addition to the already
mentioned criteria, model transformations are often classified into homoge-
neous and heterogeneous transformations as well as into in-place and out-place
transformations. A more detailed discussion of model transformations can
be found in [121].

Homogeneous model transformations transform models specified in
one language into models of the same language (see Figure 2.7). Examples

18

2.5. Model Transformation

of homogeneous model transformations are model refactorings or meta-
model evolution steps that are implemented by transformation rules. In homogeneous vs.

heterogeneous

transformations

contrast to homogeneous model transformations, heterogeneous model
transformations are model transformations that transform models of a
source modeling language into models of a target modeling language that
is not the same (see Figure 2.8). An example of a heterogeneous model
transformation is the transformation from a class model into an entity-
relationship model [10]. In addition, the migration of a model after a meta-
model change can be considered as heterogeneous model transformation
even though most of the modeling language may stay unchanged.

☛

✡

✟

✠
Modeling
language

✄
✂

�
✁Model

restricted
by

transformation

✄
✂

�
✁Model’

restricted
by

Figure 2.7: Homogeneous model
transformation

☛

✡

✟

✠
Modeling
language

☛

✡

✟

✠
Modeling
language’

✄
✂

�
✁Model

restricted
by

transformation

✄
✂

�
✁Model’

restricted
by

Figure 2.8: Heterogeneous model
transformation

In-place transformations [29] are model transformations that transform in-place vs.
out-place

transformations

models by changing an existing model in order to obtain the target model,
while out-place transformations construct a new model. Though it is more
likely that homogeneous transformations transform in-place and heteroge-
neous transformation transform out-place, both classifications are orthog-
onal to each other. There are for example in-place and out-place model
migrations approaches. Both types of approaches have advantages and
disadvantages. Implementing model migration as in-place transforma-
tion may require less adaptations, but it must be ensured that all language
elements not existing in the evolved modeling language are migrated or
deleted to obtain well-typed target models. Implementing model migra-
tion as out-place transformation in contrast may require many rules that
copy elements and it must be ensured that no model element may get
forgotten.

In this thesis we employ algebraic graph transformations [36] for model algebraic graph

transformationstransformations and consider meta-models as type graphs and models as
instance graphs. Algebraic graph transformations have a long history and
are theoretically well understood. One algebraic graph transformation is
defined by a declarative transformation rule, while algebraic graph trans-
formation systems [36] apply transformation rules along different types of
control structures [39]. Algebraic graph transformation rules consist of
two related graphs, where one can be considered as precondition and the

19

2. Model-Driven Engineering

other as postcondition. A source graph is transformed into a target graph
by matching the precondition and replacing it with the postcondition. Al-
gebraic graph transformations support homogeneous and heterogeneous
transformations as well as in-place and out-place transformations. Various
tools for graph and model transformation are available, e.g. AGG, AToM3,
VIATRA2, GReAT, Henshin [7, 30, 138, 142], which are based on algebraic
graph transformations.

2.6 Model Migration

In this thesis, we consider model migrations that are induced by the evolu-
tion of their modeling languages, i.e. by the evolution of their meta-models
(see Figure 2.9).

✄
✂

�
✁Meta-model

evolution ✄
✂

�
✁Meta-model′

✄
✂

�
✁Model

conforms to

migration ✄
✂

�
✁Model′

conforms to

Figure 2.9: Meta-model evolution and model migration

Meta-models are the central artifact of a modeling language and often
not only do a large number of models depend on them but also an entire
chain of tools (see Figure 2.10). Such tools are e.g. model editors and modelmeta-model

dependencies transformations that are provided by the language vendor to support the
usage of the modeling language.

The engineers that provide a modeling language and build tool support
for it are often not the same as those creating models with the language.
In this thesis, we call therefore the first group language engineers and thelanguage

engineer vs.
application

modeler

second group application modelers. For the initial effort that is required
to build a modeling language with tool support to pay off, modeling
languages have to be used for larger development tasks. This means there
are usually more application modelers than language engineers.

Obviously, models depend on meta-models and may require migration
after a meta-model has been evolved. If models indeed require migration
after a meta-model evolution, such depends on the types of changes that
have been made, e.g. if a meta-model is only extended by optional ele-
ments, model migration is not required. In literature, such changes arenon-breaking vs.

breaking

meta-model
changes

called non-breaking in contrast to breaking ones, which either need model
migration that can be automatically resolved and are hence called resolv-
able, or changes which require further information to be resolved and are
hence called unresolvable [51].

20

2.6. Model Migration

M
et

a-
m

o
d

el Model Visualization

Model Editors

Model Transformations
(Model-toModel, Model-to-Text)

Models
depend on

depend on

depend on

depend on

0..few

0..few

1..some

1..many }

} Language engineer

Responsibility

Application modeler

Figure 2.10: A meta-model with depending artifacts

However, not only models may require migration but also the tools
supporting the language. Models are presented in editors depending on
the types of their elements. Such editors are often developed for the
specific modeling language. Hence, such model editors may also require
adaptation after a meta-model has been changed, e.g. the visualization of
elements may need to be adapted or extended.

Model editors may additionally support special edit operations de- model editor

migrationpending on meta-model patterns or constraints, e.g. a model editor for
the activity modeling language as specified by the meta-model in Exam-
ple 2.4.2 may enforce to create objects of type DecisionArrow together with
two edges of type src, respectively, trg so that the whole pattern can be
visualized as one arrow linking two nodes. Another edit operation may
require adding decision nodes only together with two outgoing arrows so
that the defined multiplicity constraints are satisfied.

However, in contrast to the models that need to be migrated there
is a difference: the modeling language engineers have full access to the
tools they provide and there are only a few central artifacts to be changed.
In addition, a modeling language editor may not always require adapta-
tion after a meta-model change. Modeling frameworks such as EMF offer
generic model editors with generic model visualizations. Also in this the-
sis, models are most often visualized using a generic visualization such as
object diagrams or graphs. In addition, there are domain specific modeling
languages for editor generation such as GMF [48], so that editors may be
regenerated from evolved meta-models.

Furthermore, model-to-text as well as model-to-model transformations model

transformations

migration

rely on meta-models, as transformation definitions transform models ac-
cording to their typing. If models are not used for documentation only

21

2. Model-Driven Engineering

there are some model transformations e.g. for code generation that may
require migration. However, in practice there are most likely substantially
fewer model transformations than models [59]. In addition, model trans-
formations are often developed by the modeling language provider to-
gether with the modeling language so that the modeling language provider
has full control of their migration. This in particular is true for domain
specific modeling languages.

Considering the different artifacts that may require adaptation, the
most time consuming and error-prone task is to migrate and maintain ex-
isting models (see Figure 2.9) after the corresponding modeling languagemodel migration

has been evolved [59]. Therefore, it is highly desirable to automate model
migration by model transformation. In addition, this transfers the control
of how models are migrated back to the language engineers. This is desir-
able as model migrations are supposed to respect the intended semantics
of the corresponding meta-model evolution change. Since the semantics of
models are often equivalent to generated source code, it is advantageous
to migrate models in close correspondence with the adaptations made to
the code generator. Example 2.6.1 shows a simple Petri net example of a
meta-model evolution step with corresponding model migration. In the
meta-model, a reference is replaced by a class with two corresponding ref-
erences. While in the sample model, this meta-model change requires only
one adaptation (i.e. one edge needs to be replaced by a vertex and two
edges), the required adaptations multiply with occurrences of links typed
by the replaced meta-model reference. If larger Petri net models or many
Petri net models need to be migrated many adaptations are required.

Example 2.6.1 (Petri net meta-model evolution and model migration). Fig-
ure 2.11 shows a meta-model evolution step in a simplified Petri net meta-
model together with a corresponding model migration.

Figure 2.11 (a) shows a simplified meta-model for Petri net models
in the usual class diagram visualization, while Figure 2.11 (b) shows
an evolved version of the same meta-model. The meta-model in Fig-
ure 2.11 (a) defines Place and Transition as classes and one arrow going
from Place to Transition, pTArrow, and one vice versa, tPArrow, as nav-
igable references. In the evolved meta-model in Figure 2.11 (b), reference
tPArrow has been replaced by a class TPArrow with two references going
to Place, respectively Transition. In contrast to the previous meta-model,
the evolved meta-model supports weights for arrows from transitions
to places. This meta-model evolution step requires the migration of the
simple instance model shown in Figure 2.11 (c). The evolved model is
presented in Figure 2.11 (d). The model in Figure 2.11 (c) shows a simple
Petri net consisting of only two places, one token and one transition, in
Figure 2.11 (d) the outgoing link of the only transition is replaced by an
object and two links. The weight of this new object presenting the arrow

22

2.6. Model Migration

Models: visualized as object diagrams
Meta-models: visualized as class diagrams

(a)

(c) (d)

Models: visualized as Petri net diagrams

ransition

p�Arrow

Arrow

t

trg 1..1

src 1..1

Place

en:Int

p�Arrow

tPArrow

Place

en:Int

ransition

(b)

(e) (f)

:Place

:Place

ransition

:p�Arrow

:tPArrow

:Place

:Place

ransition

:p�Arrow

Arrow

:src

:trg

1

evolution

migration

Figure 2.11: Petri Net meta-model evolution and model migration with
different visualizations

from transition to the place is one. One has been chosen, since one has im-
plicitly been the weight of all edges before the meta-model evolution step.
Figure 2.11 (e) and Figure 2.11 (f) visualize the models of Figure 2.11 (e)
and Figure 2.11 (f) in the classical Petri net presentation.

Fortunately, co-evolution of structures has been considered in several co-evolution
areas of computer science such as for database schemes and grammars [79,
85]. Database schema evolution has especially been a subject of research
in the past decades [8].

However, while for grammar and program co-evolution (syntax) trees
need to be co-evolved, model co-evolution needs to consider graph struc-
tures. In general, graph structures do not have a fixed root node and

23

2. Model-Driven Engineering

cannot be traversed as easily as trees. Hence, the challenge of grammar
co-evolution obviously differs from the challenge of model co-evolution.
Database schema evolution can be considered more similar.

Database schema evolution has been studied for relational as well as
for object-oriented databases. An early survey on existing approaches
for databases can be found in [116]. In particular, co-evolution in object-
oriented databases has some similarities to model co-evolution in MDE.
However, even the challenge of database schema evolution with data mi-
gration is quite similar to the challenge of meta-model evolution, with
instance model migration there are differences:

• For example, there are different important technological challenges. While
models are typically held in main memory, database tables often
cannot be. Furthermore, the acceptance of downtimes of database
servers is often very low. Therefore, performance issues may be more
important for database schema evolution.

• There are different types of depending artifacts. While, for example,
model editors, model presentations, code templates or model trans-
formations depend on meta-models, SQL queries and stored database
procedures depend on database schema. Data are retrieved from
databases via queries. In MDE instead, models are typically used
for code generation purposes where the whole model is processed.
Hence, query rewriting seems to be more important for databases.
In MDE, model transformations play a central role and have to
be considered accordingly. Though these tasks may also require
query rewriting, as transformation languages may be query-based
e.g. based on OCL, this is not generally the case. There are other
transformation approaches such as algebraic graph transformations
not relying on queries. However, this thesis focuses on meta-model
evolution and model migration only.

• Database schema evolution often tackles one database instance only
while many models of the same language typically need to be mi-
grated in MDE. Such models may not even be accessible at the same(meta-)model

co-evolution vs.
database schema

co-evolution

time due to the fact that models are created asynchronously from
different application modelers possibly working at different compa-
nies. This means database schema evolution can often adequately
be applied stepwise together with the corresponding data migra-
tions on the basis of transactions, i.e., under control of the database
management system. Instead, models are preferably migrated asyn-
chronously in batch jobs. Therefore, we consider it as more important
that model migrations are viable after meta-model evolution.

24

2.6. Model Migration

• Model structures may be more complex. Often, one element in a model
presentation visualizes an entire pattern of model elements. There-
fore, it may be more important to replace whole patterns in model mi-
gration than in data migration. In addition, models are not restricted
to statical properties of software, they may also describe behavior. The
BPEL meta-model [102], for example, also contains classes express-
ing behavior such as if-statements and loops. Therefore, it may also
be more important to consider the context of elements and to make
more elaborated case distinctions in model co-evolution.

• The coupling between database schema and data is usually tighter.
Therefore, data migration steps are often straightforward and can
be deduced, e.g. if two associated tables are merged, their data
values need to be copied accordingly to a table join operation. In
model co-evolution, meta-models and models are not so tightly cou-
pled. Model migrations often need to be individually defined in
correspondence with the language engineer’s intentions of the meta-
model changes.

• Meta-models use different types of constraints than database schema.
While primary, foreign key and simple data value constraints are
the most used constraints in relational databases [26], meta-models
often make use of multiplicity constraints. Database schema instead
rarely restrict the number of associated database records in a database
relationship.

Recently, there has been more focus on meta-model evolution and
model migration and how to adapt schema evolution concepts for models
(see e.g. [21, 57, 127]).

2.6.1 General Approaches to Model Migration

Current model migration approaches can be classified into manual specifi- classification of
model migration

approaches

cation, operator-based and meta-model matching approaches [118]:

• Manual specification approaches [84, 118, 127] consider two meta-model
versions as given and migrate models (out-place) by copying ele-
ments from the previous model version to the new one. Elements
automatically copied are those that have unchanged or compatibly
changed types. New elements of a meta-model have to be taken into
account in manually defined migration specifications.

• In operator-based approaches [57, 143], a meta-model is evolved using
pre-defined operators. The evolution history is tracked as a sequence
of changes. Usually, a library of coupled evolution-migration op-
erators is supported to stepwise evolve meta-models and migrate
models accordingly.

25

2. Model-Driven Engineering

• Meta-model matching approaches [22, 45] consider two versions of a
meta-model as given. An evolution history i.e. a sequence of evolu-
tion steps, is (semi-)automatically derived from the difference of two
meta-model versions. Afterward, all detected meta-model evolu-
tion steps are (semi-)automatically mapped to predefined migration
operations.

While existing approaches are mainly driven by automating the adap-
tation, which application modelers would have done ad-hoc, in this thesis
we focus on a formalization of model migration due to meta-model evolu-
tion. This contributes to a clear understanding of the model co-evolution
challenge. In addition, a generic and sound approach for model migration
is presented.

2.6.2 Correctness of Model Migrations

While model co-evolution approaches are usually not formally founded,
there are two approaches that do consider formal frameworks: In [71],
König et al. present a formal framework to data migration based on cat-
egory theory. It can also be used as a formal basis for model migration
with fixed migration strategies for meta-model refactorings only. For this
setting, information-preservation for migrations is shown. In [84], Leven-
dovszky et al. reason about termination and confluence of model migra-
tions but do not consider completeness and soundness. We are heading
towards a general approach for model co-evolution that ensures complete-
ness and soundness of model migrations as the two main properties for
their well-definedness.

2.6.3 Reusability of Model Migrations

Reusable co-evolution operators for meta-model evolution was first pro-
posed by Wachsmuth [146], who tried to combine ideas from object-
oriented refactorings with grammar adaptation. In [22, 45], a predefined
set of meta-model evolution operations can be used to detect meta-model
changes. An extensive catalog of reusable evolution operators being struc-
tured by different categories such as structural primitive operators, oper-
ators dealing with inheritance, and delegation, can be found in [58].

When pre-defined evolution operators cannot be used, it is typical for
most approaches that model migrations are specified manually. Automatic
deduction of migration specification typically supports the preservation
and deletion of model elements as supported by Epsilon Flock [118].

26

2.6. Model Migration

2.6.4 Customization of Model Migrations

Customization of model migration specifications is usually supported in
an ad-hoc manner only: considering Cope/Edapt [57] as one represen-
tative for operator-based approaches, it supports the implementation of
migration operations as Groovy/Java programs. For customization, the
modeler has to adapt these programs. In [22, 45], migration scripts are
generated from recognized evolution operations using the textual model
transformation language ATL. Customization of model migration scripts
can be done on the level of such ATL scripts.

To summarize, for all informal approaches, there are no criteria to
ensure that migration scripts remain to be consistently defined to their
meta-model evolutions after customization. It is also not ensured that
all instance models can still be migrated after customization. The formal
framework to data migration presented by König et al. [71] has a fixed con-
struction of migration specifications that cannot be customized yet. Hence,
we are heading towards automatic deduction of customizable model mi-
grations while still ensuring the completeness and well-typedness prop-
erties of model migrations.

In this chapter, the basic concepts of MDE have been summarized and
in particular the challenge of model co-evolution has been discussed.

27

CHAPTER 3
Graph-based Modeling

The standard meta-modeling architecture defined by the Object Manage-
ment Group (OMG) [103] is Meta-Object Facility (MOF) [110]. MOF pro-
vides a meta-modeling language to specify class structures. Many mod-
eling languages are MOF-based today, but other modeling frameworks as
e.g. the Kernel Meta-meta-model (KM3) [64] or Microsoft DSL Tools also
provide meta-modeling languages for class structures. Therefore, we fo-
cus on class modeling here. Models defined by such modeling languages
can be considered as object models. Hence, meta-models can be visual-
ized as class diagrams and models as object diagrams, respectively. Since
class and object models are graph-based, it is natural to formalize them
by graphs. In this chapter, we recall definitions from the literature and
provide examples for different types of graphs and how they can be used
as formalization of meta-models and models.

3.1 Graphs supporting Attribution

In the literature, different formalizations of models by different types of
graphs have been proposed (e.g. [36, 54, 89, 121]), varying in the supported
modeling concepts and their formalization. A simple and widely used
formalization for models are directed multi-graphs, short graphs here:

Definition 3.1.1 ((Directed multi-)graph). A (directed multi-)graph
G = (GV,GE, srcG, trgG) consists of a set GV of vertices (or nodes), a set (directed

multi-)graphGE of edges (or arrows), and two maps srcG, trgG : GE → GV assigning the
source and target to each edge, respectively. e : x → y denotes an edge
with srcG(e) = x and trgG(e) = y.

29

3. Graph-basedModeling

The main concepts of class models used in MDE are classes, references
and attributes. Bidirectional associations can be encoded as associationmodeling with

(direct
multi-)graphs

classes or two opposite references similar to EMF. It is straightforward to
encode classes as vertices and references as edges. Analogously object
models can be formalized by graphs encoding objects as vertices and links
as edges. Attributes can be supported by encoding data types respectively
attribute values as vertices and attributes respectively value assignments
as edges. Graph morphism can be employed to relate graphs. Note that we
are using “;” to denote the composition of morphism, i.e. f ; g = g ◦ f . We
prefer this notation as it allows us to trace morphisms along the direction
of their arrows in corresponding diagrams.

Definition 3.1.2 (Graph morphism between (directed multi-)graphs). A
graph morphism φ : G → H consists of a pair of maps φV : GV → HV,graph morphism

φE : GE → HE preserving the graph structure: for each edge e : x → y in
G we get an edge φE(e) : φV(x) → φV(y) in H, i.e., srcG;φV = φE; srcH and
trgG;φV = φE; trgH.

GV φV HV

=

GE φE

srcG

HE

srcH

GV φV HV

=

GE φE

trgG

HE

trgH

Graphs and graph morphisms constitute the category of graphs:

Definition 3.1.3 (Category of graphs). The category Graph has all graphs G
as objects and all graph morphisms φ : G→ H as morphisms. The compo-category

Graph sition φ;ψ : G→ K of two graph morphisms φ : G→ H and ψ : H → K is
defined component-wise φ;ψ = (φV, φE); (ψV, ψE) := (φV;ψV, φE;ψE). The
identity graph morphisms idG : G → G are also defined component-wise
idG = (idGV , idGE). This ensures that the composition of graph morphisms
is associative and that identity graph morphisms are left and right neutral
with respect to composition.

While graphs are already sufficient to specify basic models, more con-
cepts are desired. One of these concepts is the concept of typing, which
is essential to describe meta-models and instance models. Typing restrictstyping

the set of valid instance model of a modeling language. Elements of dif-
ferent types are distinguished. In addition, graph structures are restricted
i.e. edges of a specific type can only connect elements of specific types.
While a meta-model can be formalized by a distinguished graph, the typ-
ing relationships between meta-models and models can be formalized by
a graph morphism:

30

3.1. Graphs supporting Attribution

Definition 3.1.4 (Type graph and instance graph). A type graph is a distin-
guished graph TG = (TGV,TGE, srcTG, trgTG). A typed graph type graph and

instance graph(G, tG : G→ TG) that is typed by TG is a graph G together with a graph
morphism tG : G → TG. A typed graph (G, tG : G → TG) is also called an
instance graph of graph TG and the morphism tG is called a typing morphism.

If instance graphs are related by graph morphism, the relationship
needs to respect the typing:

Definition 3.1.5 (Typed graph morphism).

Given a type graph TG, a typed graph morphism
δ : (G, tG : G → TG) → (H, tH : H → TG) is a graph
morphism δ : G→ H such that tG = δ; tH.

TG

=

G
δ

tG

H

tH

typed graph

morphism

Again, Graphs and graph morphisms constitute a category:

Definition 3.1.6 (Category of typed (directed multi-)graphs). GraphTG is
defined as the slice category (Graph/TG). The category GraphTG has all
typed graphs (G, tG : G → TG) as objects and all typed graph morphisms
(G, tG : G → TG) → (H, tH : H → TG) as morphisms. The composition category

GraphTGof two typed graph morphisms as well as the identity typed graph mor-
phisms id(G,tG:G→TG) : (G, tG : G → TG) → (G, tG : G → TG) is defined
component-wise analogously to (untyped) graph morphisms (see Defi-
nition 3.1.3). This ensures that the composition of graph morphisms is
associative and that identity graph morphisms are left and right neutral
with respect to composition.

Remark 3.1.1 (Typed graphs). Note that there is a faithful functor from cate-
gory GraphTG to category Graph. This means type and typed graphs can al-
ways also be considered as (untyped) graphs and typed graph morphisms
and typing morphisms as (untyped) graph morphisms. The concept of
typing naturally extends also to other types of graphs.

Example 3.1.1 (A modeling hierarchy formalized in category Graph). Fig-
ure 2.5 (I-III) shows a simplified meta-meta-model, a meta-model for
Petri nets and a Petri net model, Figure 2.5 (a-d) shows corresponding
formalizations by graphs. Since the graphs are related by morphisms,
each graph can also be considered as type graph for the instance graph on
the level below in category GraphTG.

The left model hierarchy of Figure 2.5 shows a meta-meta-model for
class structures supporting the concepts: classes, attributes and references.
It can be reflexively typed by itself: Class and DataType can be typed
by Class and reference and attribute by reference. The meta-model
and model below shows the simple Petri net meta-model and model of
Example 2.4.1 (a) and (c). The graph hierarchy to the right of Figure 2.5

31

3. Graph-basedModeling

(I
)

M
et

a-
M

et
a-

m
o

d
el

v
is

u
al

iz
ed

 a
s

cl
as

s
d

ia
g

ra
m

Class

attribu ype

re�e�ence

erte ertex

edge:edge

ertex

Class: ertex

re�e�ence:edge

attribute:edge

(a
)

g
ra

p
h

 M
 4

(b
)

g
ra

p
h

 M
 3

:Place

ransition

:pTArrow

:tPArrow

(I
II

)
M

o
d

el
v

is
u

al
iz

ed
 a

s
o

b
je

ct
 d

ia
g

ra
m

(d
)

g
ra

p
h

 M
 1

1:Int

0:Int

a����en

d����en

ransition

A:Place

C:Place

b:pTArrow

c:tPArrow

pTArrow

tPArrow

Place

en:Int

ransition

:Place

(I
I)

 M
et

a-
m

o
d

el
v

is
u

al
iz

ed
 a

s
cl

as
s

d
ia

g
ra

m

(c
)

g
ra

p
h

 M
 2 Place:Class

ransition:Class

Int:Dat ype

���en

:attribute

pTArrow

:reference

tPArrow

:reference

Figure 3.1: A model hierarchy and its formalization by graphs

shows the models formalized by graphs. While the model hierarchy in the
left of Figure 2.5 uses three levels, an additional level (a) has been added in
the graph hierarchy to the right of Figure 2.5. This has the advantage that
the hierarchy starts with the unit graph, i.e. the terminal object in Graph

as defined in Definition 3.1.1 (Graph � Graph1 = (Graph/TG) with 1 being
the terminal object in Graph). While the typing of elements is implicit
given by the visualization of elements in the left hierarchy, it is given in
the traditional “identifier:type identifier” notation in the right hierarchy.
Note that attribute values are identifier, which are data values of their
corresponding type. A smaller font size has been used for edge labels only
for space reasons.

32

3.1. Graphs supporting Attribution

Remark 3.1.2 (Element names and element identifier). Note that meta-
models usually also have meta-attributes i.e. for denoting a type name.
This is neglected in many examples presented here (see e.g. Example 3.1.1)
for simplicity reasons. Instead, element identifiers are used as type names.
This means that vertex identifiers are considered as names, edge identifiers
consist of the edge name together with the names of the source and the
target vertex. In practice, however, elements should have both, a unique
identifier and a name given by a meta-attribute. Changing the name of an
element, in particular if it is a type, should not effect its identity. On the
formal level, this distinction is less important, as transformation results
in algebraic graph transformations are only defined up to isomorphism.
Changing a type name does not change the graph structure.

One important concept of class modeling is attributes. In Example 3.1.1,
attributes have already been used and formalized on the level of (directed
multi-)graphs. Usually, each possible data value is considered as special
vertex i.e. no data value exists twice. This restriction is common in graph modeling with

symbolic graphstransformations as transformation results are conceptually distinguished
up to isomorphism only, which is undesired when working with data
values. If attribute values should also be manipulated, other types of
graphs are needed, such as symbolic graphs [112], as summarized in the
following. Symbolic graphs are defined based on so called E-graphs [36].
An E-graph is a type of labeled graph, where both vertices and edges may
be decorated with labels from a given set E. Labels are hereby considered
by a special class of vertices and the labeling relationship (vertex→ label,
edge→ label) by special types of edges.

Definition 3.1.7 (E-graph). An E-graph over the set of labels L is a tuple
G = (GV,GL,GE,GNL,GEL, {srcG

j
, trgG

j
} j∈{_,NL,NE}) consisting of:

• GV and GL, which are the sets of graph vertices and of label vertices,
respectively.

• GE, GNL and GEL, which are the sets of graph edges, vertex label
edges, and edge label edges, respectively.

and the source and target functions: E-graph

• srcG : GE → GV and trgG : GE → GV

• srcG
NL

: GNL → GV and trgG
NL

: GNL → GL

• srcG
EL

: GEL → GE and trgG
EL

: GEL → GL

33

3. Graph-basedModeling

GE

srcG trgG

GEL

srcG
EL

trgG
EL

GL

GV GNL
srcG

NL

trgG
NL

Definition 3.1.8 (E-Graph morphism). Given the E-graphs G and H, an
E-graph morphism φ : G → H is a tuple, (φV : GV → HV , φL : GL → HL,E-graph

morphism φE : GE → HE, φNL : GNL → HNL, φEL : GEL → HEL) such that φ commutes with
all of the source and target functions.

Also, E-graphs and E-graph morphism constitute a category (see [36]):

Definition 3.1.9 (Category of E-graphs1). All E-graphs G and all E-graph
morphisms φ : G→ H form the category of E-graphs EGraph.category EGraph

Labels in E-graphs may be substituted, e.g. by data values as used in
symbolic graphs:

Definition 3.1.10 (Label substitution in E-graphs). Given an E-graph G =
(GV,GL,GE,GNL,GEL, {srcG

j
, trgG

j
} j∈{_,NL,NE}), a set of labels HL, and a functionlabel

substitution in

E-graphs
h : GL → HL, we define the E-graph h(G) resulting from the substitution of
GL along h as h(G) = H = (HV,HL,HE,HNL,HEL, {srcH

j
, trgH

j
} j∈{_,NL,NE}) with:

• HV = GV, HE = GE, HNL = GNL, HEL = GEL,
{srcH

j
= srcG

j
} j∈{_,NL,NE}, and trgH = trgG

• trgH
NL
= trgG

NL
; h

• trgH
EL
= trgG

EL
; h

Moreover, h induces the definition of the E-graph morphism h∗ : G→ h(G),
with h∗ = (idV, h, idE, idNL, idEL).

To manipulate data values, data algebras are used that can be formal-
ized by algebraic signatures:

Definition 3.1.11 (Algebraic signature). An algebraic signature Σ = (S,Ω)
consists of a set of sorts S and a family of operation symbols Ω of the formalgebraic

signature (op, s1, ..., sn, s), where n ≥ 0 and si, s ∈ S.

Definition 3.1.12 (Σ-algebra). AΣ-algebraA consists of a S-indexed family
of sets {As}s∈S and a function opA = As1

× ... × Asn → As for eachΣ-algebra
op = s1 × ... × sn → s ∈ Ω.

1Note that EGraph is simply the functor category of the minimal equivalence graph
(MEG) shown in Definition 3.1.7 into Set (i.e. [MEG⇒ Set]).

34

3.1. Graphs supporting Attribution

Example 3.1.2 (Algebraic signature and Σ-algebra). An example alge-
bra ΣNAT considers only natural numbers, boolean values and the op-
erations +,∧ and ≥. The signature is given by:

Sorts: Nat, Bool
Operations: (add, Nat, Nat, Nat)

(and, Bool, Bool, Bool)
(geq, Nat, Nat, Bool)

The ΣNAT-algebra is defined by:

ABool = {true, f alse} = B
ANat = N
Aadd = + :N ×N→N
Aand = ∧ : B × B→ B
Ageq = ≥:N ×N→ B

For example, exp = 1 + 1 ≥ 2 is a valid expression in the algebra above.

Algebras also constitute categories.

Definition 3.1.13 (Σ-algebra morphism). AΣ-algebra morphismφ : A→ A′

consists of a S-indexed family of functions {φs : As → A′s}s∈S commuting Σ-algebra
morphismwith the operations.

category AlgΣDefinition 3.1.14 (Category AlgΣ). Σ-algebras and Σ-algebra morphisms
constitute category-AlgΣ.

Expressions in the algebra are defined to be in the same equivalence
class if their evaluation leads to the same result:

Definition 3.1.15 (Σ-algebra congruence). A congruence≡ on an algebraA
is a S-indexed set of equivalence relationships {≡s}s∈S, which are compatible Σ-algebra

congruencewith the operations. A/ ≡ denotes the quotient algebra whose elements
are equivalence classes of values in A. Between A and A/ ≡ there is a
canonical morphism mapping every element in A into its equivalent class.

Symbolic graphs combine the concepts of E-graphs and Σ-Algebras:

Definition 3.1.16 (Symbolic graph). A symbolic graph over the data
Σ-algebra D, with Σ = (S,Ω), is a pair (G,ΦG), where G is an E-graph symbolic graph

over a S-sorted set of variables X = {Xs}s∈S, i.e. GL = ∪s∈S Xs and Φ is a set
of first-order Σ-formulas built over the free variables in X and including
the elements in D as constants.

Definition 3.1.17 (Symbolic graph morphism). Given symbolic graphs
(G,ΦG) and (H,ΦH) over the same data algebra D, a symbolic graph mor-
phism h : (G,ΦG)→ (H,ΦH) is an E-graph morphism h : G→ H such that symbolic graph

morphismD |= ΦH =⇒ h#(ΦG), where h#(ΦG) is the set of formulas obtained when
replacing in ΦG every variable xG in the set of labels of G by hL(xG).

35

3. Graph-basedModeling

Definition 3.1.18 (Category of symbolic graphs). Symbolic graphs over Dcategory

SymbGraphD together with their morphisms form the category SymbGraphD.

If every label of a symbolic graph is associated with a variable bound
to a value, the graph is called grounded.

Definition 3.1.19 (Grounded symbolic graph). A symbolic graph (G,ΦG)
over a data algebra D is grounded ifgrounded

symbolic graph
1. GL includes a variable, which we denote by xv, for each value v ∈ D,

2. and for every substitution φ : GL → D, such that D |= φ(Φ), we have
φ(xv) = v, for each variable xv ∈ GL.

Moreover, we define category GSymbGraphD as the full subcategory ofcategory

GSymbGraphD category SymbGraphD consisting of all grounded graphs.

Models usually do not contain variables but attribute values. Therefore
they may be formalized by grounded graphs. Graphs used in transforma-
tion rules instead may require variables and might be formalized by graphs
which are not grounded (see Example 3.1.3).

Example 3.1.3 (Symbolic graph morphism in category SymbGraphD). Fig-
ure 3.2 (a) and (b) show symbolic graphs. In contrast to the symbolic graph
in Figure 3.2 (a), the symbolic graph in Figure 3.2 (b) is grounded.

Symbolic (typed) graph L(a) (b)

p:projects

X:Nat

E:Employee

Y:Nat

c:customer

x2:Nat

Adam:Employee

X@x5:Nat

:projects:customer

E@Eve:Employee

p@:projects c@:customer

Y@x4:Nat

Grounded symbolic (typed) graph G

rst order formula:

f:= (X 5) (Y 3)

variable assignments:

x2=2, x5=5, x4=4

Figure 3.2: A (typed) symbolic graph morphism

In Figure 3.2 (a) characters have been used to denote element identifier.
In Figure 3.2 (b) element identifiers have been neglected. We also leave
them out in following examples where they are unimportant. Furthermore,
element identifier are used (prefixed by @) in Figure 3.2 (b) to denote
morphism m : L→ G by mapping elements. Note that only this mapping
binds the variables of the given first order formula f in Figure 3.2 (a) so
that f evaluates to true.

36

3.2. Graphs supporting Inheritance

3.2 Graphs supporting Inheritance

Beside classes, references and attributes, there are more concepts that class
models support, e.g. operations and interfaces. While operation signa-
tures and interfaces can also be formalized straightforwardly using special
types of vertices, it is frequently discussed in the literature about how the
concept of inheritance can be formalized e.g. [36, 54, 89, 121, 122]. Some
ideas are presented in the following.

Already typed (directed multi-)graphs are sufficient to formalize meta-
models supporting inheritance. Inheritance edges in meta-models can be
modeled as edges of specific type in the type graph. Models that use in-
herited features can be modeled by instance graphs that model subclasses
as composition of particles similar to [122]. In such a formalization, types inheritance by

particlesthat present subclasses always have to be instantiated together with their
superclasses and the corresponding inheritance edges (see Example 3.2.1).
Tools that use such structures to store models internally can present them
without particles by using an adequate visualization.

Example 3.2.1 (Vertex inheritance in category Graph). Figure 3.3 (a) shows
the Petri net meta-model of Example 3.1.1 extended by a superclass as
a type graph. Figure 3.3 (b) shows an instance graph using particles to
formalize an object typed by a subclass.

Place

:Class

Transition

:Class

Int

:DataType

pTArrow

:reference

tPArrow

:reference

Element

:Class

String

:DataType

token

:attribute

name

:attribute

inT

:inheritance

inP

:inheritance

"Lonely Tr.":String:Element

:Transition

:name

:inT

Petri net type graph
as (directed multi) graph

Single transition
instance graph

(a)

(b)

Figure 3.3: A type graph for a Petri net meta-model and an instance graph
using particles to model inheritance

The type graph of the previous Petri net meta-model is extended by vertex
Element. Vertices Place and Transition “inherit” a name attribute. The
instance graph in Figure 3.3 (b) shows a single transition with name “Lonely

Tr.” using particles.

37

3. Graph-basedModeling

An alternative formalization of the inheritance concept based on (di-
rected multi-)graphs is presented in [121]. This formalization is called the
Diagram Predicate Framework (DPF) [120, 121]. DPF builds on previous
work on Generalized Sketches [32, 33, 150]. In DPF, inheritance relation-
ships are again modeled by edges of specific type in type graphs. However,inheritance in

DPF inheritance edges have specific semantics: edges formalizing references or
attributes are automatically copied to all corresponding vertices formal-
izing subclasses. In contrast to the formalization before, models can be
formalized without using particles. Inherited features can be typed by the
corresponding “copied” edge types. The appendix of this thesis contains
an additional Chapter B, where this work is generalized in a case study on
adhesive categories [77]. In the following, basic DPF concepts are recalled
from this chapter and [121]. A central concept in DPF is signatures. Signa-
tures allow for annotating graphs by constraints. Herein, annotations are
defined on the basis of (directed multi-)graphs that specify the scope of a
constraint. Additionally, each constraint is named by a predicate symbol.

Definition 3.2.1 ((DPF) Signature). A (DPF) signature Σ = (ΠΣ , αΣ) con-(DPF) signature
sists of a set of predicate symbols ΠΣ and a mapping αΣ that assigns a
(multi-)graph to each predicate symbol π ∈ ΠΣ . αΣ(π) is called the arity of
the predicate symbol π.

A (directed multi-)graph that is annotated by constraints from a signa-
ture is called a generalized specification:

Definition 3.2.2 ((DPF) generalized specification). Given a (DPF) signa-
ture Σ = (ΠΣ , αΣ), a generalized specification S = (S,CS , symS , diaS) con-(DPF)

generalized

specification

sists of a multi-graph S, a set CS of "constraint identifiers" and two maps
symS : CS → ΠΣ and diaS : CS → Graph0, such that the diagram below
commutes. Herein, Graph0 denotes the set of objects in the category Graph

and (Graph/S)0 denotes the slice category as usual.

CS

symS diaS

ΠΣ

αΣ

(=) (Graph/S)0

f stS

Graph0

For the definition of morphisms, we have to remind that any graph

morphism φG : S → S′ induces a functor φG : (Graph/S) → (Graph/S′)

with φG; f stS′ = f stS, which is defined by simple post-composition, i.e.,

φG(γ) := γ;φG for all objects γ : G→ S in Graph/S.

38

3.2. Graphs supporting Inheritance

Definition 3.2.3 (Morphisms between generalized (DPF) specifications).
Given two generalized (DPF) specifications S = (S,CS , symS , diaS) and morphisms

between

generalized

specifications

S′ = (S′,CS
′

, symS
′

, diaS
′

), a specification morphism f = (fC, fG) : S → S′

is given by a mapping fC : CS → CS
′

and a graph morphism fG : S→ S′,
such that the following two diagrams commute:

CS

symS

fC
CS

′

symS
′

CS

diaS

fC
CS

′

diaS

ΠΣ (Graph/S)0

fG
(Graph/S′)0

In addition, generalized specifications and generalized specification
morphism constitute a category:

Definition 3.2.4 (Category of generalized (DPF) specifications). Given a
signature Σ = (ΠΣ , αΣ), the category GSpec(Σ) has all generalized specifi- category

GSpec(Σ)cations S = (S,CS , symS , diaS) as objects and all generalized specification
morphisms φ : S → S′ as morphisms between generalized specifications
S and S′.

The composition φ;ψ : G → K of two (generalized) specification
morphisms φ : G → H and ψ : H → K is defined component-wise
φ;ψ = (φC, φG); (ψC, ψG) := (φC;ψC, φG;ψG). The identity (generalized)
specification morphism idG : G → G is also defined component-wise

idG = (idCG , idG). This ensures that the composition of specification mono-
morphisms is associative and that identity specification morphisms are
left and right neutral with respect to composition.

Naturally, the category of generalized (DPF) specifications can be re-
stricted by typing constituting the category of typed generalized (DPF)
specifications analogously as we have seen before. The semantics of an
inheritance edge is formalized by a set of universal constraints on typed
specifications.

Definition 3.2.5 (Universal constraint). Given a signature Σ = (ΠΣ , αΣ),
a universal constraint is a typed specification morphism (DPF) universal

constraintc : (L, tL : L→ G)→ (R, tR : R→ G) withL = ((L, tL : L→ G),CL , symL , diaL)
and R = ((R, tR : R→ G),CR , symR , diaR).

The universal constraints are assigned to a specification S formalizing
a meta-meta-model and are required to be satisfied in all specifications
formalizing meta-models:

Definition 3.2.6 (Satisfaction of universal constraints). A typed specifica- satisfaction of

universal

constraints

tion (S, tS : S→ G) = ((S,CS:Σ), tS : S→ G) satisfies a universal constraint

39

3. Graph-basedModeling

c : (L, tL : L → G) → (R, tR : R → G) iff, for any typed specification mor-
phism m : (L, tL : L → G) → (S, tS : S → G), there is a typed specification
morphism n : (R, tR : R→ G)→ (S, tS : S→ G), such that c; n = m.

G

S

tS

L
c

m

tL

=

R

n

tR

We call (L, tL : L → G) and (R, tR : R → G) input and output patterns of
the constraint c, respectively; and we call m and n matches of the patterns
(L, tL : L→ G) and (R, tR : R→ G) in (S, tS : S→ G), respectively.

The universal constraints to enforce that all attributes and references are
properly inherited by subclasses are shown in Table 3.1(in concrete syntax).
The universal constraints also use two atomic constraint annotations. The
annotation [inherited] denotes that the edge presents a specific inherited
edge. This correspondence is encoded in the identifier of the edge, which
consists of the identifiers of the inheritance relationship and the inherited
reference. Analogously, the atomic constraint [specialized] denotes that
there is also a reference to a specific subclass of a referenced class.

Table 3.1: Universal constraints for modeling inheritance (adapted from [121])

(L, tL : L→ S) (R, tR : R→ S)
c1: Inheritances are transitive

5:Class

1:Class
2

3:Class

4

5:Class

1:Class
2

6

3:Class

4

c2: Inheritance leads to inheritance of attributes

1:Class
2:attribute

3:DataType

4:Class

5

1:Class
2:attribute

3:DataType

4:Class

5
2,5:attribute

[inherited]

c3: Inheritance leads to inheritance of references

1:Class
2:reference

3:Class

4:Class

5

1:Class
2:reference

3:Class

4:Class

5
2,5:reference

[inherited]

40

3.2. Graphs supporting Inheritance

c4: Inheritance allows to use alternatively sub-type instances

1:Class
2:reference

3:Class

4:Class

5

1:Class
2:reference

2,5:reference

[specialized]

3:Class

4:Class

5

Example 3.2.2 (Vertex inheritance in category GSpec). This example shows
the same models as Example 3.2.1 using DPF. Figure 3.4 (a) shows a
Petri net meta-model, while Figure 3.4 (b) shows an instance graph.

Place

:Class

Transition

:Class

Int

:DataType

pTArrow

:reference

tPArrow

:reference

Element

:Class

token

:attribute

name

:attribute

inT

:inhertiance

inP

:inhertiance

"Lonely Tr.":String:nam	
��

Petri net type graph
as annotated graph

Single transition
instance graph

(a)

(b)

String

:DataType

:Transition

name,inP

:attribute

[inherited]

name,inT

:attribute

[inherited]

Figure 3.4: A type graph for a Petri net meta-model with instance graph in DPF

In the meta-model of Figure 3.4, universal constraint c2 in Table 3.1
has been used to ensure that attribute name of class Element has been
properly specified for its subclasses Place and Transition. The instance
graph in Figure 3.4 (b) shows a single transition with the name “Lonely
Tr.”, using a correspondingly copied edge.

A fundamental different formalization of models with inheritance is pre-
sented in [54]. A similar formalization can also be found in [89]. Instead
of considering the inheritance concept on the level of graphs only, it is
considered by changing the definition of typing morphisms. In [54], such
graphs are called I-graphs (see Example 3.2.3). An I-graph extends a (di- modeling with

I-graphsrected multi-)graph by a set of inheritance relationships between vertices
that preorder vertices. This in particular means every graph is also an
I-graph. In the following, we call a vertex A as usual in object-oriented
programming a sub-vertex if it inherits from another vertex B, while we call
vertex B a super-vertex of vertex A. The inheritance relation is transitive
and the set of sub-vertices of a vertex is called its clan. Multiple inheritance

41

3. Graph-basedModeling

is allowed. However, in contrast to the concept of traditional inheritance,
I-graphs allow cycles in inheritance relationships, i.e. a vertex can be both
a sub and super vertex of another vertex:

Definition 3.2.7 (I-graph). A graph with inheritance, short I-graph, isI-graph
given by GI = (G, I). It consists of graph G and inheritance relation
I ⊆ GV × GV, where for v ∈ GV clanI(v) = {v′ ∈ GV | (v′, v) ∈ I∗}with I∗ being
the reflexive and transitive closure of I. A vertex v′ , v with v′ ∈ clan(v) is
called a sub-vertex of v or more specifically as v (v′ ≤ v), vertex v we call a
super vertex of v′.

The typing relationships of “objects” by “classes” can be specified by
clan morphisms. A clan morphism defines a mapping from a (directed
multi-)graph to an I-graph. Clan morphisms are based on graph mor-
phisms, but weaken the homomorphism condition. Hence, every graph
morphism is also a clan morphism. In particular, clan morphisms allow
to type edges connecting two “object” vertices by edges connecting super
vertices of their current source and target type.

Definition 3.2.8 (Clan morphism). Given graph G1 and I-graph GI2 =clan morphism

(G2, I2), a pair of mappings f = (fV , fE) : G1→ G2 is called clan-morphism,
written f : G1→ GI2, if ∀e1 ∈ G1E : (srcG1; fV)(e1) ∈ clanI2((fE; srcG2)(e1)) ∧
(trgG1; fV)(e1) ∈ clanI2((fE; trgG2)(e1)).

Example 3.2.3 shows an example of an I-graph and a (directed multi-
)graph typed by a clan-morphism.

Example 3.2.3 (Vertex inheritance in category IGraph). This example shows
the same models as Example 3.2.1 and Example 3.2.2 using a (typed)
I-graph as formalization of the meta-model (Figure 3.5 (a). The instance
graph is still formalized by a (directed multi-)graph Figure 3.5 (b). Hence,
the typing morphism is a clan-morphism (see Definition 3.2.8).

Place

:Class

Transition

:Class

Int

:DataType

pTArrow

:reference

tPArrow

:reference

Element

:Class

String

:DataType

token

:attribute

name

:attribute

Petri net type graph

as I-graph

Single transition
instance graph

(a)

(b)

:name
:Transition "Lonely Tr.":String

Figure 3.5: A type graph for a Petri net meta-model with instance graph in IGraph

42

3.3. Graphs supporting Language Constraints

The instance graph in Figure 3.4 (b) shows a single transition with the
name “Lonely Tr.” using the original attribute from the Petri net meta-
model. This is possible because the typing morphism is no longer a graph
morphism but a clan morphism. Note that the edges with hollow arrow-
heads in the type graph present inheritance relationships.

While clan-morphisms are morphisms between (direct multi-)graphs
and I-graphs, morphisms between I-graphs are called I-graph morphisms.
I-graph morphism based on clan-morphism and especially every clan-
morphism is also an I-graph morphism. Additionally, I-graph morphisms
have to ensure that inheritance relationships are preserved in the image of
the morphism. This means the following: if two vertices are in the same
clan in the pre-image of a morphism, their images are also required to be
in the same clan.

Definition 3.2.9 (I-graph morphism). Given I-graphs GI1 = (G1, I1) and
GI2 = (G2, I2), an I-graph morphism f : GI1 → GI2 is given by a clan- I-graph

morphismmorphism f : G1 → G2, which is I-compatible, i.e. (v,w) ∈ I1 implies
(f (v), f (w)) ∈ I2∗.

I-graphs and I-graph morphism constitute the category of I-graphs [54]:

Definition 3.2.10 (Category of I-graphs). All I-graphs as objects and all
I-graph morphisms constitute the category of I-graphs IGraph. The com- category of

I-graphsposition of I-graph morphisms f : GI1 → GI2 and g : GI2 → GI3 is
defined by f ; g : GI1 → GI3 with (f ; g)V = fV ; gV : G1V → G3V and
(f ; g)E = fE; gE : G1E → G3E.

3.3 Graphs supporting Language Constraints

Another frequently used concept in modeling is language constraints that
restrict the set of valid instance models beyond typing. Such constraints
are either integrated into the language or attached (see Chapter 2). The
literature provides different solutions to equip model formalizations with
constraints [36, 112, 121]. In the following, different solutions to anno-
tate graph formalizations by constraints are presented. The semantics of
such annotations are often not formally defined and given by validator
programs in modeling tools. However, one way to formalize constraint
semantics is graph constraints [113]. A generalization of graph constraints
is DPF’s universal constraints, which have been presented before (see Def-
inition 3.2.5).

MOF implements constraint annotation e.g. for multiplicities by the
attribution of elements. Since meta-model edge types may also require

43

3. Graph-basedModeling

constraint attributes, MOF models various edge types by vertex meta-
types (see Example 2.4.2). A different visualization is used to e.g. present
associations, respectively references in meta-models by edges while they
are typed by a class in the meta-meta-model. This idea can be reused
to formalize constraint annotations in (directed multi-)graphs. Without
changing the visualization, references could also be formalized in graphs
presenting meta-models each with one vertex and two edges. Analogouslyintegrated

constraints by

graphs

links in graphs presenting models would be presented. A sample model
formalized by graphs using this technique is shown in Example 3.3.1.

Example 3.3.1 (A model with multiplicity constraints in category Graph).
Figure 3.6 shows a meta-meta-model supporting multiplicity constraints
together with a simple Petri net meta-model as (directed multi-)graphs.

token

:attribute

:lowerBound

1:Int

Class

:Vertex

attribute:

edge

Int:Vertex

trg

:edge

l��������������

�uu������d:edge

Meta-model
with multiplicities
(as graph)

Meta-meta-model
suporting multiplicities
(as graph)

(a)

(b)

DataT

:Vertex

Transition

Int:DataT

Reference

:Vertex

src

:edge

Arr

:Reference

Arr

:Reference

tr�g��:trgsrcg��:src

tr��u�:trg src�u�:src

Figure 3.6: A meta-meta-model and Petri net meta-model formalized by
(directed multi-)graphs

The Petri net meta-model below uses the lowerBound multiplicity attribute
to annotate that transition instances require at least one outgoing arrow.

Alternatively, different types of graphs such as E-graphs (presented
above, see Definition 3.1.7) can be used to annotate graphs with constraints
more directly. E-graphs have the advantage that edge types of class dia-integrated

constraints by

E-graphs
grams must not be formalized by vertex types in type graphs, as edges can
be annotated directly. Therefore, this formalization is more compact and
closer to their traditional presentation as class and object diagrams. Ex-
ample 3.3.2 shows a graph using edge attribution to support multiplicity
constraints.

44

3.3. Graphs supporting Language Constraints

Example 3.3.2 (A model with multiplicity constraints in category EGraph).
Figure 3.7 shows the models of Example 3.3.1 using (typed) E-graphs
instead of (directed multi-)graphs.

Place:

Class
Transition:

Class

pTArrow

:reference

tPArrow

:reference token

:attribute
:lowerBound

1:Int

Class

:Vertex

attribute:

edge

Int:Vertex
reference

:edge

����� �!"#$��#%�

!&&�� �!"d:eedge

Meta-model

(as -graph)

Meta-meta-model

(as -graph)

(a)

(b)

DataT

:Vertex

Int:DataT

Figure 3.7: A meta-meta-model and Petri net meta-model formalized by
attributed graphs with edge and vertex attribution

In addition to integrated constraint there are also attached constraints
used in modeling. While integrated constraints are specified by setting
meta-attribute values that are used in corresponding validation routines
of a modeling tool, attached constraints are usually specified by use of a
textual constraints language such as OCL (see Example 2.4.2). However,
it is hard to incorporate textual constraints with their models on a formal
level. Therefore, we prefer the annotation technique of DPF, which has
been summarized in the last section. It has been shown in [120, 121] that
DPF can be used in many cases where traditionally OCL is used. Models atomic

constraints in

DPF
on all levels can be annotated by constraint predicates using a graph mor-
phism from a shape graph to a sub-graph (of the model). Example 3.3.3
shows a graph using DPF’s [120, 121] atomic constraints (see also Exam-
ple 3.2.2). Atomic constraint annotations can be specified for arbitrary
shape graphs. Their semantics can be defined using a suitable approach.
This means that how atomic constraints are validated in DPF is not pre-
scribed. For example, validation programs can be implemented for each
predicate, which validate each subgraph of an instance graph typed by
(Graph/S)0 for each constraint identifier. Such subgraphs can be obtained

by pullbacks of G
tG
→ S

diaS ;slice
← c, where c ∈ CS and slice denote morphism

slice : (Graph/S)0 ֒→ S.

Example 3.3.3 (A meta-model formalized by a DPF specification). Fig-
ure 3.8 shows the simplified Petri net meta-model from the previous ex-
ample using DPF’s formalization. Atomic constraints have been used to
annotate constraints.

45

3. Graph-basedModeling

Place:

Class

Transition

:Class

pTArrow

:reference

tPArrow

:reference
token

:attribute

1 2

g

f

1 2
g

1 2
f

[sur

∞)]

1c

2c

Petri net meta-model
as (directed multi) graph

DPF Signature

['()* +1,∞)]

[surj-.*/0-3

(a) (b)

Int:DataT

Figure 3.8: A simplified meta-model for Petri nets annotated with DPF
atomic constraints

Edge tPArrow has been annotated with a multiplicity constraint speci-
fying again that each transition should have at least one outgoing arrow.
Edge pTArrow has in addition been annotated with a surjective constraint
to define that every transition should be at least one target of one arrow. C1

and C2 denote the corresponding constraint identifier. The arrows going
from the signature to the model graph present graph morphisms. Addi-
tional constraint annotations can be used in DPF such as inverse to not
only annotate single elements but sub-graphs of a model as well. What
type of constraint annotations exists is up to a DPF user.

The theory developed in this thesis is aimed to be applicable to a wide
range of graph formalizations. Therefore, the theory widely abstracts away
from a concrete formalization and employs adhesive (HLR) categories [36,
77] instead. All graphs presented in this chapter fit into this theory.

In this chapter, it has been shown how various types of graphs can
be used to formalize models and modeling languages. In particular the
concepts attributes, inheritance and (modeling) language constraints have
been considered.

46

CHAPTER 4
Adhesive Categories and

Graph Transformations

Adhesive categories [77, 78] and (weak) adhesive High Level Replacement
(HLR) categories [36] build a suitable categorical framework for formaliz-
ing graphs and algebraic graph transformations [36] in the more general
case. Therefore, we consider them as adequate to formalize models. In
particular, all model formalizations from the previous Chapter 3 fit into
this framework. In this chapter, the basic theory of (weak) adhesive (HLR)
categories and graph transformations based on cospans are summarized.
In particular, we recall the cospan Double Pushout (cospan DPO) approach
to graph transformation [37] and adapt the (span) sesqui Pushout (SqPO)
approach [24] to cospan rules. Furthermore, we recall properties that are
(partly) only valid in (weak) adhesive HLR categories in preparation for
coupled transformations that are introduced in Chapter 6. Also, “new”
propositions are presented: (1) the special pushout-pullback decomposi-
tion property [78] has been generalized, as well as (2) a theorem about the
stability of Final Pullback Complements (FBPCs) [88]. To obtain a basic
understanding of category theory and a deeper understanding of adhesive
(HLR) categories, we refer to related works such as [11], [36, 77].

4.1 Adhesive Categories

The intuitive idea of adhesive categories is that of categories with com-
patible pushouts and pullbacks. More precisely, in adhesive categories,
pushouts are stable under pullbacks and vice versa on the basis of van Kam-
pen (VK) squares. (Weak) adhesive HLR categories are a generalization

47

4. Adhesive Categories and Graph Transformations

of adhesive categories. While adhesive categories are based on all mono-
morphisms in a category C, (weak) adhesive HLR categories are based on
a suitable subclass M of the monomorphisms in C. Weak adhesive HLR
categories in contrast to adhesive HLR categories require stronger pre-
conditions for VK squares. There is an inclusion relation between all three
types of adhesive categories: all adhesive categories are also adhesive HLR
categories and all adhesive HLR categories are also weak adhesive HLR
categories, but not vice versa. First, we recall the basic definitions [36, 77]:

Definition 4.1.1 (van Kampen square). A pushout (1) is a van Kampen
square if, for any commutative cube (2) with (1) in the top face and wherevan Kampen

square the back faces (light grey) are pullbacks, the following statement holds:
the bottom face is a pushout iff1 the front faces are pullbacks.

D

C A

B

n

f

m

g

(1)
D

C

A

B
n

f
m

g

D′

C′

A′

B′

n′

f ′
m′

g′
d

c

a

b (2)

A sufficient 2 condition for the existence of VK squares relies on mono-
morphisms. Therefore, we recall the definition of a monomorphism next.
Monomorphism generalizes injective morphism. In particular, in cate-
gory Graph, the injective morphisms are the monomorphisms.

Definition 4.1.2 (Monomorphism). Given a category C, a morphism
m: B C is called a monomorphism (denoted by) if, for all mor-monomorphism

phisms f , g : A→ B ∈ C, it holds that f ; m = g; m implies f = g:

A
f

g
B m C

Adhesive categories guarantee the VK property along monomorphism
beside the existence of pushouts and pullbacks:

Definition 4.1.3 (Adhesive category). A category C is adhesive if:adhesive

category
1. C has pushouts along monomorphism (i.e. pushouts where at least

one of the given morphisms is a monomorphism).

1As usual “iff” denotes “if and only if”.
2Note that there are also weaker sufficient conditions for VK squares [72]. However, in

this thesis, only the condition relying on monomorphism is used, which is supported by the
definition of (weak) adhesive (HLR) categories.

48

4.1. Adhesive Categories

2. C has pullbacks.

3. Pushouts along monomorphisms are VK squares.

(Weak) adhesive HLR categories guarantee VK squares only along a
special class of monomorphism (and under stricter conditions):

Definition 4.1.4 ((Weak) adhesive HLR category). A category C with a
morphism class M is called a (weak) adhesive HLR category if: (weak) adhesive

HLR category
1. M is a class of monomorphisms closed under isomorphisms, com-

position (f : A → B ∈ M, g : B → C ∈ M ⇒ f ; g ∈ M), and
decomposition (f ; g ∈M, g ∈M⇒ f ∈M).

2. C has pushouts and pullbacks along M-morphisms (i.e. at least all
pushout and pullbacks exist that include one M-morphism), and
M-morphisms are closed under pushouts and pullbacks.

3. a) Adhesive HLR category: pushouts in C along M-morphisms are
VK squares.

b) Weak adhesive HLR category: pushouts in C along M-morphisms
are weak VK squares. This means the VK square property holds
for all commutative cubes with m ∈ M and f ∈ M or b, c, d ∈ M
(see figure in Definition 4.1.1).

Many types of graphs fit into such categories that can be used to for-
malize problems in software engineering:

Example 4.1.1 (Examples of different types of adhesive categories). Ta-
ble 4.1 lists examples for different types of adhesive categories together
with the corresponding class of monomorphism.

Table 4.1: Adhesive, adhesive HLR and weak adhesive HLR categories

Name Morphism class M

Adhesive categories

Set [77] injective morphism

Graph [77] injective morphism

GraphTG [36] injective morphism

EGraph (follows from [112]) injective morphism

GSpec (Chapter B) injective morphism

Adhesive HLR categories

SymbGraphD [112] injective morphism with equivalent
formula in domain and codomain

GT [89] extremal monomorphisms

HyperGraph [36] injective hypergraph morphism

Weak adhesive HLR categories

PTNet [36] injective morphism

IGraph [54] subtype reflecting I-graph morphism

AIGraph [54] subtype reflecting AI-graph morphism

In adhesive categories, morphism class M contains all monomorphisms.
Most of the categories in Table 4.1 have already been presented in Chap-
ter 3. However, more categories are (weak) adhesive:

49

4. Adhesive Categories and Graph Transformations

• Set is the category of sets. Its a well-known fact that many categories
are based on Set e.g. Graph, GraphTG, EGraph and GSpec.

• GT is a category of graphs supporting inheritance similar to category
IGraph. Vertices of type graphs are partially ordered and form a
lattice (i.e. each type graph has a least an element “Everything” and
a greatest element “Anything” by definition).

• Category HyperGraph denotes the category of hypergraphs. A hy-
pergraph is a directed graph where each edge has instead of only
one source and target vertex an arbitrary sequence of vertices as
attachment points.

• Category PTNet denotes the category of place/transition (Petri) nets.

• Category AIGraph builds on category IGraph, and support edge at-
tribution and data manipulation.

4.2 Properties of (Adhesive) Categories

Proofs that are presented in this thesis rely on several properties that are
(partly) only valid in (weak) adhesive (HLR) categories. In Table 4.2, all
of these properties are listed. We will refer to these properties by their
numbers in subsequent chapters.

Table 4.2: Categorical properties and sufficient preconditions

Property Sufficient precondition

(1) PB composition [11] category with PBs
(2) PB decomposition [11] category with PBs
(3) PO composition [11] category with POs
(4) PO along M-morphism is PB [36] weak adhesive HLR category
(5) M-morphism stable under PB [36] weak adhesive HLR category
(6) M-morphism stable under PO [36] weak adhesive HLR category
(7) Uniqueness of POCs [24, 36] weak adhesive HLR category
(8) VK Property [36] adhesive HLR category
(9) Special PB-PO property∗ [78] adhesive HLR category with arbitrary PBs

(10) Weak VK Property [36] weak adhesive HLR category
(11) Weak special PB-PO property∗ [78] weak adhesive HLR category
(12) FPBCs stable under PBs∗ [88] category with PBs

∗: The proof can be found in the appendix.

Pullback (PB), Pushout (PO), Pushout Complement (POC), Final Pullback Complement (FPBC)

adhesive category (adhesive HLR category (weak adhesive HLR category

(category with pullbacks

50

4.2. Properties of (Adhesive) Categories

Note that Properties 9, 11 and 12 are propositions from related work [78,
88] that have been generalized. Table 4.3 summarizes the facts of the
properties listed in Table 4.2.

Table 4.3: Categorical properties

In the following, we always refer to
the commuting diagram on the right
(if not stated differently).

A
f

(1)m

C
p

(2)n

E

l

B
g

D
q

F

(1) PB composition

If squares (1) and (2) in the diagram are pullbacks
then also square (1 + 2) is a pullback.

(2) PB decomposition

If squares (1+2) and (2) in the diagram are pullbacks
then also square (1) is a pullback.

(3) PO composition

If squares (1) and (2) in the diagram are pushouts
then also square (1 + 2) is a pushout.

(4) PO along M-morphism is PB

If square (1) is a pushout and m a M-morphism then
square (1) is also a pullback.

(5) M-morphism stable under PB

If square (1) is a pullback and n a M-morphism then
also m is a M-morphism.

(6) M-morphism stable under PO

If square (1) is a pushout and m a M-morphism then
also n is a M-morphism.

(7) Uniqueness of POC

If square (1) is a pushout and m a M-morphism then

the pushout complement A
f
→ C

n
→ D of A

m
→ B

g
→ D

is unique (up to iso.).

(8) VK Property

see Definition 4.1.4, 3 a) and Definition 4.1.1

(9) Special PB-PO property

If square (1 + 2) is a pullback, square (1) a pushout
and m, n and l are M-morphisms then square (2) is
a pullback.

(10) Weak VK Property

see Definition 4.1.4, 3 b) and Definition 4.1.1

(11) Weak special PB-PO property

If square (1 + 2) is a pullback, square (1) a pushout
and m, n, l, f and g are M-morphisms then square (2)
is a pullback.

(12) FPBCs stable under PBs

Consider the cube of Definition 4.1.1 with all faces
as pullbacks and A

f
→ C

n
→ D being a Final Pull-

back Complement then also A′
f ′

→ C′
n′

→ D′ is a Final
Pullback Complement.

In the next section, we introduce graph transformations based on
cospans that already rely on a subset of these properties.

51

4. Adhesive Categories and Graph Transformations

4.3 Graph Transformations based on Cospans

One main contribution of this thesis is a theory of coupled transformations.
Coupled transformations are build on top of new variants of algebraic
graph transformations based on cospan rules. Generally, algebraic graph
transformations manipulate graphs by use of categorical constructions. In
the literature, there are three well-known variations of algebraic graph
transformation approaches:

1. the Double-Pushout [36] (DPO),different graph

transformation

approaches 2. the Single-Pushout [87] (SPO),

3. and the Sesqui Pushout [24] (SqPO) approach.

While all approaches use an elegant and compact description of graph
rewriting, they differ with respect to the types of morphisms under con-
sideration, the form of the rules, and the commuting diagrams on which
the rewriting steps are based. A rule in the SPO approach is a morphism
p = L → R in a category of graphs and partial graph morphisms, while a

rule in the DPO approach and the SqPO approach is a span p = L
l
← I

r
→ R

in a category of graphs and total graph morphisms [24].
The formalization of coupled transformations in this thesis is based on

(adhesive) categories with total morphisms. Therefore, we only consider
variants of the double and sesqui pushout approach here. While the
DPO approach and the SqPO approach traditionally use span rules, we

employ cospan rules p = L
l
→ I

r
← R instead. This switch to cospan rules

is justified in Chapter 6, where it is shown that cospan transformations
have several properties that are beneficial for synchronizing two related
transformations.

The graph transformations we work with operate in a category of
graphs, e.g. in the category of (directed multi-)graphs, Graph. In the fol-
lowing, we formulate definitions for Graph. In Graph, it is well known that
the monomorphisms are the injective morphisms and the epimorphisms
are the surjective morphisms [36]. A generalization of the given defini-
tions can be obtained by substituting graphs by objects of a (weak) adhesive
HLR category, injective morphisms by M−morphisms and surjective mor-
phisms by epimorphisms. One rule in the cospan DPO approach as well as
in the cospan SqPO approach is a cospan between three graphs. The left-
hand side L represents the pre-conditions of a rule, while the right-hand
side R describes its post-conditions. The intermediate graph I clarifies how
L and R overlap.

52

4.4. Cospan Double Pushout Approach

Definition 4.3.1 (Cospan transformation rule). A cospan transformation rule

p = L
l
→ I

r
← R consists of graphs L (left-hand-side), I (intermediate), and R cospan

transformation

rule

(right-hand-side) and two jointly surjective3 graph morphisms l and r.
If rule morphism l = L → I is injective, a rule p is called left-linear, if

rule morphism r = R→ I is injective, it is called right-linear and if both are
injective, the rule is only called linear.

Should r be bijective, rule p is in addition called non-deleting and can be
written as p = l = L→ I. For non-deleting rules, I is also called right-hand
side. Analogously, should l be bijective, rule p is called non-creating and
can be written as p = r = I ← R. For non-deleting rules, I is also called
left-hand side.

4.4 Cospan Double Pushout Approach

A well-known approach is the (span) DPO approach [36], where two
pushouts are used to describe graph changes by first deleting graph el-
ements and then creating new elements or merging preserved items. In
the following, we consider a new variant of the DPO approach called
cospan Double-Pushout approach [37] (cospan DPO). In this approach, ba-
sic graph changes are performed in the opposite way, meaning that graph
elements are created or merged first before elements are deleted. This
implies that new graph elements are inserted in a richer context where
graph elements to be deleted are still available. In [37], it is shown that
the adjoint rule, that is obtained by taking the pullback of a cospan rule,
respectively the pushout of a span rule, produces the same transformation
result in case of linear rules in any weak adhesive HLR category.

Given a rule p = L
l
→ I

r
← R, a graph transformation t : G

p,m
==⇒ H

transforming a graph G into a graph H is applied by first finding a mor-
phism m : L → G, called match, from the left-hand side L of the rule p to
graph G and second, by adapting G in two steps. In the first step, elements
corresponding to r(R)\ l(L) are created in G (resulting in U), while elements
of G that correspond to elements in L that are non-injectively mapped via
rule morphism l : L → I are merged accordingly. In the second step,
elements corresponding to l(L) \ r(R) are deleted in U (resulting in H).

Definition 4.4.1 (Cospan DPO transformation). Given a right-linear cospan DPO
transformationcospan transformation rule p = L

l
→ I

r
 R,

together with a graph morphism m : L → G,
called match, rule p can be applied to G if a
cospan double-pushout exists as shown in the

diagram on the right. Transformation t : G
p,m
=⇒ H

is called a cospan double pushout transformation.

L

m

l

(PO1)

I

i (PO2)

R

m′

r

G
g

U H
h

3i.e. l(L) ∪ r(R) = I

53

4. Adhesive Categories and Graph Transformations

Pushout (1) in the diagram of Definition 4.4.1 can directly be con-
structed, pushout (2) is constructed by a pushout complement. As pushout
complements are only unique 4 if r = R I is injective (see Property 7
in Table 4.3), cospan rules in the cospan double pushout approach are
always right-linear. This implies that (cospan) DPO transformations do
not support the splitting of elements. A match m : L→ G can be injective
or non-injective in general. Even injective matching is more frequentlyinjective and

non-injective
matching

used since matches can be found easier; graph transformation tools such
as AGG [30] also offer to search for non-injective matches. However, we
primarily work with injective matching here. Therefore, we allow non-left
linear rules that support the merging of graph elements. This is benefi-
cial e.g. to specify refactoring “Merge Class”. Note, in (weak) adhesive
(HLR) categories (see Definition 4.1.3 and Definition 4.1.4), only pushouts
along M-morphism must exist, therefore it is usual to restrict either to
linear rules or injective matching. Under this restriction, double pushout
approaches could also be called double pullback approaches, as pushouts
along M-morphism are pullbacks (Property 4).

A graph transformation rule can be applied if both pushouts can be
uniquely constructed i.e. if a unique pushout complement exists. Thisgluing condition

is the case if the gluing condition is satisfied i.e. a rule application does
not produce dangling edges (dangling condition) and all elements are
uniquely identified (identification condition). In case injective matching is
used, the gluing condition can be reduced to the dangling condition. The
gluing condition for cospan DPO transformations can be found in [37].

The DPO approaches5 allow the performance of create, delete and merge
operations. In contrast to the DPO approaches, the SqPO approaches6

additionally allow for splitting elements as well as for deleting elements in
unkown context. Therefore, the cospan SqPO approach is introduced next.

Example 4.4.1 shows a sample graph transformation in the cospan DPO
approach in category GraphTG. Example 6.1.1 in Chapter 6 shows another
sample graph transformation in category GSpec.

4in weak adhesive HLR categories
5DPO approach or cospan DPO approach
6SqPO approach or cospan SqPO approach

54

4.4.
C

o
sp

an
D

o
u

b
le

P
u

sh
o

u
t

A
p

p
ro

ach
Example 4.4.1 (Cospan DPO transformation in category GraphTG). Figure 4.1 shows a cospan DPO transformation that
moves an attribute along a reference. Because graph transformations cannot change the target of edges, the “move”
operation has to be modeled by create and delete. The transformation can also be seen as a cospan SqPO transformation.

L I R

G U H

m m'i

l

g

r

h

s
4 5 6 eference

7 5 8 9 9 ribute ; 5 8 9 9 ribute

s
4 5 6 eference

; 5 8 9 9 ribute

s
4 5 6 eference

7 5 8 9 9 ribute

4 < = > 9 ? = @ A ?

:reference

target

:referencename

:attribute

trigger

:attribute

7 < B ffect

:attribute

; < B ff B C 9 D

:attribute
DataT

ransition
4 < = > 9 ? = @ A ?

:reference

target

:referencename

:attribute

trigger

:attribute

; < B ff B C 9 D

:attribute
DataT

ransition

4 < = > 9 ? = @ A ?

:reference

target

:referencename

:attribute

trigger

:attribute

7 < B ffect

:attribute
DataT

ransition

Figure 4.1: A cospan DPO transformation

The transformation evolves a type graph for Moore into one for Mealy automata. Mappings are indicated by numbers.
New elements ids (names in the models) are defined by the transformation executer.

55

4. Adhesive Categories and Graph Transformations

4.5 Cospan Sesqui Pushout Approach

The (span) SqPO approach has been introduced by Corradini and Hein-
del [24] as a deterministic and conservative extension of DPO rewriting.
Rules are defined as in the traditional DPO approach as spans but are not
required to be left-linear. This allows for the performance of split oper-
ations on elements. In this section, we adapt the definitions of [24] and
also define sesqui pushout transformations for cospan rules. This means
cospan rules are no longer required to be right-linear.

Instead of a pushout and a pushout complement, rules in the (cospan)
SqPO approach are applied by a pushout and a Final Pullback Complement
(FPBC). A FPBC can be characterized as the largest pullback complement,
where largest means the pullback complement with the largest possible
pullback object (see Definition A.2.1 in the appendix). Interestingly, in
case of right-linear cospan rules, FPBCs are isomorph to pushout comple-
ments [24]. Hence, it is a real generalization. We define a cospan sesqui
pushout transformation as follows:

Definition 4.5.1 (Cospan SqPO transformation). Given a cospan trans-cospan SqPO
transformation formation rule p = L

l
→ I

r
← R together with a

morphism m : L → G, called match, rule p
can be applied to G if the pushout in the left
square in the diagram on the right exists and the

pullback in the right square with R
m′

→ H
h
→ U

L

m

l

(PO)

I

i (PB)

R

m′

r

G
g

U H
h

being the FPBC of R
r
→ I

i
→ U. Transformation t : G

p,m
=⇒ H is called a cospan

sesqui pushout transformation.

A cospan SqPO transformation rule can be applied if the FPBC exists.
Interestingly, FPBCs are always unique up to isomorphism, if they exist. In
[24, 70] the existence of FPBCs is studied for Graph as well as for arbitrary
categories. For Graph, a sufficient condition for the existence of FPBCs isconflict freeness

characterized as conflict freeness in [24], a weaker condition as the gluing
condition in DPO graph rewriting. In category Graph, the condition is
satisfied for every injective match [24], i.e. that only in a case of non-
injective matching the conflict-freeness condition needs to be checked.

Example 4.5.1 shows a sample graph transformation in the cospan
SqPO approach in category GraphTG.

56

4.5.
C

o
sp

an
S

esq
u

i
P

u
sh

o
u

t
A

p
p

ro
ach

Example 4.5.1 (Cospan SqPO transformation in category GraphTG). Figure 4.2 shows a cospan SqPO transformation
which creates a (super)class and split its (sub)class. Context elements are cloned due to the non-injective morphism
r = R→ I.

L I R

G U H

m m'i

l

g

r

h
E F G H I G J J K ibute

E F G H I G J J K ibute

ruc

Int

:DataT

L M N O P I P Q R eritance

s

L M N I P Q heritance

s

N I P Q R eritanceL I P Q R eritance

E F G H S I G J J K ibute

ruc

Int

:DataT

N O P S S I P Q R eritance

geTruc

L O P S I P Q R eritance

E F G H S S I G J J ribute

ruc

Int

:DataT

ss

Figure 4.2: A cospan SqPO transformation

The transformation creates vertex Vehicle and splits vertex Track. Attribute load and inheritance edge i are cloned.
Mappings are again indicated by numbers.

57

4. Adhesive Categories and Graph Transformations

4.6 Summary of Approach Differences

In the previous section, the cospan SqPO approach has been introduced as
a generalization of the cospan DPO approach. In this section, we compare
both approaches and the SPO approach. Most of the differences are inde-
pendent from the formalization of the rules (i.e. if cospan rules or span
rules are used for DPO or SqPO transformations).

First, transformation rules are applicable under stricter conditions in
the DPO approaches than in the SqPO approaches, as FPBCs may also existdifferences of

algebraic graph

transformation

approaches

if unique pushout complements do not exist. If a unique pushout comple-
ment exists, it is also a FPBC. If the pushout complement does not exist
but the FPBC does, deletion in unknown context is modeled as in the SPO
approach: dangling edges are removed. Therefore, the SqPO approaches
do not require a dangling condition (which is part of the gluing condition)
as the DPO approaches [24]. Instead of the gluing condition, the existence
of FPBC has to be checked. In the SPO approach, only pushouts must exist.
Hence, the SPO approach has the weakest precondition. This is generally
ensured for pushouts along M−morphisms (see Definition 4.1.4). There-
fore, the SPO approach may delete identified elements preserved by the
rule morphism, i.e. it prioritizes deletion over preservation. Furthermore,
the approaches differ in the supported transformation operations. In con-
trast to the other approaches, the SqPO approaches support the splitting
of elements (i.e. cloning).

Table 4.4 gives an overview about all three types of transformations
approaches and their differences. While there are no differences between
graph transformation approaches and their cospan equivalents in Table 4.4,
we observed in [80] that cospan approaches have advantages should trans-
formations be applied bidirectionally.

Table 4.4: Supported operations of graph transformation approaches

(cospan) DPO (cospan) SqPO SPO

create X X X

delete X X X

merge X X X

split X

delete in unknown context X X

precedence of deletion over preservation X

4.7 Application Condition

The left-hand side of a graph transformation rule can be considered as a
precondition for their application i.e. if the left-hand side is matched a rule
may be applied (i.e. also the gluing condition/conflict-freeness condition

58

4.8. Transformation Variants

is satisfied). However, further conditions to specify the applicability of
a graph transformation rule are desired. In particular, it is common also
to check for the non-existence of graph patterns before a graph transfor-
mation rule is applied. Such conditions can be specified by application
conditions (see e.g. [36]). Additional application conditions as defined
next can be used for cospan rules in the DPO or SqPO approach:

Definition 4.7.1 (Simple application condition). A simple application con-
dition is in the form AC(ã), where ã : L → A is a morphism. Application simple

application

condition

conditions are either negative (NAC) or positive (PAC). A match m : L→ G
of a rule satisfies: (1) a PAC(ã) if there exists, (2) a NAC(ã) if there does not
exist, an injective morphism mA : A G with ã; mA = m.

A

mA

L

m

l

(1)

ã
I

(2)

R

m′

r

G U H

Simple application conditions can be composed to boolean formulas
for more complex conditions:

Definition 4.7.2 (Application condition). An application condition is a
simple application condition or a Boolean expression of application con- application

conditionditions. A morphism m : L→ G satisfies an application condition A1∧A2
(A1 ∨ A2) if it satisfies A1 and (or) A2. Morphism m satisfies ¬A if it does
not satisfy A.

4.8 Transformation Variants

Algebraic graph transformation is an abstract but also flexible transforma-
tion approach. Graph transformations can be used for homogeneous and
heterogeneous transformations, as well as for in-place and out-place transfor-
mations (see Chapter 2).

Homogeneous transformations are transformations where the source
and target modeling language (i.e. their type graphs) are the same. This
is obviously supported by graph transformations in any category of typed
graphs.

Heterogeneous transformations are transformations where the source
and target modeling language are not the same. Such transformations
can be specified by creating a joint modeling language first, containing
both modeling languages as well as new elements relating types. Hetero-
geneous transformations become due to this construction homogeneous

59

4. Adhesive Categories and Graph Transformations

transformations in a joint modeling language. After the complete trans-
formation is finished, the target model can be extracted from the original
transformation result by keeping only all elements that exist in the target
modeling language. This can be formalized by a pullback construction.

In-place transformations are transformations where a model (i.e. graph)
is changed. Usually, graph transformations are used for in-place transfor-
mations. However, a key concept of category theory is that object relation-
ships are considered rather than their internal structures. In particular, this
means algebraic graph transformations distinguish graph elements up to
isomorphisms only, i.e. the theory of graph transformations abstracts from
the question whether elements are reused or copied. Therefore, it is up
to a tool designer if a graph transformation finally transforms in-place or
out-place. If tools reuse the elements from G in the pushout, respectively
pullback constructions transformations can be considered as in-place.

Out-place transformations are vice versa transformations that create
new models by copying elements. Therefore, a tool only needs to use
pushout and pushout/Final Pullback Complement constructions that cre-
ate new elements instead of reusing existing ones. In addition, mixed
constructions are possible. This can be helpful if element identifiers are
also used as element names. A renaming is always possible even if trans-
formations should transform primarily in-place.

In this chapter, (weak) adhesive (HLR) categories have been recalled. In
particular, properties that are ensured in these categories have been listed.
Two of them have been generalized. Those properties are used in proofs
in subsequent chapters. Furthermore, the cospan DPO graph transfor-
mation approach has been recalled, while the SqPO graph transformation
approach has been transferred to co-span rules. In addition, application
conditions have been summarized.

60

CHAPTER 5
Detecting Evolution Steps by
Graph Transformation Rules

In Chapter 2, three different types of model migration approaches from
the literature [118] have been discussed: manual specification, operator-
based and matching approaches. In contrast to the first type of approach
(manual specification), in which model migration needs to be specified
manually, meta-model evolution steps are explicitly considered in the sec-
ond (operator-based) and third (matching) types of approaches. In this
chapter, we focus on the third type of approach. We introduce a new for-
mal approach for detecting sequences of meta-model evolution steps (see
Figure 5.1) by graph transformation rules based on cospans. Thereafter,
we discuss its advantages over an alternative approach based on span
rules. This chapter is based on [91].

n-1

tt

t

1

1

MM

M1

1 MM

M2

2
tt

t

2

2

MM

M3

3

t

MM

M

MM

M

tt

t

MM

Mn

n
n-1

n-1

n-1

n-2

ttn-2

n-2

n-2

Meta-model Evolution

Model Migration

Figure 5.1: Coupled Evolution Steps

How models can be migrated along detected sequences of meta-model
evolution steps is explained in subsequent chapters.

61

5. Detecting Evolution Steps by Graph Transformation Rules

5.1 Introduction

Example 5.1.1 shows an introductory sample evolution that has been used
previously in various articles [21, 118, 146]. A Petri net meta-model is
evolved into one supporting weighted edges.

Example 5.1.1 (Petri net meta-model evolution). Figure 5.2 (a) shows a
Petri net meta-model that does not support weighted edges while Fig-
ure 5.2 (b) shows a Petri net meta-model that does.

pTArrow tPArrow

Place

token:Int

Transition

(a) original Petri net
 meta-model

src

1..1

Arrow

weight:Int

PTArrow TPArrow

Place

token:Int

Transition
src

1..1

trg

1..1

trg

1..1

(b) evolved Petri net meta-model

Figure 5.2: Petri net meta-model evolution

The Petri net meta-model in Figure 5.2 (a) might have been evolved
e.g. in six steps:

1. Replace reference pTArrow by class PTArrow and two references src

and trg with corresponding multiplicity constraints.

2. Add attribute weight to class PTArrow.

3. Replace reference tPArrow by class TPArrow and two references src

and trg with corresponding multiplicity constraints.

4. Add attribute weight to class TPArrow.

5. Add superclass Arrow.

6. Pull up attribute weight to superclass Arrow.

However, other evolution sequences are possible. Evolution steps
might have been performed by rules or by editing the model directly.

62

5.1. Introduction

If a meta-model has been evolved by several cospan graph transfor-
mation rules, we can also relate the first and the final meta-model version
by a cospan using pushouts and composition of morphisms (see Exam-
ple 5.1.2). In the following, we call such cospans meta-model cospans (or
type graph cospans).

Example 5.1.2 (Relating meta-models by a cospan). Figure 5.3 shows a se-
quence of meta-model evolution steps formally described by three graph
transformations evolving a meta-model MM1 to MM7. Meta-models MM1

and MM7 can be related by a meta-model cospan MM1
tg,a1 ,a2
→ MM2,6

th;b1 ,b2
← MM7.

TL
tl

TI TR
tr

TL
tl

TI TR
tr

TL
tl

TI TR
tr

MM1 tg

tg;a1 ;a2

MM2

a1

MM3

PO

MM4

PO

MM5

PO

MM6

b1

MM7
th

th;b1 ;b2

MM2,4

a2

MM4,6

b2
MM2,6

Figure 5.3: Type graph cospan composition

The idea is to decompose a given meta-model cospan again using graph
transformation rules into a sequence of rule applications. A meta-model
cospan may be directly derived by the element identifier in a suitable
modeling framework (see Example 5.1.3).

Example 5.1.3 (Deriving a meta-model cospan). The example builds on
Example 5.1.1 and shows a listing for each meta-model in Figure 5.2 (a) and
(b). The textual presentation for the models is based on categories IGraph,
DPF and SymbGraphD. A tool, DPF Text, supporting such models has been
developed as part of the PhD project. Listing 5.1 shows the meta-model of
Figure 5.2 (a).

Listing 5.1: Figure 5.2 (a) in DPF Text
1 Specification:ClassModel<6> {

2 Graph {

3 Place@2:Class@0{

4 pTArrow@4:reference@1->Transition@1:Class@0,

5 token@5:*->Int

6 },

7 Transition@1:Class@0{

8 tPArrow@3:reference@1->Place@2:Class@0

9 }

10 }

11 }

Each element in the listings has a name and in addition an identifier
automatically assigned by the tool. In addition, each element has a type

63

5. Detecting Evolution Steps by Graph Transformation Rules

consisting of type name and type identifier. The tool automatically formats
the textual presentation similar to class specifications in textual program-
ming languages. Listing 5.2 shows the meta-model of Figure 5.2 (b).

Listing 5.2: Figure 5.2 (b) in DPF Text
1 Specification:(ClassModel ,MySig)<14> {

2 Graph {

3 Arrow@12:Class@0{

4 weight@13,14:*->Int

5 },

6 PTArrow@6:Class@0 extends Arrow@12:Class@0{

7 src@8:reference@1->Place@2:Class@0,

8 trg@7:reference@1->Transition@1:Class@0

9 },

10 Place@2:Class@0{

11 token@5:*->Int

12 },

13 TPArrow@9:Class@0 extends Arrow@12:Class@0{

14 src@10:reference@1->Transition@1:Class@0,

15 trg@11:reference@1->Place@2:Class@0

16 }

17 }

18 Constraints {

19 minMax@4("1"){PTArrow@6:Class@0-src@8:reference@1->Place@2:Class@0},

20 minMax@4("1"){PTArrow@6:Class@0-trg@7:reference@1->Transition@1:Class@0},

21 minMax@4("1"){TPArrow@9:Class@0-src@10:reference@1->Transition@1:Class@0},

22 minMax@4("1"){TPArrow@9:Class@0-trg@11:reference@1->Place@2:Class@0}

23 }

24 }

DPF Text automatically reduces unnecessary duplications. For exam-
ple, class Transition is only presented as a target of a reference since the
class does not have any outgoing edges (i.e. attributes or references). Fur-
thermore, identifier can be sets of integer values. The identifier of the
weight attribute consists, for example, of two integers. Such identifiers
can indicate e.g. a merge of two elements1. Hence, also, merges and splits
(identifier consists of a new integer and the previous integer) may be de-
tected by help from such model presentations. Listing 5.3 shows the DPF
signature used in Listing 5.2 containing additional atomic constraints.

Listing 5.3: DPF signature used in Listing 5.2
1 Signature<6, OCL> {

2 abstract@1(min){x:_}="context #x# inv: false",

3 irr@2(){x:_-y:_->x:_}="context #x# inv: not #y#->includes(self)",

4 min@3(min){x:_-y:_->z:_}="context #x# inv: #y#->size() >= #min#",

5 minMax@4(minMax){x:_-y:_->z:_}="context #x# inv: #y#->size() = #minMax#",

6 sur@5(){x:_-y:_->z:_}="context #z# inv: not O#y#->isEmpty()"

7 }

The semantics of the signature has been specified by OCL templates.
In such a signature, arbitrary new constraints can be specified. Note also
that the weight attribute could have been supported by such a signature
predicate alternatively to the shown meta-model evolution. Predicates can

1In IGraph, it is possible to specify the “Pull Up Reference” refactoring by a merge.

64

5.2. Detecting Evolution Steps with Cospan Rules

be specified for arbitrary shape graphs. Types in the signature are omitted
(shown as “ _”), as the signature is untyped.

Obviously, the meta-model cospan shown in Figure 5.4 can be derived
by mapping the identifier. Due to space restrictions in subsequent exam-
ples, a more compact graph presentation of the meta-models is used. Only
the first letter(s) of names are shown and the typing has been omitted.
However, element identifiers are shown either as subscripts in vertices or
postfixes in edges.

P2

Int

T1

t5

tTUVWX

MM1

tTU
Y

Int

AZY \6

T1

s8

t] sZ^

t11

wZU_ZX

t5

`bfh `bfh

`bfh`bfh

VWX

MMmax

Y

Int

AZY \6

T1

s8

t] sZ^

t11

wZU_ZX

t5

`bfh `bfh

`bfh`bfh

MMn

bmaxamax

Figure 5.4: Petri net meta-model cospan

5.2 Detecting Evolution Steps with Cospan Rules

In this section, Procedure 5.2.1 is developed, which can be used to decom-
pose meta-model cospans by cospan rules. The Procedure 5.2.1 is built on
the idea of triple matches. This means instead of matching only the left-
hand side of the rule, we match the whole cospan rule in the meta-model
cospan.

Definition 5.2.1 (Triple match of a cospan transformation rule). Triple match of a
cospan

transformation

rule

Assume a cospan MM1
a
→ MMmax

b
← MMn

relating three graphs (respectively
objects in a (weak) adhesive (HLR)
category) MM1, MMmax and MMn:
a triple match (mTL,mTI,mTR) of a

cospan rule tp = TL
tl
→ TI

tr
← TR is de-

fined by three matches mTL : TL → MM1,

TL

mTL

tl
TI

mTI(1) (2)

TR

mTR

tr

MM1 amax
MMmax MMn

bmax

mTI : TL → MMmax and mTR : TR → MMn so that squares (1) and (2) in the
diagram on the right commute.

Having a meta-model cospan, the cospan may be incrementally de-
composed:

Procedure 5.2.1 (Type graph cospan decomposition by cospan rules). Given

type graph cospan TCS =M1
amax
→ Mmax

bmax
← Mn (meta-model cospan) and a set

of cospan rules R in a (weak) adhesive (HLR) category, then cospan TCS
may be decomposed into a sequence of cospan rule applications (evolution
steps) by applying the following procedure (see figure below):

65

5. Detecting Evolution Steps by Graph Transformation Rules

1. Find a triple match (mTL,mTI,mTR) of a cospan rule tp ∈ R in cospan TCS.
Note: the rules in R should have a priority. Rules with a higher pri-
ority are matched first.

2. Apply2 cospan rule tp to type graph MM1 at match mTL : TL→MM1.
Note, if the rule cannot be applied continue with Step 1. If the cospan
SqPO approach is used, it must be ensured in addition that the rule
does not delete unmatched context elements.type graph

cospan

decomposition by

cospan rules

3. Obtain d : MM2 → MMmax as mediating morphism from the left
pushout POL of tp’s rule application.

TL

POL

tl

mTL

TI

ti
mTI

MM1 tg

amax

MM2

d

MMmax

The inner square commutes since it is a pushout. The outer square
commutes since it is a triple match.

4. Construct MM3
u
←MMmin

v
→MMn as a pullback of MM3

th;d
→ MMmax

bmax
← MMn.

5. Construct a new type graph cospan MM3
amax−1
→ MMmax−1

bmax−1
← MMn as

a pushout of MM3
u
← MMmin

v
→ MMn.

6. Continue to decompose cospan MM3
amax−1
→ MMmax−1

bmax−1
← MMn (recur-

sion). Stop if u and v are isomorphisms or no more triple matches
are found.

Mmin

u v
PBTL

tl

mTL POL

TI

ti

mTI

TR
tr

tm′
mTR

MM1 tg

amax

MM2

d

MM3
th

th;d

amax−1

MMn

bmax

bmax−1

PO

MMmax MMmax−1

Example 5.2.1 applies Procedure 5.2.1 to the sample meta-model cospan
from Example 5.1.3.

Example 5.2.1 (Petri net meta-model cospan decomposition). Figure 5.5
shows the first detected evolution step in detail (relying on the cospan DPO
approach), while Figure 5.6 shows the next three detected evolution steps.

2cospan DPO or cospan SqPO approach

66

5.2. Detecting Evolution Steps with Cospan Rules

P2

Int

T1

t5

ikmnoq

ikm
rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

noq

rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

1 �
m

5

1 �
� 6��������

m
1 ��

5 6

rv

Int

ry6

T1

s8

i{

t5

����

����

noq

ikm

TL TI TR

MM MM1 v

tl tr

mo� ti

tg

d

MMmax

MMn

amax

bmax

PO

PO

m noq

s t

mTI mTR

==

=

Detected Rule

"Reference to Reference-Class"

Rules to be detected

rv

Int

T1

t5

ikmnoq

ikm
rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

noq

rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

1 �m
5

1 �
� 6��������

m
1 ��

5 6

rv

Int

ry6

T1

s8

i{

t5

����

����

ikm

rv

Int

ry6

T1

s8

i{

t5

����

����

noq

ikm

rv

Int

ry6

T1

s8

i{

t5

����

����
TL TI TR

MM MM MM1 v m

tl tr

mo� ti tr

tg th

d

th;d

MMmax

MMn

amax

bmax

u v

PO PO

PB

MMmin

m noq

s t

Detected Rule

"Reference to Reference-Class"

Rules to be detected

rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

rv

Int

ry6

T1

s8

i{

t5

����

����

ikm
rv

Int

Axv yrzry6

T1

s8

i{ |x}

t11

~xm�xq

t5

���� ����

��������

MM����x

MMn

a����x

b����x

u v

PO

MMmin

rv

Int

T1

t5

ikmnoq

1 �
m

5

1 �
� 6��������

m
1 ��

5 6

rv

Int

ry6

T1

s8

i{

t5

����

����

ikm

rv

Int

ry6

T1

s8

i{

t5

����

����

noq

ikm

TL TI TR

MM MM MM1 v m

tl tr

mo� ti tr

tg th

PO PO

m noq

s t

Detected Rule

"Reference to Reference-Class"

Rules to be detected

(1a)

(1b)

(1c)

Figure 5.5: Detecting Evolution Step 1

67

5. Detecting Evolution Steps by Graph Transformation Rules

P2

Int

A12 TP���6

T1

s8

�� ���

t11

w13,14

t5

[=1] [=1]

[=1][=1]

1 2 1 2
3

TL TI TR

MM MM MM5 6 7

tl tr

mTL ti tr

tg th

d

th;d

MMmax-2 MMmax-3

MMn

amax-2

amax-3 bmax-2

bmax-3

u=id v

PO PO

POPB

MMmin

Detected Rule
"Reference to Reference-Class"

Rules to be detected

1

TL TI TR

MM MM MM7 8 9

tl tr

mTL ti tr

tg th

d

th;d

MMmax-3

MMn

amax-3

bmax-3

u=id v=id

PO PO

PB

MMmin

1 A

Detected Rule
"Add Superclass"

Rules to be detected

Detected Rule
"Add Attribute"

Rules to be detected

(2)

(3)

(4)

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

1 2
3

5

1 2
4 6[=1][=1]

3
1 24

5 6

P2

Int

PT6

T1

s8

t7

t5

[=1]

[=1]

tP3

tP3
P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

TL TI TR

MM MM MM3 4 5

tl tr

mTL ti tr

tg th

d

th;d

MMmax-1 MMmax-2

MMn

amax-1

amax-2 bmax-1

bmax-2

u=id v

PO PO

POPB

MMmin

3 tP3

s t

tP3
P2

Int

TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

1 2
3

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

1 :D
2

1 :D
2

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

P2

Int

A12 TP9PT6

T1

s8

t7 s10

t11

w13,14

t5

[=1] [=1]

[=1][=1]

Fixpoint

1 PT6
2 TP9

12

Figure 5.6: Detecting Evolution Steps 2-4

68

5.2. Detecting Evolution Steps with Cospan Rules

Figure 5.5 (1a) shows a detected triple match of Rule “Reference to
Reference-Class”. Note the rule also makes use of the reference names
s (src) and t (trg) to correctly detect the corresponding reference class for
the edge. Rule matches should be obvious in the example, however, some
mappings (e.g. 3 7→ pT4) are denoted to make it easier for the reader.
Figure 5.5 (1a) shows in addition the left pushout of the rule application
and the deduced morphism d : MM2 → MMmax. The figure shows Step 1,
(partly) Step 2 and Step 3 of Procedure 5.2.1. Figure 5.5 (1b) shows Step 4
of Procedure 5.2.1 and Figure 5.5 (1c) shows Step 5. Step 6 is the recursion
step.

Figure 5.5 (2) shows another detected evolution step by Rule “Reference
to Reference-Class”. Starting from this sub-figure, detected triple matches
are neglected while Steps 2 to 5 of Procedure 5.2.1 are shown. After this
step, no elements need to be deleted or merged anymore and morphism
u = id. Figure 5.5 (3) shows a detected evolution step “Add Superclass”.
Such a rule may be described by an amalgamated graph transformation
rule [17, 133] (see Chapter 7) i.e. by a generic rule for an arbitrary number
of subclasses. Figure 5.5 (4) shows a detected evolution step “Add At-
tribute”3. Such simple rules should have a low priority during matching
to detect more complex evolution steps instead of simple ones. After these
steps, both morphisms u, v are u = v = id and the procedure stops.

Hence, the detected sequence of evolution steps is: (1. and 2.)“Ref-
erence to Reference-Class,” (3.) “Add Superclass,” (4.) “Add Attribute”.
In addition, all required rule “parameter” e.g. names for new classes are
detected so that the meta-model evolution sequence can be replayed.

Note that Procedure 5.2.1 can also be used if elements became merged
or split, even if not shown in the example above. However, the procedure
may be improved for a practical application. For example, evolution steps
should be detected that create elements that are deleted by a next step (e.g.
a property is moved along two references). This challenge may be solved
by automatically extending the rule set by generated rules combining evo-
lution rules. Furthermore, rule sets may not be confluent and backtracking
may in addition be useful to stop in Step 6 of Procedure 5.2.1 with u and v
isomorphisms instead of “no more matches found”. Both challenges, we
consider as future work.

Remark 5.2.1 (Rule priorities). Due to the nature of the problem, the proce-
dure may not always provide the desired result. However, rule priorities
may help. In Example 5.2.1, e.g. rule priorities would help to not detect
the following sequence:

1. Replace reference pTArrow by class PTArrow and two references src
and trg with corresponding multiplicity constraints.

3Vertex :D denotes a data type.

69

5. Detecting Evolution Steps by Graph Transformation Rules

2. Add superclass Arrow to class PTArrow.

3. Add attribute weight to class Arrow.

4. Replace reference tPArrow by class TPArrow and two references src
and trg with corresponding multiplicity constraints.

5. Add superclass Arrow’ to class TPArrow .

6. Merge superclass Arrow and superclass Arrow’.

Although the sequence above is also a valid sequence of evolution
steps, the detected sequence in Example 5.2.1 is more efficient as it has
less steps. Note that depending on the specification of corresponding
migration steps, migration results may differ.

Remark 5.2.2 (Termination of Procedure 5.2.1). We assume that we only
consider triple matches of rules that actually have an effect (i.e. MMi is
not isomorph to MMi+1). This implies that the delta between MMi and
MMn becomes smaller with each rule application. Even if not proven here,
this should be ensured by the commuting condition of triple matches.
That MMmax−i converges against MMn can be shown by the existence of a
morphism si : MMmax−i−1 →MMmax−i.

MMmin

u v

MM2i+1

amax−i−1

=

amax−i

PO MMn

bmax−i−1

=

bmax−i

MMmax−i−1

si

MMmax−i

Note that the outer square trivially commutes, as it is a pullback (Step 4).

Next, an alternative approach to detecting evolution sequences based
on span rules is discussed.

5.3 Detecting Evolution Steps with Span Rules

We did not succeed in decomposing a meta-model span by span rules (see
Figure 5.7, morphism d : MMmax →MM3 could not be constructed using
category theory).

However, meta-model cospans can also be decomposed by graph trans-
formation rules based on spans. Again, we assume an appropriate meta-
model cospan as given.

70

5.3. Detecting Evolution Steps with Span Rules

TL
tl

mTL POL

TI

ti

mTI

TR
tr

tm′
mTR

MM1 tg

amax

MM2 MM3
th

d?

MMn

bmaxMMmax

Figure 5.7: Meta-model span decomposition problem

First, we define triple matches for span rules in meta-model cospans:

Definition 5.3.1 (Triple match of a span transformation rule). Triple match of a
span

transformation

rule

Assume a cospan MM1
a
→ MMmax

b
← MMn

relating three graph (respectively
objects in a (weak) adhesive (HLR)
category) MM1, MMmax and MMn:
a triple match (mTL,mTI,mTR) of a

span rule tp = TL
tl
← TI

tr
→ TR is de-

fined by three matches mTL : TL → MM1,

TL

mTL

TI

mTI(1) (2)

tl tr
TR

mTR

MM1 amax
MMmax MMn

bmax

mTI : TL → MMmax and mTR : TR → MMn so that squares (1) and (2) in the
diagram on the right commute.

Next, we revise Procedure 5.2.1 for span rules:

Procedure 5.3.1 (Type graph cospan decomposition by span rules).

Given type graph cospan TCS = M1
amax
→ Mmax

bmax
← Mn (meta-model cospan)

and a set of span rules R in a (weak) adhesive (HLR) category, then cospan Type graph
cospan

decomposition by

span rules

TCS may be decomposed into a sequence of span rule applications (evo-
lution steps) by applying the following procedure (see figure below):

1. Find a triple match (mTL,mTI,mTR) of a span rule tp ∈ R in cospan TCS.
Rules are again matched using priorities.

2. Apply4 span rule tp to type graph MM1 at match mTL : TL → MM1.
Note, if the rule cannot be applied continue with Step 1. If the cospan
SqPO approach is used, it must be ensured in addition that the rule
does not delete unmatched context elements.

3. Obtain d′ : MM3 → MMmax as mediating morphism from the right
pushout POR of tp’s rule application.

4DPO or SqPO approach

71

5. Detecting Evolution Steps by Graph Transformation Rules

TI

POR

tr

ti

TR

tm′

mTR ;bmax

MM2
th

tg;amax

MM3

d′

MMmax

The inner square commutes since it is a pushout. The outer square
commutes:

tl; mTL; amax = mTI triple match (left square)
ti; tg; amax = mTI left square of transformation commutes

= tr; mTR; bmax triple match (right square)

4. Construct MM3
u
←MMmin

v
→MMn as a pullback of MM3

d′

→ MMmax
bmax
← MMn

(as before).

5. Construct a new type graph cospan MM3
amax−1
→ MMmax−1

bmax−1
← MMn as a

pushout of MM3
u
←MMmin

v
→MMn (as before).

6. Continue to decompose cospan MM3
amax−1
→ MMmax−1

bmax−1
← MMn (recur-

sion). Stop if u and v are isomorphisms or no more triple matches
are found (as before).

Mmin

u v
PBTL

tl

mTL

TI

ti

mTI

POR

TR
tr

tm′
mTR

mTR ;bmax

MM1 tg

amax

MM2

tg;amax

MM3
th

d′

amax−1

MMn

bmax

bmax−1

PO

MMmax MMmax−1

5.4 Advantages of Cospan Rule Detection

Triple matches need to be detected in both approaches i.e. independent of
if cospan rules or span rules are used.

A possible implementation could use a flattening construction that
could be formalized by a Grothendieck construction in category the-
ory [11]. Graph transformation rules can be transferred to graphs where

72

5.4. Advantages of Cospan Rule Detection

the rule morphisms are presented by special edges5. Such graphs can be
matched using the same techniques that are used to match the left-hand-
side of graph transformation rules.

However, there may be a more efficient way to find triple matches
without using a flattening construction. The idea is to match only the detecting triple

matchesintermediate graph TI of a rule first and then deduce partial matches for
graphs TL and graph TR. Afterward, such partial matches may be ef-
ficiently completed. This can be done in both approaches for elements
that are only injectively mapped by morphisms of the meta-model cospan.
We think this technique is more efficient in case of cospan rules, as the
intermediate graphs in cospan rules contain more elements compared to
equivalent span rules. In case of span rules, the probability of false-positive
matches is higher than in case of cospan rules, meaning more often de-
tected matches cannot be completed to triple matches (see Example 5.4.1).
Furthermore, non-injective matches are more often required in case of span
rules than in case of cospan rules (see Example 5.4.2).

Example 5.4.1 (Number of false positive matches). In this example, we
assume that a triple match is detected by first matching rule graph TI and
deducing partial matches thereafter. Typings are again neglected as in
the previous examples. Figure 5.8 shows a meta-model cospan and a span
and a cospan rule. Both rules specify a “Move Attribute” operation. While
graph TI of the cospan rule can only be matched once in the meta-model
cospan, graph TI of the span rule can be matched four times. Furthermore,
matches mTL and mTR can be completely deduced in the case of the cospan
rule, while only partial matches mTL and mTR can be deduced in the case
of the span rule.

1 2

:D

3

TI

1 2

:D4

3

TL

1 2

:D

3

TR
5

1 2

:D4

3

TI
5

1 2

:D4

3

TL

1 2

:D

3

TR
5

tl tr tl tr

mTI

1

Char

2
r1

a1 a2
3

r2
4

r3

5
a3

1

Char

2
r1

a2
3

r2
4

r3

5
a3

1

Char

2
r1

a1
3

r2
4

r3

MM1 MM MMmax n

bamax max

mTI

(Cospan) Rule "Move Attribute" (Span) Rule "Move Attribute"

one possible match four possible matches

r4 r4

Figure 5.8: Finding triple matches: number of false positive matches

5similar to [66]

73

5. Detecting Evolution Steps by Graph Transformation Rules

Example 5.4.2 (Number of non-injective matches). In this example, we
assume again that a triple match is detected by first matching rule graph
TI and deducing partial matches thereafter. Types are neglected analog to
the previous examples. Figure 5.9 shows a type graph cospan and a span
and a cospan rule. Both rules specify a “Merge Class” operation. While
graph TI of the cospan rule can be matched injectively in the meta-model
cospan, graph TI of the span rule must be matched non-injectively.

TITL TRTI
1 2

3

TL TR

tl tr tl tr

mTI

1

Char

2
r1

a1
3

r2
4

r3

MM1 MM MMmax n

bamax max

mTI

(Cospan) Rule "Merge Class" (Span) Rule "Merge Class"

injective match
(one possible match)

non-injective match
(four possible matches)

1,2

3

1,2

3

1 2
3

1 2
3

1,2

3

1

Char

2
r1

a1 a2
3,4

r2
��

5
a3

��
1

Char

2
r1

a1 a2
3,4

r2
��

5
a3

��

Figure 5.9: Finding triple matches: number of non-injective matches

In this chapter, a new approach to detect meta-model changes by cospan
rules has been introduced and compared to an alternative (also new) ap-
proach based on span rules. The approach has been illustrated on a well-
known model co-evolution example from the literature.

74

CHAPTER 6
Coupled Transformations based

on Graph Transformations

In the following, coupled transformations1 are introduced. They can be
used to evolve meta-models and migrate models correspondingly. First,
different categorical constructions are discussed before a standard con-
struction that fits well with meta-model evolution with model migration
challenge is chosen. In addition, we justify the decision to use graph
transformations based on cospans instead of traditional span-based trans-
formations. This chapter is based on [92, 94, 136].

6.1 Coupled Transformations

We define a coupled transformation by two coupled cospan graph trans-
formations, where each graph of the instance graph transformation (e.g.
specifying a model migration step) is coupled to the corresponding graph
of the type graph transformation (e.g. specifying a meta-model evolution
step) by a morphism. Example 6.1.1 shows a sample coupled transfor-
mation. The transformation in Figure 6.1 shows a meta-model evolution
step and the transformation in Figure 6.2 shows a model migration step.
While the upper transformation is typed by the meta-meta-model (type
graph of the type graphs), the lower transformation is typed by the upper
transformation.

1In our previous work also called co-transformations [94, 95, 136].

75

6.
C
o
u
p
l
e
d

T
r
a
n
sfo
r
m
a
t
io
n
s
b
a
se
d
o
n

G
r
a
p
h

T
r
a
n
sfo
r
m
a
t
io
n
s

Example 6.1.1 (Example coupled transformation in category GSpec). Figure 6.1 shows the meta-model evolution step
of Example 2.6.1 on page 22 (without adding the new weight attribute). A reference is replaced by a class and two
corresponding references. DPF predicates are used to equip the graphs with constraints. In the sample transformation,
type names correspond to identifiers. Therefore suitable identifiers for new elements have been chosen.

TL TI TR

tm (PO1)� � (PO2)� �

6:reference

5:reference

[9:=]

[7:mult(1,1)]

[8:mult(1,1)]

2

:Class

4

:reference

1

:Class

3

:Class

2@Place

:Class

1@Transition

:Class

Int

:DataType

pTArrow

:reference

4@tPArrow

:reference

token

:attribute

3@TPArrow

:Class

6@trg:reference

5@src:reference

[9@:=]

[7@mult(1,1)]

[8@mult(1,1)]

2@Place

:Class

1@Transition

:Class

Int

:DataType

pTArrow

:reference

token

:attribute

3@TPArrow

:Class

6@trg:reference

5@src:reference

[7@mult(1,1)]

[8@mult(1,1)]

2@Place

:Class

1@Transition

:Class

Int

:DataType

pTArrow

:reference

4@tPArrow

:reference

token

:attribute

6:reference

5:reference

[7:mult(1,1)]

[8:mult(1,1)]

2

:Class

1

:Class

3

:Class

2

:Class

4

:reference

1

:Class

Figure 6.1: A meta-model evolution step

76

6.1.
C

o
u

p
led

T
ran

sfo
rm

atio
n

s
Figure 6.2 shows a similar migration step as in Example 2.6.1. In contrast to the model in Example 2.6.1, the model

has two outgoing arrows from the transition to two different places.

L I R

G U H

m m'i

l

g

r

h

(PO1)t (PO2)t

1@:Place 2@:Transition

3@:Place

1@:Place

5@:TpArrow

6@:TpArrow

:pTArrow
7@:tPArrow

8@:tPArrow

9@:src

11@

:trg

� � � � � � c
11@

:trg1:Int

:token

7:4

8:4

9:5

11:6

10:5

12:6

2:1

4:26:3

1:2

5:3 3:2

9:5

11:6

10:5

12:6

2:1

4:26:3

1:2

5:3 3:2

7:4

8:4

4:2

2:11:2

3:2

1@:Place 2@:Transition

3@:Place

1@:Place

5@:TpArrow

6@:TpArrow

:pTArrow

9@:src

11@

:trg

� � � � � � c
11@

:trg1:Int

:token

1@:Place 2@:Transition

3@:Place

1@:Place

:pTArrow
7@:tPArrow

8@:tPArrow

1:Int

:token

=

=

=

=

Figure 6.2: A model migration step

Note: while the vertex labeled by “1:2” is not required in the transformation, it is added so that the match of the
coupled transformation rule is complete (see Definition 6.1.2). Furthermore, graph I and graph U each contain two
commuting subgraphs corresponding to the constraint defined in the evolution rule of Figure 6.1.

77

6. Coupled Transformations based on Graph Transformations

TG

TL

TU

TI

TH

TR

PO1tt PO2tt/PB2tt
tm

ti
tm′

tg

tl

th

tr

tm

tl
tr

G

L

U

I

H

R

PO1t PO2t/PB2t
m

i
m′

g

l

h

r

m

l
r

tG

tL

tU

tI

tH

tR

tG

tL tI tR

Figure 6.3: Coupled transformation

In the following, coupled transformations are defined formally. Cor-
respondingly to Chapter 4, definitions are again formulated for cate-
gory Graph, while the generalized definitions for (weak) adhesive HLR
categories can be retrieved by substituting graphs by objects of the cate-
gory and injective morphisms by M−morphisms. Coupled transformation
rules consist of two cospan rules connected by graph morphisms (see Fig-
ure 6.3).

Definition 6.1.1 (Coupled transformation rule).

Two cospan rules tp = TL
tl
→ TI

tr
← TR and

p = L
l
→ I

r
← R (see Definition 4.3.1) form a coupled

transformation rule (tp, p), if there are graph mor-
phisms tL : L → TL, tI : I → TI, and tR : R → TR
such that both squares in the diagram are on the
right commute.

TL
tl

=

TI

=

TR
tr

L
l

tL

I

tI

R
r

tRcoupled

transformation

rule

If such a coupled transformation rule (tp, p) is used for meta-model
evolution with model migration, rule tp is called an evolution rule, while
rule p is called a migration rule wrt. tp. We also say that migration rule p is
well-typed wrt. tp.

Furthermore, a coupled-transformation rule (tp, p) is called

1. creation-reflecting if TL
tl
→ TI

tI
← I is a pushout (left square).

2. deletion-reflecting if I
r
← R

tR
→ TR is a pullback (right square).

We also say that the migration rule p is creation-reflecting or deletion-
reflecting wrt. tp.

In a creation-reflecting rule, type creations cause the creation of new
instance elements (exactly one for each new type). In a deletion-reflecting
rule, type deletions cause the deletion of exactly those matched instance

78

6.1. Coupled Transformations

elements that cannot be typed anymore. Usually, it is desired that coupled
transformation rules are at least deletion-reflecting to ensure that instance
graphs can be typed after migration.

Example 6.1.2 (A coupled transformation rule in category GSpec). This
example builds on Example 6.1.1 and shows the corresponding coupled
transformation rule.

I

7:4

8:4

9:5

11:6

10:5

12:6

2:1

4:26:3

1:2

5:3 3:2

t

TI

���eference

 ��eference

[9:=]

[7:mult(1,1)]

[8:mult(1,1)]

2

:Class

4

:reference

1

:Class

3

:Class

L

l

t

TL

2

:Class

4

:reference

1

:Class

7:4

8:4
2:1

4:2

1:2

3:2

r

R

t

TR

6:reference

5:reference

[9:=]

[7:mult(1,1)]

[8:mult(1,1)]

2

:Class

1

:Class

3

:Class

9:5

11:6

10:5

12:6

2:1

4:26:3

1:2

5:3 3:2

tl tr

RIL (=)

Figure 6.4: Coupled transformation rule

The coupled transformation rule is deletion-reflecting, as its right square
is a pullback.

A match of a coupled transformation rule is defined by two coupled
matches:

Definition 6.1.2 (Match of a coupled transformation rule). match of a

coupled

transformation

rule

A match (tm,m) of a coupled transformation rule (tp, p) is
given by a match tm : TL→ TG of the (evolution) rule tp and
a match m : L→ G of the (migration) rule p such that the two
matches together with typing morphisms tL : L → TL and
tG : G→ TG constitute a commuting square: tL; tm = m; tG.

TL
tm

TG

=

L
m

tL

G

tG

If G
m
← L

tL
→ TL is a pullback then the match (tm,m) is called complete.

A complete coupled transformation match ensures that all elements of
the instance graph G that are typed by the match of the evolution rule are
considered in the migration step. This means in particular that it is not
possible that the type of any element not considered in the migration step
is deleted, merged or split.

79

6. Coupled Transformations based on Graph Transformations

Example 6.1.3 (A coupled transformation match in category GSpec). This
example builds on Example 6.1.1 and shows the corresponding coupled
match.

G

t

TG

L

m

t

TL

2

:Class

4

:reference

1

:Class

7:4

8:4

2:1

4:2

1:2

3:2

tm

GL (PB)

1@:Place 2@:Transition

3@:Place

1@:Place

:pTArrow
7@:tPArrow

8@:tPArrow

1:Int

:token

2@Place

:Class

1@Transition

:Class

Int

:DataType

pTArrow

:reference

4@tPArrow

:reference

token

:attribute

Figure 6.5: Coupled transformation match

The coupled match is complete since its diagram is a pullback.

A coupled transformation rule applied via a coupled transformation
match results in a coupled transformation. Formally, we define a coupled
transformation as follows:

Definition 6.1.3 (Coupled transformation). A coupled transformation (tt, t)
consists of either two cospan DPO transformations (see Definition 4.4.1) or

two cospan SqPO transformations (see Definition 4.5.1), tt : TG
tp,tm
=⇒ TH andcoupled

transformation t : G
p,m
=⇒ H, that apply a coupled transformation rule (tp, p) at match (tm,m)

to type graph TG and its instance graph G, such that there are morphisms
tU : U→ TU and tH : H → TH and all faces of Figure 6.3 commute.

If such a coupled transformation (tt, t) is used for meta-model evolution

with model migration, the type graph transformation tt : TG
tp,tm
=⇒ TH is

called an evolution step, while the instance graph transformation t : G
p,m
=⇒ H

is called a migration step wrt. tt.

Up to now, we have not considered under which conditions coupled
transformation rules are applicable. A necessary, but not a sufficient pre-
condition for an applicable coupled transformation rule is that both cospan

80

6.2. Constructing Coupled Transformations (Left Part)

graph transformation rules can be applied. In the next sections, sufficient
conditions are examined, which result in different constructions of cou-
pled transformations. In the following, we will assume an evolution step
(i.e. the top face of the double cube in Figure 6.3) and an instance graph G
typed by the type graph TG being evolved as given. First, we will consider
different constructions for the left cube of the coupled transformation be-
fore we examine its right cube. Constructions and proofs are presented on
the level of (weak) adhesive HLR categories. The constructions rely on the
properties presented in Chapter 4.

6.2 Constructing Coupled Transformations (Left Part)

In this section, two different procedures to construct the left part of coupled
transformations are examined. The first relies on the (weak) VK property
(Property 8, respectively Property 10), the second one relies on the (weak)
special PO-PB property (Property 9, respectively Property 11). For each
procedure, the requirements in different types of adhesive categories are
stated as well as which variants are possible. In both procedures, a pushout
in the top face and a type graph TG with instance graph G (see Figure 6.6) is
assumed. To be able to construct the right cube afterward, the procedures
ensure that the right face of the cube in Figure 6.6 is constructed as a
pullback.

TG

TL

TU

TI

PO1tt
tm

ti

tg

tl

tm

tl

G

L

U

I

PO1t
m

i

g

ll

tG

tL

tU

tI

tG

tL tI

Figure 6.6: Left cube of coupled transformation

Constructing the left part of a coupled transformation as VK cube:
left cube

construction

based on (weak)
VK property

Procedure 6.2.1 (Left cube construction based on (weak) VK property).
Let C be a (weak) adhesive HLR category, given a pushout square

TL
tl
→ TI

ti
→ TU

tg
← TG

tm
← TL with tm : or/(and)2 tl ∈ M and an object G ∈ C

2“And” in weak adhesive HLR categories. If pullbacks along arbitrary morphisms do
not exist, tm must be a M-morphism.

81

6. Coupled Transformations based on Graph Transformations

typed by tG : G → TG (see Figure 6.6). A VK cube can be constructed as
follows:

1. Construct the left face of the cube by taking a pullback G
m
← L

tL
→ TL

of G
tG
→ TG

tm
← TL. This results in a coupled match (tm,m) that is

complete.

2. Construct the back face of the cube by choosing a suitable pullback

complement L
l
→ I

ti
→ TI of L

tL
→ TL

tl
→ TI. Notice that pullback com-

plements must not always exist. Furthermore, notice that variants
are possible in this step as pullback complements are not unique.

3. Construct pushout G
g
→ U

i
← I of span G

m
← L

l
→ I (PO1t).

4. Construct tU : U → TU as a mediating morphism of pushout PO1t

with g; tU = tG; tg and i; tU = tI; ti (see figure below) such that the
cube commutes.

L
l

m PO1t

I

i

tI ;ti
G

g

tG ;tg

U

tU

TU

Lemma 6.2.1. Procedure 6.2.1 is well-defined if the pullback complement inProcedure 6.2.1
is well-defined Step 2 exists.

Proof. Step 1 can be constructed if tm is a M-morphism (see Definitions 4.1.3
and 4.1.4) or if arbitrary pullbacks exist. We assume that Step 2 can be
constructed. Step 3 can be constructed: if tm (or tl) is a M-Morphism then
also m (or tl) is a M−Morphism (Property 5). In (weak) adhesive categories,
pushouts along M-Morphisms exist. For Step 4, it is required to show that
tU can be constructed as a mediating morphism. Therefore, the outer
square in the pushout diagram of Procedure 6.2.1 needs to commute:

l; tI; ti = tL; tl; ti back face is commuting (Step 2)
= tL; tm; tg top face is commuting by assumption
= m; tG; tg left face is commuting (Step 1)

Next, it can be shown that the constructed commuting cube is a VK cube
(which implies that its right face is a pullback as required). Morphisms
tm : TL → TG and/or tl : TL → TI are M-morphisms. Because the top
face and the bottom face of the cube are pushouts and the left face and the
back face are pullbacks, the (weak) VK property (Property 8, respectively
Property 10) applies:

82

6.2. Constructing Coupled Transformations (Left Part)

1. in adhesive (HLR) categories, one M-morphisms is sufficient that
Property 8 applies. This means either morphism tm or tl need to be
in M.

2. in weak adhesive HLR categories, tm and tl must be M-morphisms
so that Property 10 applies.

�

Table 6.1 summarizes all requirements and variants of Procedure 6.2.1
for different types of categories. While weak adhesive categories re-
quire left-linear rules and “injective” matches (i.e. M-morphisms), ad-
hesive HLR categories require the existence of arbitrary pullbacks if “non-
injective” matches should be supported. In Table 6.1 and all following
tables, concepts supported by the construction are marked by “X” and
requirements not already supported in the kind of category by “•”. Sup-
ported properties are meant to be additive. This means if a table row con-
tains a marker in column “non-left-linear rules” and “non-monic matches,”
rules are allowed to be both. If there is a marker missing e.g. in column
“left-linear rules,” then there may be another record with weaker precon-
ditions. Note, we assume the type graph transformation as given even if
supported concepts apply always for the type graph and instance graph
rule if not stated differently.

Table 6.1: Procedure 6.2.1 requirements and variants

Supports Requires (in addition)

L
ef

t-
li

n
ea

r
ru

le
s

N
o

n
-l

ef
t-

li
n

ea
r

ru
le

s

N
o

n
-m

o
n

ic
m

at
ch

es

E
x

is
te

n
ce

o
fs

u
it

ab
le

P
B

C
s

al
o

n
g

M
-m

o
rp

h
is

m
s

(b
ac

k
fa

ce
)

E
x

is
te

n
ce

o
fs

u
it

ab
le

P
B

C
s

al
o

n
g

ar
b

it
ar

y
m

o
rp

h
is

m
s

(b
ac

k
fa

ce
)

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
ar

b
it

ar
y

m
o

rp
h

is
m

s
(l

ef
t

fa
ce

)

Adhesive categories
X X •

X •

Adhesive HLR categories
X •

X X • •

X •

Weak adhesive HLR categories X •

Constructing the left part of a coupled transformation with help from
the (weak) special PO-PB property:

left cube

construction

based on (weak)
special PB-PO

Property

Procedure 6.2.2 (Left cube construction based on (weak) special PB-PO Prop-

erty). Let C be a (weak) adhesive HLR category, given a pushout square

TL
tl
→ TI

ti
→ TU

tg
← TG

tm
← TL with tm, ti ∈ M and an object G ∈ C typed by

83

6. Coupled Transformations based on Graph Transformations

tG : G → TG (see Figure 6.6). A commuting cube with a pushout in the
bottom face and a pullback in the right face can be constructed as follows:

1. Construct the left face of the cube by taking a pullback G
m
← L

tL
→ TL

of G
tG
→ TG

tm
← TL (as before).

2. Construct the back face of the cube by complementing L
tL
→ TL

tl
→ TI

to a commuting square L
tL
→ TL

tl
→ TI

tI
← I

l
← L. Notice that even more

variants are possible in this step (compared with the previous Step 2)

and that such a complement always exists (e.g. L
l=id
→ I

tI=tL ;tl
→ TI)

3. Construct pushout G
g
→ U

i
← I (PO1t) of span G

m
← L

l
→ I (as before).

4. Construct tU : U → TU by using the pushout property of the bottom
face so that the cube commutes (as before).

Lemma 6.2.2. Procedure 6.2.2 is well-defined.Procedure 6.2.2
is well-defined

Proof. Because tm is a M-morphism, Step 1 can always be constructed.
Step 2 can always be constructed. Step 3 and Step 4 can always be con-
structed as before (see Proof of Lemma 6.2.2). It remains to show that the
right face of the cube is a pullback. Morphism tm : TL → TG is a M-
morphism. It follows that morphism m : L → G is also a M-morphisms,
as M-morphisms are stable under pullbacks (Property 5). In addition, it
follows that morphisms ti and i are in M, as M-morphisms are also stable
under pushout (Property 6). The top and bottom faces are pushouts along
M-morphisms, hence they are also pullbacks (Property 4). Consider fig-
ures below: the left face (1) and the top face (2) of the cube can be composed
to a pullback (1+2).

L
tL

(1)m

TL
tl

(2)tm

TI

ti

G
tG

TG
tg

TU

L
l

(3)m

I
tI

(4)i

TI

ti

G
g

U
tU

TU

Since the bottom face of the cube (3) is a pushout (Step 3), it can be
deduced:

1. In any adhesive HLR category with pullbacks that the right face (4)
(in Figure 6.6) of the cube is a pullback as required by using the
special PO-PB property (Property 9).

84

6.3. Constructing Coupled Transformations (Right Part)

2. In any weak adhesive HLR category, it must in addition be assumed
that morphism l has been constructed as a M-morphism (e.g. as id).
Then the weak special PO-PB property (Property 11) applies and the
right face (4) of the cube is a pullback as required. That morphism g
is then also a M-morphism follows by l ∈M (Property 6).

�

Table 6.2 summarizes all requirements and variants of the construction
above. In comparison to Procedure 6.2.1, Procedure 6.2.2 is only applicable
if “injective” matching (i.e. tm,m ∈M) is used. Therefore the construction
does not require the existence of a suitable pullback complement in the
back face of the cube.

Table 6.2: Procedure 6.2.2 requirements and variants

Supports Requires (i. a.)

L
ef

t-
li

n
ea

r
ru

le
s

N
o

n
-l

ef
t-

li
n

ea
r

ru
le

s

N
o

n
-m

o
n

ic
m

at
ch

es

E
x

is
te

n
ce

o
f

su
it

ab
le

P
B

C
s

al
o

n
g

M
-m

o
rp

h
is

m
s

(b
ac

k
fa

ce
)

E
x

is
te

n
ce

o
f

su
it

ab
le

P
B

C
s

al
o

n
g

ar
b

it
ra

ry
m

o
rp

h
is

m
s

(b
ac

k
fa

ce
)

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
ar

b
it

ra
ry

m
o

rp
h

is
m

s
(T

h
eo

re
m

A
.1

.1
)

Adhesive categories X X

Adhesive HLR categories
X

X •

Weak adhesive HLR categories X (X)1

1: Type graph transformations are not required to be left-linear, while instance graph
transformations are.

6.3 Constructing Coupled Transformations (Right Part)

In this section, two different procedures to construct the right part of cou-
pled transformations are examined. The first one uses again the (weak)
VK property (Property 8, respectively Property 10), and the second one
uses the stability of FPBCs along pullbacks (Property 12). For each con-
struction, the requirements in different types of adhesive categories are
stated as well as which construction variants are possible as before. In
both constructions, a PO respectively a PB (with a final complement) in
the top face and a PB in the left face (see left cube construction) of the cube
(see Figure 6.7) to be constructed are assumed as given.

85

6. Coupled Transformations based on Graph Transformations

TU

TI

TH

TR

PO2tt/PB2tt
ti

tm′

th

tr

U

I

H

R

PO2t/PB2t
i

m′

h

r

tU

tI

tH

tR
tI tR

Figure 6.7: Right cube of coupled transformation

Next, the right part of a coupled transformation is constructed as VK
cube. The (weak) VK Property only allows for deducing that the bottom
face of a commuting cube with a pushout in its top face is also a pushout
(and not a FPBC in the general case). Therefore, the procedure is restricted
to the cospan DPO approach. Hence, graph transformation rules are right
linear i.e. tr, r ∈M.

Procedure 6.3.1 (Right cube construction based on (weak) VK property).
Let C be a (weak) adhesive HLR category, given a pushout squareright cube

construction

based on (weak)
VK property

TR
tr
→ TI

ti
→ TH

th
← TR

tm′

← TR with tr (and3 ti) ∈ M and a pullback square

I
tI
→ TI

ti
→ TU

tU
← U

i
← I (see Figure 6.7). A VK cube can be constructed as

follows:

1. Construct the back face of the cube by taking a pullback I
r
← R

tR
→ TR of

I
tI
→ TI

tr
← TR. Note that the coupled transformation rule is deletion-

reflecting (see Definition 6.1.1) by this construction. In addition, this
construction is fully deterministic i.e. the construction is unique up
to isomorph.

2. Construct also the front face of the cube by taking a pullback

U
h
← H

tH
→ TH of U

tU
→ TU

th
← TH.

3. Construct m′ : R → H as a mediating morphism of the front face
pullback (see figure below) with m′; h = r; i and m′; tH = tR; tm′ such

3“And” in weak adhesive HLR categories.

86

6.3. Constructing Coupled Transformations (Right Part)

that the cube commutes.

TU

PB

TH
th

U

tU

H
h

tH

R

tR;tm′

r;i

m′

Lemma 6.3.1. Procedure 6.3.1 is well-defined. Procedure 6.3.1
is well-defined

Proof. Step 1 requires only the existence of pullbacks along M-morphism
and tr ∈ M, as the evolution rule is right-linear. Furthermore, th ∈ M
since M-morphism are stable under pushout (Property 6). Therefore, also
Step 2 can be applied. Step 3 requires that the pullback diagram of Proce-
dure 6.3.1 commutes:

tR; tm′; th = tR; tr; ti top face is commuting by assumption
= r; tI; ti back face is commuting (see Step 1)
= r; i; tU left face is a commuting (by left cube)

It is left to show that the cube is a VK cube. By composing the left face (1)
and the back face (2) to a pullback (1+2) and decomposing it by the front
face (3), it can be shown that the right face face (4) of the cube is also a
pullback (see figures below).

TU

(1)

TI
ti

(2)

TR
tr

U

tU

I
i

tI

R
r

tR

TU

(3)

TH
th

(4)

TR
tm′

U

tU

H
h

tH

R
m′

tR

Because all side faces of the commuting cube are pullbacks and the top
face is a pushout along a M-morphism, the (weak) VK property applies:

1. in any adhesive HLR category Property 8 applies and the bottom
face is a pushout as required.

2. in any weak adhesive HLR category Property 10 applies if also
tm′ ∈M, i.e., the bottom face is a pushout as required. Morphism
tm′ ∈ M if tm is a M-morphism: tm ∈ M =⇒ ti ∈ M (Property 6),
ti ∈M =⇒ tm′ ∈M (Property 4 and 5).

�

87

6. Coupled Transformations based on Graph Transformations

Table 6.3 summarizes all requirements and variants of the procedure
above. Graph transformation rules are in this construction always right-
linear. In weak adhesive HLR categories, furthermore, “injective” match-
ing is required.

Table 6.3: Procedure 6.3.1 requirements and variants

Supports Requires (i. a.)

R
ig

h
t-

li
n

ea
r

ru
le

s

N
o

n
-r

ig
h

t-
li

n
ea

r
ru

le
s

(c
o

sp
an

S
q

P
O

ap
p

ro
ac

h
)

N
o

n
-m

o
n

ic
m

at
ch

es

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
m

o
n

o
m

o
rp

h
is

m
(b

ac
k

an
d

fr
o

n
t

fa
ce

s)

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
ar

b
it

ar
y

m
o

rp
h

is
m

s
(b

ac
k

an
d

fr
o

n
t

fa
ce

s)

Adhesive categories X X

Adhesive HLR categories X X

Weak adhesive HLR categories X

Next, Property 12 is used to construct the right cube with a FPBC in the
bottom face. However, the construction below can also be used if evolution
steps are given as cospan DPO transformations due to the fact that cospan
DPO transformations are always also cospan SqPO transformations.

Procedure 6.3.2 (Right cube construction based on the stability of FPBCs).
Let C be a (weak) adhesive HLR category with arbitrary pullbacks, given

a pullback square TR
tr
→ TI

ti
→ TU

th
← TH

tm′

← TR with TR
tm′

→ TH
th
→ TU beingright cube

construction

based on the

stability of

FPBCs

a FPBC and a pullback square I
tI
→ TI

ti
→ TU

tU
← U

i
← I (see Figure 6.7). A

commuting cube with a pullback in the bottom face with R
m′

→ H
h
→ U being

a FPBC can be constructed as follows:

1. Construct the back face of the cube by taking a pullback I
r
← R

tR
→ TR

of TI
tr
→ TR

tR
← R as in Procedure 6.3.1. Notice that this may require the

existence of pullbacks along non M-morphisms in case of non-right-
linear cospan rules.

2.-3. Also, construct Step 2 and Step 3 as in Procedure 6.3.1.

Lemma 6.3.2. Procedure 6.3.2 is well-defined.Procedure 6.3.2
is well-defined

Proof. That the cube is commuting and all side faces pullbacks has been
shown in the proof of Lemma 6.3.1. Notice that this does not require any

M-morphism. By Property 12, it follows directly that R
m′

→ H
h
→ U is a

FPBC. �

88

6.3. Constructing Coupled Transformations (Right Part)

Procedure 6.3.2 only differs from Procedure 6.3.1 in its precondition.
This means Procedure 6.3.1 is also applicable if evolution steps are given
as cospan SqPO transformations. Table 6.4 summarize all requirements
and variants of Procedure 6.3.2.

Table 6.4: Procedure 6.3.2 requirements and variants

Supports Requires (i. a.)

R
ig

h
t-

li
n

ea
r

ru
le

s

N
o

n
-r

ig
h

t-
li

n
ea

r
ru

le
s

(c
o

sp
an

S
q

P
O

ap
p

ro
ac

h
)

N
o

n
-m

o
n

ic
m

at
ch

es

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
m

o
n

o
m

o
rp

h
is

m
(b

ac
k

an
d

fr
o

n
t

fa
ce

s)

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
ar

b
ri

ta
ry

m
o

rp
h

is
m

s
(b

ac
k

an
d

fr
o

n
t

fa
ce

s)

Adhesive categories X X X

(Weak) Adhesive HLR categories
X X

X X •

(Any category)
X X •

X X •

89

6. Coupled Transformations based on Graph Transformations

6.4 Standard Construction for Coupled Transformations

In this section, the standard procedure to construct coupled transforma-
tions is defined based on the procedures presented previously. The stan-
dard procedure is used in subsequent chapters. Table 6.5 summarizes all
possible constructions for complete coupled transformations by combin-
ing the results of Procedure 6.2.1, Procedure 6.2.2 and Procedure 6.3.2.
Procedure 6.3.2 is a generalization of Procedure 6.3.1 and therefore does
not need to be considered.

Table 6.5: Construction coupled transformations: requirements and vari-
ants

Supports Requires (in addition)

L
in

ea
r

ru
le

s

N
o

n
-l

ef
t-

li
n

ea
r

ru
le

s

N
o

n
-r

ig
h

t-
li

n
ea

r
ru

le
s

N
o

n
-m

o
n

ic
m

at
ch

es

E
x

is
te

n
ce

o
f

su
it

ab
le

P
B

C
s

al
o

n
g

M
-m

o
rp

h
is

m
s

(l
ef

t-
b

ac
k

fa
ce

)

E
x

is
te

n
ce

o
f

su
it

ab
le

P
B

C
s

al
o

n
g

ar
b

it
ra

ry
m

o
rp

h
is

m
s

(l
ef

t-
b

ac
k

fa
ce

)

E
x

is
te

n
ce

o
f

P
B

s
al

o
n

g
ar

b
i-

tr
ar

y
m

o
rp

h
is

m
s

(l
ef

t
fa

ce
,

ri
g

h
t-

b
ac

k
fa

ce
,

ri
g

h
t-

fr
o

n
t

fa
ce

,T
h

eo
re

m
A

.1
.1

)

L
ef

t
cu

b
e

co
n

st
ru

ct
ed

b
y

1

Adhesive categories
X X X • 1

X X • 1
X X X 2

Adhesive HLR categories

X • 1
X • 1
X X • • 1

X X X • • 1
X 2

X X • 2

Weak adhesive HLR categories

X • 1
X • • 1

X (X)2 2
(X)2 X • 2

1: “1” denotes Procedure 6.2.1, “2” denotes Procedure 6.2.2
2: Type graph transformations are not required to be left-linear while instance graph
transformations are.

We define the standard procedure based on Procedure 6.2.2 and Proce-
dure 6.3.2. We choose Procedure 6.2.2 to be more flexible when defining
the left side of the coupled transformation rule, even if this choice restricts
us to “injective” matching (i.e. tm,m ∈ M). However, this is useful as
already a simple retyping (see Example 6.4.1) may not be expressible by
a pullback complement as required in Step 2 of Procedure 6.2.1. Further-
more, Procedure 6.2.2 allows for also having non-left linear evolution rules

90

6.4. Standard Construction for Coupled Transformations

in weak adhesive HLR categories. We choose Procedure 6.3.2, as it is a
generalization of Procedure 6.3.1.

This choice is also supported by the results of [52]. In [52], four vari-
ants of the traditional DPO approach to graph transformation are exam-
ined. Beside the usual DPO graph transformation approach with arbitrary
matching and right-linear span rules, Habel et al. consider three vari-
ations employing injective matching and/or non-right linear span rules.
They show that the graph transformation approach with non-right linear
span rules and injective matching is the best approach with respect to
expressiveness. We support, in the standard construction, the equivalent
variant with non-left linear cospan rules and injective matching. Also note
that even if the standard construction does not use the (weak) VK prop-
erty explicitly, it is based on the (weak) VK property due to Property 9,
respectively Property 11 (see proof of Proposition A.1.1).

Example 6.4.1 (Retyping in category Graph). Figure 6.8 shows a left side
of a simple coupled transformation rule in category GraphTG that retypes
one object due to a merge in its type graph.

I

t

TI

L
l

t

TL

2

:Class

3

:reference 1

:Class

1:1

tl

IL (No PB)

1,2

:Class

3

:reference

1:1,2

Figure 6.8: Left side of a coupled transformation rule that retypes one object

The diagram in Figure 6.8 is not a pullback4 and hence it is not a valid
left side of a coupled transformation rule according to Procedure 6.2.1.
However, because the diagram is commuting it is a valid left side according
to Procedure 6.2.2.

Procedure 6.4.1 (Standard construction for coupled transformation). Let C
be a (weak) adhesive HLR category (with arbitrary pullbacks), given a type standard

construction for

coupled

transformation

graph TG (being an object of C), a type graph cospan graph transformation

tt : TG
tp,tm
=⇒ TH with tm ∈ M (evolution step, see Figure 6.3), and a graph

G (being an object of C) typed by tG : G → TG, the standard construction
of a coupled transformation rule (tp, p) with a complete match (tm,m) is
defined as follows:

1. Construct G
m
 L

tL
→ TL as a pullback of G

tG
→ TG

tm
 TL. This results in

a complete match (tm,m).

4To be a valid pullback, the diagram requires a second node “2:2” in graph L.

91

6. Coupled Transformations based on Graph Transformations

2. Complete L
tL
→ TL

tl
→ TI by L

l
→ I

tI
→ TI to a commuting square5. If

the category is only weak adhesive, choose a M-morphism for l (e.g.
l = id).

3. Construct I
r
← R

tR
→ TR as pullback of I

tI
→ TI

tr
← TR. If morphism tr is

not a M-morphism, the category must in addition support pullbacks
along arbitrary morphism.

Such a coupled transformation rule (tp, p) with evolution step t and
match (tm,m) can be completed to a coupled transformation (tt, t) by the
following steps:

4. Construct G
g
→ U

i
 I as pushout of G

m
 L

l
→ I (PO1t in Figure 6.3).

Type morphism tU : U → TU is obtained as mediating morphism of
this pushout as shown in the figure below.

L
l

m PO1t

I

i

tI ;ti
G

g

tG ;tg

U

tU

TU

5. Construct TH
tH
← H

h
→ U as pullback of U

tU
→ TU

th
← TH. Morphism

m′ : R H is obtained as mediating morphism of this pullback as
shown in the figure below.

TU

PB

TH
th

U

tU

H
h

tH

R

tR;tm′

r;i

m′

Theorem 6.4.1 (Procedure 6.4.1 is well-defined). Let C be a (weak) adhesive

HLR category and TG an object in C, an evolution step tt : TG
tp,tm
=⇒ TH with matchProcedure 6.4.1

is well-defined tm ∈ M (see Figure 6.3) and morphism tG : G → TG, Procedure 6.4.1 yields a
match-complete and deletion-reflecting coupled transformation rule (tp, p). Fur-
thermore, rule (tp, p) is applicable, i.e. rule (tp, p) can always be completed to a

5Here the procedure leaves some freedom to define a desired construction.

92

6.4. Standard Construction for Coupled Transformations

coupled transformation (tt, t) in a canonical way by Procedure 6.4.1 under the
following assumptions6:

• If C is an adhesive HLR category, it has arbitrary pullbacks.

• If C is a weak adhesive HLR category, l : L → I can be constructed as
M-morphism.

Proof. The proof follows directly from Lemma 6.2.2 and Lemma 6.3.2. �

The standard construction defined by Procedure 6.4.1 provides lan-
guage designers with the following possibilities to evolve meta-models
and migrate models correspondingly: type elements can be created, deleted, supported

primitive

operations of

Procedure 6.4.1

merged or split, instance elements can be created7 or merged8. However, as
the right part of a coupled transformation rule is determined by a pull-
back (Step 3), only exactly those instance elements are deleted that have a
corresponding type which is deleted. If a type is split, instance elements
are corresponding split. Further, deletions or splittings must be defined in
a usual graph transformation on the instance graph level thereafter.

Remark 6.4.1 (Incomplete and alternative construction).

1. In Procedure 6.4.1, Step 3 is fully deterministic and can be omitted
in practice i.e. it is enough to take the pullback in Step 5. In any
case, the incomplete double cube (see figure below) can be uniquely
completed to a coupled transformation.

TG

TL

TU

TI

TH

TR

PO1tt PO2tt/PB2tt
tm

ti
tm′

tg

tl

th

tr

tm

tl
tr

G

L

U

I

H

R

PO1t (PO2t/PB2t)
m

i
m′

g

l

h

r

m

l
r

tG

tL

tU

tI

tH

tR

tG

tL tI tR

2. In practice, the instance graph transformations can alternatively be
applied directly. By the uniqueness of POCs9/FPBCs (PO2t/PB2t),
this yields isomorphic results. In this case, the typing morphisms
tH : H → TH have to be constructed differently (in case of cospan
DPO transformations e.g. by reducing tU : U → TU to tH).

6To support non-right linear rules and to use Lemma 6.2.2 in the proof.
7independent of if their types are created or preserved
8in adhesive (HLR) categories only
9In graph transformations, only unique pushout complements are used.

93

6. Coupled Transformations based on Graph Transformations

In Procedure 6.4.1, the pushout complement, respectively FPBC is not
constructed directly. This implies that the instance graph transformation
can be constructed as long as the type graph transformation can be con-
structed.

Corollary 6.4.1 (Applicability of migration transformations). Let C be a
(weak) adhesive HLR category with:applicability of

migration

transformations
• arbitrary pullbacks if C is an adhesive HLR category or

• l : L → I being constructed as M-morphism if C is a weak adhesive HLR
category.

If the evolution step (with match tm : TL TG being a M-morphism) of a cou-
pled transformation satisfies the (cospan) gluing condition (respectively conflict-
freeness condition), its migration step can be constructed by Procedure 6.4.1
for any instance object, i.e. the gluing condition (respectively conflict-freeness
condition) does not need to be verified for migration steps.

Proof. The proof follows directly from Theorem 6.4.1 and Procedure 6.4.1.

The second pushout PO2t of the migration transformation t : G
p,m
=⇒ H is

not constructed by a complement but by a pullback in the right-front face
(Step 5 of Procedure 6.4.1, see Figure 6.3). Because we assume that coupled
transformations are applied in categories where required pushouts (PO1t)
and pullbacks (right back and front faces) always exist, Corollary 6.4.1
holds. �

In addition, we can state that applied coupled transformation rules
have a unique result:

Corollary 6.4.2 (Unique result of coupled transformation). Let C be a (weak)
adhesive HLR category, applying a deletion-reflecting coupled transformation ruleunique result of

coupled

transformation

(tp, p) along a complete match (tm,m) with tm and m being M-morphisms results
in a unique coupled transformation.

Proof. Graph transformations have unique transformation results [36],

hence transformations tt : TG
tp,tm
=⇒ TH (top faces, see Figure 6.3) and t : G

p,m
=⇒ H

(bottom faces, see Figure 6.3) have unique results each. Hence, it has to be
shown only that transformation t is uniquely typed i.e. that tU : U → TU
and tH : H → TH are unique. (All other morphism are given.) It has been
shown before that transformation t can be applied by Steps 4 and 5 of Pro-
cedure 6.4.1. Thus, it follows directly that tU : U → TU and tH : H → TH
are unique:

1. The uniqueness of morphism tU follows by Step 4 of Procedure 6.4.1,
i.e. by the fact that the left cube is commuting and by the universal
pushout property of the bottom face PO1t.

94

6.4. Standard Construction for Coupled Transformations

2. The uniqueness of morphism tH follows by Step 5 of Procedure 6.4.1,

i.e. the uniqueness of tH follows directly from the fact that U
h
← H

tH
→ TH

is a pullback of U
tU
→ TU

th
← TH, tU is unique and th is unique (as th is

constructed by a graph transformation).

�

Remark 6.4.2 (Deletion-reflecting coupled transformations). Note that
deletion-reflection for coupled transformations applies to elements of
deleted types only. However, a migration rule may also delete or split
elements of preserved types. In this case, the alternative construction
described in Remark 6.4.1 has to be used. Figure 6.9 shows an extended
migration transformation. Due to the uniqueness of pushout complements
(cospan DPO approach), respectively FPBCs (cospan SqPO approach),
pushout (1 + 2), respectively pullback (1 + 2), can also be constructed
in one step i.e. by one complement construction.

L

m

l
I

i

R

m′

r
R′

m′′

r′

G
g

U

PO1t

H
h

(1)

H′
h′

(2)

Figure 6.9: Extended migration graph transformation t′

Figure 6.10 shows the migration transformation of Figure 6.9 in an
extended coupled transformation.

TG

TL

TU

TI

TH

TR

PO1tt PO2tt/PB2tt

tm
ti

tm′

tg

tl

th

tr

tm

tl
tr

H′

R′

(2) m′′

h′

r′

t′
H

t′
R

G

L

U

I

H

R

PO1t (1)
m

i
m′

g

l

h

r

m

l
r

tG

tL

tU

tI

tH

tR

tG

tL
tI

tR

Figure 6.10: Extended coupled transformation

The migration rule is in this case p′ = L
l
→ I

r′ ;r
← R′. Note that for such

migration rules, Corollary 6.4.1 cannot be applied. This means the gluing
condition, respectively the conflict freeness condition has to be checked

95

6. Coupled Transformations based on Graph Transformations

for migration steps. This is undesired if we want to migrate many models
in a batch. Therefore, we propose to delete or split such elements by
traditional graph transformations after applying coupled transformations.
In some categories, however, the problem does not occur if the cospan
SqPO approach is used: in category Graph e.g. the existence of FPBCs is
ensured if matches are injective [24].

To put it in a nutshell, Procedure 6.4.1 allows language engineers to de-
fine model migration rules that are always applicable if the corresponding
meta-model evolution rule is applicable (see Corollary 6.4.1). Migration
rules are model-specific, as the left-hand side of each migration rule in

Procedure 6.4.1 is created by a pullback of G
tG
→ TG

tm
 TL in Step 1. Fur-

thermore, Step 2 of Procedure 6.4.1 leaves space for migration variants, as
the left face of the coupled transformation rule requires to be a commuting
square only (see Figure 6.11). The amount of addition and merges can
be specified according to custom needs. Without this freedom, only one
fixed model migration variant would be possible, which may not reflect
the language designer’s intention of model migration. The right face of
a coupled transformation rule, however, does not allow variants, as it is
fully determined by the pullback construction in Step 3 of Procedure 6.4.1.

TL
tl

variants
possible

TI

PB

TR
tr

LG1 lG1

tL

IG1

tI

RG1rG1

tR

Figure 6.11: Coupled transformation rule for graph G1

Furthermore, all three types of model migration approaches (see Chap-
ter 2) fit into the framework of coupled transformations:

• Trivially, coupled transformation rules can be considered as coupled
operators that evolve meta-models and migrate models correspond-
ingly.

• In Chapter 5, meta-model changes have been detected with the help
of graph transformation rules. Such detected evolution steps can be
completed to coupled transformations according to Procedure 6.4.1.
Hence, coupled transformations also suites as formalization of match-
ing approaches.

96

6.5. Span versus Cospan Transformations

• If morphisms tm : TL → TG, ti : TI → TU and tm′ : TR → TH
are identity morphisms, migrations rules are directly typed by the
meta-model cospan. This formalization fits with manual specification
approaches. How morphism L→ I can be systematically constructed
by rules is explained in Chapter 7.

6.5 Span versus Cospan Transformations

While it is common to work with graph transformations based on span rules,
cospan transformations have been rarely used. In this section, we provide
arguments as to why we use cospan rules instead of span rules. That
cospan rules have advantages when evolution steps should be detected
has already been examined in Chapter 5.

Cospan transformations in contrast to span transformations create first
and delete thereafter. This is an advantage for synchronizing model mi-
grations. In Procedure 6.4.1, a coupled transformation rule is constructed migration

synchronizationby first completing L
tL
→ TL

tl
→ TI to a complete square (Step 2) and by

second taking a pullback (Step 3). In case of span rules, this order also
needs to be reversed, which has undesired side effects (see Example 6.5.1).

Example 6.5.1 (Migration Synchronization in category Graph). Figure 6.13
and Figure 6.12 each show a coupled transformation rule in category Graph
that moves an attribute along a reference and attribute values correspond-
ingly along links. While the coupled transformation rule in Figure 6.13
employs cospan rules, the coupled transformation rule in Figure 6.12 em-
ploys span rules.

?

I

t

TI

L

l

t

TL

r

(=)

R

t

TR

tl tr

RIL

2

:Class

3

:reference1

:Class

Bool

:DataType

2

:Class

3

:reference1

:Class

Bool

:DataType

4

:attribute

2

:Class

3

:reference1

:Class

Bool

:DataType

5

:attribute

3:3

true:Bool

1:1 2:2

8:3

false:Bool

6:1 7:2

3:3

true:Bool

1:1 2:2

4:4

8:3

false:Bool

6:1 7:2

9:4

5:5

3:3

true:Bool

1:1 2:2

10:5

8:3

false:Bool

6:1 7:2

Figure 6.12: Coupled transformation rule with spans

97

6. Coupled Transformations based on Graph Transformations

In Figure 6.12, the right square of the coupled transformation rule has
to be constructed to a commuting square. The construction of graph R
requires considering the whole morphism l : I → L, as attribute values are
not connected in graph I due to the pullback in the left face.

¡¢

I

t

TI

L

l

t

TL

r

(PB)

R

t

TR

tl tr

RIL

2

:Class

3

:reference1

:Class

Bool

:DataType

4

:attribute

5

:attribute

2

:Class

3

:reference1

:Class

Bool

:DataType

5

:attribute

2

:Class

3

:reference1

:Class

Bool

:DataType

4

:attribute

5:5

3:3

true:Bool

1:1 2:2

4:4

10:5

8:3

false:Bool

6:1 7:2

9:4

3:3

true:Bool

1:1 2:2

4:4

8:3

false:Bool

6:1 7:2

9:4

5:5

3:3

true:Bool

1:1 2:2

10:5

8:3

false:Bool

6:1 7:2

Figure 6.13: Coupled transformation rule with cospans

In Figure 6.13, the left square of the coupled transformation rule has to
be constructed to a commuting square. Constructing graph I is easy be-
cause attribute values are still connected to their source vertices in graph L.

The second advantage is closely connected to the previous one. Cospan
transformations do not only have advantages when synchronizing type
and instance graph transformations, instance graph transformations can
also be easier validated using constrains. Recall Example 6.1.1, in which
a reference is replaced by an association class. In the desired migration
step, each link typed by the reference to be deleted is replaced by an
object of the new association class and two corresponding links. Herein,migration rule

validation span

vs. cospans rules
“corresponding” can be formalized by adding a commuting condition to
intermediate type graph TI (see Figure 6.1, visualized by a DPF predicate
“[=]”). The condition demands that all corresponding patterns in the
instance graph I commute (see Example 6.5.2). Graph I and hence rule t
can be validated using a suitable validator for the added constraint. In span
transformations, intermediate graphs instead contain only the elements to
be preserved. As a result, a commuting condition as in Example 6.1.1
cannot be formulated using type graph TI only.

Example 6.5.2 (Migration rule validation in category GSpec). Figure 6.14
shows the intermediate graphs of the coupled transformation rule of

98

6.5. Span versus Cospan Transformations

the “Replace reference by reference class” example introduced in Exam-
ple 6.1.1. Figure 6.15 shows the intermediate graphs for the same example
for the case that span rules would have been used.

I

7:4

8:4

9:5

11:6

10:5

12:6

2:1

4:26:3

1:2

5:3 3:2

t

TI

£¤¥eference

¦¤¥eference

[9:=]

[7:mult(1,1)]

[8:mult(1,1)]

2

:Class

4

:reference

1

:Class

3

:Class

I

=

=

Figure 6.14: Intermediate rule
graphs with cospan rules

I

2:1

4:2

1:2

3:2

t

TI

2

:Class

1

:Class

I

Figure 6.15: Intermediate rule
graphs with span rules

Figure 6.14 uses a constraint in type graph TG (formalized by a DPF
predicate, see Example 3.3.3) to ensure the desired behavior of the migra-
tion step. In Figure 6.15, this is not possible, as the intermediate graphs
contain only the common parts.

In this chapter, coupled transformations have been introduced as cou-
pled graph transformations. Different possibilities to construct such cou-
pled transformations in (weak) adhesive (HLR) categories have been dis-
cussed. Finally, a standard construction has been defined which fits well
with the challenge of model co-evolution.

99

CHAPTER 7
Model Migration Schemes based

on Coupled Transformations

In the previous chapter, coupled transformations have been introduced
that are suitable for evolving meta-models and migrating models corre-
spondingly. In addition, Procedure 6.4.1 has been developed, which can
be used to complete meta-model evolution steps by migration steps to
coupled transformations. Unfortunately, migration rules are model-specific
and not completely determined according to this procedure, i.e. migration
rules need to be specified individually for each model to be migrated. In
this chapter, we develop a procedure to generate such model-specific rules
systematically on the basis of model-independent rule schemes, called model
migration schemes. Furthermore, a construction of default migration schemes
that are customizable to specific needs of language engineers is presented.

7.1 Migration by Amalgamated Graph Transformations

In this section, we develop a strategy to specify coupled transformation
rules by model-independent rule schemes. This allows us to migrate all
models over a meta-model along a generic migration specification. The
presented strategy constructs coupled transformation rules that satisfy the
preconditions of Theorem 6.4.1. Such model-independent rule schemes
are called model migration schemes. Their formalization is based on amal-
gamated graph transformations [17, 133, 135]. Amalgamation in graph amalgamated

graph

transformations

transformation is a technique to construct graph transformation rules with
similar structures from smaller rules before they are applied as usual. This
has been highly beneficial in practice. Consider e.g. the well-known “Pull

101

7. ModelMigration Schemes based on Coupled Transformations

Up Attribute” refactoring: an attribute with a specific name and type oc-
curs in all subclasses of a selected class. They shall be replaced by one new
attribute in the selected class. Because a class can have an arbitrary number
of subclasses, there are two possibilities to describe this refactoring with
“classical” graph transformations (i.e. without amalgamation): (1) Apply
a graph transformation system containing several graph transformation
rules according to some control structure. We need to address the appli-
cation logic in addition including the classical challenges1 of graph trans-
formation systems. (2) Define a separate rule for each possible number of
subclasses that may occur. This solution is simple but not scalable. Both
possibilities have drawbacks that are avoidable by using amalgamation.

An amalgamated graph transformation is constructed by an interaction
scheme consisting of a set of multi-rules and a set of kernel rules (see e.g. [133]).
Each multi-rule specifies a multi-object structure that shall be applied as
often as possible. Kernel rules are used to synchronize multi-rule matches.
Therefore, kernel and multi-rules are related by injective morphisms. Af-
ter all matches of multi-rules have been found, the amalgamated graph
transformation rule is constructed by taking a rule copy for each multi-rule
match and gluing them at kernel rule matches. This results in a “classical”
graph transformation rule that applies all multi- and kernel rule matches
in one parallel step. This technique can be used e.g. to describe the “Pull Up
Attribute” refactoring by one multi- and one kernel rule: (1) The multi-
rule deletes an attribute (with specific name and type) in each subclass and
creates a copy of it in the selected class. (2) The kernel rule declares all
attribute copies in multi-rules to be identical. For model migrations, we
have to adapt the existing amalgamation concept to cover the following
additional requirements:

1. Match-complete coverings of models have to be guaranteed (see
Definition 6.1.2).required

adaptations of

the amalgamated

graph

transformation

technique

2. Multi-rules may be synchronized not only by kernel rules but also
by match overlappings. This is sufficient if multi-rule applications
have to be synchronized along preserved elements only. It avoids
that all2 possible kernel rules need to be defined.

3. The interaction scheme should be more flexible. Usually, all multi-
rule matches overlapping in kernel rule matches are considered. We
want to prioritize multi-rules such that different migration cases can
be distinguished. Therefore, a specification of different matching
strategies would be useful.

1i.e. confluence and termination
2In traditional application areas of amalgamated graph transformations, usually not all

possible kernel rules are required. For example, in the case of the “Pull Up Attribute,”
refactoring one kernel rule is enough. In tools e.g. Henshin [3], the kernel rule would be
matched first, before its match would be extended to multi-rule matches as often as possible.

102

7.2. Migration Rules from Migration Schemes

4. So far, amalgamated graph rules are normal transformation rules that
are typed over one (fixed) type graph. Because we want to construct
coupled transformations, model migration rules are not typed over
type graphs but over evolution rules.

7.2 Migration Rules from Migration Schemes

In this section, we first explain a new construction of coupled transfor-
mations by rule schemes, called migration schemes, on a semi-formal level
before we elaborate the construction on a formal level thereafter. We fo-
cus on amalgamating the left part of the migration rule, as its right part is
completely determined according to Procedure 6.4.1. Hence, we consider
interaction schemes of non-deleting rules only. These are called migration
schemes. Migration schemes are used to synchronize creation and merge
operations, even if its rule matches may overlap. The construction of
amalgamated migration rules works as follows (see Figure 7.1):

1. The match-complete left-hand side L of the migration rule is con-
structed by a pullback (Step 1 in Procedure 6.4.1).

2. All multi-rules are matched to L as often as possible using a suitable
matching strategy. For each match found, the corresponding multi- constructing

coupled

transformation

rules

rule is copied3, considering rule elements matched to the same in-
stance model element to be identical. However, not all possible
multi-rule matches need to be taken, e.g. a match that is completely
covered by a match of a larger rule may be ignored by the used
matching strategy.

3. All multi-rule matches are pairwise checked for overlappings. Over-
lapping parts of multi-rule matches may be covered by kernel rule
matches to synchronize the creation of new elements in an inter-
leaved application of multi-rules.

4. The migration rule morphism l : L → I is completed by the un-
matched part of rule graph L using a standard construction. It solely
adds unmatched elements of L and retypes them along correspond-
ing type changes (if needed).

5. The construction of a coupled transformation rule is completed by
Step 3 in Procedure 6.4.1.

3Note that implementing a rule “copy” may lead to reusing existing model elements. On
the formal level, however, proper rule copies are considered.

103

7. ModelMigration Schemes based on Coupled Transformations

TL

TI

TR

TG

Li

Lj

TU

Ii

Ij

TH

Lij

Iij

G

U

H

L

I

R

Lc

Ic

tl

tr

lij

l

r

li

lj

tG

tL

tI

tR

tm

m

Dij

Figure 7.1: Model migration by the application of a migration scheme

Example 7.2.1 shows a sample migration scheme for a variant of meta-
model refactoring “Move Attribute”:

Example 7.2.1 (Migration scheme: “Move Attribute”4 in category Graph).
Figure 7.2 shows a meta-model from a Moore automata that is evolved
to a Mealy automata [86] in Figure 7.3. The meta-models are presented
in concrete syntax, however, it is straight forward to formalize them in
terms of (typed) multi-graphs as in previous examples. Moore and Mealy
automata are the basic computation models of finite state machines. A state
machine that uses entry actions, so that its outputs depend on the current
state only, is called a Moore automaton. In contrast, a Mealy automaton
is a state machine whose output values are determined by both its current
state and the current inputs. Therefore, in Moore automata, each state is
labeled by an output value while in Mealy automata, each transition is
labeled by an output value. The selected computation model for a state
machine influences its design. However, there are no general indications
on which computation model is better. The choice of the computation

4The example is based on an example that has been originally presented by Herrmanns-
dörfer et al. to illustrate the Cope [55, 57] tool.

104

7.2. Migration Rules from Migration Schemes

model depends on the application domain and on personal preferences
of the modeler. Fortunately, Moore automata can be transformed into
equivalent Mealy automata by moving the effects of each state to all of its
incoming transitions (step from Figure 7.2 to Figure 7.3).

name: String

effect: String

State

trigger: String

Transition
outgoing

target

Figure 7.2: Original meta-model

name: String

trigger: String

effect: String

State Transition
outgoing

target

Figure 7.3: Move attribute

The migration scheme to migrate models from Moore to Mealy au-
tomata is shown in Figure 7.4.

tl tr

TRTITL

L1 I1 R1

r1l1

L2 I2 R2

r2l2

(Meta-model) Evolution Rule

(Model) Migration Multi-Rules

a2:attribute

B:Class

DT:DataType

A:Class

r:reference

a1
:a
tt
ri
bu

te

c:containment

a2:attribute

B:Class

DT:DataType

A:Class

r:reference

§¨§ontainment

B:Class

DT:DataType

A:Class

r:reference

a1
:a
tt
ri
bu

te

c:containment

7:a2

2:B

3:DT

1:A

5:r

6:
a1

4:B

8:c

7:a2

2:B

3:DT

1:A

5:r

6:
a1

4:B

8:c

7:a2

2:B

3:DT

1:A

5:r
4:B

8:c

7:a2

2:B

3:DT

1:A

5:r
4:B

8:c

2:B

3:DT

1:A

5:r

6:
a1

4:B

8:c

2:B

3:DT

6:
a1

Figure 7.4: Evolution rule and migration scheme: “Move Attribute”

In the upper part of Figure 7.4, the evolution rule for the “Move At-
tribute” operation is presented. In the lower part of Figure 7.4, the (model)
migration scheme is presented consisting of two multi-rules. Kernel rules
are not required here. Furthermore, right-hand sides of migration rules
are shown (in dashed boxes) for illustration purposes only. The first multi-
rule is nearly isomorphic to the (meta-model) evolution rule and moves
an attribute from one object to a referred one (in the opposite direction of a
link). The second rule considers a case where the attribute value cannot be

105

7. ModelMigration Schemes based on Coupled Transformations

moved to a target object since it does not exist. Hence, a new target object
is created. In addition, in this variant of the “Move Attribute” refactoring
also a new container is created for the target object. The migration scheme
is used together with a matching strategy matching the second multi-rule
only if the first one cannot be matched. This means the second rule has a
lower priority as the first rule.

Figure 7.5 shows an instance model of the meta-model in Figure 7.2.
Its migration (see Figure 7.6) illustrates all of the challenges the migration
scheme in Figure 7.4 can handle. The model describes a simple Moore
automaton for processing jobs in a batch. A job may be e.g. a phone bill
that needs to be computed for each customer of a phone company. When a
new job arrives, the automaton leaves the Idle state and computes the job
in the Busy state. If the system runs into any problems while generating a
new job or computing a job, it simply restarts the application (a very simple
and often used recovery strategy). To migrate the model correspondingly
to the meta-model in Figure 7.3, several effects have to be moved:

• Effect compute needs to be moved.

• Effect restart needs to be moved and duplicated.

• Effect init needs to be moved to a transition coming from a new state.

Busy

IdleStartUp

newJob/

/compute

/init

jobFinished/

ready/

?
move to

Error

/restart

error/

error/

move to

move to

move to

Figure 7.5: State machine for simple batch processing

Busy

IdleStartUp

newJob/

compute
jobFinished/

ready/

Error

error/restart

error/restart

©ª«t

/init

Figure 7.6: State machine for simple batch processing (migrated)

The amalgamated migration rule constructed to co-evolve the model
of Figure 7.5 uses three copies of the first multi-rule and one copy of the
second multi-rule. Because two matches of the first multi-rule overlap in
state Error and attribute restart, the corresponding copies are accordingly
glued.

106

7.2. Migration Rules from Migration Schemes

Earlier, we stated that cospan transformations have advantages over
span transformations, when migrating models. Here, we can see that the
amalgamation procedure would also not work well with span rules. It
amalgamates the left part of a migration rule, which would be the right
part if we had span rules. In case of example “Move Attribute,” this would
mean that all attribute values would be disconnected from objects first. In
the amalgamation procedure, these values have to again be reconnected
to objects, missing the information about the original connections.

In the following, we formally define migration schemes and the amal-
gamation procedure (see Procedure 7.2.1) for category Graph to build the
left part of a coupled transformation rule. A generalization of the proce-
dure can be deduced analog as earlier. The proof that the construction is
well-defined is presented on the level of (weak) adhesive (HLR) categories.

First, rule morphisms are defined to formally embed kernel rules in
multi-rules:

Definition 7.2.1 (Rule morphism).

A rule morphism k : l1 → l2 between two non-
deleting rules l1 : L1 → I1 and l2 : L2 → I2 is a pair (a, b)
of injective morphisms a : L1 L2 and b : I1 I2

such that (1) is commuting.

L1
l1

(1)a

I1

b

L2
l2

I2

rule morphism

An interaction scheme is defined as two sets of multi- and kernel rules
related by rule morphisms:

Definition 7.2.2 (Interaction scheme of non-deleting rules). An interaction interaction

scheme of

non-deleting
rules

scheme of non-deleting rules is a triple (K,M,KM) with K being a set of
non-deleting rules called kernel rules, M a set of non-deleting rules called
multi-rules, and KM a set of rule morphisms k : lk → lm with lk ∈ K and
lm ∈M called kernel morphisms.

Finally, we define migration schemes based on such interaction schemes:

Definition 7.2.3 (Migration scheme). A migration scheme is a tuple migration

scheme((K,M,KM) ⊲ tp, prio) consisting of an interaction scheme (K,M,KM) of
non-deleting rules typed over evolution rule tp and a priority function
prio : M → N for rules in M. Each rule li ∈ M ∪ K, li is well-typed by the
non-deleting part tl : TL → TI of rule tp, i.e. tLi

; tl = li; tIi
. Furthermore,

each kernel morphism (a, b) ∈ KM between kernel rule lK : LK → IK and
multi-rule lM : LM → IM is type compatible i.e. a; tLM

= tLK
and b; tIM

= tIK
.

TL
tl

=

TI

Li
li

tLi

Ii

tIi

LK
lK

=a

tLK IK

b

tIK

TL TI= =

LM
lM

tLM IM
tIM

107

7. ModelMigration Schemes based on Coupled Transformations

For each pair of rules l1 and l2 in M, we may have zero or finitely many
triples of a kernel rule (lk,k1,k2) with lk : Lk → Ik in K and kernel morphisms
k1 : lk → l1 and k2 : lk → l2 in KM.

Migration schemes are applied in the following amalgamation proce-
dure, which is an improved version of the corresponding construction in
[95], taking ideas from [80] into account.

Procedure 7.2.1 (Rule amalgamation for migration schemes). Given a mi-

gration scheme ((K,M,KM) ⊲ tp, prio), an evolution step tt : TG
tp,tm
=⇒ TH andrule

amalgamation

for migration

schemes

a graph G with typing tG : G→ TG: the non-deleting part of the migration
rule l : L → I for G can be constructed by the following amalgamation
procedure (see also Figure 7.1 and Figure 7.7):

1. Construct a pullback G
m
 L

tL
→ TL of G

tG
→ TG

tm
 TL.

2. Match rules of M to L along a chosen matching strategy. The default
strategy matches the left-hand sides of all multi-rules lu, lv ∈M injec-
tively as often as possible with one restriction: let mu be the match
of rule lu to G and mv be the match of rule lv to G, if one match is
completely covered by the other one, i.e. mu(Lu) ⊒ mv(Lv), match mv

is used only if prio(Lv) ≥ prio(Lu). The result is a set M′ consisting
of pairs (li,mi) with each li : Li → Ii being a copy of a rule in M and
with mi : Li → L being the corresponding match for 1 ≤ i ≤ n. If
no match has been found, stop the procedure here with l = id and
tI = tL; tl constructing trivially a commuting diagram. Otherwise,
continue with Step 3.

3. For each two pairs (li,mi), (l j,m j) ∈ M′, with
1 ≤ i < j ≤ n, construct the overlapping

part as a pullback Li

mi j
← Di j

m ji
→ L j of the

cospan Li
mi
→ L

m j
← L j. By dL, we denote the

diagram consisting of all spans Li

mi j
← Di j

m ji
→ L j,

1 ≤ i < j ≤ n.

Di j
mi j m ji

Li

mi

PB L j

m j

L

4. Construct LC as a co-limit graph of diagram
dL. For all 1 ≤ i < j ≤ n, we obtain cospans

Li
ci
→ LC

c j
← L j with mi j; ci = m ji; c j. More-

over, there exists a unique mediating mor-
phism mC : LC → L with ci; mC = mi for all

1 ≤ i ≤ n, as cospans Li
mi
→ L

m j
← L j constitute a

commutative co-cone of the diagram dL, by
construction.

Di j
mi j m ji

Li

ci

mi

co−limit L j

c j

m j
LC

mC

L

108

7.2. Migration Rules from Migration Schemes

5. Next, we construct a diagram dI: For each two pairs (li,mi), (l j,m j) ∈
M′ with li : Li → Ii and l j : L j → I j, 1 ≤ i < j ≤ n:

a) We add all interfaces Ii and I j to dI.

b) We relate such interfaces by adding all spans Ii

mi j;li
← Di j

m ji;l j
→ I j,

1 ≤ i < j ≤ n synchronizing overlapping matches.

c) We add further spans to dI synchronizing kernel rule matches:
For any triple (li j,ki,k j) of a kernel rule li j : Li j → Ii j in K and ker-
nel morphisms ki = (ai, bi) : li j → li and k j = (a j, b j) : li j → l j in
KM that relates multi-rule matches in M′ such that ai; mi = a j; m j,
we add a fresh copy of Ii j together with the relating

span Ii
bi
← Ii j

b j
→ I j.

6. Construct IC by the co-limit of diagram dI. For all 1 ≤ i < j ≤ n, we

obtain a cospan Ii
di
→ IC

d j
← I j with mi j; li; di = m ji; l j; d j and bi; di = b j; d j.

This ensures that morphisms li; di : Li → IC constitute a commu-
tative co-cone of the diagram dL. Thus, there exists a unique me-
diating morphisms lC : LC → IC with ci; lC = li; di for all 1 ≤ i ≤ n.

Ii j

bi
b j

Di j
mi j;li m ji ;l j

Ii

di

co−limit I j

d j

IC

Di j
mi j m ji

Li

ci

li ;di

co−limit L j

c j

l j ;d j
LC

lC

IC

7. Construct the non-deleting rule l : L→ I by building the pushout of

span L
mC
← LC

lC
→ IC.

8. Construct the typing morphism tI : I→ TI :

a) We can deduce the existence of a unique mediating morphism
tIC

: IC → TI from the co-limit of diagram dI in Step 6.

b) The existence of unique mediating
morphism tI : I → TI we can deduce
from the pushout in Step 7.

LC
lC

mC PO

IC

iC

tIC
=L

l

tL;tl

=

I

tI

TI

109

7. ModelMigration Schemes based on Coupled Transformations

TL

TI

TG

Li

Lj

Ii

Ij

Lij

Iij

G

U

L

I

LC

IC

tl

lij

l

li

lj

tG

tL

tI

tm

m

PB

PO

PO

Dij

lC

ajai

mij

mji

bi

bj

m
i

m
j

djdi
m
C

ci cj

tLi
tLij

tLj

tIi
tI ij

tIj

iC

Figure 7.7: Amalgamation procedure

Remark 7.2.1 (Restriction to injective matches in Procedure 7.2.1). An “in-
jective” match tm : TL → TG (i.e. tm ∈ M) of the evolution rule is a
precondition in Theorem 6.4.1 to ensure that a coupled transformation can
be constructed. By constructing the match of the migration rule m : L→ G
by a pullback in Step 1, m is injective. Note that the injectivity of m is in-
dependent of how multi-rules are matched, as multi-rules are matched to
graph L and not to graph G. This means multi-rules may also be matched
non-injectively if needed (and pullbacks and pushouts along arbitrary mor-
phisms exist).

Remark 7.2.2 (Amalgamated evolution step). In case the type graph trans-
formation has already been constructed by amalgamation (e.g. to specify
a “Pull Up Attribute” refactoring), each li : Li → Ii ∈ K ∪M of a migration
scheme can be typed by the left morphism of any kernel or multi-rule used
to amalgamate the meta-model evolution step. This means that for each
match of a multi-rule in the meta-model evolution step, corresponding

110

7.2. Migration Rules from Migration Schemes

migration multi-rule copies are used in the migration scheme. Hence, the
migration scheme itself consists already of rule copies before any migra-
tion step is amalgamated. However, we do not elaborate this extension
here.

Procedure 7.2.1 has a (worse) complexity of O(n2), where n is the num- complexity of

rule

amalgamation

ber of found multi-rule matches. In practice, the complexity may be better
as kernel rules only need to be matched when multi-rule matches overlap.
In the worst case, all multi-rule matches completely overlap. Then, all of
these matches have to be checked pairwise for kernel rule matches. This
case, however, is highly unlikely. We assume that the real bottleneck of this
approach is the match finding problem, which is a general challenge in the
field of graph transformations. Finding matches of multi-rules, however,
can be performed in parallel.

Now we show that Procedure 7.2.1 indeed provides the required result.

Theorem 7.2.1 (Procedure 7.2.1 is well-defined).
Let C be a (weak) adhesive HLR category with arbitrary pushouts5: given a

migration scheme ((K,M,KM) ⊲ tp, prio), an evolution step tt : TG
tp,tm
=⇒ TH and a

morphism tG : G→ TG, the left face of the coupled transformation rule for G can
be constructed by Procedure 7.2.1 so that:

1. the coupled transformation rule is match-complete and

2. the left face of the coupled transformation rule is commuting i.e. tL; tl = l; tI.

Proof.

1. The pullback construction in Step 1 of Procedure 7.2.1 ensures that
the match is complete and that the typing morphism tL exists.

2. We have to show that the left back face of the double cube is com-
muting:

a) There exists a unique typing morphism tLC
: LC → TL: a unique

morphism mC : LC → L is deduced by the co-limit construction
in Step 4 of Procedure 7.2.1. Hence, tLC

is uniquely given by
tLC
= mC; tL.

b) There exists a unique typing morphism tIC
: IC → TI: by show-

ing that all graphs in diagram dI are well-typed over TI, the
existence of a unique typing morphism tIC

is ensured by the co-
limit construction over diagram dI in Step 6 of Procedure 7.2.1.
The definition of migration schemes ensures that Ii, I j as well
as Ii j are well-typed. Hence, all Di j have to be shown to be

5 Although not proven here, the existence of arbitrary pushouts is only required if
merging of model elements should be supported.

111

7. ModelMigration Schemes based on Coupled Transformations

well-typed. The pullbacks in Step 3 of Procedure 7.2.1 ensure
that mi j; mi = m ji; m j. This means that Di j is well-typed by
tDi j
= mi j; mi; tL; tl = m ji; m j; tL; tl.

I j

d j

tI j

=

co−limitIi j

b j

bi

tIi j

=

Di j

m ji;l j

mi j ;li

mi j ;mi;tL;tl

=

IC tIC TI

Ii

di

tIi

=

c) The diagram mC; tL; tl = lC; tIC
com-

mutes: the definition of migration
schemes and the fact that LC and
IC are constructed by co-limits en-
sures that diagram tLC

; tl = lC; tIC

commutes. Because tLC
is given by

tLC
= mC; tL, diagram mC; tL; tl = lC; tIC

commutes.

LC
lC

mC =

IC

tIC

L
tL ;tl

TI

d) By the pushout construction of

L
mC
← LC

lC
→ IC in Step 7 of Proce-

dure 7.2.1, the existence of a unique
mediating morphism tI : I → TI can
be deduced as well as a commuting
left-back face tL; tl = l; tI.

LC
lC

mC PO

IC

iC

tIC
=L

l

tL ;tl

=

I

tI

TI

�

Remark 7.2.3 (Correctness of model migrations along migration schemes).
Note that Procedure 7.2.1 guarantees a correct migration of models along
migration schemes. Correctness comprises correct typing and complete-
ness. If a migration scheme has been (1) defined manually by a modeler,
(2) auto generated or (3) auto generated and customized, does not matter.
Furthermore, it is obvious that Procedure 7.2.1 terminates.

Example 7.2.2 shows a sample migration scheme that uses a kernel rule.

112

7.2. Migration Rules from Migration Schemes

Example 7.2.2 (Migration scheme: “Introduce Container” in category Graph).
This example takes up Example 7.2.1 and considers the addition of con-
tainer StateMachine. In some modeling frameworks, as e.g. EMF, all
model elements are required to belong to some container. Figure 7.8
shows the concrete evolution step (depicting the added container in a
box).

name: String

State

trigger: String

effect: String

¬®¯°±²±on
outgoing

target

StateMachinestates

Figure 7.8: Evolution step: “Introduce Container”

Figure 7.9 shows the evolution rule and a migration scheme for the
meta-model evolution step above. In the evolution rule, a new container
class is created. The migration scheme consists of one multi- and one kernel
rule. The multi-rule introduces a new container object for each object that
can be contained in the container class. A kernel rule is used to specify
that all of these newly introduced container objects are identical. Since the
container object shall be unique over the whole model, the left-hand-side
of the kernel rule is the empty graph.

tl tr

TRTITL

(Meta-model) Evolution Rule

L³ I³ R³

r³l³

(Model) Migration Kernel Rule

L1 I1 R1

r1l1

(Model) Migration Multi-Rule

1́ µ1 ¶1

C1:Class c3:containment

C1:Class

C2:Class

c3:containment

C1:Class

C2:Class

3:c3

1:C1

2:C2

3:c3

1:C1

2:C2

1:C1

2:C2 2:C2

Figure 7.9: Evolution rule and migration scheme: “Introduce Container”

113

7. ModelMigration Schemes based on Coupled Transformations

Figure 7.10 sketches an application of the migration scheme for the
evolution step shown above. The models are shown in concrete syntax,
while the rule is shown in abstract syntax. Because the model is only
changed on the level of the abstract syntax, the added new elements are
denoted in model U by dashed lines.

L

·

¸ i

¹

º

I

1:C1»¼½¾½¿1. Multi-Rule Copy "L"

ÀÁÂÃ»¼½¾½¿2. Multi-Rule Copy "L"

5:C1»¼½¾½¿5. Multi-Rule Copy "L"

ÄÁÂÃ»¼½¾½¿3. Multi-Rule Copy "L"

ÅÁÂÃ»¼½¾½¿4. Multi-Rule Copy "L"

Synchronization

by Kernel Rule

2@Busy

5@Idle4@StartUp

newJob/

compute
jobFinished/

ready/

3@Error

error/restart

error/restart

1@Init

/init

6,7,8,9,10@

:StateMachine

11:c3@states
6:C2@StateMachine1. Multi-Rule Copy "I"

12:c3@states
7:C2@StateMachine2. Multi-Rule Copy "I"

13:c3@states
8:C2@StateMachine3. Multi-Rule Copy "I"

14:c3@states
9:C2@StateMachine4. Multi-Rule Copy "I"

15:c3@states
10:C2@StateMachine5. Multi-Rule Copy "I"

2@Busy

5@Idle4@StartUp

newJob/

compute
jobFinished/

ready/

3@Error

error/restart

error/restart

1@Init

/init

13@:states12@:states15@:states11@:states

14@:states

l

(PO)

1:C1@State

2:C1@State

5:C1@State

3:C1@State

4:C1@State

Figure 7.10: Migration step: “Introduce Container”

7.3 Default Migration Schemes

Having specified an evolution rule for meta-models, the automatic gen-
eration of model migration schemes shall be supported as far as possible.
In this section, we introduce a strategy for generating default migration
schemes from meta-model evolution rules. They may be customized to
specific needs. The central question to be discussed is: given an evolu-
tion rule, which migration schemes shall be considered as the default? A
trivial choice would be the empty migration scheme (i.e. M ∪ K = ∅, see
Definition 7.2.3). Empty migration schemes result in coupled transforma-
tion rules that retype, delete and split only. However, empty migration
schemes are often not considered as adequate, see e.g. Example 7.2.1,
where an attribute shall be moved. The empty migration scheme would
not move but just delete the attribute value relations to objects. Fortu-
nately, more adequate migration schemes can be deduced. Considering
different examples, we observed that useful migration multi-rules are of-
ten identical to their evolution rule besides different typing. For evolution
rule “Move Attribute,” for example, this is a good strategy. In this case,
a meta-model evolution step is simply repeated on the model level as

114

7.3. Default Migration Schemes

often as possible. Hence, we would take a migration scheme contain-
ing the retyped evolution rule as multi-rule. The migration scheme for
“Move Attribute” in Figure 7.4 contains two migration multi-rules. The
first multi-rule is isomorphic to the evolution rule if we neglect the new
container and containment relationship to be created. But the second one
differs under the same assumption. It is needed to cover a migration case
where the whole evolution pattern cannot be found on the model level.
Rules for the second case can be generated by creating all possible con-
nected subgraphs of the left-hand side of the evolution rule while keeping
the intermediate graph as it is. This results in a set of multi-rules that
can deal also with sub-patterns. If we keep only those multi-rules that
replace model parts (i.e. add and implicitly delete, when completed by
Step 3 in Procedure 6.4.1 on page 91), we get the migration scheme shown
in Figure 7.46.

In the following, we define a standard construction to automatically
generate migration schemes from meta-model evolution rules for graphs
using the strategy explained above. In many cases, this strategy provides
useful migration schemes. In addition, generated migration schemes may
be customized to fit to specific needs. To define default migration schemes,
connected subgraphs are defined first:

Definition 7.3.1 (Connected subgraph). Given a graph H connected

subgraph
• For any subgraph G ⊑ H, ≡G ⊆ GV × GV denotes the equivalence

relationship generated by the set {(srcG(e), trgG(e)) | e ∈ GE}.

• A subgraph G ⊑ H is called connected iff ≡G = GV × GV

For category Graph, we construct default migration schemes as follows.
We assume that a meta-model evolution rule has a left-hand-side that is a
connected graph.7

Definition 7.3.2 (Default migration scheme). Given a non-deleting evolu-

tion rule tp = tl : TL→ TI, the default migration scheme ((K,M,KM)⊲tp, prio) default

migration

scheme

for rule tp is constructed by the following steps:

1. Construct a set of non-deleting multi-rules M:

M ={tl : TL→ TI} ∧ {li : Li → Ii |

Li is a connected subgraph of TL (Li , TL and Li , ∅),

Ii = TI, li = tl|Li
, (li , id (merging) ∨

(∃ y ∈ Ii : ∄x ∈ Li with li(x) = y (creating)∧

(∃ w ∈ Ii : ∃u ∈ Li with li(u) = w ∧

∄ v ∈ TR with tr(v) = w) (deleting))) }

6if we neglect again the containment
7A connected graph is a connected subgraph of itself.

115

7. ModelMigration Schemes based on Coupled Transformations

For each l : L → I ∈ M, the inclusions (denoted by ֒→)
inL : L ֒→ TL and inI : I ֒→ TI provide the typing morphisms, where
l; inI = inL; tl is ensured by construction.

2. K is the empty set of non-deleting kernel rules.

3. Consequently, KM is also the empty set.

4. The default migration scheme defines a partial order on M: the

default rule priority is prio(li) > prio(l j) if Li ⊐ L j and prio(li) = prio(l j)
if Li b L j and L j b Li.

Rule priorities are used by the matching strategy to easily support dis-
tinct migration cases. Default migration schemes may be further cus-
tomized:

• Multi-rules and kernel rules may be added, deleted or changed.

• The priority of multi-rules may be adapted.

• Application conditions may be added to rules (multi-rules and ker-
nel rules), as specified in Chapter 4. Note that application conditions
may be typed by either the left-hand side of the evolution rule or
directly by the meta-model to be evolved. In the second case, the mi-
gration scheme becomes meta-model dependent (as in Example 8.5.1
in Chapter 8) but potentially more understandable.

The migration scheme in Example 7.2.1 is based on the default mi-
gration scheme of refactoring “Move Attribute”, but has been extended
by a containment relationship and a new containment object. The one
in Example 7.2.2 is also based on the default migration scheme but has
been extended by a kernel rule synchronizing the addition of one default
container.

In this chapter, migration schemes have been introduced based on an
adaptation of amalgamated graph transformations. Migration schemes
can be used to construct coupled transformation rules by migration pat-
terns. In addition, a heuristic to deduce default migration schemes in
category Graph, given a meta-model evolution rule, has been presented.

116

CHAPTER 8
Co-Evolution of

Object-Oriented Models

A key feature of object-oriented modeling is class inheritance. It can be
formalized by graphs with inheritance support. For example, I-graphs
as defined in [54] support inheritance between vertices (see Chapter 3).
Together with corresponding morphisms, I-graphs form a category, called
IGraph [54]. In this chapter, we consider coupled transformations on
the basis of category IGraph 1. We identify extensions to our current
framework that are desired in an application with I-graphs and reconsider
migration schemes. Finally, we discuss how migration schemes can be
used to also formally define non-breaking, breaking and resolvable and
breaking and unresolvable changes (see Chapter 2).

8.1 Introduction

Category IGraph is a weak adhesive HLR category [54] for a class of
M-morphisms called subtype-reflecting (short MS-re f l). A subtype-reflecting
morphism is an injective graph morphism in which all sub-vertices of a
vertex with a preimage also have preimages (see Example 8.1.1).

Definition 8.1.1 (Subtype-reflecting morphism). A subtype-reflecting mor-
phism f 1 : GI0 → GI1 is an I-graph morphism, where f1 is an injective subtype-

reflecting

morphism

graph morphism2 and has the subtype reflection property: ∀(v11, v1) ∈ I1∗,
v0 ∈ GI0V : v1 = f 1V(v0) =⇒ ∃v01 ∈ GI0V : f 1V(v01) = v11 ∧ (v01, v0) ∈ I0∗.

1This means meta-models are considered to be I-graphs and models to be I-graphs,
which are directed multi-graphs as in Chapter 3.

2according to Definition 3.1.2 on page 30

117

8. Co-Evolution of Object-OrientedModels

Fact 8.1.1 ((IGraph, MS-re f l) is Weak Adhesive HLR Category). The category(IGraph, MS-re f l) is
Weak Adhesive
HLR Category

IGraph of graphs with inheritance together with the class MS-re f l of subtype-
reflecting morphisms is a weak adhesive HLR category.

Example 8.1.1 (I-graph morphism). Figure 8.1 and Figure 8.2 show sample
I-graph morphisms. I-graph morphism are clan morphism between two
I-graphs and are e.g. used in meta-model evolution transformations. The
meta-model presented by graph TG shows a hierarchy of classes modeling
different types of cars: ECar (electrical car), TCar (traditional car) and
HCar (hybrid car).

tm

2:Class

ÆÇÈÉÊËs

ÌÇÈÉÊËs

Car

:Class

ÌÍÎÈÊr

ÇÈÉÊËË

ÏÍÐCar

ÇÈÉÊËË

ÆÍÑÈÊÒ

ÇÈÉÊËË

Figure 8.1: MS-re f l-morphism

tm

1@Car

:Class

ECar

:Class

TCar

:Class

ÓÔÕÖ

×ÔØÕÙÙ

Ú×ÔØÕÙs

Figure 8.2: ¬MS-re f l-morphism

Figure 8.1 shows a subtype-reflecting I-graph morphism, while the
I-graph-morphism in Figure 8.2 is not subtype-reflecting. Element map-
pings are again shown by dashed arrows. Inheritance edges in these
figures are not mapped, as they are not “normal” graph edges. However,
Definition 3.2.9 requires that all vertices that are in the same clan in the
domain of the morphism are in its co-domain also in the same clan.

8.2 Supported Change Operations

Category IGraph is a weak adhesive HLR category with subtype-reflecting
morphisms forming the class of M-morphisms. This means that all con-
structions introduced in Chapter 6 and Chapter 7 can be directly applied.

To construct coupled transformations by Procedure 6.4.1, several mor-
phisms need to be in M. This means:

1. Morphism tm : TL→ TG is subtype-reflecting3 and m : L → G is an
injective graph morphisms.

2. Because the category is weak adhesive, morphism l : L→ I also needs
to be an injective graph morphism (see Theorem 6.4.1).

3. In [54], only a construction for pullbacks along subtype-reflecting
morphisms is presented. Hence, morphism tr : TR → TI needs to

3Note that evolution rules that cannot be matched subtype reflective in a meta-model,
may be automatically completed by a tool (by using 1:1 mappings).

118

8.3. Merging of Model Elements

be subtype-reflecting as well (and hence r : R→ I an injective graph
morphism), as typing morphisms cannot be assumed to be injective
(see Step 3 in Procedure 6.4.1).

Item 3 restricts coupled transformations so that they are based on the
cospan DPO approach. Splitting is not supported as long as no construc-
tions for general pullbacks and FPBCs along subtype-reflecting morphisms
have been identified. We can state immediately which evolution opera-
tions are safe to be applied:

1. Class vertices of type graphs may be added, deleted or merged4.

2. Object vertices of instance graphs may be added or deleted.

Note that subtype-reflection prevents evolution rules to delete vertices
that are not on the top of an inheritance hierarchy. In addition, subtype-
reflection ensures that pullbacks i.e. in particular the left-hand side L of
a coupled transformation rules can be constructed component-wise based
on category Set5. Other types of operations, however, may also be desired:

1. Vertices and edges of instance graphs may be merged by e.g. an
encoding of the “Inline Class” operation.

2. Vertices of instance graphs may be retyped to more special types,
being sub-vertices of its current type vertex (called subtyping here).

In the next sections, we consider these two operations above and show
under which conditions these operations are safe to apply. Note, in addi-
tion, a language engineer may want to retype objects to supertypes. This
is supported the same way as subtyping, however, only if all incoming
and outgoing edges that are directly typed by edges of the current type
are explicitly deleted before with a “classical” graph transformation on
the model level. Without this preceding operation, the typing morphism
tU : U → TU in the corresponding coupled transformation would violate
the definition of a clan morphism (see Definition 3.2.8 on page 42). We
neglect this operation in the following.

8.3 Merging of Model Elements

Merging of model elements is not supported in category IGraph, because
the category is only a weak adhesive HLR category (see Theorem 6.4.1).
However, category Graph is an adhesive category and merging of model

4This applies to sub- and super-vertices as well.
5analog to the construction of pullbacks in category Graph

119

8. Co-Evolution of Object-OrientedModels

elements is supported in this category. Fortunately, in restricted cases,
I-graphs can be considered as objects in category Graph by help of a
flattening construction. For such cases merging of model elements can
be allowed. In this section, sufficient conditions for such a restriction are
examined.

Definition 8.3.1 (Closure or Flattening of I-graph [54]). Given I-graph

GI = (G, I), then the closure GI is a graph GI = (GIV,GIE, srcGI, trgGI) withclosure or

flattening of

I-graph
GIV = GV,GIE = {(v1, e, v2) ∈ GV × GE × GV | v1 ∈ clanI(srcG(e)), v2 ∈

clanI(trgG(e))}, srcGI(v1, e, v2) = v1, trgGI(v1, e, v2) = v2. The closure GI is also
called flattening of GI.

By the construction above, I-graphs can be reduced uniquely to graphs
in category Graph and I-graph morphisms correspondingly into graph
morphisms [54]. The construction makes the inherited edges explicit.
However, even the functor leading from IGraph to Graph is cofree [54],
i.e. preserve pullbacks; it unfortunately does not preserve pushouts (see
Example 8.3.1).

Example 8.3.1 (Pushouts in IGraph versus pushouts in Graph6). Figure 8.3

shows two pushout examples. A pushout of TG
tm
← TL

tl
→ TI in cate-

(PO)

tl

tm ti (PO)

tl

tm

IGraph Graph

2:Class

1:Class

2:Class

1:Class

3:reference

2:Class

1:Class

2:Class

1:Class

3:reference

2@Engine

:Class

EEngine

:Class

1@Car

:Class

3@engine

:reference

2@Engine

:Class

EEngine

:Class

1@Car

:Class

2@Engine

:Class

EEngine

:Class

1@Car

:Class

3@engine

:reference

2@Engine

:Class

EEngine

:Class

1@Car

:Class

3@engine

:reference

2@Engine

:Class

EEngine

:Class

1@Car

:Class

ÛÜÝÞÜÛß
:reference

Figure 8.3: Pushouts in IGraph versus pushouts in Graph

gory IGraph is shown at left of Figure 8.3, while in its right a pushout in

category Graph of the flattened span TG
tm
← TL

tl
→ TI (see Definition 8.3.1)

is shown. Both pushouts simply add an edge formalizing a reference be-
tween two vertices formalizing classes. However, both pushouts are not
equivalent, as flattening the pushout graph TU of the first pushout (see

graph TU in the right of the figure) creates an additional edge engine’ that
is not in graph TU′.

6adopted from [54]

120

8.3. Merging of Model Elements

Fact 8.3.1 (Pushouts in category IGraphs along MS-re f l morphisms[54]). pushouts in

category IGraphs

alongMS-re f l

morphisms

Given a subtype-reflecting morphism f 1 : GI0 → GI1 and
a general I-graph morphism f 2 : GI0 → GI2, then the
pushout (1) in category IGraph exists and can be constructed
component-wisea for the vertex and edge components with
I3 = (g1V × g1V)(I1) ∪ (g2V × g2V)(I2). Moreover,
g2 : GI2→ GI3 becomes a subtype-reflecting morphism.

aComponent-wise means component-wise in category Set analog
to the construction of pushouts in (directed multi-)graphs.

GI0
f 1

f 2

GI1

g1

GI2
g2

GI3

(1)

The problem presented in Example 8.3.1 occurs if new edges are created
having a super vertex as source or target, then the corresponding inherited
edges in sub-vertices are not created in the flattened pushout. Obviously,
this problem does not occur in cases where new edges are only created
at leaf vertices of inheritance hierarchies. In a coupled transformation,
this is ensured in cases where evolution rules are not using graphs with
inheritance. Note that in Example 8.3.1, morphism tm : TL → TG is why are pushouts

in IGraph and
Graph not

equivalent

not subtype-reflecting and therefore TL does not specify any inheritance
relationship. In a coupled transformation, this would not be allowed.

A second problem occurs if vertices with a common super vertex are
merged: constructing the pushout in category Graph results in a pushout
object with duplicated edges due to multiple inheritance. If the pushout is
constructed in category IGraph and flattened, the pushout object does not
contain such duplications. To avoid both problems, we restrict pushouts:

Proposition 8.3.1 (Equivalence of pushouts in Graph and IGraph).
Given (see Figure 6.3 on page 78) equivalence of

pushouts in

Graph and

IGraph

(restricted case)

• an I-graph morphism tl : TL→ TI = (TL′, ∅)→ (TI′, ∅)

• and a subtype-reflecting morphism tm : TL TG = (TL′, ∅) (TG′, ITG)
restricted by: if ∃ v1, v2 ∈ TL =⇒ ∄v3 ∈ TG with tm(v1) ∈ clan(v3) ∧
tm(v2) ∈ clan(v3)

then a pushout of TG
tm
 TL

tl
→ TI in category IGraph corresponds to its flattened

pushout in category Graph. This means that a pushout in category IGraph is after
flattening a pushout in category Graph. Furthermore, this means that a pushout
constructed in category IGraph and flattened is isomorphic to the pushout in
category Graph of its flattened span.

Proof. Both I-graph morphisms in Proposition 8.3.1 are already graph mor-
phisms by assumption (see Definition 8.1.1).

1. Since morphism tm is subtype-reflecting, tm does not match any su-
per vertex: if it would match a super vertex, then it would also need
to match all corresponding sub-vertices i.e. the set of inheritance

121

8. Co-Evolution of Object-OrientedModels

relationships of TL would not be empty. This means “the rule appli-
cation” i.e. the pushout does not create any additional edges in TU
compared to TG that have a super vertex as source or target. Hence,
also flattening the pushout graph TU does not create any additional
implicit inherited edges compared to flattening graph TG.

2. In addition, the flattening of TU does not create less implicit inherited
edges compared to graph TU′ constructed by the pushout of the
flattened span. This is ensured by the restriction that merging is
restricted to leaf vertices that do not share any common super vertex.

�

Restricting the first pushout of the meta-model evolution rule is enough
to transfer the construction of Procedure 6.4.1 to category Graph. The proof
of Procedure 6.4.1 goes through: the left face of the coupled transformation
is also a pullback in category Graph, as the construction of pullbacks in
IGraph (see Fact 8.3.2) is identical to the construction of pullbacks in Graph

for the case TL or G is a (directed multi-)graph (i.e an I-graph without
inheritance relationships). The left bottom face is already a pushout in
category Graph by assumption. Hence, the left cube (see Figure 6.3 on
page 78) of the coupled transformation can be constructed in category
Graph instead. Furthermore, it can be deduced that the middle face is
a pullback in Graph that also corresponds to a pullback in IGraph (since
also TI and U are graphs). This means the right cube of the coupled
transformation can be constructed in category IGraph.

Fact 8.3.2 (Pullbacks in category IGraphs along MS-re f l morphisms [54]).Pullbacks in
category IGraphs

alongMS-re f l

morphisms

Given a subtype-reflecting morphism g2 : GI2 → GI3 and a
general I-graph morphism g1 : GI1→ GI2, then the pullback (1)
in category IGraph exists and can be constructed component-
wise for the vertex and edge components, with I0∗ defined by
(v0, v

′
0) ∈ I0 ⇐⇒ = (f 1V(v0), f 1V(v′0)) ∈ I1∗ and

(f 2V(v0), f 2V(v′0)) ∈ I2∗. Moreover, f 1 : GI0→ GI1 becomes an
subtype-reflecting morphism.

GI0
f 1

f 2

GI1

g1

GI2
g2

GI3

(1)

Reconsidering Proposition 8.3.1, we realize that in an implementation,
the second condition can be relaxed so that match morphisms tm : TL TG
of rules only need to be subtype-reflecting. The condition that vertices torelax

Condition 2 of
Proposition 8.3.1

be merged do not share a super vertex ensures that inherited edges are
considered correspondingly in IGraph and Graph. However, we also get
equivalent pushouts if we assume that all inherited edges get merged, too
(see Example 8.3.2). In an implementation, rules could be automatically
completed to also merge such edges7. Similar rules can also be extended
to be subtype-reflecting if necessary.

7Note, in practice such a completion can often be omitted.

122

8.4. Retyping Model Elements to Subtypes

Example 8.3.2 (Extending pushouts for merging vertices). Figure 8.3.2
shows pushouts merging two classes in category Graph respectively IGraph.
While the left of Figure 8.3.2 shows pushouts in IGraph, its right shows
pushouts of correspondingly flattened spans. Even if the two merged
classes do not have a common superclass, the second condition in Propo-
sition 8.3.1 is violated because their clans share a common class due to the
inheritance relationship. In Figure 8.3.2 (a), the result is that the pushout

objects (i.e. TU, TU) in Graph and IGraph do not correspond. In Fig-
ure 8.3.2 (b), the spans have been changed so that all context edges are
also matched by morphism tm : TL TG, such that the result is that the
pushout objects correspond.

(a) IGraph Graph

(PO)

tl

tm

1:Class

2:Class

e

:Class

2@EEngine

:Class

Car

:Class

engine

:reference

ti

1,2:Class

1,2@Engine

:Class

Car

:Class

engine

:reference

(PO)

tl

tm

1:Class

2:Class

1,2:Class

1@Engine

:Class

2@EEngine

:Class

Car

:Class

engine

:reference

engine:reference

1,2@Engine

:Class

Car

:Class

engine

:reference

engine'

:reference

(b)

1@Engine

:Class

2@EEngine

:Class

3@Car

:Class

4@engine

:reference

3:Class

1,2:Class

4,4':reference

3:Class

1:Class

2:Class

4:reference

4':reference

3:Class

1:Class

2:Class

4:reference

3:Class

1,2:Class
4:reference

1,2@Engine

:Class

3@Car

:Class

4@engine

:reference

IGraph Graph

(PO)

tl

tm ti (PO)

tl

tm

1,2@Engine

:Class

3@Car

:Class

4,4'@engine

:reference

1@Engine

:Class

2@EEngine

:Class

3@Car

:Class

4@engine

:reference

4'@engine:reference

Figure 8.4: Pushouts in IGraph versus pushouts in Graph

8.4 Retyping Model Elements to Subtypes

In object-oriented modeling, classes may be refined and objects may be
retyped to subclasses. Such operations should be additionally supported
by coupled transformations in category IGraph.

123

8. Co-Evolution of Object-OrientedModels

The definition of a coupled transformation demands that all faces of
the double cube in Figure 6.3 commute. If we allow subtyping, i.e. retype
existing instances to subtypes of their original types, at least the left back
face and the left front face of a coupled transformation are no longer
commuting. Therefore, we want to relax the commuting condition for the
left back and the left front face to weakly commutativity:

Definition 8.4.1 (Weakly commuting clan-morphism). Given two clan
morphisms f , g : G → H, f is called finer than g, written f ≤ g, if ∀x ∈ Gweakly

commuting

clan-morphism
f (x) = g(x) or f (x) is in the clan of g(x). Furthermore, we call morphisms f
and g weakly commuting, as they are commuting if we change the vertex
mapping in f from a subtype to a corresponding supertype mapped in g.

Example 8.4.1 shows a coupled transformation rule with a weakly
commuting left face.

Example 8.4.1 (Subtyping coupled transformation rule (in category IGraph)).
Figure 8.5 shows a coupled transformation rule with a weakly commuting
left face and a commuting right face. The (meta-model) evolution rule re-
fines a class C1 by two subclasses C2 and C3 before class C1 is deleted.
The migration rule retypes one instance of class C1 to its subtype C3.
Element mappings are again denoted by dashed arrows.

tl tr

TRTITL

E
v

o
lu

ti
o

n
 r

u
le

M
ig

ra
ti

o
n

 r
u

le

C1

:Class

C2

:Class
àá

:Class

C1

:Class C2

:Class

àá

:Class

1:C1 âãàá

tL

L I R

l r

tI tR

âãàá

≤ =

Figure 8.5: Coupled transformation rule with a weakly commuting left
face

Retyping to a subtype affects only the left cube of a coupled transfor-
mation (see Figure 6.6). Therefore, we only need to reconsider the left cube
construction. In particular, we want to construct the left cube so that only
the back and front faces are weakly commuting. The right face of the left
cube shall still be commuting. This ensures that a coupled transformation
rule and its coupled transformation result retypes correspondingly.

In the following we show that Procedure 6.4.1 can be so adapted that
it can be applied in category IGraph allowing retyping.

124

8.4. Retyping Model Elements to Subtypes

Proposition 8.4.1. [Procedure 6.4.1 allows subtyping in category IGraph] By
adapting Step 2 and Step 4 of Procedure 6.4.1, the procedure can also be applied in Procedure 6.4.1

allows subtyping

in

category IGraph

category IGraph to construct coupled transformations with a weakly commuting
left back and left front faces:

• In Step 2, we allow to complete the left face of the coupled transformation
rule to a weak commuting diagram (i.e. tL; tl ≥ l; tI).

• In Step 4, the existence of a unique morphism tU : U→ TU with tI; ti = i; tU

and tG; tg ≥ g; tU can still be deduced by the pushout in the left bottom face
of a coupled transformation, although the outer square of the diagram below
is only weakly commuting.

L
l

m PO1t

I

i

tI ;ti
=G

g

tG;tg

≥

U

tU

TU

That coupled transformations still have commuting middle faces has
a desired side effect: it ensures that the right face of the left cube is still a
pullback, which has been the precondition for constructing the right cube.
The reason for this is that only properties of the left, top and bottom faces of
the left cube have been used to show that its right face is pullback (see proof
of Procedure 6.4.1). Hence, the right cube of a coupled transformation does
not need to be considered in the proof of Proposition 8.4.1. This reduces
the task to prove Step 4 of Procedure 6.4.1 i.e. that morphism tU : U→ TU
exists with tI; ti = i; tU and tG; tg ≥ g; tU also under the relaxed conditions.

Proof of Proposition 8.4.1. The proof primarily relies on the fact that
ti : TI → TU is subtype-reflecting (Property 6), i.e. in particular an in-
jective graph morphism (see Definition 8.1.1). It has to be shown that
a morphism tU exists: the left back face of a coupled transformation is
weakly commuting by assumption. We assume t′

I
: I → TI to be the corre-

sponding morphism that makes the left back face commuting. Assuming
a morphism t′

I
in the pushout diagram of Proposition 8.4.1 implies the

existence of a unique morphism t′U : U → TU. Because ti is an injective
graph morphism and the fact that two vertices that are in an inheritance
relationship in the domain of a morphism are also in an inheritance rela-
tionship in its co-domain (see Definition 3.2.9), we can adapt morphism t′I
and morphism t′U correspondingly to morphism tI, respectively tU, so that
tI; ti = i; tU and tG; tg ≥ g; tU hold. �

125

8. Co-Evolution of Object-OrientedModels

8.5 Model Migration Schemes

In the last section, it has been shown that coupled transformations can be
used to retype to subtypes. In this section, it is shown that such coupled
transformations can also be constructed by adapting Procedure 7.2.1. In
particular, we want to consider two new features:

1. We intend to match multi-rules with more flexibility: a vertex in L
typed by supertype of TL shall also match a vertex of a corresponding
subtype, as this is the expected semantics of inheritance. A rule with
more general types can also be used to transform graphs with more
specific types.

2. Rules of a migration scheme shall allow retyping vertices to a subtype
of their current type.

Examining Procedure 7.2.1, we realize that both new features only
require to adapt Step 8, i.e. the construction of morphism tI : I → TI.
Note that since models are formalized by (directed multi-) and only meta-
models by I-graphs, all other steps are well-defined. The first new feature
implies that vertices matched to vertices typed by a subtype cannot rely on
the types defined in right-hand sides of multi- and kernel rules. They have
to be adapted correspondingly. The second new feature implies that retyping
conflicts can occur. Multi-rule matches may overlap and multi-rules may
try to retype a vertex to different subtypes. This conflict has to be avoided
or resolved adequately. Furthermore, it has to be avoided that both new
features interfere. This may cause unresolvable conflicts. It also has to be
avoided that multi-rules which subtype match the corresponding vertices
to vertices typed by a different subtype. In the following, the definition
of migration schemes is adapted to allow subtyping. Afterward, Step 8
of Procedure 7.2.1 is replaced by a element-wise construction. That the
adaption of Procedure 7.2.1 is well-defined is shown thereafter.

Definition 8.5.1 (Migration scheme in category IGraph). A migration scheme
is a tuple ((K,M,KM)⊲tp, prio) consisting of an interaction scheme (K,M,KM)migration

scheme of non-deleting rules typed over an evolution rule tp and an priority func-
tion prio : M→N for rules in M. Each rule li ∈M∪K, li is well-typed by the
non-deleting part tl : TL → TR of rule tp, i.e. tp: tLi

; tl ≥ li; tIi
and injective.

In addition, all rules in M ∪ K only have left and right-hand sides, which
are (directed multi-)graphs (i.e an I-graph without inheritance relation-
ships). Furthermore, each kernel morphism (a, b) ∈ KM between kernel
rule lK : LK → IK and multi-rule lM : LM → IM is type compatible i.e.
a; tLM

= tLK
and b; tIM

= tIK
.

126

8.5. Model Migration Schemes

TL
tl

≥

TI

Li
li

tLi

Ii

tIi

LK
lK

=a

tLK IK

b

tIK

TL TI= =

LM
lM

tLM IM
tIM

1. For each pair of rules l1 and l2 in M, we may have zero or finitely
many triples of a kernel rule (lk,k1,k2) with lk : Lk → Ik in K and kernel
morphisms k1 : lk → l1 and k2 : lk → l2 in KM.

2. Furthermore, for each subset of rules R ⊆ M with (1) possibly over-
lapping matches (2) that retype a vertex typed by vertex s to a sub-
vertex vi of ti(s) then either vi = v1 or there exists exactly one vertex
v3 ∈ TI, which is a sub-vertex of all vi.

In [89], category GT is presented which supports subtyping. Subtyping
conflicts can be generally resolved in this category, as all types in type
graphs have to form a lattice (i.e. there is always a unique minimal com-
mon subtype in conflicting cases). In IGraph, we can avoid conflicts by
restricting rules of migration schemes and the matching strategy.

Procedure 8.5.1 (Rule amalgamation for migration schemes in IGraph).
Given a migration scheme ((K,M,KM) ⊲ tp, prio) (see Definition 8.5.1), an rule

amalgamation

for migration

schemes in

IGraph

evolution step tt : TG
tp,tm
=⇒ TH and a graph G with typing tG : G→ TG: the

non-deleting part of the migration rule l : L I for G can be constructed
by the following amalgamation procedure (see also Figure 7.1 on page 104
and Figure 7.7 on page 110):

1. Construct a pullback G
m
 L

tL
→ TL of G

tG
→ TG

tm
 TL (as before).

2. Match rules of M to L along a chosen matching strategy as before.
Allow to match vertices typed by a supertype to corresponding sub-
types if such vertices are not retyped to a subtype by the rule. The
default strategy matches rules as before. If no match has been found,
stop the procedure here with l = id and tI = tL; tl constructing trivially
a commuting diagram. Otherwise, continue with Step 3.

3.-7. See Procedure 7.2.1 on page 108.

8. Morphism tI : I→ TI is constructed element-wise, assume tIi
: I → TI

to be the typing morphisms of multi-rule copy i with (0 ≤ i ≤ n):

1. Map each vertex v in I to the most specific type of V(v) (see below)
if such a type exists. If such a type does not exist then map it to
the most specific subtype of all types in V(v).

V(v) = {u ∈ TIV | u = ti(tL(w)) with w ∈ pre-image(v) or u = tIi
(v)}

127

8. Co-Evolution of Object-OrientedModels

2. Map each edge e in I to the only edge in E(e).

E(e) = {u ∈ TIE | u = ti(tL(w)) with w ∈ pre-image(e) or u = tIi
(e)}

Proposition 8.5.1 (Procedure 8.5.1 is well-defined). In category IGraph:
given a migration scheme ((K,M,KM) ⊲ tp, prio) (according to Definition 8.5.1)Procedure 8.5.1

is well-defined an evolution step tt : TG
tp,tm
=⇒ TH and a morphism tG : G→ TG, the left face of the

coupled transformation rule for G can be constructed by Procedure 8.5.1 so that:

1. the coupled transformation rule is match-complete and

2. the left face of the coupled transformation rule is (weakly) commuting i.e.
tL; tl ≥ l; tI.

Proof.
Only Step 8 has to be proven as all other steps are still valid (see Proof of
Procedure 7.2.1).

1. Obviously, it is ensured that a unique vertex mapping exists so that
the left face of a coupled transformation rule is weakly commuting
(for vertices):

• If an existing vertex v ∈ I should not be retyped to a subtype,
a unique type must exist as before. Vertex v can be typed by
l−1(v); tL; tl. Note that l : L→ I is an injective graph morphism.8

• If an existing vertex should be retyped to a subtype, a unique
most specific type must exist as required in Condition 2 of Def-
inition 8.5.1.

• A new vertex v can simply be typed by tIi
(v).

2. Analogously, it is ensured that each edge e ∈ I can be uniquely typed
by l−1(e); tL; tl. A new edge e is simply typed by tIi

(e).

That the construction ensures that morphism tI is a valid clan-morphism
is obvious, as vertices are only mapped to more specific types that “inherit”
all edges from their supertypes.

Additionally, the construction trivially ensures that the left back face
of the coupled transformation rule is (weakly) commuting. �

Example 8.5.1 shows a migration scheme containing two multi rules
that specify a conflicting subtyping. By the fact that both subtypes have a
common subtype themselves, the conflict is solved.

8 Because IGraph is weak adhesive. Merging of model elements can be done in cate-
gory Graph instead.

128

8.5. Model Migration Schemes

Example 8.5.1 (Subtyping in category IGraph). Figure 8.6 shows a meta-
model evolution step with a corresponding model migration step formal-
ized by I-graphs. Graph TG formalizes a simple meta-model allowing the
modeling of cars with different engines, in particular electrical ones. In
graph TH, class Car is refined by three subclasses: TCar (traditional car),
ECar (electrical car) and HCar (hybrid car) (as in Example 8.1.1). Graph G
contains three Car instances having electrical or traditional gas engines.
In graph H, each car is retyped according to its type of engine, i.e., to a
TCar, a ECar or an n HCar.

H

tH

Car:Class

ECar:Class TCar:Class

Engine:Class

EEngine:Class

engine

:reference

tä

Car:Class Engine:Class

EEngine:Class

engine

:reference

Meta-model Evolution

Model Migration

e
e3:engine

e
ee1:engine

ngine

ngine
e

:Car

T

rius:Car

e
e3:engine

e
ee1:engine

ngine

ngine
e

:TCar

T ar

rius:

Figure 8.6: Meta-model evolution and model migration with subtyping

Figure 8.7 shows the meta-model evolution rule and the migration
scheme used to build the corresponding coupled transformation.

tl tr

TRTITL

L1 I1 R1

r1l1

(Meta-model) Evolution Rule

(Model) Migration Multi-Rules

L2 I2 R2

r1l2

1:C1 1:C2 1:C2

1:C1

1

P 2

l1

l2

Meta-model specific
Application Conditions

Meta-model

lass

C4:Class

C3:ClassC2:Class

C1:Class

lass

C3:ClassC2:Class

C1:ClassC1@Car:Class

Engine:Class

EEngine:Class

engine:reference

r
:engine

:Engine

1:Car
:engine

:EEngine

C1=Car, C2=TCarå æçèéCar, C4=HCar

Figure 8.7: Migration scheme with subtyping

129

8. Co-Evolution of Object-OrientedModels

The migration scheme consists of only two multi-rules that retype to
subtypes. Both rules are extended by custom positive application con-
ditions (see Chapter 4) being directly typed over the meta-model TG in
Figure 8.6. Note that subtyping multi-rules are only defined for traditional
and electrical cars. If the matches of both rules overlap in an instance of
type Car (as it is the case for Prius:Car in model G in Figure 8.6), the Car
instance gets the common subtype, i.e. type HCar.

In Chapter 7, a construction for default migration schemes for (directed
multi-)graphs is given (see Definition 7.3.2). A set of default multi-rules is
deduced by retyping the meta-model evolution rule and its sub-rules. In
category IGraph, however, inheritance relationships do not have instances,
hence a simple retyping of rules is not possible. Therefore, we propose to
use the empty migration scheme as a default migration scheme in cases
when evolution rules use inheritance. In such cases, it is hard to propose a
simple and useful solution. Hence, we can primarily reuse the construction
for default migration schemes from category Graph in category IGraph.
If rules merge vertices, we only keep those generated rules that merge
leaving vertices (see Proposition 8.3.1 and Example 8.3.2).

8.6 Classification of Meta-model Changes Revisited

An often used classification for meta-model changes (e.g. in [22, 59, 97,
141]) proposes the distinction into non-breaking changes, breaking and re-
solvable changes and breaking and unresolvable changes [51] (see Chap-
ter 2). Unfortunately, the classification is partly context-dependent and
leaves room for interpretation. The consequence is that one and the same
meta-model change may be classified differently by several researchers. In
his dissertation [59], Herrmannsdörfer, e.g., reclassifies meta-model evolu-
tion changes in EMF according to an own model presentation. Hence, such
classifications may be reasonable if specific modeling frameworks should
be evaluated, but also restrict the validity of research results to tools. In
this section, the existing classifications are revisited and formalized wrt.
the developed theory of this thesis.

As illustrating example (see Example 8.6.1), we consider a sequence of
meta-model evolution steps and discuss corresponding migration schemes.

Example 8.6.1 (Evolution of a statemachine meta-model9). This exam-
ple builds on Example 7.2.1 and shows the evolution of a statemachine
meta-model in several evolution steps using more realistic meta-models.
Figure 8.8 shows an extended meta-model for Moore automata. Multiplic-
ity annotations can be formalized e.g. by meta-attributes, associations that

9The example is based on an example that has been originally presented by Herrmanns-
dörfer et al. to illustrate the Cope [55, 57] tool.

130

8.6. Classification of Meta-model Changes Revisited

are navigable in both directions by two opposite edges similar to EMF [34].
In the following, the evolution scenario performed on this meta-model is
described in detail:

1. In the first step (see Figures 8.8 and 8.9), the modeling language is
changed from Moore to Mealy automata. This means that we move
the attribute effect from State to Transition. This evolution step has
been shown in Example 7.2.1 before. To migrate models, effects
(i.e. values of attribute effect) have to be moved from each state to
all of its incoming transitions. The models can be migrated by the
migration scheme presented in Example 7.2.1.

name: String

effect[*]ê ëìíîïð

State

ìíîððñíê ëìíîïð

on
òóìðòîïð

ôõõö

÷óøù

÷ìúìñ÷

tarðñì
1

Figure 8.8: Original meta-model

name: String

State

trigger: String

effect[*]û üýþÿi�

on
o�ý�oÿi�

1���

s���

sý�ý�s

tar��ý

1

Figure 8.9: Move Attribute

2. In the second step, we add opposite references to outgoing and target
edges (see Figures 8.9 and 8.10). This meta-model change may ease
the usage of generated artifacts. In addition, after this evolution step,
models can be migrated by the default migration scheme adding
opposite links.

name: String

State

trigger: String

effect[*]: �	
��

on

����

�	�	��

��	���

����

tar�	
1 �������

����

���
ce

1

Figure 8.10: Add Opposite Ends

name: String

State

trigger: String

effect[*]� �����

on

!"#$

!�%�&!
StateMachine

!�%�&!

'"� '��

1..*

tar &�

1 ��(')��

1..*

!'"�ce

1

0**+

Figure 8.11: Introduce Container

3. In the third step, we introduce a container class StateMachine as it is
required in EMF [34] meta-models (see Figure 8.10 and Figure 8.11).
Such a container class allows a unique root object that may be helpful
to serialize models in XML files. In EMF, it would be required that
all states not already contained in another state are contained in
the root container StateMachine. Models can be migrated by the

131

8. Co-Evolution of Object-OrientedModels

migration scheme presented in Example 7.2.2 on page 113, which
was a default migration scheme that has been customized. To not
add states into the root container that are already contained in other
states, a negative application condition may be added to the multi-
rule.

4. In the final step, we extract a subclass CompositeState from State to
make state hierarchies explicit. Extracting a subclass is performed in
two steps:

a) A subclass CompositeState of class State is created (see Fig-
ures 8.11 and 8.12). Afterward, models may be migrated. It can
be assumed that a migration designer wants to retype instances
of type State containing other states to type CompositeState
after this meta-model change. The default migration scheme is
empty but the required migration scheme can easily be manu-
ally defined.

Alternatively, it is possible to postpone the retyping and do it
in the next substep.

b) In the second substep, the source of reference substates is
pushed down from State to CompositeState, i.e., reference sub-
states is deleted and recreated (see Figures 8.12 and 8.13). A
migration designer may want to replace effected links accord-
ingly by links of the new type. The required migration scheme
has to be defined manually. Optionally, all states containing
other states can also be retyped in the corresponding migration
scheme.

name: String

State

trigger: String

effect[*], -./234

on
56.45234

1..*

sub-

states
StateMachine

states

target

1 incoming

1..*

source

1

ositeState

Figure 8.12: Introduce Subclass

name: String

State

trigger: String

effect[*]7 89;<=>

on
?@9>?<=>

1..*

1..*
A@BA9C9tA

StateMachine
A9C9tA

tar>t9

1 <=D?E<=>

1..*

A?@;ce

1

ositeState

Figure 8.13: Pull-down Reference

All desired model migrations for the meta-model changes presented
can be defined by our approach. Required migration schemes have been
either default ones, customized ones or have been manually defined.
However, there are also changes that can be handled by empty migra-
tion schemes (i.e. M ∪ K = ∅, see Definition 7.2.3) simply by applying

132

8.6. Classification of Meta-model Changes Revisited

the construction of Procedure 7.2.1. A change where the empty migra-
tion scheme is sufficient is e.g. the “Pull up Attribute” refactoring in
category IGraph. In this meta-model refactoring, attribute references are
non-injectively mapped to a new attribute reference of a superclass as al-
lowed in I-graph morphisms. Models can be migrated by retyping only.
Figure 8.14 shows a sample coupled transformation rule pulling up an
attribute and retyping one link correspondingly.

tl tr

TRTITL

E
v

o
lu

ti
o

n
 r

u
le

M
ig

ra
ti

o
n

 r
u

le

tL

L I R

l

id

r

tI tR=

C1

:Class

C2

:Class

FG

:Class
a2

:attribute

a1

:attribute
DT:DataType

C1

:Class

C2

:Class

FG

:Class

DT:DataType

a1,a2

:attribute

C1

:Class

C2

:Class

FG

:Class

DT:DataType

a1,a2

:attribute

3:a1,a2
1:C2 2:DT

3:a1,a2
1:C2 2:DT

3:a1
1:C2 2:DT

Figure 8.14: Coupled transformation rule “Pull up Attribute”

Based on the theory developed in this article, we can formally classify
meta-model evolution steps exactly corresponding to Gruschko’s classifi-
cation [51]. Similar to Brand et al. [141], we refined unresolvable changes:
changes being resolved by manually defined or customized migration
schemes are called semi-automatically resolvable. In addition, fully automat-
ically resolvable and automatically resolvable changes are distinguished.
We distinguish these two types of changes, as the second type is depen-
dent on the heuristics used to define default migration schemes.

Definition 8.6.1 (Formal classification of meta-model evolution steps).

Given a meta-model evolution step tt : TG
tp,tm
=⇒ TH at evolution rule

tp = TL
tl
 TI

tr
 TR:

• Evolution step tt is called non-breaking if tl is injective and tr = id.
Hence, instance graphs and their typing morphisms do not need
to be migrated (if no additional constraints are added e.g. by DPF
atomic constraints).

• Otherwise, evolution step tt is called breaking.

– If models can be migrated by the empty migration scheme, the
construction in Procedure 7.2.1 yields l = idL : L → L as the

133

8. Co-Evolution of Object-OrientedModels

left part of the migration rule and tt is called fully automatically
resolvable.

– If models can be migrated by the default migration scheme, tt is
called automatically resolvable.

– If models can be migrated by a customized or manually defined
migration scheme, tt is called semi-automatically resolvable.

– Otherwise, tt is called unresolvable.

Example 8.6.2 (Classification of evolution steps). Evolutions steps pre-
sented in Example 8.6.1 can now be classified according to Definition 8.6.1:
Change 1 is semi-automatically resolvable, Change 2 is automatically re-
solvable, Change 3 is semi-automatically resolvable, Change 4 (a) can
either be classified as non-breaking or semi-automatically resolvable de-
pending on the desired migration, Change 4 (b) is semi-automatically re-
solvable and the “Pull Up Attribute” refactoring presented below is fully
automatically resolvable.

Remark 8.6.1 (Unresolvable meta-model changes). While Definition 8.6.1
corresponds mainly to how other researchers classify unresolvable meta-
model changes, we have to admit that, strictly speaking, many meta-model
evolution steps can be automatically resolved to some extent. Newly re-
quired elements can be introduced with an automatically generated unique
identifier, default name or further default values. Hence, an unresolvable
i.e. non-automatically resolvable meta-model evolution step seems to be
one that requires solving a constraint satisfaction problem without any
resolution or without a unique resolution. This means that a modeler has
to find a model-specific resolution.

In this chapter, coupled transformations and migration schemes have
been considered in the context of category IGraph. Additional features
such as (1) merging of elements on the model level, (2) subtyping as well
as (3) matching of rules by supertypes, that are not supported by the
core theory in weak adhesive categories, have been discussed and proven.
Furthermore, the well-known classification of changes into unbreaking,
breaking and (un)resolvable has been examined in the context of the in-
troduced theory.

134

CHAPTER 9
Towards Model Migration

Ensuring Constraint Satisfaction

In Chapter 3, we discussed possibilities of equiping models by constraint
annotations, e.g. by DPF atomic constraints. Trivially, such model con-
straints can be checked after model migration. However, ensuring that all
well-formedness constraints are satisfied in models after model migration
has been neglected so far. In this chapter, we present a first approach
towards model migration that ensures constraint satisfaction after migra-
tion. Herein, rule schemes, called model constraint resolution schemes, are
used to resolve constraint violations after models have been migrated by
coupled transformations. In this first approach, we restrict ourselves to
multiplicity constraints. The chapter is based on [137].

9.1 Introduction

Migrating models so that all modeling language constraints are ensured
after model migration is rarely studied. Existing model migration ap-
proaches (see Chapter 2) use the following strategies to deal with constraint
satisfaction:

• In manual specification approaches, it is up to the migration designer
that model migrations ensure constraint satisfaction (e.g. by giving
preconditions for migration cases). Only for simple evolution steps state-of-the-art
e.g. if meta-model constraints are removed or weakened,1 can mod-
els be migrated safely. In other cases, models need to be verified
after model migration and manually adapted in conflicting cases.

1For example a multiplicity constraint can be weakened by increasing its upper bound.

135

9. TowardsModelMigration Ensuring Constraint Satisfaction

• In operator-based approaches (and matching approaches), the op-
erator developer is responsible for models’ satisfaction of modeling
language constraints after migration. Therefore, meta-model evolu-
tion operators are usually restricted to cases where corresponding
model migrations can be applied safely. Preconditions are defined
by the operator developer and automatically checked before the evo-
lution operator can be applied. If evolution operators are given by
graph transformation rules, e.g. application conditions (see Chap-
ter 4) can be used to specify such preconditions.2

• There are meta-model evolution steps that are generally considered
unresolvable (e.g. an upper bound multiplicity constraint is de-
creased [22]). In such cases, models need to be migrated manually.

In the following, multiplicity constraint satisfaction is considered over
the whole model. This means we solve constraint satisfaction problems
(CSP) [46] and do not only consider the resolution of local constraint
violations. Resolving a local constraint violation may imply that other
constraints become violated and new violations need to be resolved.

Remark 9.1.1 (Local constraint violations). Note that local constraint vio-
lations can already (partly) be resolved by the presented theory. The left-
and right-hand sides of graph transformations rules can be considered as
pre- and post-conditions, respectively. Further application conditions may
be added. This means that multi-rules can be specified, which ensure
the statisfaction of lower bound multiplicity constraints by creating the
required number of elements.

9.2 Resolution Procedure

After models are migrated by coupled transformations, all models are
well-typed over the latest meta-model version. However, multiplicity
constraints may still be violated. Such violations are resolved by applying
a set of conflict-resolving graph transformation rules until global model
consistency is established. This is possible [12, 18, 83] if the given meta-
model is finitely satisfiable (i.e. if well-formed instance models do exist).

Figure 9.1 shows an activity diagram3 of the conflict resolution proce-
dure introduced next. Conflicts are resolved by the following activities:

1. First, we check if a meta-model has finite model instances by a rea-
soning technique for UML class diagrams [12, 18]. This technique
deduces a linear system of inequalities from all multiplicities.4 If a

2Note that such preconditions may also be defined by other approaches, e.g. OCL [105].
3Note that the activity diagram refines one activity of the diagram in Figure 1.3 on page 7.
4We restrict attention to binary associations here.

136

9.2. Resolution Procedure

meta-model does not have finite model instances, we consider it as
incorrect. In this case, it has to be (manually) adapted.

2. Afterward, meta-model specific graph transformation rules for con-
straint violation resolution are derived based on rule templates (de-
fined in a model constraint resolution scheme).

3. Because derived resolution rules do not always adapt models mean-
ingfully, custom resolution rules can be added to the rule set. In
addition, priorities of generated rules may be changed.

4. First, violations are resolved by applying custom rules as often as
possible.

5. Then, all upper bound multiplicity constraints are resolved in models
by applying all upper bound resolution rules as often as possible.

6. Finally, all lower bound multiplicity constraints are resolved in mod-
els by applying all lower bound resolution rules as often as possible.

m
ig

ra
te

 m
o
d
e
ls

(e
n
s
u

rin
g
 c

o
n
s
tra

in
t

 s
a
tis

fa
c
tio

n
)

evolved meta-model

(last meta-model from

evolution sequence)

model constraint

resolution scheme

for multiplicities

check constraint

satisfiabilty

(manually) correct

meta-model

derive (meta-model specific)

(constraint) resolution rules

add custom resolution rules and

change rule priorities (optional)

reHIJKe JILeM

bound violations

migrated models (conforming)

(also satisfinN JILeM bound multiplicities)

[satisfiaOJeP

[nIQ HaQRHfiaOJeP

models satisfying

upper bound multiplicities

resolve upper

bound violations
migrated models

(well-typed)

resolution rules for

upper and lower bounds

resolve violations

by custom rules

(optional)

Figure 9.1: Resolving multiplicity violations

137

9. TowardsModelMigration Ensuring Constraint Satisfaction

In subsequent examples, associations are used as compact notation
for opposite references. This means the presentation of the association
in Figure 9.2 (a) corresponds to the presentation in Figure 9.2 (b) using
references. Multiplicity constraints and [opposite] can e.g. be annotated by
meta-attributes or DPF atomic constraints (see Chapter 3).

✄
✂

�
✁A:Class

b

k..l

✄
✂

�
✁B:Class

a

m..n

(a)

✄
✂

�
✁A:Class

b

k..l

[opposite]
✄
✂

�
✁B:Class

a

m..n

(b)

with 0 ≤ m ≤ n ≤ ∗, m , ∗ ∧ n , 0 and 0 ≤ k ≤ l ≤ ∗, k , ∗ ∧ l , 0
(∗means finitely many)

Figure 9.2: Association as compact notation for opposite references

All possible multiplicity changes for reference a are listed in Table 9.1.5possible

multiplicity

changes

We assume that changes to m, n respect their intervals (see Figure 9.2).

Table 9.1: Possible multiplicity changes (for reference a)

Change Effect Constraint

Increase lower bound (x : Nat) m + x stricter
Decrease lower bound (x : Nat) m − x weaker
Increase upper bound (x : Nat) n + x weaker
Decrease upper bound (x : Nat) n − x stricter

In addition, we allow the refinement of references. MOF [110] offers therefinement of

references feature subsets for this purpose. This can e.g. be supported by formalizing
references as vertices in category IGraph (see Chapter 3 and Figure 9.3). In
Figure 9.3, reference b0 has been refined by a reference b1. Figure 9.3 (a)
shows the reference in its concrete syntax, while Figure 9.3 (b) shows the
reference in its abstract syntax i.e. in category IGraph.6 In Figure 9.3 (a),
the refinement/inheritance relationship is denoted by subsets. The corre-
sponding super-reference is shown in curly brackets.

Dealing primarily with multiplicity changes here, we have to clarify
how multiplicity constraints at super-references affect their sub-references:

5Changes for reference b are analog.
6Additional multiplicity constraints have been annotated as meta-attributes.

138

9.2. Resolution Procedure

multiplicity references defined for super-references have to be satisfied by
the set of all links typed by the super-reference or its sub-references. This
means in Figure 9.3, each object of type A must have links of bi types so
that k0 ≤

∑

i=0..1 #(: bi) ≤ l0 (“#” denotes the number as usual). In addition,
multiplicities of sub-references need to be satisfied as usual. Note that also
refinements of references can cause multiplicity changes, such as described
in Table 9.1.

✄
✂

�
✁A:Class

b0

k0..l0

b1 subsets{b0}

k1..l1

✄
✂

�
✁B:Class

(a)

✄
✂

�
✁A:Class

✎

✍

☞

✌

b0:Reference
lower=k0

upper=l0

src trg ✄
✂

�
✁B:Class

✎

✍

☞

✌

b1:Reference
lower=k1

upper=l1

(b)

Figure 9.3: References in (a) concrete and (b) abstract syntax

Note that reference vertex b1 in Figure 9.3 inherits edges src and trg from
reference vertex b0. If the source or target of refined reference b1 should
be restricted to subclasses of class A respectively class B, additional src
respectively trg edges have to be defined for b1. In models, we use the
convention that link vertices that connect two objects use all available src, re-
spectively trg edges.7 This ensures in graph transformation rules that links
typed by sub-references can be matched by links typed by corresponding
super-references.8

Furthermore, we allow classes and references to be abstract. This can be abstract

elementssupported by a further meta-attribute or DPF atomic constraint. We give
abstract the usual semantics, i.e. we define models that contain (direct)
instances of abstract elements to be non-conforming.

Example 9.2.1 (Meta-model evolution with multiplicity adaptations). In
the following, a concrete evolution scenario that focuses on multiplicity

7This can be easily ensured in a tool.
8I.e. including src and trg edges of the super-reference.

139

9. TowardsModelMigration Ensuring Constraint Satisfaction

changes is given: we start with a simple activity meta-model (see Fig-
ure 9.4) containing two multiplicity constraints only to ensure that each
transition has exactly one source and one target activity. Then, we refine
this meta-model to produce a meta-model that ensures well-structured
activity models to a certain extent. However, models conforming to the
resulting meta-model can still be ill-structured with respect to additional
constraints. Note that multiplicity constraints not shown are 0..∗. Further-
more, if the lower bound of a multiplicity constraint is equal to the upper
bound, only one number is denoted.

t
- End

ction
- Decision
- Mer

ModelElement

Transition

trg S

src 1ctivity

in

out

Figure 9.4: A meta-model for simple activity models

In Figure 9.5, the following evolution steps have been performed chang-
ing types and structure of the meta-model:

1. Class Activity has been marked as abstract i.e. all corresponding
activities in models have to be retyped to a subclass of Activity or
deleted.

2. Enumeration ActivityKind has been replaced by 5 subclasses of Ac-
tivity.

3. References src, trg, in and out have also been marked as abstract,
i.e. also all corresponding links have to be retyped or deleted.

4. References between Activity and Transition and vice versa are refined
for all introduced subclasses of Activity using reference inheritance.
For class Start and class End, unwanted references have been omit-
ted. Note that this can be allowed here, as references are formalized
by vertices. For example, Start inherits from Activity, however, there
is no concrete reference in the meta-model that could be instantiated
in a model to create a trg-link to a Start activity.

Furthermore, the following multiplicity changes have been performed:

1. All lower bound multiplicities of references targeting Transition have
been increased.

140

9.3. Finitely Satisfiable Meta-models wrt. Multiplicities

2. All upper bound multiplicities of references targeting Transition have
been decreased. Therefore Start activities are required to have ex-
actly one outgoing transition and End activities exactly one incoming
transition. Action activities are required to have exactly one incom-
ing and one outgoing transition. Decision activities are required
to have exactly one incoming and two outgoing transitions. Vice
versa, Merge activities are required to have exactly two incoming
transitions and one outgoing.

3. All multiplicities for references with source Transition targeting a
subclass of Activity have not been set (i.e. are 0..∗). Because the
multiplicity constraints of the super-references src and trg also have
to be satisfied, the constraint for transitions to connect exactly two
activities has not been changed.

Hence, in the evolved meta-model stricter constraints have been intro-
duced while no constraint has been weakened.

ModelElement

TUVWXString

Transition
trg 1

src 1

in

out

Activity

Start

End

ction

Decision

Mer

srcY

trZ\

src]

trZ]

srcD

trZ^

srcM

trZ_

{subsets src}

{subsets src}

{subsets src}

{subset src}

{subsets trg}

{subsets trg}

{subsets trg}

{subsets trg}

`bdY f `bd] f `bd^ h outM 1inE 1 jk] f inD 1 jk_ h
{subsets

out}

{subsets

in}

{subsets

out}

{subsets

in}

{subsets

out}

{subsets

in}

{subsets

out}

{subsets

in}

Figure 9.5: Evolved meta-model for activity models

9.3 Finitely Satisfiable Meta-models wrt. Multiplicities

Allowing meta-models with arbitrary multiplicities, it may happen that
multiplicities are chosen such that no finite model can fulfill them. In
the literature [12, 18], it is shown that this types of finite satisfiability

141

9. TowardsModelMigration Ensuring Constraint Satisfaction

can be checked by solving a system of inequalities. Therefore, after meta-
model evolution we first check that the resulting meta-model is still finitely
satisfiable:

Assumption 9.3.1 (Finitely satisfiable meta-models (adapted fact from [18,
83])). Given a meta-model MM, a system of inequalities I is built over C and R
being variable sets for all classes and references in MM. Function src : R → Cfinitely

satisfiable

meta-models
yields the class variable of the reference’s source class. Function clan+ : E→ P(E)
yields the sum of all element variables (i.e. class or reference variables), which
are in the clan of an element (including variables for sub-elements, excluding
variables of abstract elements). Function o : R → R yields the variable of the
opposite reference. Furthermore, function lower : R→ N yields the lower bound
multiplicity constraint of a reference, respectively function upper : R→ (N∪{∗})
its upper bound constraint. Then, we get the following inequalities in I for each
reference variable r:

1. lower(r) × clan+(src(r)) ≤ clan+(r) if lower(r) > 0

2. upper(r) × clan+(src(r)) ≥ clan+(r) if upper(r) , ∗

3. clan+(r) = clan+(o(r))

If the system of inequalities is solvable so that all v ∈ C∪R are assigned to numbers
inN+, then there exists a finite instance model containing elements of all concrete
types that conforms to meta-model MM wrt. multiplicities. Meta-model MM,
we call finitely satisfiable.

The complexity to solve such a system of inequalities is EXPTIME-
complete in general. However, the exponentiality depends on the max-complexity for

solving system of

inequalities

imum number of classes involved in the same generalization hierarchy,
which is typically not very large (see also [18]).

Example 9.3.1. We now show the system of inequalities for the evolved
meta-model in Example 9.2.1. As all defined upper and lower bound
multiplicities are equal for each reference (or undefined i.e. 0..∗), the system
of inequalities can be reduced to a system of equations. For example:

1 × Transition ≤ srcS + srcA + srcD + srcM (src, Assumption 9.3.1 (1))
1 × Transition ≥ srcS + srcA + srcD + srcM (src, Assumption 9.3.1 (2))

can be reduced to: Transition = srcS + srcA + srcD + srcM.

The entire system of equations consists of:

Transition = srcS + srcA + srcD + srcM
Transition = trgE + trgA + trgD + trgM

142

9.4. Deriving Constraint Resolution Rules

Start = outS
End = inE

Action = outA
Action = inA

2 ×Decision = outD
Decision = inD

Merge = outM
2 ×Merge = inM

srcS + srcA + srcD + srcM = outS + outA + outD + outM
trgE + trgA + trgD + trgM = inE + inA + inD + inM

srcS = outS trgE = inE srcA = outA trgA = inA
srcD = outD trgD = inD srcM = outM trgM = inM

The system of equations has solutions with all variables inN+ e.g.:

• srcD = outD=trgM = inM = 2

• Action = outA = inA=srcA = trgA = 3

• Transition = 7

• all other variables = 1

Hence, the meta-model is finitely satisfiable. Figure 9.6 shows a con-
forming model satisfying all multiplicity constraints using the numbers of
elements above.

eat

sleep
[yes]

[no]

tired?

work

Figure 9.6: Conforming activity model

9.4 Deriving Constraint Resolution Rules

In the next step, we derive a set of graph transformation rules using rule
templates that have been defined for resolving multiplicity constraint vi-
olations. To resolve further constraint violations, additional resolution
schemes may be identified in the future. For example, we do not consider
containment relationships here.

The constraint resolution scheme for multiplicity constraints consists
of three types of templates and prioritize objects over links (i.e. only links
may be deleted):

1. Templates for rules that delete links to satisfy upper bounds. types of

resolution rules
2. Templates for rules that create links to satisfy lower bounds.

143

9. TowardsModelMigration Ensuring Constraint Satisfaction

3. Templates for rules that create links with corresponding target objects
(also to satisfy lower bounds). Rules of this type may induce that
further lower bound multiplicity constraints need to be satisfied after
their application.

In the following, all templates are sketched by only showing the left-
hand sides (LHSs) and right-hand sides (RHSs) of rules in concrete syn-
tax, as well as positive and negative application conditions. Intermediate
graphs of rules can be computed as union graphs of LHS and RHS (as
elements are neither merged nor split). In the rule templates, types of ele-
ments are specified by functions analog to the functions used in Assump-
tion 9.3.1. However, functions that yield variables for element numbers in
Assumption 9.3.1 yield types in this section. In the previous section, e.g.
function src : R→ C yields a variable for the source class of a reference. In
this section, it yields the source class. In addition, the following functions
are used in templates:

1. Function trg : R→ C yields the target class of a reference.

2. Function super : R→ R yields a super reference of a reference.9

Rules of Type 1 (see Table 9.2) are derived for all references with upper
bound constraints (, ∗) and their sub-references. Herein, for references
with opposite references, we use template r1, and for all other references
template r2. Note that opposite references are paired (by a constraint) and
hence always have to be created or deleted together. Rules created by
such templates delete random links until the upper bound constraints of
all references are satisfied. To not delete more links than required, positive
application conditions are generated (see Table 9.3).

Table 9.2: Templates for rules of Type 1

LHS RHS
r1: Delete link together with opposite (if ∃ opposite reference)

1:src(r)
:r

2:trg(r)

:o(r)

1:src(r) 2:trg(r)

r2: Delete link (if ∄ opposite reference)

1:src(r)
:r

2:trg(r) 1:src(r) 2:trg(r)

9 For simplicity reasons, function super : R→ R returns only one super-reference. Rules
and application conditions are generated for all corresponding super-references, implicitly
iterating over the set of all super-references.

144

9.4. Deriving Constraint Resolution Rules

The positive application conditions generated by the templates in Ta-
ble 9.3 are used by all rules of Type 1. Note that links do not have targets in
the PACs. Nevertheless, at the level of the abstract syntax, the PACs spec-
ify valid graphs, as links are vertices. Expressions such as “× upper(r)+ 1”
below links evaluate to the number of links to be generated. Furthermore,
note that application conditions are generally only generated if expres-
sions do not evaluate to “0”, respectively “∗”. A rule of Type 1 can be
applied if :

• the PAC generated by template T − PAC1 applies or

• one PAC generated by template T − PAC2 applies (in addition to the
PAC generated by template T − PAC3 if this PAC exists).

Table 9.3: PAC templates for rules of Type 1 (for both rules)

T − PAC1 T − PAC2

1:src(r)
:r

× upper(r)+1
1:src(r)

:super(r)

× upper(super(r))+1

T − PAC3 (for T − PAC2)

1:src(r)
:r

× lower(r)+1

PACs generated by Template T − PAC1 ensure that rules are applied
until the upper bound multiplicity constraint of corresponding references
are satisfied. Template T − PAC2 is used for generating an additional PAC
for each upper bound multiplicity constraint of a super-reference. Such
PACs analogously10 ensure that also links are deleted that violate inherited
upper bound constraints. Hence, for each reference more than one PAC
may be created since there may be more than one super-reference. Rules
generated by template T−PAC3 ensure that more references are deleted as
allowed. In case an inherited upper bound constraint cannot be satisfied
by applying a rule, there exists a different rule ensuring that the inherited
upper bound constraint also will be satisfied in the end.

Example 9.4.1 (Sample rules of Type 1). The example builds on Exam-
ple 9.2.1 and shows in Figure 9.7 all sample rules of Type 1 that are derived
for the two references presented as association srcD-outD in Figure 9.5.

10Note that template T−PAC1 could also be considered as special case of template T−PAC2

if super would return a type including a reference’s direct type.

145

9. TowardsModelMigration Ensuring Constraint Satisfaction

:outD

1:Decision 2:Transition 1:Decision 2:Transition
:srcD

LHS RHS

:outD

2:Decision 1:Transition 2:Decision 1:Transition
:srcD

LHS RHS

1:Decision
:outD

:outD

:outD

PAC

(by T-PAC1)

(by T-PAC2)

1:Transition

PAC

lmpq

lmpq

(a)

(b)

Figure 9.7: Sample rules of Type 1

Figure 9.7 (a) shows the rule that has been derived for reference outD.
Figure 9.7 (b) shows the rule that has been derived for reference srcD. As
both references are opposites, the “same” rules have been derived from
Template r1 in Table 9.2. Hence, the derived rules could theoretically be
merged into one rule with two PACs. The PAC of the rule in Figure 9.7 (a)
is generated by Template T − PAC1. Because super-reference out does
not have any multiplicity constraint (other than 0..∗), no further PACs are
generated. The PAC of the rule in Figure 9.7 (b) is generated by Template
T − PAC2. The PAC is generated because the super-reference src has
an upper bound constraint. As the reference srcD does not have any
multiplicity constraint, no additional PAC is generated. Note that the
used templates are denoted inside the figure for application conditions.

Rules of Type 2 (see Table 9.4) are derived for all references with lower
bound constraints (> 0) and their sub-references. The rule templates are
analogously defined to the rule templates of Type 1. Indeed, only the
labels for LHS and RHS need to be swapped. Rules of Type 2 ensure that
lower bound multiplicity constraints are satisfied in case a model already
contains enough objects for creating necessary links. That rules do not
create more links as necessary, two templates for generating NACs are
used (see Table 9.5, T − NAC1 and T − NAC2). That rules do not create
more links as allowed, two additional templates for generating NACs have
been defined (see Table 9.5, T − NAC3 and T − NAC4). Further templates
for NACs are required for rules generated by template r3, as multiplicity
constraints of opposite references need to be considered (see Table 9.6). A
rule of Type 2 can be applied as long as not:

• all NACs generated by Templates T −NAC1 and T −NAC2 apply or

• one NAC generated by Templates T −NAC3, T −NAC4, T −NAC5 or
T −NAC6 applies.

146

9.4. Deriving Constraint Resolution Rules

Table 9.4: Templates for rules of Type 2

LHS RHS
r3: Create link together with opposite (if ∃ opposite reference)

1:src(r) 2:trg(r) 1:src(r)
:r

2:trg(r)

:o(r)

r4: Create link (if ∄ opposite reference)

1:src(r) 2:trg(r) 1:src(r)
:r

2:trg(r)

The negative application conditions generated by templates in Table 9.5
are used by all rules of Type 2 (and also Type 3). Note that NACs of all
types are not always generated. For example, a reference may not have a
lower bound but a super-reference has. In this case, the NAC for the super-
reference is important. In addition, note that it is always ensured that a
NAC considering a lower bound constraint exists.11 NACs generated by
templates T−NAC3 and T−NAC4 ensure that no upper bound constraints
are violated by the rule application. Rules generated by templates T−NAC3

are e.g. necessary if a reference has a lesser upper bound constraint than
the lower bound constraint of a super-reference.

Table 9.5: NAC templates for rules of Type 2 and 3

T −NAC1 T −NAC2

1:src(r)
:r

× lower(r)
1:src(r)

:super(r)

× lower(super(r))

T −NAC3 T −NAC4

1:src(r)
:r

× upper(r)
1:src(r)

:super(r)

× upper(super(r))

The NACs generated by templates of Table 9.6 are only needed for rules
generated by Template r3. They ensure that generated opposite links do
not violate their upper bound multiplicity constraints.

11Rules are only generated if there is a lower bound constraint.

147

9. TowardsModelMigration Ensuring Constraint Satisfaction

Table 9.6: Templates for additional NACs generated for r3-Rules

T −NAC5 T −NAC6

2:trg(r)
:o(r)

× upper(o(r))
2:trg(r)

:super(o(r))

× upper(super(o(r)))

Example 9.4.2 (Sample rules of Type 2). The example builds on Exam-
ple 9.2.1 and shows in Figure 9.8 all sample rules of Type 2 that are derived
for the two references presented as association srcD-outD in Figure 9.5.

1:Decision 2:Transition

LHS RHS

:outD

1:Decision 2:Transition
:srcD

2:Decision 1:Transition

LHS RHS

:outD

2:Decision 1:Transition
:srcD

1:Decision

NAC1

(by T-NAC1, 3)
:outD

:outD

2:Transition

NAC2

(by T-NAC6)

ruvw

1:Transition

NAC1

(by T-NAC22, 4)

2:Decision

NAC2

(by T-NAC5)
:outD

:outD

ruvw

(a)

(b)

Figure 9.8: Sample rules of Type 2

Figure 9.8 (a) shows the rule that has been derived for reference outD.
Figure 9.8 (b) shows the rule that has been derived for reference srcD.
Because both references are opposites, the same rules have been derived
again; here by Template r3 in Table 9.4. In this case, the same NACs
also have been derived. However, the NACs derived for the rule in Fig-
ure 9.8 (a) result from different templates as in Figure 9.8 (b).

After applying rules of Type 1, we are not allowed to violate upper
bound constraints again. With rules of Type 2, we try to satisfy lower
bound constraints. As it is not always possible to satisfy all lower bound
constraints by only adding links, additional rules of Type 3 are derived (see
Table 9.7) . Rules generated by templates of Type 3 create links together
with target objects. Because also the target object of a link is new, such
rules cannot induce new upper bound multiplicity constraint violations
for created opposite links. Therefore, it is sufficient for rules of Type 3 to

148

9.4. Deriving Constraint Resolution Rules

generate NACs only by templates of Table 9.5. However, rules of Type 3
may introduce new objects that require resolving additional lower bound
violations. Therefore, we prioritize rules of Type 2 and those rules of
Type 3 that do not introduce such new constraint violations.

Table 9.7: Templates for rules of Type 3

LHS RHS
r5: Create link, target object and opposite link (if ∃ opposite reference))

1:src(r) 1:src(r)
:r

:trg(r)

:o(r)

r6: Create link and target object (if ∄ opposite reference)

1:src(r) 1:src(r)
:r

:trg(r)

Example 9.4.3 (Sample rules of Type 3). The example builds on Exam-
ple 9.2.1 and shows in Figure 9.9 all sample rules of Type 3 that are derived
for the two references presented as association srcD-outD in Figure 9.5.

1:Decision

LHS RHS

:outD

1:Decision :Transition
:srcD

1:Transition

LHS RHS

:outD

:Decision 1:Transition
:srcD

1:Decision

NAC1

(by T-NAC1, 3)
:outD

:outD

1:Transition

NAC1

(by T-NAC2, 4)

xyz{

(a)

(b)

Figure 9.9: Sample rules of Type 3

Figure 9.8 (a) shows the rule that has been derived for reference outD.
Figure 9.8 (b) shows the rule that has been derived for reference srcD.
Both rules differ because each rule creates an object of a different type. The
same NACs as in Example 9.4.2 are generated for the rules in Figure 9.8,
without those NACs previously generated by Templates T − NAC5 and
T −NAC6.

149

9. TowardsModelMigration Ensuring Constraint Satisfaction

9.5 Resolving Multiplicity Constraint Violations

Multiplicity constraints are resolved after models have been migrated to
well-typed models (see Figure 1.3). Graph transformation rules are gen-
erated for this purpose specifically for the final meta-model version, as
discussed in Section 9.4. Well-typed models are adapted to conforming
models thereafter. To resolve multiplicity constraint violations, graph
transformation rules are applied in three phases. We assume that the ab-
stract constraint has been resolved before by either retyping instances of
abstract elements or deleting them together with their context links.

Procedure 9.5.1 (Conflict resolution for multiplicity violations).

1. First apply custom resolution rules as often as possible. Herein,conflict

resolution for

multiplicity

violations

matches are found randomly (as usual). Custom resolution rules
are user defined graph transformation rules typed over the final
meta-model version. That this phase terminates can be ensured by
well-known results from graph transformations [36]. We propose
that each custom rule should resolve an upper-bound multiplicity
constraint violation without introducing a new upper-bound viola-
tion. In this case, this phase will trivially terminate, as finite models
can contain only a finite number of violations.

2. In the second phase, rules of Type 1 are applied as often as pos-
sible. Because we consider only finite models, this phase trivially
terminates as well, as each rule application only deletes. After this
phase, all upper bound multiplicity constraints are satisfied because
the generated rules delete as many links as necessary.

3. In the third, phase we apply all rules of Type 2 and Type 3 as of-
ten as possible until all lower bound constraint violations are also
resolved. Note that rules of Type 2 and Type 3 are generated such
that they cannot violate any upper bound constraint. To find a so-
lution more quickly, we prioritize such rules in this phase that do
not introduce new lower bound constraint violations. These are all
rules of Type 2 and those rules of Type 3 that create objects only
that do not violate lower bounds again. Inside this priority group
again we prioritize rules of Type 3, as such rules introduce “terminal
objects” and do not connect random elements. However, we allow
inside this group customizing priorities. This is possible because
such rules do not introduce new violations that have to be solved.
That the phase terminates follows by a result given in [134], which
presents an algorithm for instance-generating graph grammars that
respect multiplicity constraints.

150

9.5. Resolving Multiplicity Constraint Violations

Note that rules are generally matched also non-injectively in Phase 2
and Phase 3, as sometimes multiplicity constraints may only be resolved
by deleting or creating loop links.12 Application conditions however are matching of

rulesalways matched injectively so that we can rely on that the number of spec-
ified links in PACs and NACs do exist (see Definition 4.7.1). In addition,
we prioritize generally rules that delete or create links typed by more spe-
cific references in the inheritance hierarchy. This ensures that links typed
by super-references are not deleted before all upper bound constraint vi-
olations of links typed by more specific references are resolved. Hence,
more links are not deleted than necessary. Furthermore, this prioritization
of rules avoids that the creation of links typed by super-references induce
conflicts when links typed by sub-references need to be created.

Example 9.5.1 (Applying (conflict) resolution rules). The example builds
again on Example 9.2.1 and shows how a sample model is adapted by
(a) generated resolution rules (see Figure 9.10) (b) generated and custom
resolution rules (see Figure 9.12). Model correction is performed by the
stepwise application of resolution rules (see Procedure 9.5.1).

[drinks ordered]

|}~~� ~�der���

|�~����� ~�dered]

serve drinks

serve food

order

[drinks ordered]

|}~~� ~�der���

[nothin� ~�dered]

����� ������

����� }~~�

order

|������ ~�dered] [nothin� ~�dered]

����� ������

order

(2) Handle Order

 (1) Handle Order

 (3) Handle Order

(0) Handle Order

 (no custom rules defined)

|}~~� ~�dered]

����� }~~�

Figure 9.10: Sample constraint resolution

The sample model in Figure 9.10 (0) has already been migrated so that
it is typed by the meta-model in Figure 9.5. Furthermore, we assume that
models generally do not contain any abstract elements at this step. Abstract

12I.e. links that have the same object as source and target.

151

9. TowardsModelMigration Ensuring Constraint Satisfaction

elements have been retyped, or deleted by the help of a trivial constraint
resolution scheme that has been omitted here. However, models are not
yet conforming to the meta-model, as several multiplicity constraints are
not satisfied. The sample model describes how orders are placed in a
restaurant. A waiter typically asks waiting customers what they would
like to drink. After he/she has served the drinks, customers typically order
food. However, sometimes the waiter arrives at a table and the customers
have not decided or do not want to order anything more.

Figure 9.10 (1) corresponds to Phase 1. As no custom rules have been
specified, this Figure is empty. Figure 9.10 (2) shows the model after
Phase 2. One upper bound constraint is violated, therefore one outgoing
transition has to be disconnected. Note that transitions are vertices and
therefore the model is still a valid graph in its abstract syntax. The rule
system chooses one random (outgoing) transition. Figure 9.10 (3) shows
the model after Phase 3. Initial and end activity nodes have been intro-
duced. Note that it would have been possible to connect Transition [food

ordered] also with activity serve drinks. However, the default rule priority
prioritizes the creation of new terminal objects.

Figure 9.11 shows a custom rule a language engineer specified to take
the semantics of decision nodes into account. The rule replaces one de-
cision node by two so that multiplicity constraint violations for outgoing
transitions are properly solved. A step-wise application of this rule also
allows resolving such multiplicity constraint violations for more than three
links.

LHS

RHS

1:Decision

����cD

���ransition
������

����cD

���ransition
������

����cD

���ransition

������D

��� ¡¢£¢¤¥

����cD

���ransition
������

����cD

���ransition
������

����cD

���ransition

������D

�� ¡¢£¢¤¥

���cD ��ransition

name=[else]
:outD

:trgD

:inD

Figure 9.11: Sample custom rule for decision nodes

Figure 9.12 shows all conflict resolution phases again for the simple
sample activity model introduced before using also the specified custom

152

9.5. Resolving Multiplicity Constraint Violations

resolution rule of Figure 9.11. Figure 9.12 (1) corresponds to Phase 1.
The multiplicity constraint violation of the decision node is resolved ad-
equately. Because no further upper bound constraints are violated, the
model is not changed in Phase 2 (see Figure 9.12 (2)). In Phase 3, new
terminal objects (i.e. start and end activities) are introduced as before, re-
solving all lower bound constraints without introducing new upper bound
violations.

(2) Handle Order

 (1) Handle Order

[drinks ordered]

¦§¨©ª«§g

order¬®
serve drinks

order

¦¯¨¨ ¨°der¬®

serve food

¦¬±²¬®

 (3) Handle Order

¦°«§³s order¬®

¦§¨©ª«§´

order¬®
serve dr«§³²

order

¦¯¨¨ ¨°der¬®

serve food

¦¬±²¬®

(0) Handle Order

¦°«§³s order¬®

¦¯¨¨ ¨°der¬®

¦§¨©ª«§´ ¨°der¬®

serve dr«§³²

serve food

order

 (no change here)

Figure 9.12: Sample constraint resolution with customization

In this chapter, an approach has been presented to resolve multiplic-
ity constraint violations. The assumption has been that other violations
such as for constraint abstract have been resolved before (e.g. by retyping
or deleting). Furthermore, the presented approach considers the oppo-
site constraint when multiplicity constraints are resolved, i.e. links are
always deleted or created together with their opposites. The proposed
approach uses a heuristic to suggest solutions. However, the constraint
resolution can be adapted by a language engineer by defining custom
rules. It is up to future work to also consider resolution schemes for other
constraints such as containment relationships that are often used in model-
ing. Furthermore, it remains to examine which constraints can be resolved
independent from each other and which constraints need to be resolved
together. For example, it is obvious that abstract constraint violations can
be resolved before multiplicity constraint violations are resolved.

153

CHAPTER 10
Migrating UML Activity Models

from Version 1.4 to 2.2

In this chapter, we examine and illustrate the proposed co-evolution ap-
proach on an example that as been considered earlier as challenging “real
world” problem. Herein, the evolution scenario under study originates
form the Transformations Tool Contest 2010 [119]. We choose the sce-
nario for two reasons: (1) many researchers agreed that the studied case is
challenging and relevant for practice, and (2) nine different solutions have
been proposed that can be compared to our solution. This chapter serves
as proof-of-concept.

10.1 About the Transformations Tool Contest 2010

The Transformations Tool Contest (TTC) is a yearly contest for users and
developers of transformation tools since 2007. In 2010, model migration
was in the focus of the contest. The aim has been to compare different
approaches and to motivate for future model migration research. The
model migration problem under study has been the migration of UML
activity models from version 1.4 to version 2.2. Because UML activity core task

models are widely used (e.g. to model workflows in Grid systems [153]),
the migration problem has been considered as practically relevant. In
addition, the migration problem has been considered as non-trivial, as
the migration of activity models between versions 1.4 and 2.2 of the UML
specification involved changes to the underlying semantics. In UML 1,
activities were defined as a special case of state machines, while they are
defined on top of a variant of colored Petri nets [62] in UML 2. Furthermore,
it was pointed out that the chosen migration case was also not typical for

155

10. Migrating UML ActivityModels from Version 1.4 to 2.2

model migration, as the pruned meta-model was more or less completely
changed. Hence, the case study was considered as challenging.

Participants attended the workshop with the following tools:
(1) Epsilon Flock [118], (2) COPE [57], (3) GrGen.NET [50], (4) Fujaba [44],
(5) MOLA [99], (6) PETE [114], (7) ATL [6] and Java, (8) GReTL [61] andparticipants

(9) UML-RSDS [140]. While (1) and (2) are special-purpose tools for model
migration, (3), (4) and (8) are general graph transformation tools. The
remaining tools are for model transformation. The contest participants
had to submit a virtual machine containing their solution in addition to an
accompanying document describing their solution before the workshop.
These virtual machines were made available to the participants before the
tool contest and hence could be analyzed by the other participants. During
the workshop, solutions have been graded by the workshop participants
after a presentation of each solution provider. Only one model had to be
migrated in the core task.

Evaluated was in the TTC 2010 (perceived) correctness, conciseness, un-
derstandability, appropriateness, (tool) maturity and support for the extension
of the core task. We use the case-study to evaluate: (1) Can all requiredevaluation

criteria migrations be expressed by the proposed approach? (2) Can we specify
the required migrations in a concise and understandable manner? If the
approach is appropriate, it is subjective and can hardly be evaluated in our
opinion. Furthermore, we think that if an approach satisfies (1) and (2)
and supports correct migration to some extent, it can also be considered
as appropriate. Tool maturity we do not evaluate, as first its implemen-
tation has not been finished, and second it is not important here because
we want to evaluate an approach and not a tool. “Perceived” correctness
is also a criteria we think is not appropriate to evaluate an approach. In-
stead, the proposed approach supports statically typed rules and ensures
that migration specifications are viable.

Additionally, there have been three (voluntary) extensions:

1. The first extension resulted from a discussion on the tool contest’s on-
line forum concerning an alternative migration of object flow states.
The discussion revealed an ambiguity in the UML 2.2 specification,
indicating that the migration semantics for the ObjectFlowState
UML 1.4 concept are not clear from the UML 2.2 specification. This
extension had been considered by all tools except (5) and (9).

2. The second extension considered the adaption of the concrete syntax
“encoding,” which has not been in the focus of the thesis and will not
be considered here. In addition, a solution has only been providedvoluntary tasks

by one workshop participant who implemented the solution in Java.1

1 The OMG also does not provide any formal notation for the concrete syntax and only
proposes to store it using XMI [119].

156

10.2. The Migration Task

3. The third extension was more technical in nature, as models were
provided in an older version of the XMI file format. This extension
has been considered by tools (1) and (4), but is also not interesting
for the theory developed in this thesis.

In the next section, we discuss the core task and the first extension in
detail.

10.2 The Migration Task

In the tool contest, one model had to be migrated. A sample model is
shown in Example 10.2.1. To illustrate our proposed solution, the model
of the example is migrated later on.2

Example 10.2.1 (Activity model). Figure 10.1 shows a sample UML activity
model. A customer makes an order by email. Afterward, the ordered items
are prepared for the customer in the shop.

make order

prepare items

shop

Figure 10.1: Workflow “Order items”

The sample model is presented in its concrete syntax and can be consid-
ered as an instance model of the UML 1.4 meta-model shown in Figure 10.2.
However, because the concrete syntax for activity models did not change
from UML 1.4 to UML 2.2, it can also be considered as an instance model
of the UML 2.2 meta-model in Figure 10.3 [119]. Nevertheless, various
adaptations of the model have to be done on the abstract syntax level to
migrate it from UML 1.4 to UML 2.2.

2 A smaller sample model as in the tool contest had been chosen, as the model will also
be shown in its abstract syntax in a subsequent example. However, the model migration is
as challenging as in the TTC and the proposed solution is applicable to any activity model.

157

10. Migrating UML ActivityModels from Version 1.4 to 2.2

name: String

ModelElement

PartitionGuard Transition StateVertex

language: String

body: String

BooleanExpression

ActivityGraphStateMachine

State

kind: PseudostateKind

Pseudostate

CompositeStateFinalState

isDynamic: Boolean

ActionState ObjectFlowState

initial = 0

join = 1

fork = 2

junction = 3

«enum»

PseudostateKind

partition *

1 expression

* transitions

1 top

*

subvertex

0..1

guard

*

contents

source

1
target

1

*

outgoing
*

incoming

Figure 10.2: Activity meta-model in UML 1.4 (from [119])

ControlFlow ObjectFlow

ActivityEdge

Activity

ActivityPartitionActivityNode

ObjectNode

ForkNodeInitialNode

ActivityFinalNode

JoinNode

0..1

guard

* edges groups *nodes *

source

1
target

1

name: String

ModelElement

*

nodeslanguage: String

body: String

OpaqueExpression

OpaqueAction

* edges

DecisionNode

*

outgoing
*

incoming

Figure 10.3: Activity meta-model in UML 2.2 (from [119])

158

10.2. The Migration Task

To migrate activity models from UML 1.4 to UML 2.2, the following
meta-model changes had to be addressed (from [119]):

«

• ActivityGraphs are now represented as Activitys. The top

[i.e. composition top;subvertex] and transition references
are now represented using the nodes and edges references.

• Partitions are now represented as ActivityPartitions. The
contents reference is now represented using the nodes and
edges references. description of

the core task• ActionStates are now represented as OpaqueActions.

• Pseudostates are now represented as a subtype of Activi-

tyNode, such as InitialNode or ForkNode.

• Transitions are now represented as ObjectFlows or Con-

trolFlows.

• Guards are now represented as OpaqueExpressions.”

»

Extension 1 requires migrating ObjectFlowStates differently: Fig-
ure 10.4 (a) shows an ObjectFlowState structure in UML 1.4 semantics. The description of

Extension 1equivalent ObjectNode structure in UML 2.2 semantics according to the
core task is shown in Figure 10.4 (b). The equivalent ObjectNode structure
in UML 2.2 semantics according to Extension 1 is shown in Figure 10.4 (c).

s1 : State s2 : ObjectFlowState s3 : Statet1 : Transition t2 : Transition

(a)

s1 : ActivityNode s2 : ObjectNode s3 : ActivityNodet1 : ObjectFlow t2 : ObjectFlow

(b)

s1 : ActivityNode : ObjectFlow s3 : ActivityNode

(c)

1:source 2:target µ¶·¸¹ºce 4:tar»¼½

¾¶·¸¹ºce ¿¶½Àº»¼½ µ¶·¸¹ºce 4:tar»¼½

ÁÂÃÄÅce

ÁÃÄÆÇÃÈÉÇ ÁÈÉÊÃËÈÉÇ

:tarÇÌÆ

Í¶¸¹½Î
going

6:in-

coming

7:out-

going
8:in-

incoming

5:out-

going
6:in-

coming

7:out-

going
8:in-

coming

Figure 10.4: Alternative migration of object flow states (from [119])

Note that the original Figure 10.4 contained several errors (i.e. wrong
type names, wrong identifier and missing references) and has therefore
been corrected. In (c), identifiers have been left out if the elements are new
and not identical to the elements in (a).

159

10. Migrating UML ActivityModels from Version 1.4 to 2.2

10.3 The DPF Text Modeling Framework

In the following, we consider all models, in particular both UML activity
meta-models given in the DPF Text presentation. In the contest, models
were given as EMF models, and had to be converted into tool specific
formats in various approaches. For the theoretical approach developed in
this thesis, the model format is of minor importance. However, having a
concrete modeling format in mind helps to better understand the solution.
DPF Text is a modeling framework that has been developed as part of the
PhD project. It has already been introduced in Chapter 5 and is inspired by
categories IGraph, DPF and SymbGraphD.3 Because it has been developed
as an auxiliary tool to support the research on model migration, it shows
how we think model migration could ideally be. A graphical notation
using the textual notation is future work and may incorporate the graphical
DPF tool [81] developed by our research group. While the basic concepts
have been shown in Chapter 5, the main features of DPF Text are explained
next:

• Every model element is a (typed) vertex or edge.

• Every model element has a unique identifier. The unique identifier
consists of a set of integer values. If e.g. two types are merged, we
assume the new identifier of the merged type to contain both integer
sets. In case a type is split, we assume the new identifier to contain the
old integer set and a new integer each. Using such identifiers gives
us the possibility to effectively trace merges and splits of elements
between (meta-)model versions. Data types we consider as vertices
with a special identifier (special identifier we prefix with “S”, see
Figure 10.5). Values we consider as vertices where the identifier is
the value itself.

• Every model element has a name, except value identifiers (as they
cannot be instantiated anymore). Names, however, provide labels for
identifiers only. Mappings do not depend on names. Even models
refer to types by names and unique identifiers, the names have been
added only for the human reader. If a type name is changed in a
meta-model, this does not have any effect on the model. It can still
be opened and even shows the correct type, as type names are always
read from the meta-model file.

• The tool allows creating arbitrary deep meta-model hierarchies.
Herein, we always allow adding attributes on each level. Attributes
can only be instantiated on the level below.

3Neglecting attributes and constraints, DPF Text implements category IGraph beside that
every element has additionally a name.

160

10.3. The DPF Text Modeling Framework

• Arbitrary DPF atomic constraints can be added to the model as
shown in Chapter 5. The constraint semantics are defined by OCL
templates.

The meta-meta-model used to model the meta-models is shown in
Figure 10.5 below. Identifiers are denoted as postfixes (“@identifier”).
Note that the identifier of elements and types belong to different number
sets.

DataT

rÏÐÏÑÏÒÓÏÔÕÖÏ×ØÏÔÕ

ÙÚÚÑÛÜÝÚÏÔÞÕßÖÏ×ØÏÔÕ ÏÒÝàÔáÖÏ×ØÏÔÕ

ÓâÒãÚÙÒÚÔäÖÏ×ØÏÔÕ

åæââçè

Figure 10.5: Used meta-meta-model

The meta-meta-model supports the concepts classes, references, attributes,
enumerations and inheritance. Enumerations are modeled as vertices and
each enumeration constant as loop edge. An object having a special enu-
meration type refers accordingly to an instance of the enumeration vertex
having a loop instance for the type. Inheritance is modeled by special edges
that can be used to specify clans of vertices as defined in category IGraph

(see Chapter 3). Therefore, the meta-meta-model does not include an in-
heritance edge type. Constraints can be added by DPF atomic constraints
(see Chapter 3). They are used for loops, containments, abstract classes,
opposite references and multiplicities.

Listing 10.1 shows the meta-meta-model from Figure 10.5 as a textual
presentation.

Listing 10.1: Figure 10.5 in DPF Text
1 Specification:(DPF ,TTCSig)<5> {

2 Graph {

3 Class@0:Vertex@0{

4 enum@4:edge@1->Enumeration@2:Vertex@0,

5 reference@1:edge@1->Class@0:Vertex@0

6 },

7 Enumeration@2:Vertex@0{

8 constant@3:edge@1->Enumeration@2:Vertex@0

9 }

10 }

11 Constraints {

12 loop@6(){Enumeration@2:Vertex@0-constant@3:edge@1->Enumeration@2:Vertex@0}

13 }

14 }

161

10. Migrating UML ActivityModels from Version 1.4 to 2.2

Since attribution of vertices is built in the tool with some special support
to deal with data types, the attribute type edge and data type vertex are
implicit and do not appear in Listing 10.1.

Listing 10.2 shows the activity UML 1.4 meta-model in DPF Text and
Listing 10.3 shows the activity UML 2.2 meta-model in DPF Text.

Listing 10.2: Figure 10.2 in DPF Text
1 Specification:(ClassModel ,TTCSig)<36> {

2 Graph {

3 ActionState@13:Class@0 extends State@9:Class@0{

4 isDynamic@18:*->Boolean

5 },

6 ActivityGraph@3:Class@0 extends StateMachine@4:Class@0{

7 partition@29:reference@1->Partition@5:Class@0

8 },

9 BooleanExpression@15:Class@0{

10 body@16:*->String,

11 language@17:*->String

12 },

13 CompositeState@11:Class@0 extends State@9:Class@0{

14 subvertex@30:reference@1->StateVertex@6:Class@0

15 },

16 FinalState@14:Class@0 extends State@9:Class@0,

17 Guard@8:Class@0 extends ModelElement@1:Class@0{

18 expression@24:reference@1->BooleanExpression@15:Class@0

19 },

20 ModelElement@1:Class@0{

21 name@2:*->String

22 },

23 ObjectFlowState@12:Class@0 extends State@9:Class@0,

24 Partition@5:Class@0 extends ModelElement@1:Class@0{

25 contents@28:reference@1->ModelElement@1:Class@0

26 },

27 Pseudostate@10:Class@0 extends StateVertex@6:Class@0{

28 kind@31:enum@4->PseudostateKind@19:Enumeration@2

29 },

30 PseudostateKind@19:Enumeration@2{

31 fork@21:constant@3->PseudostateKind@19:Enumeration@2,

32 initial@23:constant@3->PseudostateKind@19:Enumeration@2,

33 join@22:constant@3->PseudostateKind@19:Enumeration@2,

34 junction@20:constant@3->PseudostateKind@19:Enumeration@2

35 },

36 State@9:Class@0 extends StateVertex@6:Class@0,

37 StateMachine@4:Class@0 extends ModelElement@1:Class@0{

38 top@27:reference@1->State@9:Class@0,

39 transitions@26:reference@1->Transition@7:Class@0

40 },

41 StateVertex@6:Class@0 extends ModelElement@1:Class@0{

42 incoming@34:reference@1->Transition@7:Class@0,

43 outgoing@35:reference@1->Transition@7:Class@0

44 },

45 Transition@7:Class@0 extends ModelElement@1:Class@0{

46 guard@25:reference@1->Guard@8:Class@0,

47 source@33:reference@1->StateVertex@6:Class@0,

48 target@32:reference@1->StateVertex@6:Class@0

49 }

50 }

51 Constraints {

52 /*ommitted to save space*/

53 }

54 }

162

10.4. Model Migration by Coupled Transformations

Listing 10.3: Figure 10.3 in DPF Text
1 Specification:(ClassModel ,TTCSig)<45> {

2 Graph {

3 Activity@3,4:Class@0 extends ModelElement@1:Class@0{

4 edges@26:reference@1->ActivityEdge@7,8:Class@0,

5 groups@29:reference@1->ActivityPartition@5:Class@0,

6 nodes@44:reference@1->ActivityNode@6,9,10,11:Class@0

7 },

8 ActivityEdge@7,8:Class@0 extends ModelElement@1:Class@0{

9 guard@24:reference@1->OpaqueExpression@15:Class@0,

10 source@33:reference@1->ActivityNode@6,9,10,11:Class@0,

11 target@32:reference@1->ActivityNode@6,9,10,11:Class@0

12 },

13 ActivityFinalNode@14:Class@0 extends ActivityNode@6,9,10,11:Class@0,

14 ActivityNode@6,9,10,11:Class@0 extends ModelElement@1:Class@0{

15 incoming@34:reference@1->ActivityEdge@7,8:Class@0,

16 outgoing@35:reference@1->ActivityEdge@7,8:Class@0

17 },

18 ActivityPartition@5:Class@0 extends ModelElement@1:Class@0{

19 edges@41:reference@1->ActivityEdge@7,8:Class@0,

20 nodes@40:reference@1->ActivityNode@6,9,10,11:Class@0

21 },

22 ControlFlow@42:Class@0 extends ActivityEdge@7,8:Class@0,

23 DecisionNode@36:Class@0 extends ActivityNode@6,9,10,11:Class@0,

24 ForkNode@39:Class@0 extends ActivityNode@6,9,10,11:Class@0,

25 InitialNode@38:Class@0 extends ActivityNode@6,9,10,11:Class@0,

26 JoinNode@37:Class@0 extends ActivityNode@6,9,10,11:Class@0,

27 ModelElement@1:Class@0{

28 name@2:*->String

29 },

30 ObjectFlow@43:Class@0 extends ActivityEdge@7,8:Class@0,

31 ObjectNode@12:Class@0 extends ActivityNode@6,9,10,11:Class@0,

32 OpaqueAction@13:Class@0 extends ActivityNode@6,9,10,11:Class@0,

33 OpaqueExpression@15:Class@0{

34 body@16:*->String,

35 language@17:*->String

36 }

37 }

38 Constraints {

39 /*ommitted to save space*/

40 }

41 }

The DPF Text presentation of the model in Example 10.2.1 is straight-
forward and has been omitted here. Instead, the model is shown in its
abstract syntax in Example 10.4.1.

10.4 Model Migration by Coupled Transformations

We tackle the migration challenge in three steps:

1. Given the two meta-model versions, we need to find an evolution
sequence. In the first step, we define coupled operators that can
potentially be reused in future meta-model evolutions. Afterward,
we detect meta-model evolution steps analog to Chapter 5 and evolve
the UML 1.4 activity meta-model accordingly. Type names do not
need to be considered, as such changes are non-breaking.

163

10. Migrating UML ActivityModels from Version 1.4 to 2.2

2. Not all meta-model changes are likely to be reused in the future.
Some meta-model changes are too specific such that it does not makesolution outline

sense to specify reusable operations. Therefore, we define a model
migration scheme that is directly typed over the meta-model cospan
“UML 1.4’(evolved by Step 1)→ common meta-model←UML 2.2”.
The corresponding evolution rule (not required) can be considered
as the trivial one: the rule is identical to the meta-model cospan.
Match morphisms are all identity morphisms.

3. Finally, models can be migrated along the evolution sequence of
Step 1 with the last step defined by Step 2. Migrated models are
well-typed by the UML 2.2 activity model.

Last, but not least, multiplicity constraints could be handled analog
to Chapter 9. However, this is not required here because multiplicity
constraint did not become stricter.

We identify four meta-model evolution operators we can potentially
reuse in the future:

1. “Inline Superclass” (and retype objects accordingly)reusable

operations
2. “Inline Class” (and merge and retype objects accordingly)

3. “Replace Enumeration Kind by Subclass”

4. “Partition Reference”

The meta-model evolution rule “Inline Superclass” is shown in Fig-
ure 10.6. It simply merges a class and its superclass. The inheritanceInline

Superclass edge defines a clan of vertices (see Definition 3.2.7). It is therefore neither
mapped nor folded.

tl tr

TRTITL

(Meta-model) Evolution Rule

B:Class

A:Class

Figure 10.6: Evolution rule: “Inline Superclass”

The required migration for this change simply retypes that which can
be handled by the empty migration scheme (which is also the default one).
Therefore, we classify this change as fully automatically resolvable. Note in

164

10.4. Model Migration by Coupled Transformations

the following, element types in migration rules are shown by identifiers
only. To make the rules more readable, letters are used for type identifiers
instead of numbers.

The model migration scheme “Inline Class” (including its meta-model
evolution rule) is shown in Figure 10.7. The meta-model evolution rule
merges two classes and deletes the connecting reference. The required Inline Class
migration scheme is the default one. Hence, the change is automatically
resolvable.

tl tr

TRTITL

L1 I1 R1

r1l1

(Meta-model) Evolution Rule

(Model) Migration Multi-Rules

A,B:Class

r:reference

A:Class B:Class

r:reference

1:A

3:r

2:B

A,B:Class

1,2:A,B

3:r

1,2:A,B

Figure 10.7: Migration scheme: “Inline Class”

The migration scheme “Replace Enumeration Kind by Subclass” is
shown in Figure 10.8 below. The migration scheme has been defined Replace

Enumeration
Kind by Subclass

manually. Hence, the meta-model change is semi-automatically resolvable.

tl tr

TRTITL

L1 I1 R1

r1l1

(Meta-model) Evolution Rule

(Model) Migration Multi-Rules

B:Class

A:Class

E:Enumeration

e:enumB:Class

A:Class

E:Enumeration

c:constant

e:enum

A:Class

E:Enumeration

c:constant

e:enum

1:A

éêë

ìêí

éêë

ìêí ìêí

îïðñ nòóíôõö ëontains name(c)

Figure 10.8: Migration scheme: “Replace Enumeration Kind by Subclass”

165

10. Migrating UML ActivityModels from Version 1.4 to 2.2

To infer the correct type names, an expression is used. This can be con-
sidered as a form of attribute condition. Unfortunately, we need to retype
objects having enumeration constant junction to DecisionNode. There are
many possibilities for solving this problem. We choose the simplest one
and manually rename enumeration constant junction to decision in the
UML 1.4 activity meta-model.

Alternatively to the migration scheme in Figure 10.8, a meta-model
evolution rule could also be defined that replaces the complete enumera-
tion by corresponding subclasses in one step. Note that by constraints, it
is ensured that each object of type Pseudostate has exactly one type.

The migration scheme “Partition Reference” is shown in Figure 10.9.
The migration scheme has been manually defined. Therefore, the meta-Partition

Reference model change is semi-automatically resolvable. Links typed by a reference
targeting a superclass are replaced by links typed by a reference targeting
a corresponding subclass. The meta-model evolution rule is defined as an
amalgamated graph transformation rule and is applicable for an arbitrary
number of references. Note that the migration multi-rule copies (in Proce-
dure 7.2.1) are typed correspondingly to meta-model evolution multi-rule
copies used to amalgamate the evolution rule.

tl tr

TRTL

TL÷

tr÷tl÷

(Meta-model) Evolution Rule

L1 I1 R1

r1l1

(Model) Migration Multi-Rule

K
er

n
el

-R
u

le
M

u
lt

i-
R

u
le

C1:Class C1:Class C1:Class

TI

C1:Class

C2:Class

lass

r1:reference

C1:Class

C2:Class

lass

r1:reference

øùúøeference

C1:Class

C2:Class

lass
r2:reference

1:C2

ûúøü

1:C2

ûúøü ûúøù

1:C2

ûúøù

Figure 10.9: Migration scheme: “Partition Reference”

Meta-model changes are detected as described in Chapter 5, ten matches
of evolution rules are found:

166

10.4. Model Migration by Coupled Transformations

• Four triple matches of Rule “Inline Superclass” are found since
(1) StateMachine and ActivityGraph, (2) StateVertex and Pseu-

dostate, (3) StateVertex and State as well as (4) State and Com-
positeState have been merged.

• One triple match of Rule “Inline Class” is found, as Guard and
Transition have been merged. Note that merged vertices are leaf detected

meta-model
changes

vertices, i.e. do not have subclasses, in the UML 1.4 meta-model.

• Four triple matches of the Rule “Replace Enumeration Kind by
Subclass” are found, one for each enumeration constant in Pseu-
dostateKind.

• One amalgamated triple match of the Rule “Partition Reference” is
found replacing links of type contents by links of type edges 4

respectively nodes.

We obtain an arbitrary order of evolution steps because all changes are
independent.

Remark 10.4.1 (Subtype-reflecting evolution matches). To build coupled
transformations, it is on the formal level required to have subtype-reflecting
evolution matches in category IGraph. In particular, subtype reflective
matches of evolution rules ensure that the pullback construction in Step 1
in Procedure 8.5.1 can be applied. Subtype-reflecting matches guaran-
tee that the pullback in Step 1 results in a left-hand-side of a migration
rule that also contains all possible instances of matched subtypes. Those
may need to be considered during migration. In a tool, such instances
can easily be added to the left-hand-side of the migration rule even if the
match of the evolution rule has not been subtype-reflecting. On the formal
level, this can be achieved by extending the match tm : TL → TG and the
detected evolution rule correspondingly before applying Procedure 8.5.1,
i.e. before migration (see Figure 10.10). This in particular means that
in a tool it would be unnecessary to specify individual rules to obtain
subtype-reflecting matches. It is even beneficial during change detection
to not consider possible inheritance hierarchies, as additional changes in
the hierarchy may prevent finding a triple match (see Definition 5.2.1).

Figure 10.10 shows a simple evolution rule deleting a reference. The
reference’s source vertex is matched to a vertex in the meta-model TG that
has subclasses. Therefore, match tm and the evolution rule is extended
correspondingly. The inheritance hierarchy below the matched superclass
is denoted by a triangle. Hence, the triangle represents the tail of an
arbitrary inheritance hierarchy with class Car in the top. A tool could
easily extend the rule to make the match subtype-reflecting.

4The edges type with source Partition and target ActivityEdge.

167

10. Migrating UML ActivityModels from Version 1.4 to 2.2

TU

ti

TI

TG

tg

tm

TL

th

TH

tm'

TR

tl tr

2

:Class

3

:reference1

:Class

Car

hierarchy
"copy"

4

2@Engine

:Class3@

:engine

1@Car

:Class

Car

hierarchy

ýþ

2@Engine

:Class3@

:engine

1@Car

:Class

Car

hierarchy

ýþ

2@Engine

:Class

1@Car

:Class

Car

hierarchy

ýþ

:Class

3

:reference1

:Class

Car

hierarchy
"copy"

4

2

:Class

1

:Class

Car

hierarchy
"copy"

4

(PO) (PO)

Figure 10.10: Extended evolution rule “Delete Reference”

Evolving the UML activity 1.4 meta-model (see Figure 10.2) along the
detected sequence of evolution steps results in a intermediate meta-model
that is shown in Figure 10.11. Note that meta-model elements are partly
already renamed correctly, as applying a detected evolution rule uses the
element names detected by the right match (of a triple match).

FinalState

isDynamic: Boolean

ActionState ObjectFlowState

partition *

expression

* transitions 1 top

*

subvertex

ActivityEdge

Activity

ActivityPartition
ActivityNode

ForkNodeInitialNode JoinNode

source

1
target

1

name: String

ModelElement

*

nodeslanguage: String

body: String

BooleanExpression

* edges

DecisionNode

*

outgoing
*

incoming

«enum»
PseudostateKind

1

kind: PseudostateKind

Figure 10.11: UML 1.4’(evolved by Step 1)

168

10.4. Model Migration by Coupled Transformations

We continue by defining a model migration scheme containing mi-
gration rules directly typed by the current meta-model cospan such as in
manual specification approaches. The rules of this migration scheme are
rules that we do not expect to be reusable. Indeed, they are not reusable
due to this direct typing. In this case, the graph transformation in the top
face of the coupled transformation can be considered as the trivial one,
i.e. the meta-model cospan and the rule are identical and all match mor-
phisms are identity morphisms (see Chapter 6). Trivially, we can transfer
in this case all constructions to category Graph and do not need to obey
any restriction that was special for category IGraph (see Chapter 8).

By help of this scheme, we handle the remaining model adoptions.
Renaming of types5 and deletions6 due to type deletions are not required
to be considered because they are handled automatically. In addition, the
adaptations of constraint annotations do not need to be considered, as
finally the evolved meta-model is used.

For the core task, a migration scheme (see Figure 10.12) containing three
multi-rules is required:

• One migration rule to replace the composition of top and subvertex
links by nodes7 links because there has been a containment change
in UML 2.2 (see Figure 10.12 (first rule)). custom

migration rules
• One migration rule to retype Transition vertices (i.e. ActivityEdge

vertices in UML 2.2 syntax) to the new subtype ObjectFlow if cor-
responding source or target links are connected to vertices of type
ObjectFlowState (see Figure 10.12 (second rule)).

• Another rule to retype Transition vertices to the new subtype Con-
trolFlow in all other cases (see Figure 10.12 (third rule)). Because it
is obvious that the second and the third rule cannot be matched so
that both matches overlap (ensured by the application conditions),
it is not required that ObjectFlow and ControlFlow have a common
subtype.

Note that in the following, we show types by names (without identifier)
in migration multi-rules only to make them more readable.

5 FinalState, ActionState, ObjectFlowState, partition, transitions and expression
6 PseudostateKind, kind, isDynamic, top and subvertex
7Type nodes has source Activity and target ActivityNode.

169

10. Migrating UML ActivityModels from Version 1.4 to 2.2

L1 I1 R1

r1l1

L2 I2 R2

r2l2

(Model) Migration Multi-Rules

1:A

p2

p1
1:A

:ObjectFlowState
:source

1:ActivityEdge

:ObjectFlowState
:target

PACs

L3 I3 R3

r3l3

1:ActivityEdge 1:ControlFlow1:ControlFlow
n2

n1
1:ActivityEdge

:ObjectFlowState
:source

1:ActivityEdge

:ObjectFlowState
:target

NACs

OR

OR

6:nodes

3:ActivityNode

1:Activity

2:ActivityNode

5:subvertex

4:top 6:nodes

3:ActivityNode

1:Activity

2:ActivityNode

3:ActivityNode

1:Activity

2:ActivityNode

5:subvertex

4:top

Figure 10.12: Migration scheme typed by meta-model cospan

Finally, we can migrate all models in a batch along the evolution se-
quence.

Example 10.4.1 (Model migration). Example 10.4.1 shows the migration
of the sample model of Example 10.2.1 (also shown below) for the core
task.

make order

prepare items

shop

Figure 10.13: Workflow “Order items”

170

10.4.
M

o
d

el
M

ig
ratio

n
b

y
C

o
u

p
led

T
ran

sfo
rm

atio
n

s
Figure 10.14 shows the model of Figure 10.13 in abstract syntax i.e. as object diagram typed by the UML 1.4 activity

meta-model (see Figure 10.2).

1:A

11:Partition

name="customer"
12:CompositeState

13:Partition

name="

2:Pseudostate

4:ObjectFlowState

name="email"

6:FinalState

10:Transition

5:ActionState

name="prepare items"

9:Transition8:Transition

7:Transition

3:ActionState

name="make order"

15:Guar

16:BooleanExpression

body="submit"

17:top

18:partition 19:partition

24:subvertex

20:transitions 21:transitions

22:transitions 23:transitions

25:subvertex 26:subvertex

27:subvertex

29:contents

30:contents 31:contents

32:contents

33:kind

14:PseudostateKind
34:initial

35:guard

36:expression

39:source

40:target

42:target

41:source

43:source

44:target

47:outgoing

48:incoming 49:outgoing

50:incoming

52:incoming

53:contents 54:contents

45:outgoing

46:incoming
51:outgoing

37:source

38:target

28:subvertex

Figure 10.14: Activity model in UML 1.4

171

10.
M
ig
r
a
t
in
g

U
M

L
A
c
t
iv
it
y

M
o
d
e
l
s
fr
o
m

V
e
r
sio
n

1.4
t
o

2.2

Figure 10.15 shows the partly migrated model after the deduced model migrations steps have been applied for all
detected meta-model evolution changes (i.e. the model is well-typed by the meta-model in Figure 10.11). Identifiers of
new elements start with number 80.

1:Activity

11:ActivityPartition

name="customer"
12:ActivityNode

13:ActivityPartition

name="

2:InitialNode

4:ObjectF

name="email"

6:FinalState

10:ActivityEdge

5:ActionState

name="prepare items"

9:ActivityEdgeActivityEdge

7:ActivityEdge

3:ActionState

name="make order"

16:BooleanExpression

body="submit"

17:top

18:partition 19:partition

24:subvertex

20:transitions 21:transitions

22:transitions 23:transitions

25:subvertex 26:subvertex

27:subvertex

80:nodes

81:nodes 82:nodes

83:nodes

33:kind

14:PseudostateKind

36:expression

39:source

40:target

42:target

41:source

43:source

44:target

47:outgoing

48:incoming 49:outgoing

50:incoming

52:incoming

84:edges

85:edges

45:outgoing

46:incoming
51:outgoing

37:source

38:target

28:subvertex

Figure 10.15: Activity model in UML 1.4 (partly evolved)

172

10.4.
M

o
d

el
M

ig
ratio

n
b

y
C

o
u

p
led

T
ran

sfo
rm

atio
n

s
Figure 10.16 shows the migrated model after the migration scheme that is individual for the migration of activity

meta-models also has been applied.

1:Activity

11:ActivityPartition

name="customer"

12:ActivityNode

13:ActivityPartition

name="

2:InitialNode

name="email"

6:ActivityF

ontr

eAction

name="prepare items"

9:ObjectF

tr

eAction

name="make order"

eExpression

body="submit"

18:groups 19:groups

86:nodes

20:edges 21:edges

22:edges 23:edges

89:nodes

80:nodes

81:nodes 82:nodes

83:nodes

36:guard

39:source

40:target

42:target

41:source

43:source

44:target

47:outgoing

48:incoming 49:outgoing

50:incoming

52:incoming

84:edges

85:edges

45:outgoing

46:incoming
51:outgoing

88:nodes

87:nodes

37:source

38:target

90:nodes

Figure 10.16: Activity model in UML 2.2

One vertex 12:ActivityNode (12:CompositeState) remains that could be deleted after migration. Because type
ActivityNode is abstract this can e.g. be automatically done by a corresponding model constraint resolution schemes for
constraint abstract.173

10. Migrating UML ActivityModels from Version 1.4 to 2.2

Each UML 1.4 activity model is migrated by eleven amalgamated graph
transformations. Some of those rules are doing nothing in the case of the
model in Figure 10.14, as e.g. the model does not contain any other
pseudostates than with type initial. Nevertheless, showing all remaining
eight graph transformation rules has been omitted for space restrictions.
Instead, all deduced changes have been listed in Listing 10.4 by six different
types of simple changes:

1. Change Retype changes the typing of an element. Herein, retype
describes a type change where the identifier of the type is changed
due to a merge operation.

2. Change Subtype changes a type of an element to a subtype of its
current type.

3. Change *Pseudo*-Retype describes a retyping where only the type
name has been changed (i.e. a non-breaking meta-model change).
The change is called pseudo retyping, as the identifier of the type is not
changed i.e. DPF text shows the adapted type names automatically
without migration.

4. Change Merge merges elements and also retypes here because corre-
sponding types are merged too.

5. Change Delete deletes an element.

6. Change Replace adds a new element and deletes an old one.

Note that elements and in particular types in Listing 10.4 are annotated
with identifiers. Such identifier can be compared to the identifier used
in Listing 10.2 and Listing 10.3 as well as in Figure 10.14, Figure 10.15
and Figure 10.16. The listing also notes which evolution rules and which
matches trigger the adaptations. Herein, the text after Match should be
understood as a comment, i.e. the real match may contain additional
elements.

Listing 10.4: Deduced Migration for the model of Figure 10.14
1 ========================= START ===============================

2 Evolution-Rule 1: "Inline Superclass"

3 Match: "ActivityGraph and StateMachine" (to Activity type)

4 ---

5 Retype 1:ActivityGraph@3 to 1:Activity@3,4

6 ---

7 Match: "StateVertex and Pseudostate" (to ActivityNode type)

8 ---

9 Retype 2:Pseudostate@10 to 2:ActivityNode@6,10

10 ---

11 Match: "ActivityNode and State" (to ActivityNode type)

12 ---

13 Retype 2:ActivityNode@6,10 to 2:ActivityNode@6,9,10

14 ---

174

10.4. Model Migration by Coupled Transformations

15 Match: "ActivityNode and CompositeState" (to ActivityNode type)

16 ---

17 Retype 2:ActivityNode@6,9,10 to 2:ActivityNode@6,9,10,11

18 Retype 12:CompositeState@11 to 2:ActivityNode@6,9,10,11

19 ===

20 Evolution-Rule 2: "Inline Class"

21 Match: "Guard and Transition" (to ActivityEdge type)

22 ---

23 Merge: 8:Transition@7 + 15:Guard@8 to 8,15:ActivityEdge@7,8

24 Delete: 35:guard@24

25 Retype 7:Transition@7 to 7:ActivityEdge@7,8

26 Retype 9:Transition@7 to 9:ActivityEdge@7,8

27 Retype 10:Transition@7 to 10:ActivityEdge@7,8

28 ===

29 Evolution-Rule 3: "Replace Enumeration Kind by Subclass"

30 Match: "ActivityNode and PseudostateKind initial"

31 ---

32 Subtype 2:ActivityNode@6,10 to 2:InitialNode@38

33 Delete 34:initial@23

34 ===

35 Evolution-Rule 3: "Partition Reference"

36 Match: "Partition and partition edge to ModelElement"

37 ---

38 Replace 29:contents@28 by 80:nodes@40

39 Replace 30:contents@28 by 81:nodes@40

40 Replace 31:contents@28 by 82:nodes@40

41 Replace 32:contents@28 by 83:nodes@40

42 Replace 53:contents@28 by 84:edges@41

43 Replace 54:contents@28 by 85:edges@41

44 *Pseudo*-Retype: 11:Partition@5 to 11:ActivityPartition@5

45 *Pseudo*-Retype: 13:Partition@5 to 13:ActivityPartition@5

46 ===

47 Evolution-Rule: Id-Rule (Manual-Specification)

48 -----------------------Multi-Rule 1------------------------------

49 Replace 24:subvertex@30 by 86:nodes@44

50 Replace 25:subvertex@30 by 87:nodes@44

51 Replace 26:subvertex@30 by 88:nodes@44

52 Replace 27:subvertex@30 by 89:nodes@44

53 Replace 28:subvertex@30 by 90:nodes@44

54 Delete 17:top@27

55 -----------------------Multi-Rule 2------------------------------

56 Subtype 8,15:ActivityEdge@7,8 to 8,15:ObjectFlow@43

57 Subtype 9:ActivityEdge@7,8 to 9:ObjectFlow@43

58 -----------------------Multi-Rule 3------------------------------

59 Subtype 7:ActivityEdge@7,8 to 7:ControlFlow@42

60 Subtype 10:ActivityEdge@7,8 to 10:ControlFlow@42

61 ---

62 ---------- Without Rule (by construction) --------------

63 ---

64 Delete 14:PseudostateKind@19

65 Delete 33:kind@31

66 Delete 55:isDynamic@18

67 Delete 56:isDynamic@18

68 *Pseudo*-Retype 3:ActionState@13 to 3:OpaqueAction@13

69 *Pseudo*-Retype 4:ObjectFlowState@12 to 4:ObjectNode@12

70 *Pseudo*-Retype 5:ActionState@13 to 5:OpaqueAction@13

71 *Pseudo*-Retype 6:FinalState@14 to 6:ActivityFinalNode@14

72 *Pseudo*-Retype 16:BooleanExpression@15 to 16:OpaqueExpression@15

73 *Pseudo*-Retype 18:partition@29 to 18:groups@29

74 *Pseudo*-Retype 19:partition@29 to 19:groups@29

75 *Pseudo*-Retype 20:transitions@26 to 20:edges@26

76 *Pseudo*-Retype 21:transitions@26 to 21:edges@26

77 *Pseudo*-Retype 22:transitions@26 to 22:edges@26

78 *Pseudo*-Retype 23:transitions@26 to 23:edges@26

79 *Pseudo*-Retype 36:expression@24 to 36:guard@24

80 ========================= STOP ===============================

175

10. Migrating UML ActivityModels from Version 1.4 to 2.2

It remains to discuss which changes need to be done to address Ex-
tension 1. Extension 1 requires a different migration of ObjectFlows. To
migrate models accordingly, we only need to replace the second rule of
the migration scheme in Figure 10.12 by the rule shown in Figure 10.17.
The migration rule corresponds to a large extent to the pattern shown insolution

Extension 1 Figure 10.4. To make it easy to compare both figures, we formatted the
rule in the concrete syntax used in Figure 10.4. There are two differences
to Figure 10.4 (a+c): first, the left-hand side of the rule is typed by the
evolved meta-model shown in Figure 10.11. Second, the rule also creates
an edge typed by containment edge edges. Note that there is only one
root container.

s2 : ObjectFlowStatet1 : ActivityEdge t2 : ActivityEdge1:source

ÿ5����
going

2:target

6:in-

coming

3:source

75����

going

4:targ��

8:in-

coming

s1 : ActivityNode s3 : ActivityNode

L2

R2

r2

l2

: Activity13

9:source

10:outgoing 11:incoming

12:target

s2 : ObjectFlowStatet1 : ActivityEdge t2 : ActivityEdge1:source

ÿ5����
going

2:target

6:in-

coming

3:source

75����

going

4:targ��

8:in-

coming

s1 : ActivityNode s3 : ActivityNode

11 : ObjectFlow

: Activity13
1����	�

I2

9�
��ce

1�����	���	 11�����o��	

1����r	��

s2 : ObjectFlowStatet1 : ActivityEdge t2 : ActivityEdge�5����ce

ÿ5����
going

2:target

6:in-

coming

3:source

75����

going

4:targ��

8:in-

coming

s1 : ActivityNode s3 : ActivityNode

11 : ObjectFlow

1����	�

: Activity13

Figure 10.17: Migration rule for ObjectFlows

Unfortunately, the migration also requires deleting elements of types
that are not deleted (elements with dashed border). To cope with this
situation, there a different possibilities:

• We can extend the amalgamation procedure to also delete the dashed
elements. Therefore, we either need to extend the rule to also delete
necessary containment edges or apply the rule with the cospan SqPO
approach (which deletes in unknown context). The second possibil-
ity has the advantage that the migration of models is always viable

176

10.4. Model Migration by Coupled Transformations

but has the disadvantage that unexpected elements may be deleted.
Note that ObjectFlowStates may be the source or target of several
ActivityEdges. If the first possibility is used the gluing condition
needs to be checked for each model. If the condition is not satisfied
the amalgamated rule needs to be adapted.

• We delete the undesired patterns by applying a “usual” graph trans-
formation rule as often as possible in a post-processing step.

Remark 10.4.2 (Syntax versus semantics). Algebraic graph transformations
can be used to manipulate graphs based on graph patterns. However,
sometimes such patterns are hard to define statically. At the PAMT 2014
workshop 8, a participant asked us how we would address the challenge
of translating integer values specifying token numbers in a Petri net by
an equivalent structure, where each token is presented by a vertex. This
challenge requires giving data values a semantics that is hard to describe
by pure graph patterns. Therefore, we propose to use dynamic rules
for such cases. Such rules can be graph transformation rules where the
interface graph is generated by a template after a match of the left hand
side is found. Figure 10.18 shows a migration scheme (including a meta-
model evolution rule) that can be used as a coupled operator in the Petri net
example. A variable v is translated into an equivalent number of elements.
The number bound to variable v is not deleted because in the formalization
every number uniquely exists in the universe. However, unused numbers
are not explicitly stored by DPF Text.

tl tr

TRTITL

L1 I1 R1

r1l1

(Meta-model) Evolution Rule

(Model) Migration Multi-Rules

1:A

v:Int

3:a

A:Class

Int:DataType

a:attribute

A:Class

Int:DataType

a:attribute B:Class

r:reference A:Class

B:Class

r:reference

1:A

v:Int

3:a

:B

v * :r

1:A

:B

v * :r

v:Int

Int:DataType

Figure 10.18: Migration scheme employing template

8http://rosacreative.nl/PAMT/

177

10. Migrating UML ActivityModels from Version 1.4 to 2.2

10.5 On the Results of the Transformation Tool Contest

In the TTC 2010, the case provider’s tools Flock was ranked first in the
overall score list, while COPE, the second tool explicitly made for modelwinning contest

solutions migration, was ranked second. The tools in places 3 and 4 were the
general purpose graph transformation tools GrGen.net and Fujaba. We
will compare the proposed solution to the two winning solutions in the
following.

Flock, a manual specification approach, scored best because the work-
shop participants evaluated high that Flock’s migration programs are con-
cise and understandable. Furthermore, Flock scored best for appropri-
ateness and extensions. However, Flock scored very low (place 7) on per-Epsilon Flock
ceived correctness because of the perceived difficulty in identifying when a
Flock migration strategy is complete. We experienced the same difficulties
using the tool. In addition, as rules are not statically type checked, mistakes
can cause additional information loses. In addition, Flock’s features to re-
type vertices by edges (used to implement Extension 1) we experienced as
confusing.

COPE, an operator-based approach, was ranked second. COPE also
scored high in perceived correctness because many co-evolutions steps
could be handled by its predefined operation library that has been consid-
ered as correct. COPE was in particular considered less concise than Flock,
as user-defined operations in COPE need to be programmed in a general-
purpose programming language (Groovy). We experienced COPE as aCOPE
nice tool to work with if the predefined operations are sufficient. How-
ever, its likely that there are situations where operations need to be defined
manually, because a required operation is missing or the preconditions for
an operation are not satisfied.

According to [119], support for retyping and in-place transformations
had a strong positive effect on conciseness. That a tool’s special purpose is
model migration had a strong positive impact on conciseness, understand-
ability and appropriateness. Other criteria did not have strong impacts.

The proposed solution here combines strength of both winning ap-
proaches. We used reusable operators first (as in COPE) and afterwardproposed

solution special purpose migration rules (as in Flock). The proposed solution sup-
ports retyping as well as in-place transformations. Furthermore, instead
of applying reusable operators manually, we detected the meta-model
changes. Only one migration scheme containing three rules (core tasks)
had to be specified manually that is specific for the migration of UML ac-
tivity models. In total, we specified less rules than the winning solutions,
i.e. the proposed solution is concise. We also think the solution is very
understandable, as the solution is based on migration pattern that can be
visualized.

178

10.5. On the Results of the Transformation Tool Contest

As pointed out in [119], the correctness criteria in the TTC 2010 has been
very weak even if weighted as most important in the tool contest. There-
fore, we propose using stricter correctness criteria in future tool contests.
For example, we propose asking the following questions: (1) Are migration
rules statically typed? (2) Is it ensured that the migration specifications are
viable? (3) Is it still true if migration rules are specified manually or have correctness

criteriabeen customized? (4) What type of constraints can be ensured and how?
The proposed approach is based on statically typed rules. It is proven

that migration specifications are always viable. Furthermore, we support
the well-defined customization of model migration specifications. In ad-
dition, we can ensure the satisfaction of multiplicity constraints as shown
in Chapter 9.

In this chapter, it has been demonstrated that the proposed model co-
evolution approach is well suited to the challenge of model migration.
All required migration steps could be specified in a concise and under-
standable manner. Furthermore, the approach supports a stricter form of
correctness for model migration specifications as used in the TTC 2010.

179

CHAPTER 11
Related Work

In the following, we discuss related work in two different areas: first, we
briefly review the achievements in database schema evolution. Then we
go over considering different aspects of meta-model co-evolution in MDE.

11.1 Schema Evolution

Database schema evolution has been studied for relational as well as for
object-oriented databases. In particular, schema co-evolution in object-
oriented databases has similarities to meta-model co-evolution in MDE.
While it is far beyond the scope of a thesis to describe all types of related
work on schema evolution, we focus on recent and frequently cited works
in the following.

Schema evolution for relational databases has been studied e.g. in the
PRISM project by Curino et al. [25, 26, 27]. According to the authors, their
tool PRISM is the most advanced system supporting relational schema
evolution in practice today [25]. The PRISM workbench supports schema
modification operators (SMOs) that capture atomic operations to evolve
schemes. In [25], 11 SMOs are supported, which span from simple op-
erations such as create/drop/rename table to more complex ones such as
merge or partition table. From SMO sequences, PRISM generates SQL
migration scripts. Furthermore, it supports automatic SQL query rewrit-
ing and the generation of database views mimicking the previous schema
version. In [26], a new version of the tool is presented that in addition
supports 6 new operators to manipulate integrity constraints namely key,
foreign key and value constraints. In the new version, query rewriting is
semi-automatically supported.

181

11. RelatedWork

Formal issues of schema mapping, mapping composition, invertibility
and query rewriting for relational databases has been considered by a num-
ber of authors, e.g. Nash [100], Bernstein [13], Fagin [40] and Deutsch [31].
Because our approach is independent of a specific modeling approach, it isformal issues in

scheme

evolution

up to future work to find a suitable adhesive category of relational algebras
and to compare our theoretical results for that category with formal issues
mentioned above.

Schema evolution for object-oriented databases has also been studied
for many years. A survey on this topic can be found in [85]. For the ORIONschema

evolution for

object-oriented
databases

database, for example, Banerjee et al. [9] define a set of 5 invariants and 12
change primitives [115] that ensure these invariants. Similar approaches
exist for the GemStone [115] and O2 [41] databases. Claypool et al. present
in [23] a framework for defining reusable change operations based on
templates that employ primitive operations as well as database queries.

Formal work on schema evolution and data migration in an object-
oriented setting have been presented, for example, by König et al. [71].
They employ category theory [11] to manipulate data models and migrateschema

evolution

based-on
category theory

data according to fixed migration functors. In their work, they focus
on information-preserving operations with fixed migration strategies. In
contrast, we allow more flexibility in the specification of model migration
but do not consider information-preservation.

Although schema evolution and meta-model evolution are related,
there are also a number of differences between both challenges e.g. im-
portance of technological challenges, depending artifacts, number of in-
stances to be migrated, complexity of migration pattern, coupling and
used constraints (see Chapter 2). Therefore, we consider related work on
meta-model evolution and model migration next.

11.2 Meta-model Evolution

Meta-model evolution with model migration has been extensively studied.
In particular, model migration has been in the focus of research, while
meta-model changes have been mainly classified:

An introduction to the state-of-the-art of model co-evolution and espe-
cially a well-known classifications of co-evolutions has been presented in
Chapter 2. Meta-model changes can be classified into non-breaking, break-
ing and resolvable, and breaking and unresolvable changes [51]. In Chapter 8,non-breaking,

breaking and

(un)resolvable
meta-model
changes

this classification is considered in the context of our work. In addition,
we refine breaking and resolvable changes into fully-automatically and auto-
matically resolvable changes. Furthermore, we define semi-automatically
changes that need a manually or customarily defined migration specifi-
cation. Van den Brand et al. [141] have a similar informal definition.
Additional classifications are given in the following articles:

182

11.2. Meta-model Evolution

In [146], Wachsmuth presents an elaborated classification of meta-
model relations according to preservation properties of concepts and meta-
model instances. In this formal consideration, a meta-model is character-
ized by a set of concepts and a set of possible meta-model instances. A meta-model

changes

classified by

language

properties

meta-model change is defined as e.g. semantic-preserving if its set of possi-
ble instances does not change. While Wachsmuth’s classification is defined
on a high abstraction level, our work is based on concrete modeling con-
cepts formalized by a suitable category. It is up to future work to put the
theory developed here into the context of this classification.

In [22], Ciccetti et al. distinguish additive, subtractive and adaptive meta-
model changes and use these classes to describe the effect of a change to
the set of valid instance models of a meta-model. While additive meta- additive,

subtractive and

adaptive

meta-model
changes

model changes increase the total number of valid instance models, subtrac-
tive changes decrease the number of valid instance models, and adaptive
changes describe changes such as renaming and moving of meta-model ele-
ments. Because our evolution rules clearly specify elements to be deleted
(tl(TL) \ tr(TR)) and added (TI \ tl(TL)), additive as well as subtractive
changes can be identified. Adaptive changes are simulated by combining
deletion and addition.

Furthermore, meta-model changes can be presented either structurally structural and

operational

meta-model change

presentations

or operationally [97]. While a structural presentation marks changed meta-
model parts only, an operational presentation provides a possible sequence
of meta-model evolution steps. Meta-model operations can be either prim-
itive i.e. simply create, delete and update operations, or more complex
ones describing for example meta-model refactorings [144] by compos- primitive and

complex

operational

changes

ing simple operations. In our work, we consider evolution scenarios in
an operational way by identifying a possible sequence of evolution steps
manually or automatically (see Chapter 5).

Hermannsdorfer et al. [57] divide meta-model changes into meta-
model only changes and coupled ones. While meta-model only changes
can be considered as non-breaking changes, coupled changes are further
split into three different groups according to their reusability: (1) meta-
model independent changes require migration strategies that can be reused
in various meta-models, (2) meta-model specific changes require migration meta-model

independent,
meta-model
specific and

model-specific
changes

strategies that can be applied to all instances of the meta-model, while
(3) model-specific changes require user interactions during migration. We
provide a heuristics for the construction of default migration schemes
supporting the specification of meta-model independent migrations. Man-
ually defined migration schemes or customized ones may be meta-model
independent or dependent.

In the following, we move the focus from meta-model changes to the
migration of their instance models. There are also a few works where
researchers consider the migration of other dependent artifacts as well.
These are model transformations [147], OCL constraints [53], and meta-

183

11. RelatedWork

model hierarchies with more than two levels [5]. However, such work is
out of the scope of this thesis. A taxonomy for the evolution of modeling
languages discussing different scenarios including the evolution of meta-
models and the migration of models and model transformations, can be
found in [97]. We think our approach is promising to also serve as a solid
basis to formally consider the migration of dependent modeling artifacts
other than models.

In the following, we are asking several questions on model migration:
Which formalizations of co-evolutions do exist and which properties are
shown for model migrations? How far can model migration specifications
be automatically deduced from given meta-model evolutions? Is it pos-
sible to reuse specifications for co-evolutions? Is it possible to customize
deduced model migration specifications? What types of transformation
approaches are used?

11.3 Correctness Properties of Model Migrations

While database schema evolution has been underpinned with formal-
ization, approaches to meta-model evolution are usually not formally
founded. Besides ours, we are aware of two approaches that consider
the formal foundation of model migration due to meta-model evolution:

In [71], König et al. present a formal framework to data migration
based on categorical constructions. It can also be used as formal basis for
model migration. In contrast to our framework, their framework does not
support reusable evolution operations yet and uses a fixed construction for
migration, while we allow implementation of different migration strate-
gies. Therefore, they have a correctness property supporting refactorings.
König et al. consider transformation as correct if they do not loose data
i.e. preserve paths in the instance graphs. Model migrations allow two
operations: folding and unfolding of vertices. Vertices connected by edges
can be merged (folded). Vertices can be split along loop edges1 (unfolded)
resulting only in connected vertices. Edges connecting vertices are never
deleted. Hence, paths are preserved.

In [127], Sprinkle et al. propose a manual specification approach that
has been implemented in the Model Change Language (MCL) [84]. MCL is
presented as semi-formal approach. Model migration rules for unchanged
types are not required to be defined explicitly, elements of such types are
automatically copied. MCL rules are formalized by (span) DPO graph
transformation rules consisting of injective morphisms only where the left
rule morphism is the identity. Hence, the creation of model elements is
only supported. Theorems are presented concerning termination and con-
fluence of MCL transformations. MCL transformations always terminate

1A loop edge of a graph G is an edge e with srcG(e) = trgG(e).

184

11.3. Correctness Properties of Model Migrations

but are not always confluent. However, confluence is decidable in MCL.
In our framework, we deduce each migration step from a meta-model
evolution step, hence our migrations trivially terminate. In addition, the
procedure to amalgamate coupled transformations in Chapter 7 yields
confluent migration results2.

Additionally, Krause et al. [73] consider well-typed model migration,
however, only on the level of a prototypical implementation in the EMF
model transformation tool Henshin [3]. In particular, they introduce a
library to encode transformations of meta-models and instance models in
the same rule. In our framework, rules are similarly coupled. In addition,
they use the concept of rule amalgamation as we do. In their approach,
meta-models and instance models are transferred into a presentation as
single graphs including typing relationships. After a coupled transfor-
mation, meta-models and models are split. Because this is not practical,
Krause et al. suggest splitting already evolution and migration rules be-
fore execution. However, this would require match-complete migration
transformations as we suggest. Furthermore, they propose to derive cus-
tomizable default migration rules from meta-model evolution rules as we
support. In general, Krause et al. focus on the implementation while we
focus on the theory. To some extent, the implementation in [73] can be
considered as a first implementation of our framework covering only core
concepts.

In [119], the authors evaluate the correctness of different migration
approaches based on selected questions answered by the participants of
the Transformation Tool Contest 2010. For each presented solution, the
participants had to speculate about its correctness wrt. other test cases
than the submitted ones. Unsurprisingly, none of the approaches scored
high on this correctness property. In contrast, we formulate properties
that can be used to define a basic form of correctness, such as match-
completeness and executable migration definitions. Such properties allow
an evaluation of correctness in a more precise manner.

Related to correctness of model migrations, a few researchers [97, 127]
also distinguish syntactical and semantical model migrations. In [127], se-
mantics is distinguished in static and dynamic semantics. Static semantics
is given by well-formedness rules, while dynamic semantics is given by a
mapping into a semantic domain. A syntactical migration is defined as mi- syntactical and

semantical

model

migrations

gration transformation that produces syntactically valid instance models.
Models of this type are at least well-typed. A semantical migration defines
a model transformation that preserves also the meaning of the migrated
instances given by the semantic mapping. In MDE, semantical model
migrations are rarely studied. One obvious reason is that semantical map-
pings are usually not formally defined and given by code templates. In

2As long as the default matching strategy is used.

185

11. RelatedWork

our work, we ensure well-typed model migration and in addition we de-
veloped an approach to ensure the satisfaction of multiplicity constraints.
This means our work focuses on syntactical model migration but we also
consider aspects of static semantics.

11.4 Reuse of Migration Knowledge

Reuse of migration knowledge is a key idea of operator-based approaches.
Usually, a set of coupled evolution-migration operators is supported, simi-
larly to database schema evolution (see e.g. [25, 57]). However, researchers
in MDE realized that a fixed set of reusable coupled evolution-migration
operations is not enough for model co-evolution [57]. Therefore, current
approaches allow to extend model migration specifications by manually
written code using a general purpose programming language or a trans-
formation language.

Reusable co-evolution operators for meta-model evolution have been
first proposed by Wachsmuth [146], who tried to combine ideas from
object-oriented refactorings with grammar adaptation. He also presents a
prototypical implementation using QVT Relation [106].

An extensive catalog of reusable evolution operators being structured
by different categories such as structural primitive operators, operators
dealing with inheritance, and delegation, can be found in [58].

COPE/Edapt [57] is a meta-model evolution tool for EMF that allows
the coupled evolution of meta-models and models by operators. Cou-
pled operations are implemented according to a textual specification in
Groovy/Java. The tool provides a rich library of coupled operators that
can be applied if the required preconditions are satisfied. If an evolution
operation is missing or the migration is not the desired one, the migration
operation has to be implemented as Groovy/Java program. In this case,
there is not any support to ensure well-defined migration results.

Vermolen et al. present in [143] a textual domain-specific transfor-
mation languages allowing the coupled evolution of WebDSL [145] mod-
els with data migration. Implementing the coupled operators has been
supported by a generic approach based on textual grammars and XPath
expressions, which may also be used in other domains. In contrast to
this approach, we consider the co-evolution of meta-models and models
based on graphs. Furthermore, in their approach, the migration transfor-
mations cannot be directly applied and have to be mapped to a suitable
transformation language such as SQL for the case of WebDSL [145].

In [22, 45], complex meta-model evolution operations are detected for
which migration operations have been defined. Specified migration op-
erations are reusable. A tool EMFMigrate [147], picking up ideas from
[22], is currently under development. EMFMigrate aims at also migrat-
ing other depending artifacts than models such as transformations written

186

11.5. Deduction of Model Migration Specifications

in the Atlas Transformation Language (ATL) [6]. Migration rules can be
assembled to reusable libraries as well as customized by overriding or
refinement. However, to the best of our knowledge, there is no support to
check that migration rules are defined consistently to their corresponding
meta-model changes.

Rose et al. present their tool Epsilon Flock in [118]. It offers a man-
ual specification approach for model migrations. Flock supports several
modeling frameworks. In contrast to other approaches, textual migration
scripts have to be written in Epsilon Flock. Reuse of migration knowledge
is only supported by locally defined migration functions. In contrast to our
formal framework, Epsilon Flock rules are not type checked. If a migra-
tion script is not valid according to the typing, elements may be forgotten
without warning.

In this thesis, we propose coupled transformations that in particular fit
into an operator-based approach. New coupled operators can be specified
on the high abstraction level of algebraic graph transformations. Hence,
we support the reuse of migration knowledge.

11.5 Deduction of Model Migration Specifications

Meta-model differencing and the automatic detecting of meta-model evo-
lution steps have been considered by for example Ciccetti et al. in [22],
and is also in the focus of the Atlas Matching Language (AML) [45, 117].
While AML [45] builds on matching heuristics to detect complex change
operations, the approach presented in [22] focuses on the decomposition
of difference models isolating dependent changes.

In [144], Sander et al. consider the detection of evolution steps. Starting
from a structural change presentation, valid meta-model evolution traces
are identified as sequences of primitive operations (based on operator
preconditions and dependencies). Afterward, the approach is extended to
detect complex operations from this sequences.

Similar approaches have also been developed e.g. to semantically lift
edit scripts to higher levels. In [65, 66], Kelter et al. present an approach
based on algebraic graph transformations. However, the approach pre-
sented by Kelter et al. differs from the approach presented in Chapter 5.
In [65, 66], corresponding meta-model elements are related element-wise
similar to Triple Graph Grammars [123]. Analyzed are the deltas between
two model versions: all possible rule matches are detected first, then ap-
plication sequences are calculated based-on dependency analyses.

Considering current modeling frameworks however, the detection of
meta-model evolution steps is still a topic of ongoing research [65, 66, 118].
This means fully satisfying solutions are not yet available.

When pre-defined evolution operators cannot be used, model migra-
tions are specified manually in most approaches. The automatic deduction

187

11. RelatedWork

of migration specifications typically support the preservation and deletion
of model elements:

In Epsilon Flock [118], rules for unchanged or slightly changed meta-
model elements do not need to be defined similarly to MCL. Such model
elements are automatically copied to a new model conforming to the new
meta-model if they pass a conformance test.

In Chapter 5, a new approach for the stepwise detecting of evolution
operations has been presented. The presented approach hereby naturally
extends to the framework of coupled transformations presented thereafter.
In contrast to other approaches, the approach can also be used if elements
have been merged or split.

In addition to the detection of evolution steps, we also support the gen-
eration of default migration schemes (see Chapter 7). Default migration
schemes migrate models according to a general heuristics also considering
new element types. This has not been supported by others.

11.6 Customization of Model Migration Specifications

Customization of model migration specifications is supported in
COPE/Edapt [57]. However, custom model migration operations have
to be programed in Groovy/Java and added to the tool.

In [22, 45], migration scripts are generated from recognized evolution
operations using the textual model transformation language ATL. Cus-
tomization of model migration scripts can be done on the level of such
ATL scripts.

To summarize, for all informal approaches, there are no criteria to
ensure that migration scripts remain well-defined after customization. In-
stead, our approach supports the generation of well-defined migration
specification from meta-model evolutions, in form of default migration
schemes. Moreover, they may be customized such that stay well-defined.

11.7 Employed Model Transformation Approaches

Model transformation approaches either transform models in-place by
changing them or out-place i.e. by creating newly changed copies (see
Chapter 2). For model migration, in-place and out-place approaches
have been used. Especially in [119], several model and graph transfor-
mations tools have been applied to a migration case. Seven out of nine
tools used out-place transformations. However, in-place transformations
have an advantage: identity rules to copy unchanged elements are not
required. Therefore, a variety of researchers argue for in-place transfor-in-place and

out-place
transformations

mations [56, 93, 98, 149]. In-place transformations, however, require that
the migration transformation cover all model elements that need to be mi-
grated to ensure well-typed migration results. Our framework abstracts

188

11.7. Employed Model Transformation Approaches

away from in-place and out-place transformations and can support both
types of transformation approaches.

Each meta-model change usually requires many adaptations in each incremental and

simultaneous

adaptations

of its instances. These adaptations can be applied either simultaneously
in one step or incrementally in several steps. In most cases, adaptations are
applied incrementally, while we and [71, 73] apply each migration step in
one transaction.

189

CHAPTER 12
Conclusion and Future Work

Chapter 12 first provides a summary of this thesis. Then it concludes with
an outlook on the current and future work.

12.1 Summary

The evolution of meta-models does not always lead to meaningful model
migrations. In this thesis, we clarify the conditions for well-defined co-
evolutions of meta-models and models by addressing different challenges
on a formal level. An overview of addressed challenges and developed
solutions is presented in Figure 12.1.

Contributions can be summarized as follows:

• First, we present a new approach for detecting evolution sequences meta-model step
detectionbased on algebraic graph transformations [36] that fit naturally into

the theory of coupled transformations developed thereafter.

• Then, we formalize coupled transformations of meta-models and
models as coupled algebraic graph transformations of type and in-
stance graphs. This allows us to show that definitions and con- coupled

transformationsstructions presented in this thesis are well-defined based on results
known from category theory [11] and algebraic graph transforma-
tions [36]. Herein, the presented theory is general enough that all
types of current existing approaches supporting model migration
can be formalized, i.e., manual specification, operator-based and
matching approaches [118].

191

12.
C
o
n
c
l
u
sio
n
a
n
d

F
u
t
u
r
e

W
o
r
k

Finding meta-model

evolution sequences

Co-evolving

odels

Ensu atisfaction of

constraints

ansformations Model constraint

resolution sc

for multiplicities

Evolution step

detection a

Identified tasks

Our contribution:
"formal framework

for model migration"

Used formal
frameworks transformations transformations

ategories

tackle tackle tackles

build on build on builds on

build on

construct

construct

(a)

(b)

(c)

Figure 12.1: Overview of thesis results

192

12.2. Outlook

• Furthermore, we define migration schemes by adapting amalga-
mated graph transformation and discuss how model migrations can
be specified based on migration patterns. Migration schemes herein migration

schemescomplete evolution steps given by graph transformations canonical
to coupled transformations. By Theorem 6.4.1 and Theorem 7.2.1,
we show that this is ensured. We also show how migration schemes
may be customized while still ensuring completeness of the migra-
tion process and well-typedness of migration results. In addition, we
introduce default migration schemes that are automatically deduced
from meta-model evolution rules by a heuristic.

• While we explain our approach for (directed multi-)graphs first, its
application to more elaborated graph structures supporting type in-
heritance and multiplicity constraints is discussed thereafter. Because high-level

structuresour work is based on (weak) adhesive High-Level-Replacement (HLR)
categories [36, 77], a variety of high-level structures are covered. Fur-
thermore, the presented approach is discussed in the context of non-
breaking changes, breaking and resolvable changes [51], probably
the most used classification of meta-model changes in the literature.

• In addition, we present a new approach to deal with multiplicity
constraints after models have been migrated to well-typed models
by coupled transformations. The approach is based on an approach multiplicity

constraintsoriginally developed for generating finite instance models [134] and
ensures that all multiplicity constraint violations are corrected.

• Finally, we evaluate our approach on a case study that has been case study from

tool contestcontributed by the Transformations Tool Contest 2010 [119].

While meta-model evolution induces many challenges, we have cov-
ered a subset of such challenges on a formal level. We think that the
developed theory has a promising potential to improve the current state-
of-the-art in model migration in MDE.

12.2 Outlook

Open points that should be addressed in the future concern primarily tool
support and the migration of other artifacts than models:

• In addition to models, other artifacts such as model transformations,
visual model presentations and editors need to be adapted when
meta-models are evolved. It would be an interesting research line to other artifacts

extend our work to consider also such artifacts (see Chapter 2). In
particular, it would be beneficial to have one framework that puts
such research under a common umbrella to develop technologies
that smoothly work together.

193

12. Conclusion and FutureWork

• Up to now the proposed approach has already been (partly) imple-
mented in Scala. To evaluate the contributed work in practice it
would be beneficial to finish this work. While the prototypical im-tool support

plementation is working with a modeling framework that has been
implemented for this purpose based on categories presented in this
thesis, it would be interesting to transfer this work to existing mod-
eling frameworks such as EMF. Therefore, in particular, additional
tasks have to be considered such as missing element identifiers and
intrinsic modeling language constraints implemented in such frame-
works. We neglected such problems so far to be able to build theory.

• The algorithm to detect sequences of meta-model evolution steps
presented in Chapter 5 needs to be extended to be applicable if meta-meta-model

evolution step

detection

model elements are only transient. To put it in a nutshell, as in
many other approaches, it is not possible yet to detect operation
steps that create model elements that are deleted by a following step.
In addition, we assume that it does not matter which evolution step
is detected first. Otherwise, backtracking may be helpful if this is
not the case and our approach using rule priorities is not sufficient.

• Amalgamated graph transformations [17, 133, 135] are useful not
only for model migration but also for meta-model evolution, for ex-amalgamated

graph

transformations

ample, to express evolution steps such as “Pull up Attribute” for
arbitrary numbers of subclasses. While such amalgamated graph
transformations also fit naturally into our framework, as they con-
struct “usual” graph transformations, not all details have been for-
mulated wrt. model migration schemes. However, we assume that
such an extension is straight-forward.

• Furthermore, future work is needed to extend our model co-evolution
approach wrt. meta-model constraints other than multiplicities.other

constraints While it has been discussed how constraints such as abstract can be
handled by a proper retyping of elements, in particular containment
constraints should be considered. In addition, Assumption 9.3.1 has
to be shown since finite satisfiability has been studied in [18, 83]
without reference refinement.

• Moreover, further co-evolution case studies are needed to evaluatemore case studies

the heuristic used to derive default migration schemes as well as
their customization facilities.

194

Appendices

195

APPENDIX A
Proofs of Auxiliary Propositions

Proofs in this thesis base on properties of (weak) adhesive (HLR) categories
that have been listed in Chapter 4. These properties are well-known facts.
However, in two cases we need to generalize existing results. The proofs
for these generalizations are presented in this appendix.

A.1 Generalizing the Special Pullback-Pushout Property

Property 9 in Table 4.2 is taken from [78] and generalized to adhesive HLR
categories with arbitrary pullbacks in Proposition A.1.1. Property 11 in
Table 4.2 can be deduced as corollary from the proof of Proposition A.1.1
below. In the following, we explicitly show the proof of Property 9 to argue
that adhesive HLR categories with arbitrary pullbacks are sufficient. In
contrast to adhesive categories, adhesive HLR categories ensure the exis-
tence of pullbacks along M-morphisms only. The proof of this proposition,
however, demands the existence of arbitrary pullbacks. While some steps
in the proof in [78] are only sketched, we show the fully elaborated proof
here. First, we recall Property 9 from [78] generalized to adhesive HLR
categories:

Proposition A.1.1 (Special pullback-pushout property). special

pullback-pushout
property

Suppose the commutative diagram to the right in an
adhesive HLR category with general pullbacks has
M-morphisms m, n, l: Suppose that square (1)
is a pushout and square (1+2) is a pullback, then
square (2) is a pullback.

A
f

(1)m

C
p

(2)n

E

l

B
g

D
q

F

In contrast to the usual pullback decomposition saying that, if (1+2) and
(2) are pullbacks, then (1) is also a pullback, we can decompose pullback

197

A. Proofs of Auxiliary Propositions

(1+2) by pullback (1) and can deduce that (2) is a pullback given that
morphism m : A→ B and l : E→ F are M-morphisms (see Definition A.1.1)
and pullback (1) is also a pushout1. While Property 9 applies to all adhesive
(HLR) categories with arbitrary pullbacks, it does not generally apply to
weak adhesive HLR categories.

Proof of Proposition A.1.1. We have to show that (2) in the right diagram of
Proposition A.1.1 is a pullback. Suppose that we have an object X and
morphisms α : X→ D and β : X→ E such that α; q = β; l as in the diagram
below. We shall show that there exists a morphism k : X → C such that
k; n = α and k; p = β. Note that it is sufficient to show that such a k exists
because uniqueness follows by n given as monomorphism.

X

α

β

k

C

PB(?)n

p
E

l

D
q

F

In the following, we construct the diagram below. The upper faces
with (1) pushout and (1+2) pullback are already given. Furthermore, we
assume an object X with morphisms α and β as given in the diagram above.

B

A

D

C

F

E

(1) (2)
m

n
l

g

f

q

p

X1

X3

X

X2

(3)m′
n′

g′

f ′

α1

α3

α

α2

k

β

h

1. Construct the front face of the cube (on the left of the figure above)

by taking the pullback B
α1
← X1

g′

→ X of co-span B
g
→ D

α
← X. Note that

this step requires pullbacks along arbitrary morphisms, as g does not
need to be a M-morphism.

1Note that it follows by Property 6 that morphism n : C → D is a M-morphisms. By
Property 4, we have that (1) is also a pullback since it is a pushout.

198

A.1. Generalizing the Special Pullback-Pushout Property

2. Construct the right face of the cube by taking a pullback X
n′

 X2
α2
→ C

of co-span X
α
→ D

n
 C. Note that morphism n′ is a M-morphism,

as M-morphisms are stable under pullback and n is a M-morphism
(Property 5).

3. Construct the bottom face of the cube by taking the pullback

X1
m′

 X3
f ′

→ X2 of co-span X1
g′

→ X
n′

 X2. Note that morphism m′

is a M-morphism, as M-morphisms are stable under pullback and n′

is a M-morphism (Property 5).

4. Because (1) is a pushout along a M-morphism, it is also a pullback
(Property 4).

m′;α1; g = m′; g′;α front face commutes (see Step 1)
= f ′; n′;α bottom face commutes (see Step 3)
= f ′;α2; n right face commutes (see Step 2)

Hence, the outer square in the diagram below commutes and we can
deduce the existence of a unique mediating morphism α3 : X3 → A
with m′;α1 = α3; m and f ′;α2 = α3; f .

X3

m′;α1

f ′;α2

α3

A

PBm

f
C

n

B
g

D

5. Diagram (1+2) is a pullback by assumption, therefore f ; p; l = m; g; q.

α1; g; q = g′;α; q front face pullback
= g′; β; l α; q = β; l was assumption

Hence, the outer square in the diagram below commutes and we can
deduce the existence of a unique mediating morphism h : X1 → A
such that h; m = α1 and g′; β = h; f ; p.

X1

α1

g′;β

h

A

PBm

f ;p
E

l

B
g;q

F

199

A. Proofs of Auxiliary Propositions

6. The bottom face of the cube is also a pushout, due to the Van Kampen
property.

a) The back face is a pullback: the bottom (3) and front face (4) of the
cube can be composed to pullback (3+4). Because the cube com-
mutes, (3+4) can be decomposed by the top face pullback (1).
Hence, the back face (5) is a pullback.

B
g

(4)

D

X1

g′
α1

(3)

X

α

X3
f ′

m′

X2

n′

B
g

(1)

D

A
f

m

(5)

C

n

X3
f ′

α3

X2

α2

b) The left face is a pullback: the bottom (3) and right faces (6) of the
cube can be composed to pullback (3+6). Because the cube com-
mutes, (3+6) can be decomposed by the top face pullback (1).
Hence, the left face (7) is a pullback.

X3

f ′

m′ (3)

X2
α2

(6)n′

C

n

X1

g′

X
α

D

X3
α3

m′ (7)

A
f

(1)m

C

n

X1
α1

B
g

D

c) Now we can apply the Van Kampen property: the cube commutes,
the left and the back faces are pullbacks and the top face is
a pushout along a M-morphism by assumption. Hence, the
bottom face is also a pushout.

7. Because the bottom face (3) is a pushout, we get the existence of
morphism k.

First, we need a helper equation:

α3; m = m′;α1 left top face PB (1); (see Step 4)
= m′; h; m α1 = h; m top faces PB (1+2);

(see Step 5)
α3 = m′; h m is mono, (*)

Now, we can use the bottom pushout.

f ′;α2 = α3; f back face commutes (Step 4)
= m′; h; f helper equation (*) above

This means that the outer square commutes.

200

A.1. Generalizing the Special Pullback-Pushout Property

X3

PO

f ′

m′

X2

n′

α2
X1

g′

h; f

X

k

C

By this pushout, we can deduce the existence of a unique morphism
k : X→ C with g′; k = h; f and n′; k = α2.

8. It remains to show that k satisfies the necessary properties.

a) We have to show that k; n = α.

g′; k; n = h; f ; n bottom PO (see Step 7)
= h; m; g diagram (1) commutes by assumption
= α1; g α1 = h; m top faces PB (1+2);

(see Step 5)
= g′;α front face commutes (Step 1)

In addition we have:
n′; k; n = α2; n bottom PO (see Step 7)

= n′;α right face commutes (see Step 2)

X3

PO

f ′

m′

X2

n′

n′;k;n
X1

g′

g′;k;n

X

α

D

By the pushout in the bottom face and g′ and n′ being jointly
epi, we have in fact k; n = α.

b) Furthermore, we have to show that k; p = β.

Again, we need a helper equation:

α2; p; l = α2; n; q right top face commutes (assumption)
= n′;α; q right face commutes (see Step 2)
= n′; β; l assumption of diagram (2)

α2; p = n′; β l is mono, (**)

201

A. Proofs of Auxiliary Propositions

Similar to 8.(a) we get:

g′; k; p = h; f ; p bottom PO (see Step 7)
= g′; β top faces PB (1+2); (see Step 5)

And in addition we have:
n′; k; p = α2; p bottom PO (see Step 7)

= n′; β helper equation (**) above

X3

PO

f ′

m′

X2

n′

n′;k;p
X1

g′

g′;k;p

X

β

E
By the pushout in the bottom face and the uniqueness of medi-
ating morphisms, we get k; p = β.

�

All steps in the presented proof are valid for adhesive HLR categories
with pullbacks. Except Step 6(c), all steps are also valid in weak adhesive
categories. In Step 6(c), we cannot apply the Van Kampen property because
the pushout in the top face of the cube is required to be a pushout along
two M-morphisms. By assuming morphism f to be a M-morphism as
well, we get the following corollary for weak adhesive categories:

Corollary A.1.1 (Weak special pullback-pushout property).weak special

pullback-pushout Let the commutative diagram to the right be given
in a weak adhesive HLR category with M-morphisms
m, n, l, f and g: If square (1) is a pushout and square
(1+2) is a pullback, then square (2) is a pullback.

A
f

(1)m

C
p

(2)n

E

l

B
g

D
q

F

Note that g is a M-morphism, as f is a M-morphism (Property 6).
Therefore, the existence of pullbacks along M-morphisms is sufficient in
Step 1 of the proof and in the corollary.

A.2 On the Stability of Final Pullback Complements

In the thesis, we also make use of Final Pullback Complements (FPBCs),
which are essential for a specific type of graph transformation approach,
called sesqui pushout approach [24]. In particular, we need a new theorem,
Property 12 in Table 4.2, which is presented and proven in this section.
While we consider pushouts and pullbacks as well known, we define
Final Pullback Complements next:

202

A.2. On the Stability of Final Pullback Complements

Definition A.2.1 (Final pullback complement). final pullback

complementA final pullback complement of

Z
g
→ Y

f
→ X is defined by a com-

position of morphisms Z
h
→ W

k
→ X

(see figure on the right) where:

1. square (1) is a pullback and

2. for each pullback d; f = c; e and for each
v : A→ Z with v; g = d, there exists a
unique u : B → W such that u; k = e and
v; h = c; u.

A

c

d

v

Y

f

Z
g

h

X W
k

(1)

B
e

u

The following theorem has been proven in special categories by Loewe
in [88]. In contrast to that, we provide an elementary proof that is true in
any category with pullbacks. The proof has been found in collaboration
with Harald König from FHDW Hannover and has not been published
before.

Theorem A.2.1 (Final-Pullback-Complements are stable under pullbacks).
In any category C with pullbacks, Final-Pullback-Complements (FPBCs) are Final-Pullback-

Complements are
Stable under

Pullbacks

stable under pullback, i.e. if Z
h
→ W

k
→ X in the top face in the figure below is a

FPBC and all side faces are pullbacks, then Z′
h′

→ W′ k′

→ X′ in the bottom square is
a FPBC too.

Y
f

Z
g

h

X W
k

Y′
f ′

γ

Z′
g′

h′

β

X′

δ

W′k′

α

In the following, we denote by C/X the slice category
whose objects are morphisms α : A → X with co-
domain X and whose morphisms f : α → β are mor-
phisms f : A→ B in C such that f ; β = α. Furthermore,
we denote by HomD(A,B) the set of morphisms from A
to B in some category D.

A
f

α

B

β

X

In the proof below, we use well known facts about the pullback func-
tor [11]:

203

A. Proofs of Auxiliary Propositions

Fact A.2.1 (Pullback functor). Let δ : X′ → X be any morphism of category C
with pullbacks. Constructing the pullback (more precisely: a fixed choice of it) of
a morphism k : W → X along δ yields a mapping

δ∗ : C/X→ C/X′ (A.1)

that extends to a functor, called the pullback functor, by
mapping morphisms to unique mediators between pullbacks.

X

PB

W
k

X′

δ

W′

δ∗(k)

α

Additionally, there is the post-composing functor

δ∗ : C/X′ → C/X with δ∗(b) = b; δ (A.2)

for all objects b : B→ X′ of C/X′ the object b; δ of C/X.

It is a well-known fact that δ∗ ⊣ δ
∗, i.e. δ∗ is left-adjoint to δ∗, which means that

there is a family
(ηb : b→ δ∗(δ∗(b)))b∈Ob

C/X′
(A.3)

of morphisms indexed over the objects of C/X′ (the unit of the adjunction), such
that in the diagram below

X B
δ∗(b)

X′

δ

B
b

ηb

X′ ×X B

π2

δ∗(δ∗(b))

in which the outer square is the pullback of X′
δ
→ X

δ∗(b)
← B and

b; δ = δ∗(b), the following statements hold:

1. We have:
ηb;π2 = idB. (A.4)

2. Moreover, we have for each fixed b ∈ C/X′ and k ∈ C/X the assignments
u 7→ ηb; δ∗(u) for all u ∈ HomC/X

(δ∗(b), k) defining a bijective

ib,k : HomC/X
(δ∗(b), k)→ HomC/X′

(b, δ∗(k)) (A.5)

204

A.2. On the Stability of Final Pullback Complements

Proof of Theorem A.2.1. Suppose the commuting double cube below with

Z
h
→ W

k
→ X is a FPBC (left top face) and all side faces of the left cube

pullbacks. In the following, it shall be shown that Z′
α∗(h)
→ W′ δ

∗(k)
→ X′ is also a

FPBC.

Y
f

Z
g

h

A

γ∗(a)=a;γ

c

ϕ;β

X W
k

B

δ∗(b)=b;δ

u

Y′
δ∗(f)

γ

Z′
γ∗(g)

α∗(h)

β

A

a

c

ϕ

X′

δ

W′

δ∗(k)

α

B

b

ϕ′?
ηb

X′ ×X B

π2

δ∗(δ∗(b))

α∗(u)

1. First we show that the left bottom face is a pullback: by composing the
left back face (1) and the left top face (2) of the cube to a pullback
(1+2), and by decomposing (1+2) by the left front face (4), we can
deduce the left bottom face (3) is a pullback.

X

(2)

W
k

Y

f

(1)

Z
g

h

Y′

γ

Z′
γ∗(g)

β

X

(4)

W
k

X′

δ

(3)

W′
δ∗(k)

α

Y′

δ∗(f)

Z′
γ∗(g)

α∗(h)

2. Existence of mediating morphism: let Y′
a
← A

c
→ B in the bottom of the

double cube above (the dashed lines) be a pullback of B
b
→ X′

δ∗(f)
← Y′.

We have to show that for each ϕ : A → Z′ with ϕ;γ∗(g) = a, there is
a unique

ϕ′ : B→W′

such that:

ϕ′; δ∗(k) = b and c;ϕ′ = ϕ;α∗(h) (A.6)

205

A. Proofs of Auxiliary Propositions

For this we consider the composition of this pullback with the
left face of the cube (this establishes the pullback shown as the top
dashed rectangle in the double cube above).

We obtain

ϕ; β; g = ϕ;γ∗(g);γ left back face commutes
= a;γ by assumption that ϕ : a → γ∗(g)

i.e. a = ϕ;γ∗(g)

such that by the FPBC property of the top square there is a unique u
with:

δ∗(b) = u; k and ϕ; β; h = c; u (A.7)

Thus u ∈ HomC/X
(δ∗(b), k) and we can choose

ϕ′ := ib,k(u) ∈ HomC/X′
(b, δ∗(k)), i.e.

ϕ′; δ∗(k) = b and ϕ′ = ηb; δ∗(u) (A.8)

by (A.5). It remains to show validity of the second equation in

(A.6). For this we construct the pullback of X′
δ
→ X

δ∗(b)
← B yielding the

span X′ ×X B
δ∗(δ∗(b))
← X′

π2
→ B (see cube above and diagram below).

X

PB

B
δ∗(b)

X′

δ

X′ ×X B
δ∗(δ∗(b))

π2

We have:

ϕ′;α = ηb;α∗(u);α by (A.8)
= ηb;π2; u by (A.1)
= u by (A.4)

and thus:

c; u = c;ϕ′;α (above)
= ϕ; β; h by (A.7)
= ϕ;α∗(h);α by (right face of left cube commutes)

206

A.2. On the Stability of Final Pullback Complements

Moreover, we have:

c;ϕ′; δ∗(k) = c; b by (A.8)
= a; δ∗(f) dashed bottom PB commutes
= ϕ;γ∗(g); δ∗(f) by assumption that ϕ : a → γ∗(g)

i.e. a = ϕ;γ∗(g)
= ϕ;α∗(h); δ∗(k) left bottom face commutes

Because, in the front face pullback α and δ∗(k) are jointly monic, the
last two equations, i.e.

c;ϕ′;α = ϕ;α∗(h);α and
c;ϕ′; δ∗(k) = ϕ;α∗(h); δ∗(k)

yield c;ϕ′ = ϕ;α∗(h) i.e. the second equation of (A.6) as required.

3. Uniqueness of mediating morphism: in order to show uniqueness of ϕ′,
let any other ϕ′′ ∈ HomC/X′

(b, δ∗(k)) with c;ϕ′′ = ϕ;α∗(h) be given.

Then, for u′′ := i−1
b,k

(ϕ′′) one can show in the same way as above that

ϕ′′;α = u′′. This yields c; u′′ = ϕ;α∗(h);α = c; u.

Thus (by uniqueness of u with these properties) u = u′′. Because ib,k
is bijective, ϕ′ = ϕ′′.

�

207

APPENDIX B
Case Study: Adhesiveness

The theory developed in this thesis relies heavily on properties that are
only valid in adhesive-like categories. Therefore, a good question is which
categories can be expected to be adhesive. In Chapter 3, the Diagram
Predicate Framework has been illustrated by Example 3.3.3 as a flexible
method to equip directed multi-graphs with constraints. This chapter is
based on technical report [152]. First, it is shown that even category Graph

is adhesive, category Spec, the category of DPF specifications, is not.
Then DPF is generalized so that we get an adhesive category GSpec. To
provide the reader with a good intuition, this generalization is presented
analogue to the step from simple to multi-graphs. Herein, simple graphs
are graphs that do not allow more than one edge between a source and
target vertex. It is well-known that also the category of such simple graphs
is not adhesive [63].

B.1 Categories of Simple Directed Graphs

The category Set of sets and total mappings is a well-know adhesive
category. The category of (simple) directed graphs SGraph extends the
category of sets by a second component called “edges,” that consists of
a set of ordered pairs of vertices (source, target). In the following, the
definition of directed graphs are recalled. Note, that we call these graphs
simple graphs in this chapter to distinguish them from multi-graphs.

Definition B.1.1 (Simple (directed) graph). A simple (directed) graph
G = (GV,GE) consists of a set GV of vertices (or nodes) and a set GE ⊆ GV × GV Simple (directed)

graphof edges (or arrows) where each edge is an ordered pair of vertices
(x, y) ∈ GV × GV. The source, respectively target of the edge is denoted by

209

B. Case Study: Adhesiveness

projection to the first (srcG(x, y) = x), respectively second (trgG(x, y) = y)
component of this pair.

Definition B.1.2 (Graph morphism between simple (directed) graphs). A
graph morphism φ : G → H is a mapping φV : GV → HV from the vertexGraph morphism

in simple

(directed) graphs
set of G to the vertex set of H such that each edge (x, y) ∈ GE entails an
edge (φV × φV)(x, y) := (φV(x), φV(y)) ∈ HE.

GV × GV φV×φV HV ×HV

GE φE HE

Remark B.1.1 (Mapping of edges). The requirement (φV × φV)(GE) ⊆ HE

means equivalently that the mapping φV ×φV restricts to a mapping from
GE to HE. We will denote this mapping by φE : GE → HE.

Definition B.1.3 (Category of simple (directed) graphs). The category
SGraph has all simple (directed) graphs G as objects and all graph mor-category

SGraph phisms φ : G → H as morphisms between graphs G and H. The as-
sociativity of composition of mappings ensures that the composition of
two graph morphisms is a graph morphism as well and that the composi-
tion of graph morphisms is associative. Moreover, the identity mappings
idGV : GV → GV define identity graph morphisms idG : G→ G and ensure
that identity graph morphisms are left and right neutral with respect to
composition.

Fact B.1.1 (Monomorphism in simple (directed) graphs). The monomor-
phisms in Set are exactly the injective mappings. In SGraph, monomorphismsmonomorphism

in simple

(directed) graphs
are the morphisms where the vertex mapping is injective. Note, that also in this
case the induced mapping of edges is injective.

B.1.1 Pushouts/Pullbacks of Simple Directed Graphs

Let us consider the general construction of pushouts and pullbacks in
SGraph relying on the construction of pushouts and pullbacks in Set. This
restricts the task primarily to the construction of edges for simple graphs.

Proposition B.1.1 (Pushout for simple (directed) graphs). A pushout

B
g∗

→ D
f ∗

← C of a span B
f
← A

g
→ C of graph morphisms is obtained by constructingpushout for

simple (directed)
graphs

first a pushout BV

g∗
V
→ DV

f ∗
V
← CV in Set of the underlying span BV

fV
← AV

gV
→ CV of

mappings between sets of vertices and by defining the set of edges DE as follows:

DE := (g∗V × g∗V)(BE) ∪ (f ∗V × f ∗V)(CE) =
{(g∗

V
(x), g∗

V
(y)) | (x, y) ∈ BE} ∪ {(f ∗

V
(x), f ∗

V
(y)) | (x, y) ∈ CE} ⊆ DV ×DV

210

B.1. Categories of Simple Directed Graphs

AV

PO

fV

gV

BV

g∗
V

g′
VCV f ∗

V

f ′
V

DV

kV

XV

A

PO

f

g

B

g∗

g′C f ∗

f ′

D

k

X
Proof.

Homomorphism property: we have (g∗
V
× g∗

V
)(BE) ⊆ DE and

(f ∗V × f ∗V)(CE) ⊆ DE, by construction, thus the mappings g∗V and f ∗V con-
stitute graph morphisms g∗ : B→ D and f ∗ : C→ D, respectively.

Universal property:

1. There exists for all graph morphisms g′ : B→ X and f ′ : C→ X with
g; f ′ = f ; g′, i. e. gV; f ′V = fV; g′V, a unique mapping kV : DV → XV

with f ∗
V

; kV = f ′
V

and g∗
V

; kV = g′
V

.

2. Because f ∗ and f ′ are graph morphisms, we have

(kV × kV)((f ∗
V
× f ∗

V
)(CE)) = (f ∗

V
× f ∗

V
); (kV × kV)(CE)

= (f ∗
V

; kV × f ∗
V

; kV)(CE)
= (f ′V × f ′V)(CE) ⊆ XE

and, analogously, we have (kV × kV)((g∗V × g∗V)(BE)) ⊆ XE. Due to the
construction of DE, this ensures (kV×kV)(DE) ⊆ XE, thus kV establishes
a graph morphism k : D→ X.

�

Besides pushouts, pullbacks in SGraph are also based on the corre-
sponding construction in Set.

Proposition B.1.2 (Pullback for simple (directed) graphs). A pullback

B
f ∗

← A
g∗

→ C of a cospan B
g
→ D

f
← C is obtained by constructing first a pull- pullback for

simple (directed)
graphs

back BV

f ∗
V
← AV

g∗
V
→ CV in Set of the underlying cospan BV

gV
→ DV

fV
← CV of mappings

between sets of vertices and by defining the set of edges AE as follows:

AE := {e ∈ AV × AV | (f ∗
V
× f ∗

V
)(e) ∈ BE, (g∗

V
× g∗

V
)(e) ∈ CE,

gE((f ∗V × f ∗V)(e)) = fE((g∗V × g∗V)(e))}

211

B. Case Study: Adhesiveness

XV

g′
V

f ′
V

kV

AV

PBg∗
V

f ∗
V BV

gV

CV fV DV

X

g′

f ′

k

A

PBg∗

f ∗ B

g

C f D

Proof.

Homomorphism property: by construction we have (f ∗
V
× f ∗

V
)(AE) ⊆ BE

and (g∗V × g∗V)(CE) ⊆ CE. Thus, the mappings g∗V and f ∗V constitute graph
morphisms f ∗ : A→ B and g∗ : A→ C, respectively.

Universal property:

1. There exists for all graph morphisms f ′ : E→ B and g′ : E→ C with
f ′; g = g′; f , i. e. f ′V ; gV = g′V; fV, a unique mapping kV : XV → AV

with kV; f ∗V = f ′V and kV; g∗V = g′V.

2. Because f ∗ and f ′ are graph morphisms, we have

(f ∗V × f ∗V)((kV × kV)(XE)) ⊆ BE = (kV × kV); (f ∗V × f ∗V)(XE)
= (kV; f ∗

V
× kV; f ∗

V
)(XE)

= (f ′V × f ′V)(XE)

and, analogously, we have (g∗V × g∗V)((kV × kV)(XE)) ⊆ CE. Because
we have kV; f ∗

V
; gV = kV; g∗

V
; fV, by assumption, the construction of

AE ensures, in such a way, (kV × kV)(XE) ⊆ AE thus kV establishes a
graph morphism k : X→ A.

�

B.1.2 Van Kampen Property for Simple Graphs

It is a well known fact that the category of directed multi-graph Graph is
adhesive [36]. It inherits adhesiveness from the category Set. However,
what about the category SGraph of simple graphs? Let us have a look at
the cube in Figure B.1. All morphisms are given by the identity mapping
on the set of vertices and edges are mapped accordingly. Note, that these
implicit mappings are unique, as no multiple edges are allowed. The
top and the bottom face of the cube in Figure B.1 are pushouts along
monomorphism m respectively m′, both back faces are pullbacks, hence
both front faces of the cube have to be pullbacks to fulfill the VK property.
However, while the left front face is trivially a valid pullback, the right

212

B.1. Categories of Simple Directed Graphs

d

c

a

b

n'

f'
m'

g'

D

C

A

B

n

f
m

g

D

C

A

B

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

Figure B.1: Counter example VK property in SGraph

D

D1 2

PB

g

b

g'

d

1 2

1 2

1 2

Figure B.2: Corrected pullback in SGraph

face is not. This means the category SGraph is not adhesive. The valid
pullback according to the definition above is shown in Figure B.2.

What goes “wrong” in the category SGraph? Pullbacks are constructed
by means of pullbacks, inverse images, intersection and equalizers in Set,
i.e. by limit constructions, and should not, therefore, cause any problems.
Pushouts in SGraph are based for vertices on pushouts in Set which is
neither a problem. The construction of the set of edges, however, is based
on the union of sets, which is not a colimit construction in Set. This

213

B. Case Study: Adhesiveness

union construction in pushouts causes the problem, as edges collapse in
the pushout object, i.e. they cannot be traced back. If there is an edge in
the pushout, we cannot find out if this edge originates from left or from
right or from both sides. To have such a tracing back facility, we have to
move from simple to multi-graphs.

B.2 Category of (Directed Multi-)Graphs

The basic definitions for multi-graphs have already been recalled in Chap-
ter 3. Based on general results about functor categories, it is shown in [36]
that pushouts, pullbacks, epimorphisms, and monomorphisms in Graph
are exactly given by componentwise pushouts, pullbacks, epimorphisms,
and monomorphisms, respectively, in Set. We develop here these results
in a more basic, systematic and detailed way to prepare, in an appropriate
way, our investigations of categories of diagrammatic specifications.

B.2.1 Pushouts/Pullbacks of Directed Multi-Graphs

In the following, we show that pushouts, respectively pullbacks in the
category Graph are indeed given by pushouts, respectively pullbacks in
the underlying category Set.

Proposition B.2.1 (Pushout of (directed multi-)graphs). A pushout

B
g∗

→ D
f ∗

← C of a span B
f
← A

g
→ C of graph morphisms is obtained by constructingpushout of

(directed
multi-)graphs

componentwise a pushout in Set for the underlying maps between sets of vertices
and sets of edges, respectively. srcD : DE → DV and trgD : DE → DV are the
unique mediating maps such that (g∗

E
; srcD = srcB; g∗

V
and f ∗

E
; srcD = srcB; f ∗

V
) or

(g∗
E
; trgD = trgB; g∗

V
and f ∗

E
; trgD = trgB; f ∗

V
), respectively.

That is, due to the construction of pushouts in Set, for each edge
e : x→ y ∈ DE the srcD(e), respectively trgD(e) is given by:

srcD(e) =

{

g∗V(srcB(e′)) if ∃e′ ∈ BE with g∗E(e′) = e
f ∗V(srcC(e′)) else ∃e′ ∈ CE with f ∗E(e′) = e

trgD(e) =

{

g∗V(trgB(e′)) if ∃e′ ∈ BE with g∗E(e′) = e
f ∗V(trgC(e′)) else ∃e′ ∈ CE with f ∗E(e′) = e

A

PO

f

g

B

g∗

g′C f ∗

f ′

D

k

X

Proof. “⇐”: Componentwise pushouts in Set provide pushouts in Graph

Existence of source and target maps and homomorphism property: the
top face of the cube in the figure below shows the pushout for edges in
Set, while the pushout for vertices in Set is shown in its bottom face. We
have

214

B.2. Category of (Directed Multi-)Graphs

gE; srcC; f ∗V = srcA; gV; f ∗V g graph morphism
= srcA; fV; g∗V bottom face is commutative
= fE; srcB; g∗V f graph morphism

In addition, analogously, gE; trgC; f ∗V = fE; trgB; g∗V, thus the unique-
ness of mediating morphisms for the pushout for edges entails indeed the
existence of unique mappings srcD, respectively trgD satisfying the equa-
tions above. The validity of these equations means, at the same time, that
(g∗

V
, g∗

E
) defines a graph morphism g∗ : B → D and that (f ∗

V
, f ∗

E
) defines a

graph morphism f ∗ : C→ D, respectively.

DE

CE

AE

BE

f ∗
E

gE fE

g∗
E

DV

CV

AV

BV

f ∗
V

gV fV

g∗
V

srcD

srcC

srcA

srcB

AE

PO

fE

gE

BE

g∗
E

srcB;g∗
VCE f ∗

E

srcC; f ∗
V

DE

srcD

DV

Universal property: assume graph X and two graph morphisms f ′ and
g′ so that g; f ′ = f ; g′ (see figures below).

DE

CE

AE

BE

XE

f ∗
E

gE
fE

g∗
E

f ′
E

g′
E

kE

DV

CV

AV

BV

XV

f ∗
V

gV
fV

g∗
V

f ′
V

g′
V

kV

srcD

srcC

srcA

srcB

srcX

AE

PO

fE

gE

BE

g′
E

srcB;g′
VCE f ′

E

srcC; f ′
V

XE

srcX

XV

1. There are unique mediating mappings kE and kV, as top and bottom
faces of the cube are pushouts.

2. By the construction of (kV, kE) and the homomorphism property of
f ′, f ∗, g′ and g∗, respectively, we get f ∗

E
; kE; srcX = f ∗

E
; srcD; kV, and

g∗
E
; kE; srcX = g∗

E
; srcD; kV, and f ∗

E
; kE; trgX = f ∗

E
; trgD; kV, and

215

B. Case Study: Adhesiveness

g∗E; kE; trgX = g∗E; trgD; kV, thus, uniqueness of mediating morphisms

for the top pushout entails kE; srcX = srcD; kV and kE; trgX = trgD; kV.
That is, (kV, kE) defines indeed a graph morphism k : D→ X.

“⇒”: Pushouts in Graph imply componentwise pushouts in Set

Let a pushout B
g∗

→ D
f ∗

← C of a span B
f
← A

g
→ C of graph morphisms be

given.

Pushout for vertices: we consider a set X and a maps l : CV → X,
r : BV → X such that gV; l = fV; r.

AV

PO(?)

fV

gV

BV

g∗
V

rCV f ∗
V

l

DV

kV

X

A

PO

f

g

B

g∗

rGC f ∗

lG

D

k

XG

Existence of mediating map: we construct a graph XG as follows:

XG
V := X, XG

E := X × X, srcXG

:= π1, trgXG

:= π2.

The map r can be extended then to a graph morphism rG : B→ XG:

rG
V := r, rG

E := 〈srcB; r, trgB; r〉,

that is, rG
E

is the unique map such that the following diagram commutes

BV

r

BE

rG
E

srcB trgB

BV

r

X X × X
π1 π2

X

This ensures also that (rG
V
, rG

E
) defines a graph morphism. lG : C → XG is

defined analogously.
By construction and assumption, we have fV; rG

V
= gV; lG

V
and further

fE; rG
E
= fE; 〈srcB; r, trgB; r〉 definition rG

E
= 〈 fE; srcB; r, fE; trgB; r〉 pre-composition with tuples
= 〈srcA; fV; r, trgA; fV; r〉 f graph morphism
= 〈srcA; gV; l, trgA; gV; l〉 assumption
= 〈gE; srcC; l, gE; trgC; l〉 g graph morphism
= gE; 〈srcC; l, trgC; l〉 pre-composition with tuples
= gE; lG

E
definition lG

E

216

B.2. Category of (Directed Multi-)Graphs

In such a way, we have f ; rG = g; lG in Graph, thus, there exists a unique
graph morphism k : D→ XG such that g∗; k = rG and f ∗; k = lG. Especially,
we have a mediating map kV : DV → X, such that g∗V; kV = rG

V
= r and

f ∗
V

; kV = lG
V
= l .

Uniqueness of mediating map: for any k̄ : DV → X, such that g∗V; k̄ = r

and f ∗
V

; k̄ = l we get g∗; k̄G = rG and f ∗; k̄G = lG according to our con-

structions, thus the uniqueness of mediators in Graph implies k = k̄G and,
especially, kV = k̄G

V
= k̄.

Pushout for edges: we consider a set Y and a maps l : CV → Y, r : BV →

Y, such that gE; l = fE; r.

AE

PO(?)

fE

gE

BE

g∗
E

rCE f ∗
E

l

DE

kE

Y

A

PO

f

g

B

g∗

rGC f ∗

lG

D

k

YG

Existence of mediating map: we construct a graph YG as follows:

YG
V := 1, YG

E := Y, srcYG

= trgYG

:=!Y : Y→ 1

where 1 is a singleton set, i.e., a terminal object in Set. The map r can be
extended then to a graph morphism rG : B→ YG:

rG
V :=!BV

, rG
E := r.

BV

!BV

BE

r

srcB trgB

BV

!BV

1 Y
!Y !Y

1

By the uniqueness of terminal maps, this ensures that (rG
V
, rG

E
) defines a

graph morphism. lG : C→ XG is defined analogously.
By construction and assumption, we have fE; rG

E
= gE; lG

E
and further

fV; rG
V
= gV; lG

V
, again due to the uniqueness of terminal maps. This

gives f ; rG = g; lG in Graph, thus, there exists a unique graph morphism
k : D→ YG such that g∗; k = rG and f ∗; k = lG. Especially, we have a medi-
ating map kE : DE → Y, such that g∗E; kE = rG

E
= r and f ∗E; kE = lG

E
= l.

217

B. Case Study: Adhesiveness

Uniqueness of mediating map: analogously to the case of pushouts for
vertices. �

Now we consider pullbacks.

Proposition B.2.2 (Pullback of (directed multi-)graphs). A pullback

B
f ∗

← A
g∗

→ C of a cospan B
g
→ D

f
← C is obtained by constructing componen-pullback of

(directed
multi-)graphs

twise a pullback in Set for the underlying maps between sets of vertices and
sets of edges, respectively. srcA : AE → AV and trgA : AE → AV are the
unique mediating maps, such that (srcA; g∗V = g∗E; srcC and srcA; f ∗V = f ∗E; srcB)

or (trgA; g∗
V
= g∗

E
; trgC and trgA; f ∗

V
= f ∗

E
; trgB), respectively.

That is, if we construct pullbacks in Set by Cartesian products and equalizer,
we have for each edge e = (eC, eB) ∈ AE:

srcA(eC, eB) := (srcC(eC), srcB(eB))

trgA(eC, eB) := (trgC(eC), trgB(eB)).

A

PBg∗

f ∗ B

g

C f D

Proof.
“⇐”: Componentwise pullbacks in Set provide pullbacks in Graph

Existence of source and target maps and homomorphism property: the
top face of the cube in the figure below shows the pullback for edges in
Set, while the pullback for vertices in Set is shown in its bottom face. We
have

g∗
E
; srcC; fV = g∗

E
; fE; srcD f graph morphism

= f ∗
E
; gE; srcD bottom face is commutative

= f ∗
E
; srcB; gV g graph morphism

and, analogously, g∗
E
; trgC; fV = f ∗

E
; trgB; g∗

V
, thus, the uniqueness of medi-

ating morphisms for the pullback for vertices entails indeed the existence
of unique mappings srcD, respectively trgD satisfying the equations above.
The validity of these equations means, at the same time, that (g∗

V
, g∗

E
) de-

fines a graph morphism g∗ : A → C and that (f ∗V, f ∗E) defines a graph
morphism f ∗ : A→ B, respectively.

218

B.2. Category of (Directed Multi-)Graphs

DE

CE

AE

BE

fE

g∗
E f ∗

E

gE

DV

CV

AV

BV

fV

g∗
V f ∗

V

gV
srcD

srcC

srcA

srcB

AE

g∗
E
;srcC

f ∗
E
;srcB

srcA

AV

PBg∗
V

f ∗
V BV

gV

CV fV DV

Universal property: assume graph X and two graph morphisms f ′ and
g′, so that g′; f = f ′; g (see figures below).

DE

CE

AE

BE

XE

fE

g∗
E

f ∗
E

gE

g′
E

f ′
E

kE

DV

CV

AV

BV

XV

fV

g∗
V

f ∗
V

gV

g′
V

f ′
V

kV

srcD

srcC

srcA

srcB

srcX

XE

g′
E
;srcC

f ′
E
;srcB

srcX

XV

PBg∗
V

f ∗
V BV

gV

CV fV DV

1. There are unique mappings kE and kV, as top and bottom faces of the
cube are pullbacks.

2. By the construction of (kV, kE) and the homomorphism property
of f ′, f ∗, g′ and g∗, respectively, we get kE; srcA; f ∗

V
= srcX; kV; f ∗

V
,

and kE; srcA; g∗V = srcX; kV; g∗V, and kE; trgA; f ∗V = trgX; kV; f ∗V, and

kE; trgA; g∗
V
= trgX; kV; g∗

V
, thus, the uniqueness of mediating mor-

phisms for the bottom pullback entails kE; srcA = srcX; kV and
kE; trgA = trgX; kV. That is, (kV, kE) defines indeed a graph morphism
k : X→ A.

“⇒”: Pullbacks in Graph imply pullbacks of their components in Set

Let a pullback B
f ∗

← A
g∗

→ C of a cospan B
g
→ D

f
← C of graph morphisms

be given.

219

B. Case Study: Adhesiveness

Pullbacks for vertices: we consider a set X and maps l : X→ CV,
r : X→ BV such that l; gV = r; fV.

X

l

r
kV

AV

PB(?)g∗
V

f ∗
V BV

gV

CV fV DV

XG

lG

rG

k

A

PB

f ∗

g∗

B

g

C f D

Existence of mediating map: we construct a graph XG as follows:

XG
V := X, XG

E := ∅, srcXG

= trgXG

:=!X : ∅ → X,

where ∅ is the empty set, i.e. the initial object in Set. The map r can be
extended then to a graph morphism rG : XG → B:

rG
V := r, rG

E :=!BE
.

X

r

∅

!BE

!X !X
X

r

BV BE
srcB trgB

BV

By the uniqueness of initial maps, this ensures that (rG
V
, rG

E
) defines a

graph morphism rG : XG → B. lG : XG → C is defined analogously. We
have lG

V
; fV = rG

V
; gV by assumption and lG

E
; fE = rG

E
; gE by uniqueness of

initial maps. This means lG; f = rG; g in Graph, thus, there exists a unique
graph morphism k : XG → A, such that k; g∗ = lG and k; f ∗ = rG. Especially,
we have kV; g∗

V
= lG

V
and kV; f ∗

V
= rG

V
= r, as desired.

Uniqueness of mediating map: analogously to the case of pushouts for
vertices.

Pullbacks for edges: we consider a set Y and maps l : Y→ CE, r : Y→ BE

such that l; gE = r; fE.

Y

l

r
kE

AE

PB(?)g∗
E

f ∗
E BE

gE

CE fE DE

YG

lG

rG

k

A

PB

f ∗

g∗

B

g

C f D

220

B.2. Category of (Directed Multi-)Graphs

Existence of mediating map: we construct a graph YG as follows:

YG
V := Y + Y, YG

E := Y, srcYG

:= κ1, trgYG

:= κ2.

The map r can be extended then to a graph morphism rG : YG → B:

rG
V := [r; srcB, r; trgB], rG

E := r,

i.e. rG
V

is the unique map such that the following diagram commutes:

Y

r

κ1
Y + Y

rG
V

Y

r

κ2

BE
srcB

BV BE

trgB

This ensures also that (rG
V
, rG

E
) defines a graph morphism

rG : YG → B. lG : YG → C is defined analogously.
By construction and assumption, we have lG

E
; fE = rG

E
; gE and, dually

to the case of pushouts for nodes, we can show lG
V

; fV = rG
V

; gV. This

means lG; f = rG; g in Graph, thus, there exists a unique graph morphism
k : YG → A, such that k; g∗ = lG and k; f ∗ = rG. Especially, we have kV; g∗

V
=

lG
V

and kV; f ∗V = rG
V
= r, as desired.

Uniqueness of mediating map: analogously to the case of pushouts for
vertices.

�

B.2.2 Van Kampen Property for Directed Multi-Graphs

In the following, we consider the VK property for Graph. Because this
time the construction of pushouts does not rely on a union construction
anymore, we expect the category to be adhesive.

Lemma B.2.1 (Monic = Pullback).
A morphism f : A → B in a category C is a monomor-
phism iff the figure on the right is a pullback diagram.

A

idA

idA
A

f

A
f

B

monic = pullback

Corollary B.2.1 (Monomorphism in (directed multi-)graphs). Monomor-
phisms in Graph are given by componentwise monomorphisms in Set i.e. a graph monomorphism

in (directed
multi-)graphs

morphism f : A → B is a monomorphism iff fV : AV → BV and fE : AE → BE

are monomorphisms.

Proof. Because the identities in Graph are componentwise identities, we
get by Lemma B.2.1, Proposition B.2.2 and again Lemma B.2.1 for any
graph morphism in f : A→ B:

221

B. Case Study: Adhesiveness

f is a monomorphism in Graph

⇐⇒ A
idA
← A

idA
→ A is the pullback of A

f
→ B

f
← A

⇐⇒ AV

idAV
← AV

idAV
→ AV is the pullback of AV

fV
→ BV

fV
← AV and

AE

idAE
← AE

idAE
→ AE is the pullback of AE

fE
→ BE

fE
← AE in Set

⇐⇒ fV : AV → BV and fE : AE → BE are monomorphism in Set

�

Lemma B.2.2 (Epic = Pushout).
A morphism f : A → B in a Category C is an epimor-
phism iff the figure on the right is a pushout diagram.

A

f

f
B

idB

B
idB

B

epic = pushout

Corollary B.2.2 (Epimorphism in (directed multi-)graphs). Epimorphisms
in Graph are given by componentwise epimorphisms in Set i.e. a graph morphismepimorphism in

(directed
multi-)graphs

f : G → H is an epimorphism iff fV : GV → HV and fE : GE → HE are
epimorphisms.

Proof. Because the identities in Graph are componentwise identities, we
get by Lemma B.2.2, Proposition B.2.1 and again Lemma B.2.2 for any
graph morphism in f : A→ B:

f is an epimorphism in Graph

⇐⇒ B
idB
→ B

idB
← B is the pushout of B

f
← A

f
→ B

⇐⇒ BV

idBV
→ BV

idBV
← BV is the pushout of BV

fV
← AV

fV
→ BV and

BE

idBE
→ BE

idBE
← BE is the pushout of BE

fE
← AE

fE
→ BE

⇐⇒ fV : AV → BV and fE : AE → BE are epimorphism in Set

�

Considering all facts about the category of directed multi-graph Graph,
we can conclude that it is adhesive [36] and that it inherits adhesiveness
from category Set.

Proposition B.2.3. Pushouts along monomorphism are VK squares in Graph.

Proof. Assume a commutative cube (2) in Graph (See Definition 4.1.1). As
composition of graph morphism is defined componentwise, we have (2)
commutes in Graph iff the corresponding two cubes for vertices and edges
commute in Set. We assume top face in (2) is a pushout and both back faces
in (2) are pullbacks. By Proposition B.2.1 and Proposition B.2.2 follows:

top face in (1) is a pushout ⇐⇒ top face in (1) for (1V) and (1E)
are pushouts and

222

B.2. Category of (Directed Multi-)Graphs

back faces in (2) are
pullbacks

⇐⇒ back faces in (2) for (2V) and
(2E) are pullbacks

We have by Proposition B.2.1, Proposition B.2.2 and Set is adhesive:

bottom face in (2) is pushout ⇐⇒ bottom faces in (2V) and (2E)
are pushouts

⇐⇒ front faces in (2V) and (2E) are
pullbacks

⇐⇒ front faces in (2) are pullbacks
�

Let us review Figure B.1, which shows a counterexample for the VK
property in SGraph. The cube in the figure is not a valid VK cube even
though the top and bottom faces are pushouts and both back faces are
pullbacks. Figure B.3 shows the analog example for Graph. This time we
also have to map the edges, as we can have more than one edge having the
same source and target vertex. In contrast to the earlier example, we get
two edges in the upper pushout graph. Therefore, we can correctly trace
back the edges in the right front face of the cube that shows in contrast to
Figure B.1 a valid pullback diagram. Hence, Figure B.3 shows a valid VK
cube.

d

c

a

b

n'

f'
m'

g'

D

C

A

B

n

f
m

g

D

C

A

B

1 2

1 2

1 2

1 2

1 2

1 2

1 2

a

b

a

b

a

1 2

a

Figure B.3: Example VK property in Graph

223

B. Case Study: Adhesiveness

B.3 Category of DPF Specifications

Now, we consider Spec, the category of DPF specifications, and show that
it is not adhesive for a similar reason SGraph is not adhesive. Therefore,
let us recall the main definitions from [121] and [120] in the following:

Definition B.3.1 (Signature). A signature Σ = (ΠΣ , αΣ) consists of a set ofsignature

predicate symbolsΠΣ and a mapping αΣ which assigns a (multi-)graph to
each predicate symbol π ∈ ΠΣ . αΣ(π) is called the arity of the predicate
symbol π.

Definition B.3.2 (Atomic constraint). Given a signature Σ = (ΠΣ , αΣ), anatomic

constraint atomic constraint (π, δ) on a (multi-)graph S consists of a predicate symbol
π ∈ ΠΣ and a graph morphism δ : αΣ(π)→ S.

Definition B.3.3 (Specification). Given a signature Σ = (ΠΣ , αΣ), a speci-specification

fication S = (S,CS :Σ) consists of a multi-graph S and a set CS of atomic
constraints (π, δ) on S with π ∈ ΠΣ .

Definition B.3.4 (Specification morphism). Given two specificationsspecification

morphism S = (S,CS : Σ) and S′ = (S′,CS
′

: Σ), a specification morphism
φ : S → S′ is a graph morphism φ : S→ S′ such that (π, δ) ∈ CS implies
φC(π, δ) := (π, δ;φ) ∈ CS

′

.

αΣ(π)
δ

δ;φ

=

S
φ

S′

Definition B.3.5 (Category of specifications). Given a signature
Σ = (ΠΣ , αΣ), the category Spec(Σ) has all specifications S = (S,CS:Σ) ascategory

Spec(Σ) objects and all specification morphismsφ : S → S′ as morphisms between
specifications S and S′.

The associativity of composition of graph morphism ensures that the
composition of two specification morphisms is a specification morphism
as well and that the composition of specification morphisms is associative.
Moreover, the identity graph morphisms idS : S→ S define identity spec-
ification morphisms idS : S → S and ensure that identity specification
morphisms are left and right neutral with respect to composition.

Remark B.3.1 (Monomorphism for specifications). Monomorphism in
Spec(Σ) are the morphism where the underlying graph morphism is a
monomorphism. Definition B.3.4 ensures that the translationφC : CS → CS

′

of atomic constraints becomes, in this case, also an injective mapping.
Compare Remark B.1.1, where we have the same effect for the translation
of edges.

224

B.3. Category of DPF Specifications

B.3.1 Pushouts and Pullbacks in Spec

In this section, we will consider the general construction of pushouts and
pullbacks in Spec relying on the existence of pushouts and pullbacks in
Graph, as done in [151], for generalized sketches1. This restricts the task
primarily on the consideration of atomic constraints in the context of Spec.

Note, the category of (typed) conformant specifications [120, 121] will
not be considered here, as conformance relies on arbitrary semantics as-
signed to atomic constraints that are in general not specified in terms of
graph morphism and commuting diagrams.

Similar to pushouts in SGraph, pushouts in Spec are based on pushouts
in Graph and the union of sets (of constraints).

Proposition B.3.1 (Pushout of specifications). A pushout D = (D,CD:Σ) of

a span B
f
← A

g
→ C of a specification morphisms is obtained by constructing a pushout of

specificationspushout in Graph for the underlying graph morphisms and by defining the set of
atomic constraints CD as follows:

CD := {(π, δ; g∗) | (π, δ) ∈ CB } ∪ {(π, δ; f ∗) | (π, δ) ∈ CC }

A

PO

f

g

B

g∗

g′C f ∗

f ′

D

k

X

A

PO

f

g

B

g∗

g′C f ∗

f ′

D

k

X

Proof.

Morphism property: we have f ∗
C

(CC) ⊆ CD and g∗
C

(CB) ⊆ CD , by con-
struction, thus the graph morphisms f ∗ and g∗ constitute specification
morphisms f ∗ : C → D and g∗ : B → D, respectively.

Universal property:

1. There exists for all specification morphisms g′ : B → X and
f ′ : C → X with g; f ′ = f ; g′ i.e. g; f ′ = f ; g′ a unique graph mor-
phism k : D→ X with f ∗; k = f ′ and g∗; k = g′.

1The construction for pushouts and pullbacks in Spec can also be found in [121] and
[120] for restricted cases.

225

B. Case Study: Adhesiveness

2. Because f ∗ and f ′ are specification morphisms, we have for anyπ ∈ Σ
and (π, δC) ∈ CC

(π, δC; f ′) = (π, δC; f ∗; k) ⊆ CX

and analogously (π, δB; g∗; k) ⊆ CX for any π ∈ Σ and (π, δB) ∈ CB .
Due to the construction of CD , this ensures (π, δD; k) ⊆ CX , for all
(π, δD) ∈ CD , thus k establishes a specification morphism k : D → X.

�

Similar to pullbacks in SGraph, pullbacks in Spec rely as well on
pullbacks in Graph as on intersection and equalizers in Set.

Proposition B.3.2 (Pullback of specifications). A pullback A = (A,CA:Σ) of

a cospan B
g

D C
f

is obtained by constructing a pullback in Graph forpullback of

specifications the underlying graph morphisms and by defining the set of atomic constraints CA

as follows:

CA := {(π, δ : αΣ(π)→ A) | (π, δ; f ∗) ∈ CB and (π, δ; g∗) ∈ CC

and (π, δ; f ∗; g) = (π, δ; g∗; f) ∈ CD }

X

g′

f ′

k

A

PBg∗

f ∗ B

g

C f D

X

g′

f ′
k

A

PBg∗

f ∗ B

g

C f D

Proof.

Morphism property: by construction, we have f ∗
C

(CA) ⊆ CB and

g∗
C

(CA) ⊆ CC thus the graph morphisms f ∗ and g∗ constitute specification
morphisms f ∗ : A → B and g∗ : A → C, respectively.

Universal property:

1. There exists for all specification morphisms f ′ : X → B and
g′ : X → C with f ′; g = g′; f a unique graph morphism k : X → A
with k; f ∗ = f ′ and k; g∗ = g′.

226

B.3. Category of DPF Specifications

2. Since f ∗ and f ′ are specification morphisms we have for any π ∈ Σ
and (π, δX) ∈ CX

(π, δX; f ′) = (π, δX; k; f ∗) ⊆ CB

and analogously (π, δX; k; g∗) ⊆ CC for any π ∈ Σ and (π, δX) ∈ CX .
Because we have k; f ∗; g = k; g∗; f , by assumption, the construction
of CA ensures, in such a way, (π, δX; k) ⊆ CA for any π ∈ Σ and
(π, δX) ∈ CX thus k establishes a specification morphism k : X → A.

�

B.3.2 Van Kampen Property in Spec

In Section B.1, we considered SGraph and in particular pushouts in SGraph.
In Subsection B.1.2, we have presented a counterexample for adhesiveness
in SGraph and realized that SGraph is not adhesive due to the fact that
pushouts rely on a union construction on edges.

Now, we analyze pushouts in Spec. Because pushouts in Spec rely
again on a union construction, we expect the category Spec of specifica-
tions not to be adhesive. Indeed, Spec is not adhesive. Figure B.4 shows
a counterexample for Spec. Predicates are given as concrete sets. The top
and the bottom faces are pushouts along monomorphisms. The back faces
are pullbacks. In addition, the left front face is a pullback. However, the
right front face is not a pullback, as π1 ∈ CB and π1 ∈ CD

′

but π1 < CB
′

.

CD = {π1}

CC = {π1}

CA = ∅

CB = {π1}
n

f
m

g

CD
′

= {π1}

CC
′

= {π1}

CA
′

= ∅

CB
′

= ∅
n′

f ′

m′

g′
d

c

a

b

Figure B.4: Counter example VK property in Spec

Note, that the reason is exactly the same as before in SGraph. Pushouts
in Spec rely on a union construction and hence predicates cannot be traced

227

B. Case Study: Adhesiveness

CD = {π1}

PB

CB = {π1}n

CD
′

= {π1}

d

CB
′

= {π1}

b

n′

Figure B.5: Corrected pullback in Spec

back. The valid pullback according to the definition above is shown in
Figure B.5.

In contrast to SGraph, we have seen that category Graph is adhesive
and that the main difference between both is that the pushout construction
in Graph only relies on pushouts in Set. In the following, we will consider
the category of generalized DPF Specifications that “repairs” the category
of “usual” DPF specification so that we obtain an adhesive one.

B.4 The Category of Generalized DPF Specifications

In the following, we analyze the definitions of Section B.3 to prepare for a
generalization2.

To lift the definitions in Section B.3 to a more structured and abstract
level, we make, first, explicit the arity mapping αΣ : ΠΣ → Graph0 where
Graph0 denotes the set of objects in the category Graph.

Second, we consider the slice category (Graph/S) and the mapping
f stS : (Graph/S)0 → Graph0 assigning to each object ϕ : G → S in
(Graph/S) the domain G. Then we consider the pullback of the cospan

ΠΣ
αΣ
−→ Graph0

f stS

←− (Graph/S)0,

i.e., the set

ΠΣ ×αΣ (Graph/S)0 = {(π, ϕ) ∈ ΠΣ × (Graph/S)0 | α
Σ (π) = f stS(ϕ)}.

The main point is that our “traditional” atomic constraints from Def-
inition B.3.2 are exactly the elements of ΠΣ ×αΣ (Graph/S)0. That is,
a "traditional" specification is given by a multi-graph S and a subset
CS ⊆ ΠΣ ×αΣ (Graph/S)0.

2The formalization of this section is based on insights and ideas of Zinovy Diskin com-
municated in 2007.

228

B.4. The Category of Generalized DPF Specifications

CS

symS diaS
inS

ΠΣ

αΣ

ΠΣ ×αΣ (Graph/S)0

p1 p2

(Graph/S)0

f stS

Graph0

The important observation is that the maps symS := inS ; p1 and
diaS := inS ; p2 make the square commute and are jointly injective.

We moved from simple graphs to multi-graphs by introducing (identi-
fiers for) edges independent of vertices and by dropping the requirement
that an edge is uniquely determined by its source and target. Analogously,
we introduce now (identifiers for) constraints independent of predicate
symbols and carrier graphs and we drop the requirement that symS and
diaS are jointly monic.

Definition B.4.1 (Generalized specification). Given a signature generalized

specificationΣ = (ΠΣ , αΣ), a generalized specification S = (S,CS , symS , diaS) con-
sists of a multi-graph S, a set CS of "constraint identifiers" and two maps
symS : CS → ΠΣ and diaS : CS → Graph0, such that the following dia-
gram commutes:

CS

symS diaS

ΠΣ

αΣ

(=) (Graph/S)0

f stS

Graph0

Remark B.4.1 (Generalized atomic constraints). In practice, the "constraint
identifiers" will be often constructed as triples (l, π, δ), with l a "label/tag"
(indicating, for example, whom introduced the constraint), π a predicate
symbol and δ : αΣ (π) → S a graph morphism. In those practical cases,
the maps symS and diaS are given by the second and third projection,
respectively.

For the definition of morphisms, we have to remind that any graph

morphism φG : S → S′ induces a functor φG : (Graph/S) → (Graph/S′)

with φG; f stS′ = f stS, which is defined by simple post-composition, i.e.,

φG(γ) := γ;φG for all objects γ : G→ S in Graph/S.

229

B. Case Study: Adhesiveness

Definition B.4.2 (Morphisms between generalized specifications). Given
two generalized specifications S = (S,CS , symS , diaS) andmorphisms

between

generalized

specifications

S′ = (S′,CS
′

, symS
′

, diaS
′

), a specification morphism f = (fC, fG) : S → S′

is given by a mapping fC : CS → CS
′

and a graph morphism fG : S → S′,
such that the following two diagrams commute:

CS

symS

fC
CS

′

symS
′

CS

diaS

fC
CS

′

diaS

ΠΣ (Graph/S)0

fG
(Graph/S′)0

Definition B.4.3 (Category of generalized specifications). Given a signa-
tureΣ = (ΠΣ , αΣ), the category GSpec(Σ) has all generalized specificationscategory

GSpec(Σ) S = (S,CS , symS , diaS) as objects and all generalized specification mor-
phisms φ : S → S′ as morphisms between generalized specifications S
and S′.

The composition φ;ψ : G → K of two (generalized) specification
morphisms φ : G → H and ψ : H → K is defined componentwise
φ;ψ = (φC, φG); (ψC, ψG) := (φC;ψC, φG;ψG). The identity (generalized)
specification morphism idG : G → G is also defined componentwise

idG = (idCG , idG). This ensures that the composition of specification mono-
morphisms is associative and that identity specification morphism are left
and right neutral with respect to composition.

The definitions above Provide us a category of generalized specifica-
tions and it should be possible to prove now that pushouts and pullbacks in
this category are given by pushouts, respectively pullbacks of the underly-
ing graphs plus the pushout, respectively pullbacks of the corresponding
sets of identifiers! Because we used in the definitions above category Graph
as an underlying category that is adhesive as well as category Set, we get
a result that the category of generalized specifications GSpec is adhesive.

B.4.1 Pushouts and Pullbacks in GSpec

In the following, we show that a pushout, respectively pullback in category
GSpec is indeed given by the pushout, respectively pullback in the under-
lying category of graphs, as well as the pushout, respectively pullbacks of
the corresponding sets of identifiers.

Proposition B.4.1 (Pushout of generalized specifications). A pushout

B
g∗

→ D
f ∗

← C of a span B
f
← A

g
→ C of generalized specification morphisms ispushout of

generalized

specifications

obtained by constructing a pushout in Graph for the underlying graph mor-
phisms as well as constructing a pushout in Set for the underlying maps between
sets of constraint identifiers.

230

B.4. The Category of Generalized DPF Specifications

A

PO

f

g

B

g∗

g′C f ∗

f ′

D

k

E

Proof.
“⇐”: Componentwise pushouts in Graphand Set provide pushouts

in GSpec.

We consider the pushout CB
g∗

C
→ CD

f ∗
C
← CC of the span CB

fC
← CA

gC
→ CC in Set

and the pushout B
g∗

G
→ D

f ∗
G
← C of the span B

fG
← A

gG
→ C in Graph.

Existence of symbol map: since (fC, fG) and (gC, gG) are specification
morphisms we have gC; symC = symA = fC; symB , thus there exists a
unique map symD : CD → ΠΣ with g∗

C
; symD = symB and f ∗

C
; symD = symC .

CD

CC

CA

CB

f ∗
C

gC fC

g∗
C

ΠΣ

ΠΣ

ΠΣ

ΠΣ

symD

symC

symA

symB

Existence of diagram map: the top face of the cube in the figure be-
low shows the pushout for constraints in Set, while the commutative
square induced by the pushout of the underlying graph morphisms is
shown in its bottom face. Analogously to Proposition B.2.1, we obtain

gC; diaC ; f ∗
G

= fC; diaB ; g∗
G

, thus there exists a unique map

diaD : CD → (Graph/S)0 with g∗
C

; diaD = diaB ; g∗
G

and f ∗
C

; diaD = diaC ; f ∗
G

.

231

B. Case Study: Adhesiveness

CD

CC

CA

CB

f ∗
C

gC fC

g∗
C

(Graph/D)0

(Graph/C)0

(Graph/A)0

(Graph/B)0

f ∗
G

gG fG

g∗
G

diaD

diaC

diaA

diaB

CA

PO

fC

gC

CB

g∗
C

diaB ;g∗
GCC f ∗

C

diaC ; f ∗
G

CD

diaD

(Graph/D)0

Morphism property: the equations above ensure that the pair (g∗
C
, g∗

G
)

defines a specification morphism g∗ : B → D and that the pair (f ∗
C
, f ∗

G
)

defines a specification morphism f ∗ : C → D, respectively.

Universal property: assume specification X and two specification mor-
phisms f ′ : C → X and g′ : B → X so that g; f ′ = f ; g′ (see figures below).

CD

CC

CA

CB

CX

f ∗
C

gC

fC

g∗
C

f ′
C

g′
C

kC

(Graph/D)0

(Graph/C)0

(Graph/A)0

(Graph/B)0

(Graph/X)0

f ∗
G

gG

fG

g∗
G

f ′
G

g′
G

kG

diaD

diaC

diaA

diaB

diaX

CA

PO

fC

gC

CB

g′
C

diaB ;g′
GCC f ′

C

diaC ; f ′
G

CX

diaX

(Graph/X)0

1. Due to the pushout in Set, there is a unique mediating mapping
kC with g∗

C
; kC = g′

C
, f ∗

C
; kC = f ′

C
and, due to the pushout in Graph,

there is a unique graph morphism kG with g∗
G

; kG = g′
G

, f ∗
G

; kG = f ′
G

.
This ensures, especially, that the bottom face in the diagram above is
commutative.

2. By the construction of (kC, kG) and the morphism property of f ′,

f ∗, g′ and g∗, respectively, we get f ∗
C

; kC; diaX = f ∗
C

; diaD ; kG, and

g∗
C

; kC; diaX = g∗
C

; diaD ; kG, thus the uniqueness of mediating mor-

phisms for the top pushout entails kC; diaX = diaD ; kG. This means
that the unique pair (kC, kG) defines indeed a specification morphism
k : D → X.

232

B.4. The Category of Generalized DPF Specifications

“⇒”: Pushouts in GSpec imply pushouts of its components in
Graph and Set

Assume a pushout B
g•

→ E
f •

← C of a span B
f
← A

g
→ C of generalized

specification morphisms:

A

PO

f

g

B

g•

g∗C f •

f ∗

E

i

D

As shown, we can also construct componentwise a pushout

B
g∗

→ D
f ∗

← C of the same span.
=⇒ As pushouts are unique up to isomorphism, we get an isomor-

phism i = (iC, iG) : D → E in GSpec.
=⇒ As composition and identities in GSpec are given by compo-

sition and identities in Set and Graph, respectively, iC and iG
become isomorphisms in Set and Graph, respectively.

=⇒ As pushouts are closed under isomorphisms, this means that

the components of B
g•

→ E
f •

← C in Set and Graph also constitute
pushouts in Set and Graph, respectively.

�

We have seen that a pushout in GSpec can be obtained by constructing
a pushout in Graph for the underlying graph morphisms, as well as con-
structing a pushout in Set for the underlying mappings between sets of
constraint identifiers. Now, we show that also pullbacks can be obtained
in an analogue manner.

Proposition B.4.2 (Pullback of generalized specifications). A pullback

B
f ∗

← A
g∗

→ C of a cospan B
g
→ D

f
← C in GSpec is obtained by constructing pullback of

generalized

specifications

a pullback in Graph for the underlying graph morphisms and a pullback in Set

for the underlying mappings between sets of constraint identifiers.

E

g′

f ′
k

A

PBg∗

f ∗ B

g

C f D

233

B. Case Study: Adhesiveness

Lemma B.4.1. For any pullback B
f ∗
G
← A

g∗
G
→ C of a cospan B

gG
→ D

fG
← C in Graph

the span (Graph/B)0

f ∗
G
← (Graph/A)0

g∗
G
→ (Graph/C)0 is a pullback in Set of the

cospan (Graph/B)0
gG
→ (Graph/D)0

fG
← (Graph/C)0.

Proof.
“⇐”: Componentwise pullbacks in Graph and Set provide pull-

backs in GSpec

We consider the pullback CB
f ∗
C
← CA

g∗
C
→ CC of the cospan CB

gC
→ CD

fC
← CC

in Set and the pullback B
f ∗
G
← A

g∗
G
→ C of the cospan B

gG
→ D

fG
← C in Graph.

Existence of symbol map: as (fC, fG) and (gC, gG) are specification mor-
phisms, we have f ∗

C
; symB = g∗

C
; symC , thus there exists a unique map

symA : CA → ΠΣ with f ∗
C

; symB = symA and g∗
C

; symC = symA .

CD

CC

CA

CB

fC

g∗
C f ∗

C

gC

ΠΣ

ΠΣ

ΠΣ

ΠΣ

symD

symC

symA

symB

Existence of diagram map: the top face of the cube in the figure be-
low shows the pullback for constraints in Set, while the pullback ac-
cording to Lemma B.4.1 is shown in the bottom face. Analogously to

Proposition B.2.2, we obtain g∗
C

; diaC ; fG = f ∗
C

; diaB ; gG, thus there exists

a unique map diaA : CA → (Graph/S)0 with diaA ; f ∗
G
= f ∗

C
; diaB and

diaA ; g∗
G
= g∗

C
; diaC .

CD

CC

CA

CB

fC

g∗
C f ∗

C

gC

(Graph/D)0

(Graph/C)0

(Graph/A)0

(Graph/B)0

fG

g∗
G f ∗

G

gG

diaD

diaC

diaA

diaB

CA

g∗
C

;diaC

f ∗
C

;diaB

diaA

(Graph/A)0

PBg∗
G

f ∗
G (Graph/B)0

gG

(Graph/C)0 fG (Graph/D)0

234

B.4. The Category of Generalized DPF Specifications

Morphism property: the equations above ensure that the pair (f ∗
C
, f ∗

G
)

defines a specification morphism f ∗ : A → B and that the pair (g∗
C
, g∗

G
)

defines a specification morphism g∗ : A → C, respectively.

Universal property: assume a generalized specification X and two gen-
eralized specification morphisms f ′ : X → B and g′ : X → C so that
g′; f = f ′; g (see figures below).

CD

CC

CA

CB

CX

fC

g∗
C

f ∗
C

gC

g′
C

f ′
C

kC

(Graph/D)0

(Graph/C)0

(Graph/A)0

(Graph/B)0

(Graph/X)0

fG

g∗
G

f ∗
G

gG

g′
G

f ′
G

kG

diaD

diaC

diaA

diaB

diaX

CX

g′
C

;diaC

f ′
C

;diaB

diaX

(Graph/X)0

PBg′
G

f ′
G (Graph/B)0

gG

(Graph/C)0 fG (Graph/D)0

1. Due to the pullback in Set, there is a unique mediating mapping
kC with kC; f ∗

C
= f ′

C
, kC; g∗

C
= g′

C
and, due to the pullback in Graph,

there is a unique graph morphism kG with kG; f ∗
G
= f ′

G
, kG; g∗

G
= g′

G
.

This ensures, especially, that the bottom face in the diagram above is
commutative.

2. By the construction of (kC, kG) and the morphism property of f ′,

f ∗, g′ and g∗, respectively, we get kC; diaA ; f ∗
G
= diaX ; kG; f ∗

G
, and

kC; diaA ; g∗
G
= diaX ; kG; g∗

G
, thus the uniqueness of mediating mor-

phisms for the bottom pullback entails kC; diaA = diaX ; kG. This means
that the unique pair (kC, kG) defines indeed a specification morphism
k : X → A.

“⇒”: Pullbacks in GSpec imply pullbacks of its components in
Graph and Set

Assume a pullback B
f •

← E
g•

→ C of a cospan B
g
→ D

f
← C of generalized

specification morphisms:

235

B. Case Study: Adhesiveness

A

g∗

f ∗

i

E

PBg•

f • B

g

C f D

As shown, we can also construct componentwise a pullback

B
f ∗

← A
g∗

→ C of the same cospan.
=⇒ As pullbacks are unique up to isomorphism, we get an isomor-

phism i = (iC, iG) : A → E in GSpec.
=⇒ As composition and identities in GSpec are given by compo-

sition and identities in Set and Graph, respectively, iC and iG
become isomorphisms in Set and Graph, respectively.

=⇒ As pullbacks are closed under isomorphisms, this means that

the components of B
f •

← E
g•

→ C in Set and Graph also constitute
pushouts in Set and Graph, respectively.

�

B.4.2 Van Kampen Property in GSpec

In the following, we consider the VK property for GSpec. Because this
time the construction of pushouts does not rely on a union construction
anymore, we expect the category to be adhesive.

Corollary B.4.1 (Monomorphism in (generalized) specifications). Mono-
morphisms in GSpec are given by componentwise monomorphisms in Set re-monomorphism

in (generalized)
specifications

spectively Graph i.e. a specification morphism f = (fC, fG) : A → B is a
monomorphism iff fC : CA → CB is a monomorphism in Set and fG : A→ B is
a monomorphism in Graph.

Proof. Because the identities in GSpec are componentwise identities, we
get by Lemma B.2.1, Proposition B.4.2 and again Lemma B.2.1 for any gen-
eralized specification morphism in f : A → B:

f is a monomorphism in GSpec

⇐⇒ A
idA

← A
idA

→ A is the pullback of A
f
→ B

f
← A

⇐⇒ A
idA

← A
idA

→ A is the pullback of A
fG
→ B

fG
← A in Graph and

CA
idCA

← CA
idCA

→ CA is the pullback of CA
fC
→ CB

fC
← CA in Set

⇐⇒ fG : A → B is a monomorphism in Graph and fC : CA → CB is
a monomorphism in Set

�

236

B.4. The Category of Generalized DPF Specifications

Corollary B.4.2 (Epimorphism in (generalized) specifications). Epimor-
phisms in GSpec are given by componentwise monomorphisms in Set, re-
spectively Graph i.e. a specification morphism f = (fC, fG) : A → B is an
epimorphism iff fC : CA → CB in Set and fG : A → B is an epimorphism in
Graph.

Proof. Because the identities in GSpec are componentwise identities, we
get by Lemma B.2.2, Proposition B.4.1 and again Lemma B.2.2 for any gen-
eralized specification morphism in f : A → B:

f is an epimorphism in GSpec

⇐⇒ B
idB

→ B
idB

← B is the pushout of B
f
← A

f
→ B

⇐⇒ B
idB

→ B
idB

← B is the pushout of B
fG
← A

fG
→ B in Graph and

CB
idCB

→ CB
idCB

← CB is the pushout of CB
fC
← CA

fC
→ CB in Set

⇐⇒ fG : A→ B is an epimorphism in Graph and fC : CA → CB is an
epimorphism in Set

�

Considering all facts about the category of generalize DPF specifica-
tion GSpec, we can conclude that it is adhesive [36] and that it inherits
adhesiveness from category Set.

Proposition B.4.3. Pushouts along monomorphism are VK squares in GSpec.

Proof. Assume a commutative cube (2) in GSpec (See Definition 4.1.1).
Because composition of generalized specification morphisms is defined
componentwise, we have (2) commutes in GSpec iff the corresponding
two cubes for constraints commute in Set and for graphs commute in
Graph3. We assume the top face in (2) is a pushout and both back faces in
(2) are pullbacks. By Proposition B.4.1 and Proposition B.4.2 follows:

top face in (1) is a pushout ⇐⇒ top face in (1) for (1C) and (1G)
are pushouts and

back faces in (2) are
pullbacks

⇐⇒ back faces in (2) for (2C) and
(2G) are pullbacks

We have by Proposition B.2.1, Proposition B.2.2 and Set is adhesive:

bottom face in (2) is pushout ⇐⇒ bottom faces in (2C) and (2G)
are pushouts

⇐⇒ front faces in (2C) and (2G) are
pullbacks

⇐⇒ front faces in (2) are pullbacks
�

3That implies that the corresponding cubes for vertices and edges commute in Set.

237

B. Case Study: Adhesiveness

Let us review Figure B.4, which shows a counterexample for the VK
property in Spec. The cube in the figure is not a valid VK cube even
though the top and bottom faces are pushouts and both back faces are
pullbacks. Figure B.6 shows the analog example for GSpec. This time we
also have to map the constraints, as we can have more than one constraint
with the same predicate symbol and the same arity mapping. In contrast
to the earlier example, we get two constraints in the upper pushout graph.
Therefore, we can correctly trace back the constraints in the right front face
of the cube that shows in contrast to Figure B.4 a valid pullback diagram.
Hence, Figure B.6 shows a valid VK cube.

CD = {π1L, π1R}

CC = {π1L}

CA = ∅

CB = {π1R}
n

f
m

g

CD
′

= {π1R}

CC
′

= ∅

CA
′

= ∅

CB
′

= {π1R}

n′

f ′

m′

g′
d

c

a

b

Figure B.6: Example VK property in GSpec

B.5 Conclusion

In this chapter, it has been examined how DPF’s category of specifications
fits into the context of adhesive categories. First, we showed that the
concept of DPF specification, as it has been defined and used up in [33,
120, 121], does not provide an adhesive category of specifications. Then,
a generalization of the concept of specification has been presented that
provides an adhesive category GSpec. Furthermore, we showed that
this generalization step is analogous to the step going from the category
SGraph of simple directed graphs to the category Graph of directed multi-
graphs. This should give the reader an intuitive understanding about
adhesiveness, elements must be able to be traced.

Because category GSpec is adhesive, it fits into the presented frame-
work of coupled transformations. However, here we have to note that

238

B.5. Conclusion

category Spec already fits into it. The reason is that DPFs atomic con-
straints are only used on the meta-model level or model level, i.e. in
particular that the typing morphism are graph morphisms and not specifi-
cation morphisms. Therefore, the adhesiveness of the underlying category
is sufficient to apply the DPF framework in the context of the coupled
transformation framework presented in this thesis.

In this chapter, the definition of both categories Spec and GSpec is
based on the category Graph. Instead of Graph, it is possible to use other
base categories Base [33] to define corresponding categories Spec and
GSpec. There should not be any problems in generalizing the concepts and
results presented to arbitrary adhesive base categories Base. In addition,
in this general case, the step from category Spec to category GSpec has
the effect that GSpec is adhesive while Spec is not. An analog result we
should get for adhesive HLR categories. If we also get an analog result in
case of a weak adhesive category as base category is a question for future
research.

239

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools. Addison-Wesley,
Boston,USA, 2sn edition, 2006. ISBN 0321486811.

[2] AndroMDA. Project Web Site, 2014. http://www.andromda.org.

[3] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced Concepts and Tools for
In-Place EMF Model Transformation. In Dorina C. Petriu, Nico-
las Rouquette, and Øystein Haugen, editors, Proceedings of MoD-
ELS 2010: 13th International Conference on Model Driven Engineering
Languages and Systems, volume 6394 of Lecture Notes in Computer
Science, pages 121–135. Springer, 2010. ISBN 978-3-642-16144-5.
DOI 10.1007/978-3-642-16145-2_9.

[4] Colin Atkinson and Thomas Kühne. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 20(5):36–41, 2003.
DOI 10.1109/MS.2003.1231149.

[5] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. On-the-Fly
Emendation of Multi-level Models. In Antonio Vallecillo, Juha-
Pekka Tolvanen, Ekkart Kindler, Harald Störrle, and Dimitrios S.
Kolovos, editors, Proceedings of ECMFA 2012: 8th European Con-
ference on Modelling Foundations and Applications, volume 7349 of
Lecture Notes in Computer Science, pages 194–209. Springer, 2012.
DOI 10.1007/978-3-642-31491-9_16.

[6] Atlas Transformation Language. User Guide, 2009. http://wiki.
eclipse.org/ATL/User_Guide.

[7] Daniel Balasubramanian, Anantha Narayanan, Christopher P. van
Buskirk, and Gabor Karsai. The Graph Rewriting and Transforma-
tion Language: GReAT. Electronic Communications of the EASST, 1,
2006.

[8] Herman Balsters, Bert O. de Brock, and Stefan Conrad, editors. Pro-
ceedings of FoMLaDO 2000: 9th International Workshop on Foundations

241

http://www.andromda.org
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/978-3-642-31491-9_16
http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide

Bibliography

of Models and Languages for Data and Objects. Lecture Notes in Com-
puter Science. Springer, September 2001. ISBN 9783540422723.

[9] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth.
Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. In Umeshwar Dayal and Irving L. Traiger,
editors, Proceedings of SIGMOD 1987: 11th ACM International Con-
ference on Management of Data, pages 311–322. ACM, 1987.

[10] Richard Barker. Case*Method: Entity Relationship Modelling. Addison-
Wesley Professional, 1990. ISBN 978-0-201-41696-1.

[11] Michael Barr and Charles Wells. Category Theory for Computing Sci-
ence (3rd Edition). Les Publications CRM, Montreal, 1999. ISBN
2921120313.

[12] Daniela Berardi, Andrea Cali, Diego Calvanese, and Giuseppe Di
Giacomo. Reasoning on UML Class Diagrams. Artifical Intelligence,
168:70–118, 2005.

[13] Philip A. Bernstein, Todd J. Green, Sergey Melnik, and Alan Nash.
Implementing Mapping Composition. International Journal on Very
Large Data Bases, 17(2):333–353, 2008.

[14] Jean Bézivin. On the unification power of models. Software and Sys-
tems Modeling, 4(2):171–188, 2005. DOI 10.1007/s10270-005-0079-0.

[15] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of
the OMG/MDA Framework. In Proceedings of ASE 2001: 16th IEEE
International Conference on Automated Software Engineering, pages 273–
280, 2001. ISBN 978-0-7695-1426-0. DOI 10.1109/ASE.2001.989813.

[16] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal
foundation of consistent EMF model transformations by algebraic
graph transformation. Software and Systems Modeling, 11(2):227–250,
2012. DOI 10.1007/s10270-011-0199-7.

[17] Paul Boehm, Harald-Reto Fonio, and Annegret Habel. Amalga-
mation of Graph Transformations: A Synchronization Mechanism.
Journal of Computer and System Sciences, 34(2-3):377–408, June 1987.
ISSN 0022-0000. DOI 10.1016/0022-0000(87)90030-4.

[18] Marco Cadoli, Diego Calvanese, and Toni Mancini. Finite satisfia-
bility of UML class diagrams by Constraint Programming. In Pro-
ceedings of DL 2004: 1st International Workshop on Description Logics,
volume 104. CEUR-WS.org, 2004.

242

http://dx.doi.org/10.1007/s10270-005-0079-0
http://dx.doi.org/10.1109/ASE.2001.989813
http://dx.doi.org/10.1007/s10270-011-0199-7
http://dx.doi.org/10.1016/0022-0000(87)90030-4

Bibliography

[19] Noam Chomsky. Three Models for the Description of Lan-
guage. IEEE Transactions on Information Theory, 2(3):113–124, 1956.
DOI 10.1109/TIT.1956.1056813.

[20] Noam Chomsky. On Certain Formal Properties of
Grammars. Information and Control, 2(2):137–167, 1959.
DOI 10.1016/S0019-9958(59)90362-6.

[21] Antonio Cicchetti. Difference Representation and Conflict Management
in Model-Driven Engineering. PhD thesis, Department of Computer
Science, University of L’Aquila, Italy, January 2008.

[22] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Al-
fonso Pierantonio. Automating Co-evolution in Model-Driven
Engineering. In Proceedings of EDOC 2008: 12th International
IEEE Enterprise Distributed Object Computing Conference, pages
222–231. IEEE Computer Society, 2008. ISBN 978-0-7695-3373-5.
DOI 10.1109/EDOC.2008.44.

[23] Kajal T. Claypool, Jing Jin, and Elke A. Rundensteiner. SERF: Schema
Evalution through an Extensible, Re-usable and Flexible Framework.
In Proceedings of ACM CIKM 1998: 7th International Conference on Infor-
mation and Knowledge Management, pages 314–321. ACM, November
1998. ISBN 1-58113-061-9. DOI 10.1145/288627.288672.

[24] Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara
König. Sesqui-Pushout Rewriting. In Andrea Corradini, Hart-
mut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz Rozen-
berg, editors, Proceedings of ICGT 2006: 3nd International Conference
on Graph Transformations, volume 4178 of Lecture Notes in Computer
Science, pages 30–45. Springer, September 2006. ISBN 3-540-38870-2.
DOI 10.1007/11841883_4.

[25] Carlo Curino, Hyun Jin Moon, MyungWon Ham, and Carlo Zan-
iolo. The PRISM Workwench: Database Schema Evolution without
Tears. In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng,
editors, Proceedings of ICDE 1999: 25th International Conference on
Data Engineering, pages 1523–1526. Proceedings of ICDE 1999: 25th

International Conference on Data Engineering, 2009. ISBN 978-0-
7695-3545-6.

[26] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo.
Update Rewriting and Integrity Constraint Maintenance in a Schema
Evolution Support System: PRISM++. Proceedings of VLDB 2010:
36th International Conference on Very Large Database Endowment, 4(2):
117–128, 2010.

243

http://dx.doi.org/10.1109/TIT.1956.1056813
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1145/288627.288672
http://dx.doi.org/10.1007/11841883_4

Bibliography

[27] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo.
Automating the Database Schema Evolution Process. International
Journal on Very Large Data Bases, 22(1):73–98, 2013.

[28] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley Professional, June
2000. ISBN 978-0-201-30977-5.

[29] Krzysztof Czarnecki and Simon Helsen. Classification of Model
Transformation Approaches. In 2nd OOPSLA Workshop on Generative
Techniques in the Context of MDA, 2003.

[30] Juan de Lara and Gabriele Taentzer. Automated Model Transfor-
mation and Its Validation Using AToM3 and AGG. In Alan F.
Blackwell, Kim Marriott, and Atsushi Shimojima, editors, Proceed-
ings of Diagrams 2004: 3rd International Conference on Diagrammatic
Representation and Inference, volume 2980 of Lecture Notes in Com-
puter Science, pages 182–198. Springer, 2004. ISBN 3-540-21268-X.
DOI 10.1007/978-3-540-25931-2_18.

[31] Alin Deutsch and Val Tannen. MARS: A System for Publishing XML
from Mixed and Redundant Storage. International Journal on Very
Large Data Bases, pages 201–212, 2003.

[32] Zinovy Diskin. Generalized sketches as an algebraic graph-based
framework for semantic modeling and database design. Technical
Report 9701, University of Latvia, Riga, Latvia, August 1997.

[33] Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-
Oriented Visual Modeling. In Proceedings of ACCAT 2007: 2nd Work-
shop on Applied and Computational Category Theory, volume 203/6 of
Electronic Notes in Theoretical Computer Science, pages 19–41. Elsevier,
2008. DOI 10.1016/j.entcs.2008.10.041.

[34] Eclipse Modeling Framework. Project Web Site. http://www.

eclipse.org/emf/.

[35] Eclipse Xtext. Xtext. http://www.eclipse.org/Xtext.

[36] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer, March 2006.
ISBN 978-3-540-31187-4. DOI 10.1007/3-540-31188-2.

[37] Hartmut Ehrig, Frank Hermann, and Ulrike Prange. Cospan DPO
Approach: An Alternative for DPO Graph Transformation. EATCS
Bulletin, 98:139–149, 2009. URL http://www.eatcs.org/images/
bulletin/beatcs98.pdf.

244

http://dx.doi.org/10.1007/978-3-540-25931-2_18
http://dx.doi.org/10.1016/j.entcs.2008.10.041
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org/Xtext
http://dx.doi.org/10.1007/3-540-31188-2
http://www.eatcs.org/images/bulletin/beatcs98.pdf
http://www.eatcs.org/images/bulletin/beatcs98.pdf

Bibliography

[38] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Addison-Wesley, USA, 6th edition, 2010. ISBN
0136086209,978-0136086208.

[39] Claudia Ermel, Enrico Biermann, Johann Schmidt, and Angeline
Warning. Visual Modeling of Controlled EMF Model Transformation
using Henshin. Electronic Communications of the EASST, 32, 2010.

[40] Ronald Fagin. Inverting Schema Mappings. ACM Transactions on
Database Systems, 32(4), 2007.

[41] Fabrizio Ferrandina, Thorsten Meyer, Roberto Zicari, Guy Ferran,
and Joëlle Madec. Schema and Database Evolution in the O2 Object
Database System. In Umeshwar Dayal, Peter M. D. Gray, and Sho-
jiro Nishio, editors, Proceedings of VLDB 1995: 21th International Con-
ference on Very Large Databases, pages 170–181. Morgan Kaufmann,
September 1995. ISBN 1-55860-379-4.

[42] Martin Fowler. Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010. ISBN 0321712943.

[43] David S. Frankel and John Parodi. The MDA Journal: Model Driven
Architecture Straight From The Masters. Meghan-Kiffer Press, 2004.
ISBN 978-0-929652-25-2.

[44] Fujaba Developer Team. The Fujaba Tool Suite. http://www.fujaba.
de/.

[45] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin.
Managing Model Adaptation by Precise Detection of Metamodel
Changes. In Richard F. Paige, Alan Hartman, and Arend Rensink,
editors, Proceedings of ECMDA-FA 2009: 5th European Conference on
Model-Driven Architecture Foundations and Applications, volume 5562
of Lecture Notes in Computer Science, pages 34–49. Springer, June 2009.
ISBN 978-3-642-02673-7. DOI 10.1007/978-3-642-02674-4_4.

[46] Pérez González, Alberto Carlos, Fabian Buettner, Robert Clarisó,
and Jordi Cabot. EMFtoCSP: A Tool for the Lightweight Verification
of EMF Models. In Proceedings of FormSERA 2012: 1st Workshop on
Formal Methods in Software Engineering: Rigorous and Agile Approaches,
pages 44–50, Zurich, Suisse, June 2012. IEEE Computer Society. ISBN
978-1-4673-1907-2. DOI 10.1109/FormSERA.2012.6229788.

[47] Cesar Gonzalez-Perez and Brian Henderson-Sellers. Metamodelling
for Software Engineering. Wiley, 2008. ISBN 978-0-470-03036-3.

[48] Graphical Modeling Framework. Project Web Site. http://www.
eclipse.org/modeling/gmp.

245

http://www.fujaba.de/
http://www.fujaba.de/
http://dx.doi.org/10.1007/978-3-642-02674-4_4
http://dx.doi.org/10.1109/FormSERA.2012.6229788
http://www.eclipse.org/modeling/gmp
http://www.eclipse.org/modeling/gmp

Bibliography

[49] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software
Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools. Wiley, 2004. ISBN 978-0-471-20284-4.

[50] GrGen.NET: transformation of structures made easy. Project Web
Site. http://grgen.net.

[51] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards
Synchronizing Models with Evolving Metamodels. In Dalila Tamza-
lit, editor, Proceedings of MoDSE 2007: 1st International Workshop on
Model-Driven Software Evolution, pages 1–9, March 2007.

[52] Annegret Habel, Jürgen Müller, and Detlef Plump. Double-pushout
graph transformation revisited. Mathematical Structures in Computer
Science, 11(5):637–688, 2001. DOI 10.1017/S0960129501003425.

[53] Kahina Hassam, Salah Sadou, Vincent Le Gloahec, and Régis
Fleurquin. Assistance System for OCL Constraints Adaptation dur-
ing Metamodel Evolution. In Tom Mens, Yiannis Kanellopoulos,
and Andreas Winter, editors, Proceedings of CSMR 2011: 15th Euro-
pean Conference on Software Maintenance and Reengineering, pages 151–
160. IEEE Computer Society, March 2011. ISBN 978-0-7695-4343-7.
DOI 10.1109/CSMR.2011.21.

[54] Frank Hermann, Hartmut Ehrig, and Claudia Ermel. Transforma-
tion of Type Graphs with Inheritance for Ensuring Security in E-
Government Networks. In Marsha Chechik and Martin Wirsing,
editors, Proceedings of FASE 2009: 12th International Conference on
Fundamental Approaches to Software Engineering, volume 5503 of Lec-
ture Notes in Computer Science, pages 325–339. Springer, 2009. ISBN
978-3-642-00592-3. DOI 10.1007/978-3-642-00593-0_22.

[55] Markus Herrmannsdoerfer and Daniel Ratiu. Limitations of Au-
tomating Model Migration in Response to Metamodel Adaptation.
In Sudipto Ghosh, editor, Proceedings of MoDELS 2009: 12th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
volume 6002 of Lecture Notes in Computer Science, pages 205–219,
2009. ISBN 978-3-642-12260-6. DOI 10.1007/978-3-642-12261-3_20.

[56] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Jürgens.
Automatability of Coupled Evolution of Metamodels and Mod-
els in Practice. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl, and Markus Völter, editors, Proceedings of MoD-
ELS 2008: 11th International Conference on Model Driven Engineering
Languages and Systems, volume 5301 of Lecture Notes in Computer
Science, pages 645–659. Springer, 2008. ISBN 978-3-540-87874-2.
DOI 10.1007/978-3-540-87875-9_45.

246

http://grgen.net
http://dx.doi.org/10.1017/S0960129501003425
http://dx.doi.org/10.1109/CSMR.2011.21
http://dx.doi.org/10.1007/978-3-642-00593-0_22
http://dx.doi.org/10.1007/978-3-642-12261-3_20
http://dx.doi.org/10.1007/978-3-540-87875-9_45

Bibliography

[57] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Jürgens.
COPE - Automating Coupled Evolution of Metamodels and Mod-
els. In Sophia Drossopoulou, editor, Proceedings of ECOOP 2009: 23rd

European Conference on Object-Oriented Programming, volume 5653 of
Lecture Notes in Computer Science, pages 52–76. Springer, 2009. ISBN
978-3-642-03012-3. DOI 10.1007/978-3-642-03013-0_4.

[58] Markus Herrmannsdoerfer, Sander Vermolen, and Guido
Wachsmuth. An Extensive Catalog of Operators for the Coupled
Evolution of Metamodels and Models. In Brian A. Malloy, Steffen
Staab, and Mark van den Brand, editors, Proceedings of SLE 2010:
3rd International Conference on Software Language Engineering, volume
6563 of Lecture Notes in Computer Science, pages 163–182. Springer,
2010. ISBN 978-3-642-19439-9. DOI 10.1007/978-3-642-19440-5_10.

[59] Markus Herrmannsdörfer. Evolutionary Metamodeling. PhD thesis,
Department of Informatics, Technical University Munich, Germany,
2011.

[60] Wolfgang Hesse. More matters on (meta-)modelling: remarks on
Thomas Kühne’s “matters”. Software and Systems Modeling, 5(4):
387–394, 2006. DOI 10.1007/s10270-006-0033-9.

[61] Tassilo Horn and Jürgen Ebert. The GReTL Transformation Lan-
guage. In Jordi Cabot and Eelco Visser, editors, Proceedings of
ICMT 2011: 4rd International Conference on Theory and Practice of
Model Transformation, volume 6707 of Lecture Notes in Computer Sci-
ence, pages 183–197. Springer, June 2011. ISBN 978-3-642-21731-9.
DOI 10.1007/978-3-642-21732-6_13.

[62] Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Mod-
elling and Validation of Concurrent Systems. Springer, 2009. ISBN
978-3-642-00283-0. DOI 10.1007/b95112.

[63] Peter T. Johnstone, Stephen Lack, and Pawel Sobocinski. Qua-
sitoposes, Quasiadhesive Categories and Artin Glueing. In Till
Mossakowski, Ugo Montanari, and Magne Haveraaen, editors, Pro-
ceedings of CALCO 2007: 2rd International Conference on Algebra and
Coalgebra in Computer Science, volume 4624 of Lecture Notes in Com-
puter Science, pages 312–326. Springer, 2007. ISBN 978-3-540-73857-2.
DOI 10.1007/978-3-540-73859-6_21.

[64] Frédéric Jouault and Jean Bézivin. KM3: A DSL for Metamodel
Specification. In Roberto Gorrieri and Heike Wehrheim, editors,
Proceedings of FMOODS 2006: 8th International Conference on Formal
Methods for Open Object-Based Distributed Systems, volume 4037 of

247

http://dx.doi.org/10.1007/978-3-642-03013-0_4
http://dx.doi.org/10.1007/978-3-642-19440-5_10
http://dx.doi.org/10.1007/s10270-006-0033-9
http://dx.doi.org/10.1007/978-3-642-21732-6_13
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1007/978-3-540-73859-6_21

Bibliography

Lecture Notes in Computer Science, pages 171–185. Springer, June 2006.
ISBN 3-540-34893-X. DOI 10.1007/11768869_14.

[65] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A Rule-Based
Approach to the Semantic Lifting of Model Differences in the
Context of Model Versioning. In Proceedings of ASE 2011: 26st

IEEE/ACM International Conference on Automated Software Engi-
neering, pages 163–172. IEEE Computer Society, November 2011.
DOI 10.1109/ASE.2011.6100050.

[66] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. Consistency-
Preserving Edit Scripts in Model Versioning. In Proceedings of ASE
2013: 28st IEEE/ACM International Conference on Automated Software
Engineering, November 2013.

[67] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley, 2008. ISBN 978-0-470-03666-2.

[68] Stuart Kent. Model Driven Engineering. In Michael Butler, Luigia
Petre, and Kaisa Sere, editors, Proceedings of IFM 2002: 3rd Inter-
national Conference on Integrated Formal Methods, Lecture Notes in
Computer Science, pages 286–298. Springer, 2002. ISBN 978-3-540-
43703-1. DOI 10.1007/3-540-47884-1_16.

[69] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley
Professional, 2003. ISBN 978-0-321-19442-8.

[70] Harald König. Trouble with Wrong Adjoints. Technical Report
02012/05, Fakultät für Informatik und Wirtschaftsinformatik, Fach-
hochschule für die Wirtschaft Hannover, Germany, 2012. http://
fhdwdev.ha.bib.de/cgi-bin/forschungsreihe.

[71] Harald König, Michael Löwe, and Christoph Schulz. Model Trans-
formation and Induced Instance Migration: A Universal Frame-
work. In Adenilso da Silva Simão and Carroll Morgan, editors, Pro-
ceedings of SBMF 2011: 14th Brazilian Symposium on Formal Methods,
Foundations and Applications, volume 7021 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 2011. ISBN 978-3-642-25031-6.
DOI 10.1007/978-3-642-25032-3_1.

[72] Harald König, Uwe Wolter, and Michael Löwe. Characterizing Van
Kampen Squares via Descent Data. In Ulrike Golas and Thomas
Soboll, editors, Proceedings of ACCAT 2012: 7nd Workshop on Ap-
plied and Computational Category Theory, volume 93 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 61–81. Elsevier, 2012.
DOI 10.4204/EPTCS.93.4.

248

http://dx.doi.org/10.1007/11768869_14
http://dx.doi.org/10.1109/ASE.2011.6100050
http://dx.doi.org/10.1007/3-540-47884-1_16
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe
http://dx.doi.org/10.1007/978-3-642-25032-3_1
http://dx.doi.org/10.4204/EPTCS.93.4

Bibliography

[73] Christian Krause, Johannes Dyck, and Holger Giese. Metamodel-
Specific Coupled Evolution Based on Dynamically Typed Graph
Transformations. In Keith Duddy and Gerti Kappel, editors, Proceed-
ings of ICMT 2013: 6rd International Conference on Theory and Practice
of Model Transformation, volume 7909 of Lecture Notes in Computer
Science, pages 76–91. Springer, June 2013.

[74] Thomas Kühne. Matters of (meta-)modeling. Software and Systems
Modeling, 5(4):369–385, 2006. DOI 10.1007/s10270-006-0017-9.

[75] Thomas Kühne. Clarifying matters of (meta-)modeling: an au-
thor’s reply. Software and Systems Modeling, 5(4):395–401, 2006.
DOI 10.1007/s10270-006-0034-8.

[76] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez.
Model-Based DSL Frameworks. In Proceedings of OOPSLA 2006: 21st

Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 602–616. ACM, 2006. ISBN
978-1-59593-491-8. DOI 10.1145/1176617.1176632.

[77] Stephen Lack and Pawel Sobocinski. Adhesive Categories. In Igor
Walukiewicz, editor, Proceedings of FoSSaCS 2004: 7th Foundations of
Software Science and Computation Structures, volume 2987 of Lecture
Notes in Computer Science, pages 273–288, 2004. ISBN 3-540-21298-1.
DOI 10.1007/978-3-540-24727-2_20.

[78] Stephen Lack and Pawel Sobocinski. Toposes Are Adhesive. In An-
drea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and
Grzegorz Rozenberg, editors, Proceedings of ICGT 2006: 3nd Inter-
national Conference on Graph Transformations, volume 4178 of Lecture
Notes in Computer Science, pages 184–198. Springer, September 2006.
ISBN 3-540-38870-2. DOI 10.1007/11841883_14.

[79] Ralf Lämmel. Grammar Adaptation. In José Nuno Oliveira and
Pamela Zave, editors, Proceedings of FME 2001: Formal Meth-
ods for Increasing Software Productivity: 1st International Symposium
of Formal Methods Europe, volume 2021 of Lecture Notes in Com-
puter Science, pages 550–570. Springer, 2001. ISBN 3-540-41791-5.
DOI 10.1007/3-540-45251-6_32.

[80] Yngve Lamo, Florian Mantz, Adrian Rutle, and Juan de Lara. A
declarative and bidirectional model transformation approach based
on graph co-spans. In Proceedings of the 15th Symposium on Prin-
ciples and Practice of Declarative Programming, PPDP ’13, pages 1–
12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2154-9.
DOI 10.1145/2505879.2505900.

249

http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0034-8
http://dx.doi.org/10.1145/1176617.1176632
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/11841883_14
http://dx.doi.org/10.1007/3-540-45251-6_32
http://dx.doi.org/10.1145/2505879.2505900

Bibliography

[81] Yngve Lamo, Xiaoliang Wang, Florian Mantz, Øyvind Bech, Anders
Sandven, and Adrian Rutle. DPF Workbench: A Multi-Level Lan-
guage Workbench for MDE. Proceedings of the Estonian Academy of
Sciences, 62:3–15, March 2013. DOI 10.3176/proc.2013.1.02.

[82] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems:
A Cyber-Physical Systems Approach. http://leeseshia.org, 2011.

[83] Maurizio Lenzerini and Paolo Nobili. On the satisfiabil-
ity of dependency constraints in entity-relationship schemata.
Information Systems, 15(4):453–461, 1990. ISSN 0306-4379.
DOI 10.1016/0306-4379(90)90048-T.

[84] Tihamer Levendovszky, Daniel Balasubramanian, Anantha
Narayanan, Feng Shi, Chris Buskirk, and Gabor Karsai. A semi-
formal description of migrating domain-specific models with evolv-
ing domains. Software and Systems Modeling, pages 1–17, January
2013. ISSN 1619–1366. DOI 10.1007/s10270-012-0313-5.

[85] Xue Li. A Survey of Schema Evolution in Object-Oriented Databases.
In Proceedings of TOOLS 1999: 31rd International Conference on Objects,
Components, Models and Patterns, pages 362–371. IEEE Computer So-
ciety, 1999. ISBN 0-7695-0393-4.

[86] Peter Linz. An Introduction to Formal Language and Automata. Jones
and Bartlett Publishers, Inc., USA, 2006. ISBN 0763737984.

[87] Michael Löwe. Algebraic Approach to Single-Pushout Graph Trans-
formation. Theoretical Computer Science, 109(1&2):181–224, 1993.
DOI 10.1016/0304-3975(93)90068-5.

[88] Michael Löwe. Graph Rewriting in Span-Categories. Techni-
cal Report 02010/02, Fakultät für Informatik und Wirtschaftsinfor-
matik, Fachhochschule für die Wirtschaft Hannover, Germany, 2010.
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe.

[89] Michael Löwe, Harald König, Christoph Schulz, and Marius
Schultchen. Algebraic Graph Transformations with Inheritance.
Technical report, Fakultät für Informatik und Wirtschaftsinformatik,
Fachhochschule für die Wirtschaft Hannover, Germany, March 2013.
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe.

[90] Florian Mantz. Syntactic Quality Assurance Techniques for Software
Models. Diploma thesis, Department of Mathematics and Informat-
ics, Philipps University in Marburg, Germany, August 2009.

250

http://dx.doi.org/10.3176/proc.2013.1.02
http://dx.doi.org/10.1016/0306-4379(90)90048-T
http://dx.doi.org/10.1007/s10270-012-0313-5
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe
http://fhdwdev.ha.bib.de/cgi-bin/forschungsreihe

Bibliography

[91] Florian Mantz and Uwe Wolter. The Advantage of Using Co-span
Graph Transformations for Meta-model Evolution. In Proceedings of
NWPT 2013: 25rd Nordic Workshop on Programming Theory, pages 1–4,
November 2013.

[92] Florian Mantz, Alessandro Rossini, Adrian Rutle, Yngve Lamo, and
Uwe Wolter. Towards a Formal Approach to Metamodel Evolution.
In Proceedings of NWPT 2010: 22nd Nordic Workshop on Programming
Theory, pages 52–54, November 2010. ISBN 978-952-12-2478-2.

[93] Florian Mantz, Stefan Jurack, and Gabriele Taentzer. Graph Trans-
formation Concepts for Meta-Model Evolution Guaranteeing Per-
manent Type conformance Throughout Model Migration. In Andy
Schürr, Dániel Varró, and Gergely Varró, editors, Proceedings of AG-
TIVE 2011: 4th International Symposium on Applications of Graph Trans-
formations with Industrial Relevance, volume 7233 of Lecture Notes in
Computer Science, pages 3–18. Springer, 2011. ISBN 978-3-642-34175-
5. DOI /10.1007/978-3-642-34176-2_3.

[94] Florian Mantz, Gabriele Taentzer, and Yngve Lamo. Co-
Transformation of Type and Instance Graphs Supporting Merging
of Types with Retyping. In Proceedings of GCM 2012: 4th International
Workshop on Graph Computation Models, pages 47–58, September 2012.
http://gcm2012.imag.fr/proceedingsGCM2012.pdf.

[95] Florian Mantz, Gabriele Taentzer, and Yngve Lamo. Well-formed
Model Co-evolution with Customizable Model Migration. Electronic
Communications of the EASST, 58:1–13, March 2013. ISSN 1863-2122.

[96] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transfor-
mation. Electronic Notes in Theoretical Computer Science, 152:125–142,
2006. DOI 10.1016/j.entcs.2005.10.021.

[97] Bart Meyers and Hans Vangheluwe. A framework for evolution
of modelling languages. Science of Computer Programming, 76(12):
1223–1246, 2011. DOI 10.1016/j.scico.2011.01.002.

[98] Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan
Sprinkle. A generic in-place transformation-based approach to struc-
tured model co-evolution. Electronic Communications of the EASST,
42, 2011.

[99] MOLA - MOdel transformation LAnguage. Project Web Site. http://
mola.mii.lu.lv.

[100] Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composition of
Mappings Given by Embedded Dependencies. ACM Transactions on
Database Systems, 32(1):4, 2007.

251

http://dx.doi.org//10.1007/978-3-642-34176-2_3
http://gcm2012.imag.fr/proceedingsGCM2012.pdf
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://mola.mii.lu.lv
http://mola.mii.lu.lv

Bibliography

[101] Isaac Nassi and Ben Shneiderman. Flowchart techniques for struc-
tured programming. ACM SIGPLAN Notices, 8(8):12–26, August
1973. ISSN 0362-1340. DOI 10.1145/953349.953350.

[102] OASIS. Web Services Business Process Execution Language (WS-BPEL)
Version 2.0. Organization for the Advancement of Structured Infor-
mation Standards (OASIS), April 2007.

[103] Object Management Group. Web site. http://www.omg.org.

[104] Object Management Group. MDA Guide, June 2003. http://www.
omg.org/cgi-bin/doc?omg/03-06-01.

[105] Object Management Group. Object Constraint Language Specification,
February 2010. http://www.omg.org/spec/OCL/2.2/.

[106] Object Management Group. Query/View/Transformation Specification,
January 2011. http://www.omg.org/spec/QVT/1.1.

[107] Object Management Group. Unified Modeling Language Specification,
August 2011. http://www.omg.org/spec/UML/2.4.1/.

[108] Object Management Group. XML Metadata Interchange Specification,
August 2011. http://www.omg.org/spec/XMI/2.4.1/.

[109] Object Management Group. Object Constraint Language Specification,
January 2012. http://www.omg.org/spec/OCL/2.3.1/.

[110] Object Management Group. Meta-Object Facility Specification, June
2013. http://www.omg.org/spec/MOF/2.4.1/.

[111] OMG Model Driven Architecture. Web Site. http://www.omg.org/
mda/.

[112] Fernando Orejas and Leen Lambers. Symbolic Attributed Graphs
for Attributed Graph Transformation. Electronic Communications of
the EASST, 30:1–25, February 2010. ISSN 1863-2122.

[113] Fernando Orejas, Hartmut Ehrig, and Ulrike Prange. Reasoning
with graph constraints. Formal Aspects of Computing, 22(3-4):385–
422, 2010. DOI 10.1007/s00165-009-0116-9.

[114] PETE: Eclipse Prolog EMF Transformation Engine. Project Web
Site. http://www4.informatik.tu-muenchen.de/~schaetz/PETE/
PETEFrame.html.

252

http://dx.doi.org/10.1145/953349.953350
http://www.omg.org
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/QVT/1.1
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/XMI/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://dx.doi.org/10.1007/s00165-009-0116-9
http://www4.informatik.tu-muenchen.de/~schaetz/PETE/PETEFrame.html
http://www4.informatik.tu-muenchen.de/~schaetz/PETE/PETEFrame.html

Bibliography

[115] Randal J. Peters and Ken Barker. Change Propagation in an Ax-
iomatic Model of Schema Evolution for Objectbase Management
Systems. In Herman Balsters, Bert O. de Brock, and Stefan Con-
rad, editors, Proceedings of FoMLaDO 2000: 9th International Workshop
on Foundations of Models and Languages for Data and Objects, Lecture
Notes in Computer Science, pages 142–162. Springer, September
2000. ISBN 9783540422723.

[116] John F. Roddick. Schema Evolution in Database Systems - An An-
notated Bibliography. SIGMOD Record, 21(4):35–40, 1992.

[117] Louis M. Rose, Markus Herrmannsdoerfer, James R. Williams, Dim-
itrios S. Kolovos, Kelly Garcés, Richard F. Paige, and Fiona A. C.
Polack. A Comparison of Model Migration Tools. In Dorina C.
Petriu, Nicolas Rouquette, and Øystein Haugen, editors, Proceedings
of MoDELS 2010: 13th International Conference on Model Driven Engi-
neering Languages and Systems, volume 6394 of Lecture Notes in Com-
puter Science, pages 61–75. Springer, 2010. ISBN 978-3-642-16144-5.
DOI 10.1007/978-3-642-16145-2_5.

[118] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona
A. C. Polack. Model Migration with Epsilon Flock. In Lau-
rence Tratt and Martin Gogolla, editors, Proceedings of ICMT
2010: 3rd International Conference on Theory and Practice of Model
Transformation, volume 6142 of Lecture Notes in Computer Sci-
ence, pages 184–198. Springer, 2010. ISBN 978-3-642-13687-0.
DOI 10.1007/978-3-642-13688-7_13.

[119] Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek,
Pieter Van Gorp, Sebastian Buchwald, Tassilo Horn, Elina Kalnina,
Andreas Koch, Kevin Lano, Bernhard Schätz, and Manuel Wimmer.
Graph and Model Transformation Tools for Model Migration: Em-
pirical Results from the Transformation Tool Contest. Software and
Systems Modeling, tbd, 2012. DOI 10.1007/s10270-012-0245-0.

[120] Alessandro Rossini. Diagram Predicate Framework meets Model Version-
ing and Deep Metamodelling. PhD thesis, Department of Informatics,
University of Bergen, Norway, 2011.

[121] Adrian Rutle. Diagram Predicate Framework: A Formal Approach to
MDE. PhD thesis, Department of Informatics, University of Bergen,
Norway, 2010.

[122] Christoph Schulz, Michael Löwe, and Harald König. Composition of
Model Transformations: A Categorical Framework. In Rohit Gheyi
and David A. Naumann, editors, Proceedings of SBMF 2012: 15th

253

http://dx.doi.org/10.1007/978-3-642-16145-2_5
http://dx.doi.org/10.1007/978-3-642-13688-7_13
http://dx.doi.org/10.1007/s10270-012-0245-0

Bibliography

Brazilian Symposium on Formal Methods, Foundations and Applications,
volume 7498 of Lecture Notes in Computer Science, pages 163–178.
Springer, 2012. DOI 10.1007/978-3-642-33296-8_13.

[123] Andy Schürr. Specification of Graph Translators with Triple Graph
Grammars. In Ernst W. Mayr, Gunther Schmidt, and Gottfried Tin-
hofer, editors, Proceedings of WG 1994: 20th International Workshop
on Graph-Theoretic Concepts in Computer Science, volume 903 of Lec-
ture Notes in Computer Science, pages 151–163. Springer, 1994. ISBN
3-540-59071-4. DOI 10.1007/3-540-59071-4_45.

[124] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003.
DOI 10.1109/MS.2003.1231147.

[125] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Development. IEEE Soft-
ware, 20(5):42–45, 2003.

[126] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating
System Concepts. Wiley, 9th edition, 2012. ISBN 1118063333,978-
1118063330.

[127] Jonathan Sprinkle and Gabor Karsai. A Domain-Specific Visual Lan-
guage for Domain Model Evolution. Journal of Visual Languages and
Computing, 15(3–4):291–307, 2004. DOI 10.1016/j.jvlc.2004.01.006.

[128] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[129] Thomas Stahl and Markus Völter. Model-Driven Software Develop-
ment: Technology, Engineering, Management. Wiley, 2006. ISBN 978-0-
470-02570-3.

[130] A. Standards and Standards Association of Australia. Information
Processing - Documentation Symbols and Conventions for Data, Pro-
gram and System Flowcharts, Program Network Charts and System Re-
sources Charts. Australian standard. Standards Australia, 1987. ISBN
9780726247279.

[131] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0 (2nd Edition).
Addison-Wesley Professional, 2008. ISBN 978-0-321-33188-5.

[132] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Chal-
lenges in Model-Driven Software Engineering. In Michel R. V. Chau-
dron, editor, Proceedings of MoDELS 2008: 11th International Conference
on Model Driven Engineering Languages and Systems, volume 5421 of
Lecture Notes in Computer Science, pages 35–47. Springer, September
2008. ISBN 978-3-642-01647-9. DOI 10.1007/978-3-642-01648-6_4.

254

http://dx.doi.org/10.1007/978-3-642-33296-8_13
http://dx.doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1016/j.jvlc.2004.01.006
http://dx.doi.org/10.1007/978-3-642-01648-6_4

Bibliography

[133] Gabriele Taentzer. Parallel and Distributed Graph Transformation: For-
mal Description and Application to Communication-Based Systems. PhD
thesis, Technical University of Berlin, 1996.

[134] Gabriele Taentzer. Instance Generation from Type Graphs with Ar-
bitrary Multiplicities. Electronic Communications of the EASST, 47,
2012.

[135] Gabriele Taentzer and Martin Beyer. Amalgamated Graph Trans-
formations and Their Use for Specifying AGG - an Algebraic Graph
Grammar System. In Hans Jürgen Schneider and Hartmut Ehrig,
editors, Dagstuhl Seminar on Graph Transformations in Computer Sci-
ence, volume 776 of Lecture Notes in Computer Science, pages 380–394.
Springer, 1994. ISBN 3-540-57787-4. DOI 10.1007/3-540-57787-4_24.

[136] Gabriele Taentzer, Florian Mantz, and Yngve Lamo. Co-
Transformation of Graphs and Type Graphs With Application to
Model Co-Evolution. In Hartmut Ehrig, Gregor Engels, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, Proceedings of ICGT
2012: 6nd International Conference on Graph Transformations, volume
7562 of Lecture Notes in Computer Science, pages 326–340. Springer,
2012. ISBN 978-3-642-33653-9.

[137] Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and Yngve
Lamo. Customizable Model Migration Schemes for Meta-model
Evolutions with Multiplicity Changes. In Proceedings of MoDELS
2013: 16th International Conference on Model Driven Engineering Lan-
guages and Systems, Lecture Notes in Computer Science, pages 254–
270. Springer, 2013.

[138] The EMF Henshin Transformation Tool. Project Web Site, 2010.
http://www.eclipse.org/modeling/emft/henshin/.

[139] The Entity MetaEdit+ Workbench. Project Web Site. http://www.
metacase.com/mep/.

[140] UML RSDS Model Transformation and Model-Driven Development
Tools. Project Web Site. http://www.dcs.kcl.ac.uk/staff/kcl/
uml2web/.

[141] Mark van den Brand, Zvezdan Protic, and Tom Verhoeff. A Generic
Solution for Syntax-Driven Model Co-evolution. In Judith Bishop
and Antonio Vallecillo, editors, Proceedings of TOOLS 2011: 49th Inter-
national Conference on Objects, Components, Models and Patterns, vol-
ume 6705 of Lecture Notes in Computer Science, pages 36–51. Springer,
June 2011. DOI 10.1007/978-3-642-21952-8_5.

255

http://dx.doi.org/10.1007/3-540-57787-4_24
http://www.eclipse.org/modeling/emft/henshin/
http://www.metacase.com/mep/
http://www.metacase.com/mep/
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/
http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/
http://dx.doi.org/10.1007/978-3-642-21952-8_5

Bibliography

[142] Dániel Varró and András Balogh. The model transformation lan-
guage of the VIATRA2 framework. Science of Computer Programming,
68(3):214–234, 2007. DOI 10.1016/j.scico.2007.05.004.

[143] Sander Vermolen and Eelco Visser. Heterogeneous Coupled Evolu-
tion of Software Languages. In Krzysztof Czarnecki, Ileana Ober,
Jean-Michel Bruel, Axel Uhl, and Markus Völter, editors, Proceed-
ings of MoDELS 2008: 11th International Conference on Model Driven
Engineering Languages and Systems, volume 5301 of Lecture Notes in
Computer Science, pages 630–644. Springer, 2008. ISBN 978-3-540-
87874-2.

[144] Sander Vermolen, Guido Wachsmuth, and Eelco Visser. Reconstruct-
ing Complex Metamodel Evolution. In Anthony M. Sloane and Uwe
Aßmann, editors, Proceedings of SLE 2011: 4rd International Conference
on Software Language Engineering, volume 6940 of Lecture Notes in
Computer Science, pages 201–221. Springer, July 2011. ISBN 978-3-
642-28829-6. DOI 10.1007/978-3-642-28830-2.

[145] Eelco Visser. WebDSL: A Case Study in Domain-Specific Language
Engineering. In Ralf Lämmel, Joost Visser, and Jo ao Saraiva, editors,
Proceedings of GTTSE 2007: Generative and Transformational Techniques
in Software Engineering II, International Summer School, volume 5235
of Lecture Notes in Computer Science, pages 291–373. Springer, 2007.
ISBN 978-3-540-88642-6. DOI 10.1007/978-3-540-88643-3_7.

[146] Guido Wachsmuth. Metamodel Adaptation and Model Co-
adaptation. In Erik Ernst, editor, Proceedings of ECOOP 2007: 21st

European Conference on Object-Oriented Programming, volume 4609 of
Lecture Notes in Computer Science, pages 600–624. Springer, July 2007.
DOI 10.1007/978-3-540-73589-2_28.

[147] Dennis Wagelaar, Ludovico Iovino, Davide Di Ruscio, and Al-
fonso Pierantonio. Translational Semantics of a Co-evolution Spe-
cific Language with the EMF Transformation Virtual Machine. In
Zhenjiang Hu and Juan de Lara, editors, Proceedings of ICMT
2012: 5rd International Conference on Theory and Practice of Model
Transformation, volume 7307 of Lecture Notes in Computer Sci-
ence, pages 192–207. Springer, May 2012. ISBN 978-3-642-30475-0.
DOI 10.1007/978-3-642-30476-7.

[148] WebML. Project Web Site, 2014. http://www.webml.org/.

[149] Manuel Wimmer, Angelika Kusel, Johannes Schönböck, Werner
Retschitzegger, Wieland Schwinger, and Gerti Kappel. On Using
Inplace Transformations for Model Co-evolution. In Proceedings of

256

http://dx.doi.org/10.1016/j.scico.2007.05.004
http://dx.doi.org/10.1007/978-3-642-28830-2
http://dx.doi.org/10.1007/978-3-540-88643-3_7
http://dx.doi.org/10.1007/978-3-540-73589-2_28
http://dx.doi.org/10.1007/978-3-642-30476-7
http://www.webml.org/

Bibliography

MtATL 2010: 2nd International Workshop on Model Transformation with
ATL. INRIA & Ecole des Mines de Nantes, 2010.

[150] Uwe Wolter and Zinovy Diskin. The Next Hundred Diagram-
matic Specification Techniques – An Introduction to Generalized
Sketches. Technical Report 358, Department of Informatics, Univer-
sity of Bergen, Norway, July 2007.

[151] Uwe Wolter and Zinovy Diskin. From Indexed to Fibred Semantics
– The Generalized Sketch File. Technical Report 361, Department of
Informatics, University of Bergen, Norway, October 2007.

[152] Uwe Wolter and Florian Mantz. The Diagram Predicate Framework
in View of Adhesive Categories. Technical Report 405, Department
of Informatics, University of Bergen, Norway, February 2013.

[153] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management
Systems for Grid Computing. Journal of Grid Computing, 3(3–4):171–
200, 2005. DOI 10.1007/s10723-005-9010-8.

257

http://dx.doi.org/10.1007/s10723-005-9010-8

	Preface
	Scientific Environment
	Abstract
	Abstract (Deutsch)
	Abstract (Norsk)
	Introduction
	Motivation
	Problem Statement
	Results
	Overview

	Model-Driven Engineering
	Introduction
	Modeling in Software Engineering
	Meta-modeling
	Constraints
	Model Transformation
	Model Migration
	General Approaches to Model Migration
	Correctness of Model Migrations
	Reusability of Model Migrations
	Customization of Model Migrations

	Graph-based Modeling
	Graphs supporting Attribution
	Graphs supporting Inheritance
	Graphs supporting Language Constraints

	Adhesive Categories and Graph Transformations
	Adhesive Categories
	Properties of (Adhesive) Categories
	Graph Transformations based on Cospans
	Cospan Double Pushout Approach
	Cospan Sesqui Pushout Approach
	Summary of Approach Differences
	Application Condition
	Transformation Variants

	Detecting Evolution Steps by Graph Transformation Rules
	Introduction
	Detecting Evolution Steps with Cospan Rules
	Detecting Evolution Steps with Span Rules
	Advantages of Cospan Rule Detection

	Coupled Transformations based on Graph Transformations
	Coupled Transformations
	Constructing Coupled Transformations (Left Part)
	Constructing Coupled Transformations (Right Part)
	Standard Construction for Coupled Transformations
	Span versus Cospan Transformations

	Model Migration Schemes based on Coupled Transformations
	Migration by Amalgamated Graph Transformations
	Migration Rules from Migration Schemes
	Default Migration Schemes

	Co-Evolution of Object-Oriented Models
	Introduction
	Supported Change Operations
	Merging of Model Elements
	Retyping Model Elements to Subtypes
	Model Migration Schemes
	Classification of Meta-model Changes Revisited

	Towards Model Migration Ensuring Constraint Satisfaction
	Introduction
	Resolution Procedure
	Finitely Satisfiable Meta-models wrt. Multiplicities
	Deriving Constraint Resolution Rules
	Resolving Multiplicity Constraint Violations

	Migrating UML Activity Models from Version 1.4 to 2.2
	About the Transformations Tool Contest 2010
	The Migration Task
	The DPF Text Modeling Framework
	Model Migration by Coupled Transformations
	On the Results of the Transformation Tool Contest

	Related Work
	Schema Evolution
	Meta-model Evolution
	Correctness Properties of Model Migrations
	Reuse of Migration Knowledge
	Deduction of Model Migration Specifications
	Customization of Model Migration Specifications
	Employed Model Transformation Approaches

	Conclusion and Future Work
	Summary
	Outlook

	Appendices
	Proofs of Auxiliary Propositions
	Generalizing the Special Pullback-Pushout Property
	On the Stability of Final Pullback Complements

	Case Study: Adhesiveness
	Categories of Simple Directed Graphs
	Pushouts/Pullbacks of Simple Directed Graphs
	Van Kampen Property for Simple Graphs

	Category of (Directed Multi-)Graphs
	Pushouts/Pullbacks of Directed Multi-Graphs
	Van Kampen Property for Directed Multi-Graphs

	Category of DPF Specifications
	Pushouts and Pullbacks in Spec
	Van Kampen Property in Spec

	The Category of Generalized DPF Specifications
	Pushouts and Pullbacks in GSpec
	Van Kampen Property in GSpec

	Conclusion

	Bibliography

