Transparent Model Transformation:
Turning Your Favourite Model Editor into a
Transformation Tool

Vlad Acretoaie!, Harald Storrle!, and Daniel Striiber?

! Technical University of Denmark, Kgs. Lyngby, Denmark
{rvac,hsto}@dtu.dk
2 Philipps-Universitat Marburg, Marburg, Germany
strueber@mathematik.uni-marburg.de

Abstract. Current model transformation languages are supported by
dedicated editors, often closely coupled to a single execution engine. We
introduce Transparent Model Transformation, a paradigm enabling mod-
elers to specify transformations using a familiar tool: their model editor.
We also present VMTL, the first transformation language implementing
the principles of Transparent Model Transformation: syntax, environ-
ment, and execution transparency. VMTL works by weaving a trans-
formation aspect into its host modeling language. We show how our
implementation of VMTL turns any model editor into a flexible model
transformation tool sharing the model editor’s benefits, transparently.

1 Introduction

The science and practice of model transformation (MT) has made significant
progress since it was first identified as the “heart and soul” of Model-Driven En-
gineering (MDE) [12]. A varied array of model transformation languages (MTLs)
have been proposed since then, each with its own benefits and drawbacks.

While it has found adoption in specialized domains such as embedded systems
development, MDE remains outside the mainstream of software development
practice. Empirical evidence identifies the poor quality of tool support as one of
the main obstacles in the path of large-scale industrial adoption of MDE [18].
Considering the central role of MT in MDE, as well as the experimental nature
of most MT tools, we infer that at least some of the criticism addressed to MDE
tool quality directly concerns MT tools.

Most (if not all) executable MTLs currently come with dedicated tools that
modelers must learn and use in order to specify and execute transformations.
But modelers already have at their disposal at least one mature, production-
ready tool which they know how to use: their model editor. This observation
leads to our central research question:

Is it possible to explicitly specify model transformations using
only existing, conventional model editors as an interface?

In this paper we show that this question can be answered positively by following
the three principles of Transparent Model Transformation (TMT):

1. The MTL can express transformations at the syntax level supported by the
model editor. In most cases this is concrete syntax, but abstract syntax,
containment tree, and textual interfaces are also common.

2. Users are free to adopt their preferred editor for each transformation artefact:
the source and target model(s), as well as the transformation specification.

3. Transformations can be compiled to multiple executable representations.

We propose the Visual Model Transformation Language (VMTL) as the first
MTL following the principles of TMT. Fig. 1 positions VMTL in the current
model transformation landscape and highlights its key benefits. Namely, VMTL
is a declarative language designed to be woven at the syntactic level into any
host modeling language, turning that modeling language into a transformation
language for models conforming to it. VMTL adopts any editor of the host
modeling language as its own, effectively turning it into a transformation editor.
Transformations are subsequently executed by compilation to existing MTLs,
which we exemplify in this paper by compiling to the Henshin [3] MTL.

The remainder of this paper is structured as follows: Section 2 introduces
VMTL via a motivating example, Section 3 provides an overview of VMTL’s
main features, Section 4 lays out the fundamentals of TMT with VMTL as
an application, Section 5 describes our implementation of VMTL, Section 6
discusses the scope and limitations of VMTL, Section 7 summarizes related
work, and Section 8 concludes the paper.

Syntactic Style

VMTL Key Benefits
% = Transformation is an
c c > aspect woven into (any)
,8 g < L host modeling language.
g § VMTL = Use (any) ho.st modeling
5 S oo language editor to speci-
"g S fy transformations.
= . .
O c — P = Compile transformations
=g e Ne
5 E o Ji to (any) model transfor-
s 2 o mation engine.
0oL X
se S
g 3
a eeoe eoe .)
An MTDE includes the whole MT
Atlas Henshin tool chain: editor for transforma-
tion code or models, transforma-
|mperative Declarative tion translator or interpreter, ana-

lysis tools like debuggers, profilers,
or tracers, version control, etc.

Fig. 1. VMTL and its key benefits in the current model transformation landscape

2 DMotivating Example

Consider a UML [10] Use Case model in which an Actor is connected by As-
sociations to two Use Cases, one of which extends the other. The described
scenario is a refactoring candidate because the extending Use Case “typically
defines behavior that may not necessarily be meaningful by itself” [10]. Deleting
the Association between the Actor and the extending Use Case is recommended.

A VMTL specification for this transformation is shown in Fig. 2 (top). VMTL
employs textual annotations for a number of purposes, such as specifying model
manipulation operations. The delete annotation is used here to state that the of-
fending Association must be removed from the model. In the case of UML, Com-
ments are an appropriate vehicle for VMTL annotations. Annotation-carrying
comments are identified by the <<VM Annotation>> stereotype.

package Update[%] Delete Associau‘ony

-

«VM Annotation» — —
delete — N)

= Ruie Delete Assoviotion
eiervEs] gy [oprese ownedEnd _[PIEENES | gapedEnd [rEsen ype *
Rac it ™ |Property = A0 I o ~Property | Jilieaze
L [| L 1 i
delete .
delete e delste. extemzianPoint
sdebetes loweialoe [sdeletes | uppervahue ' .
oLiterallnkeqer| Proj Litgrallinlimite AN amaral)] - "
=1 —— | EstensianBpiet| ertendedCaze
- !
delete.
ewnedind extenzionlocation
deletes eserve
hzzogation Extend
delete
awnadind delete ,M(l‘_—| 4 extend
e T b eVl L terallinlimite dhiatura —¥_
-Literallnteger, delete Propey] :UseCaze |
lowerValup] et .
type

Fig. 2. Example transformation specified using VMTL (top) and Henshin (bottom)

The same transformation could be specified using most existing MTLs, such
as Henshin, a graph transformation-based MTL (see Fig. 2, bottom). The Hen-
shin specification is considerably more verbose than its VMTL counterpart, ar-
guably due to the complexity of the UML metamodel. This observation is true

for all MTLs exposing the abstract syntax of the host modeling language, since
large and complex metamodels are by no means unique to UML and its profiles.
Nevertheless, specifying transformations at the concrete syntax level is not
the main argument put forward by VMTL. A more compelling argument is
that VMTL allows specifying transformations directly in the model editor. The
transformation in Fig. 2 (top) is specified using the MagicDraw model editor
(http://www.nomagic.com/products/magicdraw), but any other UML editor
could have been used instead, including containment tree and abstract syntax
editors. VMTL circumvents the need for a dedicated transformation editor by
implementing the principles of Transparent Model Transformation.

3 The Visual Model Transformation Language

VMTL is a usability-oriented MTL descended from the Visual Model Query Lan-
guage (VMQL [14]). It is a model-to-model, unidirectional transformation lan-
guage supporting endogenous and exogenous transformations, rule application
conditions, rule scheduling, and both in-place and out-place transformations.
VMTL transformations can be specified for models expressed in any general-
purpose or domain-specific modeling language meeting the preconditions defined
in Section 4.1. We refer to these modeling languages as host languages.

A VMTL transformation consists of one or more rules, each having an exe-
cution priority. If two rules have equal priorities, the executed rule is selected
non-deterministically. A transformation terminates when no rules are applicable.
Rules consist of a Find pattern, a Produce pattern, and optional Forbid and
Require patterns. All patterns are expressed using the host language(s), typi-
cally at the concrete syntax level. Model elements and meta-attributes that do
not have a concrete syntax representation are also included in the transforma-
tion specification. VMTL patterns correspond to the notions of Left-Hand Side
(LHS), Right-Hand Side (RHS), Negative Application Condition (NAC), and
Positive Application Condition (PAC) from graph transformation theory [5].
Some transformations, such as the one in Fig. 2 (top), allow the Find and
Produce patterns to be merged for conciseness, resulting in an Update pattern.
Strings starting with the “$” character represent variables, and can be used
wherever the host language accepts a user-defined string. Variables identify cor-
responding model elements across patterns and support rule parameterization.

Patterns may contain textual annotations expressed as logic programming-
inspired clauses. The adoption of logic clauses as an annotation style is motivated
by their declarative nature and their composability via propositional logic op-
erators. VMTL provides clauses for pattern specification, model manipulation,
and transformation execution control. Apart from the delete clause featured in
Fig. 2 (top), examples of VMTL clauses include create (for creating model el-
ements), indirect (for specifying a relation’s transitive closure), optional (for
identifying model elements that can be omitted from successful pattern matches),
and priority (for specifying rule priorities). A complete list of VMTL clauses
and a more detailed presentation of the language are available in [1].

http://www.nomagic.com/products/magicdraw

4 The Principles of Transparent Model Transformation

Transparent Model Transformation is defined by three principles: (1) syntax
transparency, (2) environment transparency, and (3) execution transparency. The
following subsections define these principles and exemplify them on VMTL.

4.1 Syntax Transparency

Consider an MTL capable of specifying transformations on models conforming
to metamodel M. The MTL is said to be syntaz transparent with respect to M
if all such transformation specifications also conform to M. For example, since
VMTL is a syntax transparent language, Fig. 2 (top) simultaneously represents
a valid UML model and a transformation specification.

VMTL achieves syntax transparency by weaving a transformation aspect into
the host modeling language. The constructs of VMTL — rules, patterns, and an-
notations — are mapped to existing elements of the host language using stereo-
types or naming conventions. Consider, for instance, the realization of a VMTL
Update pattern and a VMTL annotation in UML and Business Process Model
and Notation (BPMN [9]). The UML realizations rely on stereotypes (the <<VM
Update>> stereotype for Packages and the <<VM Annotation>> stereotype for
Comments), while the BPMN realizations rely on naming conventions (the [VM
Update] prefix for Package names and the [VM Annotation] prefix for Text
Annotation IDs). We refer to these realizations of VMTL as VMTLyyp, and
VMTLgpMmnN, respectively. Similar realizations can be created for other general-
purpose or domain-specific modeling languages.

VMTL can only be woven into host modeling languages meeting certain
prerequisites. First of all, the host language must support a scoping construct, a
role played by Packages in UML and BPMN. Scoping constructs enable VMTL’s
execution engine to identify which transformation rules or patterns different
model elements belong to. Second, all host language elements must support
annotations, which are required to act as containers for VMTL clauses. Finally,
the availability of a profiling mechanism facilitates the realization of VMTL,
since stereotypes can precisely identify model elements as VMTL constructs. A
profiling mechanism can be substituted by the adoption of naming conventions.

4.2 Environment Transparency

An MTL is environment transparent if it allows users to adopt their preferred
editors for interacting with all transformation artefacts: the source model(s),
target model(s), and transformation specification. Environment transparency is
facilitated by syntax transparency, but can also exist independently. For instance,
most textual MTLs allow the use of general-purpose text editors as specification
tools, thus exhibiting environment transparency but not syntax transparency.
Since most current MTLs are experimental, few are supported by mature,
production-ready editors. The ability to specify transformations using existing
model editors is thus beneficial to end-users from two standpoints: (1) avoiding

the learning curve imposed by a new editor, and (2) leveraging a tested, mature
tool. By promoting loose editor coupling, environment transparency also opens
new deployment avenues, such as remote transformation execution.

VMTL is an environment transparent language. For example, VMTLypr,
transformations are specified using a UML editor, while a VMTLgpyN transfor-
mations are specified using a BPMN editor.

4.3 Execution Transparency

An MTL is ezecution transparent if transformations specified using it can be
executed by compilation to multiple MTLs operating at a lower abstraction
level. Execution transparency gives users the freedom to select a transformation
engine appropriate for the task at hand. For instance, in a safety-critical scenario,
users might prefer a transformation engine that supports model checking and
state-space exploration over one that aims at highly efficient rule execution.
The number and complexity of language constructs included in VMTL is de-
liberately limited in order to facilitate its compilation to existing MTLs. Since the
components of VMTL transformations can be mapped to graph transformation
concepts, the most intuitive compilation targets are graph transformation-based
MTLs. However, implementations based on imperative MTLs (e.g. EOL [8]),
transformation primitive libraries (e.g. T-Core [15]), or general purpose pro-
gramming languages accompanied by modeling APIs are all possible.

5 Implementation and Deployment

Our implementation of VMTL is based on the Eclipse Modeling Framework
(EMF [13]) and the Henshin MT engine. Henshin was selected because its graph
transformation-based operational semantics aligns well with VMTL. As a stand-
alone API, it also supports VMTL’s syntax and environment transparency. The
architecture of our implementation is presented in Fig. 3. As illustrated, the
source model and VMTL specification are created using the same editor.

VMTL specifications are compiled by the VM* Runtime! into semantically
equivalent Henshin specifications to be executed by the Henshin transformation
engine. The compilation process can be seen as a Higher-Order Transformation
(HOT) consisting of the four steps illustrated in Fig. 3.

In step @ model fragments representing transformation components are iden-
tified and extracted from the transformation model. These are the transfor-
mation’s Left-Hand Side (LHS), Right-Hand Side (RHS), Negative Application
Conditions (NAC), and Positive Application Conditions (PAC). As these compo-
nents correspond to VMTL patterns, their identification is informed by VMTL
stereotypes or naming conventions.

In step @ the extracted model fragments are translated into structurally
equivalent Henshin graphs intended to play the same role (LHS, RHS, NAC, or
PAC) in the generated Henshin transformation.

! The VM* Runtime is also capable of evaluating model queries and constraints.

Model editor
(e.g. MagicDraw, Papyrus)

Source
model

VM* Runtime
Extract %[E %[E cee
Henshin Translate @ @ .
engine
Match @ a ®/ ’ oo
o Loop Unit
Nest Priority Unit
ransfor- ILTd.ttependent Ile%pendent
maﬁo% @@..- ni % .

Fig. 3. The architecture of a Henshin-based VMTL implementation. Numbers encircled
in black indicate the sequence of steps in the VMTL to Henshin compilation process.

In step @ a set of atomic Henshin rules are created by constructing mappings
between the nodes of each LHS graph and the corresponding nodes in every other
graph belonging to the same rule. As a mapping is a connection between two
matching nodes, obtaining the set of mappings between two graphs is equivalent
to computing a match between the graphs. The EMFCompare (https://wuw.
eclipse.org/emf/compare/) API is used for match computation.

In step @ the generated rules are nested inside Units, Henshin’s control flow
specification formalism. The resulting control structure implements the opera-
tional semantics of VMTL: The applicable rule with highest priority is executed
until no more applicable rules exist, at which point the MT terminates.

The architecture presented in Fig. 3 is compatible with several deployment
strategies. In a monolithic plugin-based deployment, a model editor plugin en-
capsulates the VM* Runtime and the MT engine. This approach offers limited
portability, as a full-featured new plugin is required for every editor.

To improve portability without sacrificing editor integration, the VM* Run-
time and the MT engine can be deployed remotely and accessed via a REST
API2. Business logic can be removed from the editor plugin, facilitating its re-
implementation. However, transferring models over a network is a performance
bottleneck, while remote model processing requires strong security provisions.

2 Any other remote code execution technology may be used.

https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/

A third option is to forego editor integration, and develop a separate Web
application as a user interface for VMTL. This solution allows specifying VMTL
transformations using any editor supporting the host language. The cost is that
users must leave the model editor, making interactive transformation execution
infeasible. The above-mentioned issues related to remote model processing also
apply. We have adopted this deployment strategy for the Hypersonic model anal-
ysis API, and provided an in-depth analysis of its advantages and drawbacks [2].

6 Scope and Limitations

Apart from its benefits, the transparent approach to model transformation em-
braced by VMTL has some inherent limitations, which we discuss in this section.

In VMTL, there are no explicit mappings between the elements of different
patterns included in a transformation rule. Instead, the VM* Runtime infers the
mappings as described in Section 5. In contrast, most declarative MTLs assume
that these mappings are specified by the transformation developer. In the general
case, inferring them programmatically requires model elements to have unique
identifiers corresponding across patterns. An element’s name and type can be
used to construct such identifiers, but with no guarantee of uniqueness. Fur-
thermore, some host language elements might not have a name meta-attribute.
VMTL therefore allows users to attach tags of the form #id to model elements
via annotations. It is the developer’s responsibility to ensure that corresponding
elements have the same name or tag in all patterns. These element identification
provisions have the added benefit of allowing the patterns of a rule to conform
to different metamodels, thus providing support for exogenous transformations.

One may also argue that VMTL’s priority-based rule scheduling is not suffi-
ciently expressive. While not included in the current VMTL specification, con-
trol flow structures such as conditional execution and looping constructs could
be specified using VMTL’s existing textual annotation mechanism.

At the implementation level, incompatibilities between VMTL’s operational
semantics and the capabilities of its underlying MT engine may appear. One
example is the indirect clause, allowing VMTL patterns to express a relation’s
transitive closure, i.e. a chain of undefined length of instances of this relation.
Transitive closure computation is problematic for most graph transformation-
based engines, but trivial for, say, a logic programming-based engine.

Employing model editors to carry out a task they were not designed for also
brings a series of limitations. The well-formedness and syntactical correctness of
VMTL rules cannot be verified inside the editor in the absence of a dedicated
plugin, while transformation debugging would also benefit from editor exten-
sions. On the other hand, most model editors will enforce the conformance of
VMTL patterns to the host language metamodel. This expressiveness limitation
is mitigated by VMTL’s textual annotations. Finally, displaying target models
in the host editor is complicated due to the fact that diagram layout is typically
not part of the host language metamodel. Maintaining a layout similar to that
of the source model is therefore only possible for in-place transformations.

7 Related Work

MoTMoT [17] proposes an extensible UML 1.5 profile as a uniform concrete syn-
tax for all graph transformation languages. This approach allows graph transfor-
mations to be specified using any UML 1.5 editor, and executed by existing graph
transformation engines. Although it offers execution transparency and limited
environment transparency, MoTMoT does not address syntax transparency.

Several MT approaches (e.g. PICS [4], AToMPM [16]) include concrete syntax
model fragments in their specification languages, taking a first step towards
syntax transparency. Some of these approaches (e.g. AToOMPM) augment the host
modeling language with flowchart-like rule scheduling constructs. Even though
they are more expressive than VMTL’s priority-based scheduling mechanism,
these augmentations preclude full syntax and environment transparency. In the
same area, Schmidt [11] proposes a transformation profile for UML models, but
does not consider other host modeling languages.

Model Transformation By-Example (MTBE, [7]) is an emerging paradigm
aimed at leveraging the concrete syntax of host modeling languages. In MTBE,
transformations are inferred using machine learning or optimization algorithms
from a series of example source and target model pairs. In contrast, VMTL
transformations are explicitly specified using the host language model editor.

Execution transparency is addressed in the context of the systematic develop-
ment of model transformations by transML [6]. In the same direction, AToMPM
transformations are compiled to a lower-level specification language, namely the
T-Core [15] transformation primitive library.

8 Conclusion

The perceived lack of adequate tool support in MDE can be mitigated by leverag-
ing production-ready tools familiar to modelers, such as conventional model edi-
tors. Adopting existing model editors as transformation tools requires a new ap-
proach to model transformation, which we refer to as Transparent Model Trans-
formation (TMT). The principles of syntax transparency, environment trans-
parency, and execution transparency define TMT. Although a number of MTLs
adopt subsets of these principles, they have never been explicitly acknowledged
and systematized. Doing so has been the first contribution of this paper.

Our second contribution has been the proposal of VMTL: the first transfor-
mation language fully compliant with the principles of TMT. We have introduced
VMTL’s syntax and high-level semantics, and discussed its scope and limitations.

Finally, we have presented the VM* Runtime as an implementation of VMTL.
The VM* Runtime leverages the existing Henshin transformation engine, while
supporting both local and distributed deployment. It allows us to conclude that
TMT is feasible not only conceptually, but also practically.

Acknowledgments. The authors would like to thank Gabriele Taentzer for her
insightful comments on the content and presentation of this paper.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

The VM* Wiki, https://vmstar.compute.dtu.dk/

Acretoaie, V., Storrle, H.: Hypersonic: Model Analysis and Checking in the Cloud.
In: Proceedings of the 2nd Workshop on Scalability in Model Driven Engineering.
CEUR Workshop Proceedings, vol. 1206, pp. 6-13 (2014)

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, @. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121-135.
Springer, Berlin Heidelberg (2010)

Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transformation
Rules. In: Virbitskaite, 1., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
84-97. Springer, Berlin Heidelberg (2007)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Berlin Heidelberg (2006)

Guerra, E., de Lara, J., Kolovos, D.S.; Paige, R.F., dos Santos, O.M.: Engineering
Model Transformations with transML. Softw. Syst. Model. 12(3), 555-577 (2013)
Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
Transformation By-Example: A Survey of the First Wave. In: Diisterhoft, A., Klet-
tke, M., Schewe, K.D. (eds.) Conceptual Modelling and Its Theoretical Founda-
tions. LNCS, vol. 7260, pp. 197-215. Springer, Berlin Heidelberg (2012)

Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128-142.
Springer, Berlin Heidelberg (2006)

Object Management Group: Business Process Model and Notation (BPMN), Ver-
sion 2.0.2 (2013), http://www.omg.org/spec/BPMN/2.0.2/

Object Management Group: Unified Modeling Language (UML), Version 2.5 Beta
2 (2013), http://wuw.omg.org/spec/UML/2.5/Beta2/

Schmidt, M.: Transformations of UML 2 Models Using Concrete Syntax Patterns.
In: Guelfi, N., Buchs, D. (eds.) RISE 2006. LNCS, vol. 4401, pp. 130-143. Springer,
Berlin Heidelberg (2007)

Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Softw. 20(5), 42-45 (2003)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Second edn. (2008)

Storrle, H.: VMQL: A Visual Language for Ad-Hoc Model Querying. J. Visual
Lang. Comput. 22(1) (2011)

Syriani, E., Vangheluwe, H., LaShomb, B.: T-Core: a framework for custom-built
model transformation engines. Softw. Syst. Model. 13(3), 1-29 (2013)

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Huseyin,
E.: AToMPM: A Web-based Modeling Environment. In: Joint Proc. of MODELS’13
Invited Talks, Demonstration Session, Poster Session, and ACM Student Research
Competition. CEUR, Workshop Proceedings, vol. 1115, pp. 21-25 (2013)

Van Gorp, P., Keller, A., Janssens, D.: Transformation Language Integration
Based on Profiles and Higher Order Transformations. In: Gasevié¢, D., Lémmel,
R., Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 208-226. Springer, Berlin
Heidelberg (2009)

Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial
Adoption of Model-Driven Engineering: Are the Tools Really the Problem? In:
Moreira, A., Schitz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 1-17. Springer, Berlin Heidelberg (2013)

https://vmstar.compute.dtu.dk/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/UML/2.5/Beta2/

	Transparent Model Transformation:Turning Your Favourite Model Editor into a Transformation Tool

