
Analyzing Conflicts and Dependencies of
Rule-Based Transformations in Henshin ?

Kristopher Born, Thorsten Arendt, Florian Heß, Gabriele Taentzer

Philipps-Universität Marburg, Germany
{born,arendt,hessflorian,taentzer}@informatik.uni-marburg.de

Abstract. Rule-based model transformation approaches show two kinds
of non-determinism: (1) Several rules may be applicable to the same
model and (2) a rule may be applicable at several different matches. If
two rule applications to the same model exist, they may be in conflict,
i.e., one application may disable the other one. Furthermore, rule ap-
plications may enable others leading to dependencies. The critical pair
analysis (CPA) can report all potential conflicts and dependencies of rule
applications that may occur during model transformation processes. This
paper presents the CPA integrated in Henshin, a model transformation
environment based on the Eclipse Modeling Framework (EMF).

1 Introduction

Rule-based model transformation systems can control the application of rules
not only by explicit control mechanisms but also by causal dependencies of rule
applications. Hence, these causal dependencies influence their execution order.
If, e.g., a rule creates a model element, it can be used in subsequent rule applica-
tions. It can also happen that two rule applications overlap in a model element
and one rule is to delete it while the other one requires its existence. For a bet-
ter understanding of this implicit control flow, it is interesting to analyze all
potential causal dependencies of rule applications for a given rule set.

The critical pair analysis (CPA) for graph rewriting [6] can be adapted to
rule-based model transformation, e.g., to find conflicting functional requirements
for software systems [7], or to analyze potential causal dependencies between
model refactorings [9] which helps to make informed decisions on the most suit-
able refactoring to apply next. The CPA reports two different forms of potential
causal dependencies, called conflicts and dependencies.
The application of a rule r1 is in conflict with the application of a rule r2 if

– r1 deletes a model element used by the application of r2 (delete/use), or
– r1 produces a model element that r2 forbids (produce/forbid), or
– r1 changes an attribute value used by r2 (change/use). 1

? This work was partially funded by the German Research Foundation, Priority Pro-
gram SPP 1593 ”Design for Future – Managed Software Evolution”.

1 Dependencies between rule applications can be characterized analogously.

In our work, we extended Henshin [2], a rule-based model transformation
language adapting graph transformation concepts and being based on the Eclipse
Modeling Framework (EMF) [5]. Our extension computes all potential conflicts
and dependencies of a set of rules and reports them in form of critical pairs.
Each critical pair consists of the respective pair of rules, the kind of potential
conflict or dependency found, and a minimal instance model illustrating the
conflict or dependency. The analysis can be fine-tuned by a number of additional
options to be set. The adoption of graph transformation theory to EMF model
transformation requires to check the transformation rules for preserving model
consistency and the resulting minimal model for being a valid EMF model [4].

The next section introduces a running example and discusses expected re-
sults; afterwards the new analysis tool is presented.

2 Model transformation with Henshin

EMF is a common and widely-used open source technology in model-based soft-
ware development. It extends Eclipse by modeling facilities and allows for defin-
ing (meta-)models and modeling languages by means of structured data models.

Henshin is an EMF model transformation engine based on graph transforma-
tion concepts. Since refactoring is a specific kind of model transformation, refac-
torings of EMF-based models can be specified in Henshin and then integrated
into a refactoring framework such as EMF Refactor [3]. To demonstrate the main
idea, we limit ourselves to one rule of a refactoring example for class modeling
[8]. Rule Move Attribute (Figure 1(a)) specifies the shift of an attribute from
its owning class to an associated one along a reference. It is shown in abstract
syntax. Objects and references tagged by 〈〈preserve〉〉 represent unchanged model
elements, elements tagged by 〈〈create〉〉 represent new ones whereas those tagged
by 〈〈delete〉〉 are removed by the transformation.

(a) (b)

Fig. 1. Henshin refactoring rule (a) and class model Address Book(b)

Modifying the class model in Figure 1(b) by the refactoring specified in Fig-
ure 1(a), we observe two potential problems: (1) The attribute landlineNo of
class Person can be shifted to either class Home or class Office (by refactoring
Move Attribute). However, if it is shifted to class Home the other refactoring
becomes inapplicable (and vice versa). This means, refactoring Move Attribute

2

is in conflict with itself. (2) The attribute street of class Person can be shifted
to class Address via class Home (by two applications of Move Attribute along
existing references). The second shift is currently not possible since class Home

does not have an attribute so far, i.e., refactoring Move Attribute may depend
on itself. Graph transformation theory allows us to analyze such conflicts and
dependencies at specification time by relying on the idea of the CPA.

3 Tooling

The provided CPA extension of Henshin can be used in two different ways: Its
application programming interface (API) can be used to integrate the CPA into
other tools and a user interface (UI) is provided supporting domain experts in
developing rules by using the CPA interactively.

Fig. 2. The result view

After invoking the analysis, the rule set
and the kind of critical pairs to be analyzed
have to be specified. Furthermore, options
can be customized to stop the calculation af-
ter finding a first critical pair, to ignore crit-
ical pairs of the same rules, etc. The result-
ing list of critical pairs is shown and ordered
along rule pairs. Figure 2 depicts an exam-
ple for the analysis of rule Move Attribute,
in which the delete/use-conflict (1) corresponds to the example discussed above.

Fig. 3. Minimal model of a dependency

The subsequent depen-
dency results differ in their
target of the second at-
tribute movement. The first
produce/use-dependency (2)
represents the case of mov-
ing the attribute back to the
original class, which leads to
a smaller minimal model with
only two classes referencing
each other, as depicted in Fig-
ure 3. The highlighting by
enclosing hash marks is the
most important information,
since the enclosing element is
the cause of the dependency. The link between 2:Class and 3:Attribute is cre-
ated by the first rule application and is required by the second application. Since
all elements and values in the minimal model may be matched by the first and
the second rule application, there is a generic approach to represent attribute
values. Value r1 source r2 target, e.g., means that it must conform to value
source in rule r1 and value target in rule r2, respectively (compare Fig. 1(a)).

3

The second dependency reported in Figure 2 is the handling of two consecutive
attribute shifts, also described in Section 2.

The current version of the tool can analyze rules with negative application
conditions and attributes of primitive data types. Positive application conditions
shall be supported in the future. In order to avoid improper results, the rules are
checked regarding these prerequisites. Further checks ensure that the rules are
consistent to the properties defined in. The LHS, RHS and intersection graphs of
each rule are checked to comply to Definition 3 in [4], e.g., each node must have
at most one container, there is no containment cycle. Furthermore, rules have
to ensure consistent results, i.e., have to comply to Def. 6 in [4], ensuring e.g.
that containment edge deletion and creation is restricted to edge redirection.
The rule shown in Figure 1(a) is consistent to this definition. Internally, the
CPA extension of Henshin is based on the graph transformation tool AGG [1].
Dedicated exporter and importer translate EMF meta-models and Henshin rules
to AGG and CPA results back to EMF models.

4 Conclusion

The model transformation tool Henshin has been extended by a critical pair
analysis to inspect rule sets for dependencies and conflicts. An interactive user
interface is provided allowing the inspection of each critical pair in detail.

For the future, we intend to support also a confluence check of critical pairs,
for which the CPA is a first step. The tool download as well as additional in-
formation on the CPA in Henshin, especially with respect to the translation
between Henshin and AGG, can be found at [8].

References

1. AGG: http://user.cs.tu-berlin.de/~gragra/agg/
2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced

Concepts and Tools for In-Place EMF Model Transformations. In: MoDELS. vol.
6394, pp. 125–135 (2010), http://www.eclipse.org/henshin/

3. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the
Eclipse Modeling Framework. Automated Software Engineering 20(2), 141–184
(2013), http://www.eclipse.org/emf-refactor

4. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. SoSyM 11(2), 227–250 (2012)

5. Eclipse: Eclipse Modeling Framework (EMF). http://www.eclipse.org/emf
6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science, Springer (2006)
7. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of Conflicting Functional Re-

quirements in a Use Case-Driven Approach: A Static Analysis Technique Based on
Graph Transformation. In: ICSE. pp. 105–115. ACM (2002)

8. Tool download and installation. http://www.uni-marburg.de/fb12/swt/cpa
9. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph

transformation. Software and System Modeling 6(3), 269–285 (2007)

4

A Demonstration

Our demonstration will accompany domain experts along their tasks and experi-
ences. They define refactoring rules for a domain, analyze their interdependencies
and consider to integrate this analysis into another tool.

A.1 The complete example

Given a meta-model defining a modeling language, the domain expert devel-
ops refactoring rules. Starting with the rule in Figure 1(a), two further rules
Add Attribute and Remove Empty Class are introduced in Figure 4.

Fig. 4. Example set of rules

Rule Add Attribute inserts a new attribute into an existing class with name
clName. The third rule Remove Empty Class deletes an existing class if it has
no relation to further model elements, i.e., the class has neither attributes nor
incoming nor outgoing references. Elements tagged by 〈〈forbid〉〉 specify negative
application conditions (NACs) that prevent the rule from being executed when
found. All these rules will be shortly introduced in the demonstration.

A.2 Analyzing critical pairs

After setting up the rules, domain experts may want to know all potential in-
terrelations between applications of these rules. After realizing, that they could
miss some of them, they decide to use our tool. The analysis is started on a
Henshin file which contains a set of rules (see Figure 5).

5

Fig. 5. Access to CPA tool within the user interface in Eclipse

The wizard depicted in Figure 6 requires the selection of at least one rule.
Furthermore, the kind of critical pair analysis, conflicts or dependencies, has to
be set.

Fig. 6. Wizard for selection of rules and analysis kind

The second page of the wizard, depicted in Figure 7, provides the opportunity
to adjust options for CPA calculation.

6

Fig. 7. Second wizard page for adjusting CPA options

Fig. 8. CPA Result view for enlarged ex-
ample

Finishing the wizard, the calcula-
tion of all critical pairs starts lead-
ing to the representation of the found
critical pairs within the CPA Result
view in Figure 8. Comparing the re-
sults with those in Figure 2 it is ob-
vious that the set of rules of the en-
larged example contains more criti-
cal pairs than the analysis of rule
Move Attribute with itself. Never-
theless, all the critical pair results of
rule Move Attribute with itself do
occur as well.

Note that similarly to different
kinds of conflicts, as presented in Sec-
tion 1, we distinguish different kinds
of dependencies. The application of a
rule r2 depends on applying a rule r1 if:

– produce/use: r1 produces a model element that is needed by r2.
– delete/forbid: r1 deletes a model element that a NAC of r2 forbids.
– change/use: r1 changes the value of an attribute that is used by the match

of r2 or checked by one of its NACs.

A.3 Inspecting the results

Detailed information to each critical pair is provided by a minimal model that
shows the occurrence of a conflict or a dependency. A conflict is shown at a min-
imal model to which rules are applied, while a minimal model for a dependency
shows the intermediate result of rule application. Besides the CPA Result view,
critical pairs can also be persisted within the project to inspect them in the fu-
ture. Figure 9 depicts a minimal model for a produce-use-dependency at its top

7

and in addition a graphical representation of the minimal model in the center.
For better understanding, both involved rules, each one being Move Attribute,
are depicted. Their matches are shown by framing parts of the minimal model,
pointing to the applied rule.

Fig. 9. Detailed representation of a critical pair showing a dependency

The minimal model depends on the kind of critical pair. According to its
name, a minimal model is as small as possible.

For conflicts, this means that both rules must be applied to it, which implies
that the LHS of both rules can be matched to the minimal model. Minimal
models of dependencies differ in regard to the first rule. They show minimal

8

intermediate results. While the minimal model of a dependency still provides the
capability to apply the second rule, it represents a result of applying the first rule.
Accordingly, the minimal model must contain an image of the RHS of the first
rule. Furthermore, the LHS of the second rule has to occur. In Figure 9 this can
be observed since the minimal model is an overlapping of the LHS and the RHS of
rule Move Attribute. Application conditions like PAC and NAC, which are parts
of the LHS, are relevant as well. To understand this consider, for example, the
produce-forbid-conflict between rules Add Attribute and Remove Empty Class.
The Attribute (see Figure 4) is an image of the RHS of the first rule and of the
NAC of the second rule.

To exemplify an interrelationship between rule applications, the domain ex-
perts may use a class model like the one in Figure 1(b). In addition to the critical
pairs described in Section 2 there are further ones wrt. the additional rules in
Figure 4:

In our example class model in Figure 1(b), class Account is not used so far
and makes no sense. Two refactorings are applicable here. Either this class is ex-
tended by a new attribute, e.g. accountnumber, or it is removed from the model
(refactorings Add Attribute respectively Remove Empty Class). However, if one
refactoring is executed, the other one becomes inapplicable, i.e., these refactor-
ings are in conflict. According to the sequence we have a produce/forbid conflict
for Add Attribute followed by Remove Empty Class and a delete/use conflict
for the opposite order.

A missing information within class model Address Book is the specification
of the city a person lives in. It can be inserted by first applying refactoring
Add Attribute to class Home followed by refactoring Move Attribute (to class
Address) which can not be applied before since class Home does not have an
attribute in the beginning. This means, refactoring Move Attribute may depend
on refactoring Add Attribute by a produce/use dependency.

A.4 Using the Critical Pair Analysis via an API

Domain experts may also want to integrate the CPA into other tools, for exam-
ple, to provide recommendations for refactorings interactively. The integration
by its API is illustrated by the code-snippet shown in Listing 1. Lines 1-4 are
concerned with loading our example; in lines 6-10 the rules are extracted from
transformation units, since the CPA interface strictly limits to rules. In lines
12-15 the CPA is prepared and started. The analysis is done independently for
conflicts and dependencies. The resulting CPAResult object complies to the data
structure in Figure 11, which provides the necessary information for further pro-
cessing by public access modifiers.

9

Listing 1. Code snippet for using the CPA by its API

1 St r ing PATH = ” f i l e s /” ;
2 S t r ing henshinFileName = ” r e f a c t o r i n g s . henshin ” ;
3 HenshinResourceSet rS = new HenshinResourceSet (PATH) ;
4 Module module = rS . getModule (henshinFileName , fa l se) ;
5
6 Lis t<Rule> r u l e s = new LinkedList<Rule >() ;
7 for (Unit un i t : module . getUni t s ()){
8 i f (un i t instanceof Rule)
9 r u l e s . add ((Rule) un i t) ;

10 }
11
12 I C r i t i c a l P a i r A n a l y s i s cpa = new AGGCPA() ;
13 cpa . i n i t (ru l e s , new CPAOptions ()) ;
14 CPAResult dependenc ies = cpa . runDependencyAnalysis () ;
15 CPAResult c o n f l i c t s = cpa . runCon f l i c tAna ly s i s () ;

Fig. 10. Interface for CPA results

Figure 11 shows a class
model where CPAResult con-
tains all Conflicts and Depen-

dencies, which specialize the
general concept CriticalPair.
It always consists of two rules
and a minimal model show-
ing the conflict or dependency
when applying these rules.
Two mappings are required to
map rule elements to corre-
sponding ones in the minimal
model. Although Dependency

and Conflict share this re-
quirement, it is not part of
a critical pair in general,
since different mappings are re-
ported, as described in [6]. A

conflict is based on the left-hand sides (LHSs) of both rules, such that both
mappings are matches. A dependency is based on the right-hand side (RHS) of
the first rule r1 and the LHS of the second rule r2. Therefore, the first mapping
of a dependency is a comatch of RHS to the minimal model. Finally, there are
different kinds of conflicts and dependencies, as introduced in Section 2.

As we have seen the usage of the API is very handy, so that it is one of our
next aims to integrate the CPA into other tools and to evaluate it for, e.g., model
versioning, refactoring and model transformation by triple graph grammars.

10

