
An Adaptable Tool Environment for
High-level Differencing of Textual Models

1Timo Kehrer, Christopher Pietsch, Udo Kelter
2Daniel Strüber, Steffen Vaupel

1University of Siegen, Germany
{kehrer,cpietsch,kelter}@informatik.uni-siegen.de

2Philipps-Universität Marburg, Germany
{strueber,svaupel}@informatik.uni-marburg.de

Abstract. The use of textual domain-specific modeling languages is an
important trend in model-driven software engineering. Just like any other
primary development artifact, textual models are subject to continuous
change and evolve heavily over time. Consequently, MDE tool chain de-
velopers and integrators are faced with the task to select and provide
appropriate tools supporting the versioning of textual models. In this
paper, we present an adaptable tool environment for high-level differenc-
ing of textual models which builds on our previous work on structural
model versioning. The approach has been implemented within the SiLift
framework and is fully integrated with the Xtext language development
framework. We illustrate the adaptability and practicability of the tool
environment using a case study which is based on a textual modeling
language for simple web applications.

1 Introduction

Model-driven engineering (MDE) is a software development methodology which
has gained a lot of interest in many application domains. Besides the MDA ini-
tiative and related standards promoted by the OMG, the use of textual domain-
specific modeling languages (DMSLs) has emerged as an important trend in
modern MDE. Textual DSMLs typically have a small scope and formalize the
key concepts of a particular domain of interest. Just like any other primary de-
velopment artifact, textual models are subject to continuous change and heavily
evolve over time. Consequently, appropriate tools supporting standard version-
ing tasks are strongly required, the calculation of a difference between versions
of a model being the most fundamental service.

Selecting a proper versioning tool environment often leads to cost/benefit
considerations: On the one hand, one can use off-the-shelf line-based difference
tools. This option is attractive since these tools are generic in the sense that
they can operate with any kind of textual documents. However, differences are
reported on a low level of abstraction and often fail to report complex model
changes in a meaningful way. On the other hand, there are sophisticated ap-
proaches to structural differencing and merging whose advantages over the clas-
sical line-based proceeding are undisputed [25,12]. However, virtually all of these

solutions come at a price: many tool components have to be re-implemented for
each modeling language anew. Considering the large number of different DSMLs
which have to be supported, this often leads to a prohibitive effort.

In this paper, we present a flexible tool environment for high-level differenc-
ing of textual models which can be adapted to a new language with moderate
effort. The approach builds on our previous work on structural model versioning
[18,17,16], which was motivated and has been developed in the context of visual
modeling languages. The typical effort to configure a differencing tool ranges
between 1 and 10 days, depending on the size of the meta-model. In this paper,
we focus on the technical extensions required to support textual models. We ar-
gue that a difference tool which is tailored to a given DSML provides significant
improvements over existing line-based difference tools. In particular, complex
restructurings on a model can be detected, and changes are therefore reported
on a higher level of abstraction.

The approach has been implemented within the SiLift framework [27]. It
uses several tool components which are based on the Eclipse Modeling Frame-
work (EMF) [8] and is fully integrated with the Xtext language development
framework [30]. We illustrate the practicability and adaptability of the tool en-
vironment using a case study which is based on a textual modeling language for
simple web applications.

2 Case Study and Motivating Example

In this section, we introduce the case study which will be used to illustrate our
approach. The textual modeling language called SWML is introduced in Sec. 2.1.
A scenario which describes typical restructurings and improvements on a sample
SWML model is described in Sec. 2.2.

2.1 SWML: Simple Web Modeling Language

The Simple Web Modeling Language (SWML) is a textual DSML which aims at
defining platform-independent models for a specific kind of web applications. The
language has been originally introduced in [7], which also describes a transforma-
tion tool chain for generating web applications using standard web development
technologies. In this paper, we use the SWML as defined in [5]. In order to keep
the paper self-contained, we give an informal description of the SWML abstract
syntax:

A WebModel consists of two parts: the DataLayer and the HypertextLayer. The
data layer models the application data following basic principles which are known
from entity-relationship modeling. An Entity (which is actually an entity type)
may have Attributes and References (reference types) to other entity types. Pre-
defined SimpleTypes can be used in attribute declarations. The hypertext layer
defines how to present the data using web pages. A Page is either a StaticPage

having a fixed content, or a DynamicPage which presents data related to a dedi-
cated entity type. There are two types of dynamic pages: an IndexPage lists the

Fig. 1: Initial version v1 of a sample SWML model and its improved revision v2

instances of a certain entity type, while a DataPage shows concrete information
on a specific entity. The structure of the hypertext layer can be modeled by Links

connecting two pages. One of the pages can be declared to be the starting page
of the application.

2.2 Example Scenario: Improvements on a Sample SWML Model

SWML models can be conveniently defined using a textual notation. An example
model called VehicleRentalCompany taken from [5] is shown in Fig. 1. Version v1

on the left comes from an early development stage and is used in [5] to illustrate
and evaluate quality assurance techniques on textual models. Using metrics and
smells as indicators for quality issues concerning the quality aspect completeness,
model version v1 is improved to become version v2 on the right-hand side of Fig. 1
by applying the following refactorings and manual changes:

1. The smell “No Dynamic Page” for entity type Customer is eliminated by the
application of refactoring “Insert Dynamic Pages”: Two dynamic pages (an
index page and a data page) referencing entity type Customer are inserted
into the hypertext layer. Moreover, the inserted data page is linked by the
index page which is in turn linked by the starting page.

2. The smell “Missing Data Page” for index page agencyindex is eliminated by
the application of refactoring “Add Data Page to Index Page”: A data page

which shows Agency entities and which is linked by the index page agencyindex

is inserted.

3. In order to eliminate the smell ”Empty Entity“, a new reference address is
inserted for entity type Agency.

4. Finally, some missing information is supplemented: A new entity type BankAc-

count which is referenced by entity type Customer is added to the data layer.
Moreover, an attribute postalcode is inserted for entity type Address, attributes
manufacturer and power are inserted for entity type Car.

The result of comparing the initial model v1 and its improved revision v2

using the Eclipse built-in textual diff utility is shown in Fig. 1. Similar results are
obtained using other graphical difference tools such as Meld [24] or KDiff3 [15].
The textual output produced by the UNIX diff utility [23] reports 8 deletions
and 23 insertions of lines of text. These examples illustrate that the line-based
approach fails to explain the improvements on our sample SWML model in an
adequate way.

3 High-level Differencing of Textual Models

In this section, we briefly review our approach to high-level model differencing.
Next, we describe how to extend the approach and tooling to textual models and
finally present our reference implementation which is based on standard Eclipse
Modeling technologies and fully integrated with Xtext.

3.1 Approach

In [18], we introduce an approach to high-level differencing which works on
a structural representation of two model versions v1 and v2 which are to be
compared. A model is conceptually regarded as typed, attributed, directed graph
which is known as the abstract syntax graph (ASG) of this model. The difference
calculation basically proceeds in three steps:

1. Initially, a matching procedure identifies corresponding nodes and edges which
are considered to be ”the same“ elements in v1 and v2.

2. Subsequently, a low-level difference is derived. Elements not involved in a
correspondence are considered to be deleted or created, each non-identical
attribute value of corresponding elements is considered to be updated.

3. Finally, an operation detection algorithm recognizes executions of edit oper-
ations in the low-level difference. The available edit operations are provided
as additional input parameter, each operation has to be formally specified as
a transformation rule in the model transformation language Henshin [4].

Similar to the UNIX diff utility, a calculated difference ∆(v1, v2) is a de-
scription of how model v1 can be edited to become revision v2 in a step-wise
manner. However, the available edit operations are defined on the ASG which
enables us to report edit steps on a much higher level of abstraction. In principle,

any language-specific restructuring operation can be supported as long as it can
be specified in a Henshin transformation rule. In other words, we consider the
effect of an edit step as an in-place model transformation which is formally spec-
ified as a declarative transformation rule to which we refer as edit rule. Thus,
the set of available edit operations can be specifically tailored for a given mod-
eling language. An example edit rule for SWML models is briefly explained in
Appendix B.

Since the approach presented in [18] has been developed in the context of
visual modeling languages, it assumes the allowed types of nodes and edges of
an ASG to be defined by a meta-model. Nonetheless, although our approach
typically starts with a meta-model, it can be applied to textual DSMLs, too. We
only require a procedure which converts the grammar into a meta-model, e.g. as
presented in [2,28,6].

3.2 Tool Architecture

An overview of the core components of a difference tool which implements our
approach is shown in Fig. 2a. Exchangeable components which are typically
provided by an existing MDE environment are colored in light gray.

The Difference Calculator calculates a difference in a step-wise manner accord-
ing to our conceptual approach. Consequently, the sub-components Matcher, Dif-

ference Derivator and Operation Detection Engine are arranged in a pipeline. A calcu-
lated difference is presented to developers in an interactive Difference Presentation

GUI as shown in Fig. 3. A control window on the left lists the edit steps. The
effect of an edit step is explained on the basis of the concrete syntax. To that
end, the original and changed model are displayed in their standard editor on
the right. Selecting an edit step in the control window causes the context of this
edit step to be highlighted in the respective editor windows. In principle, the
GUI can be integrated with any model editor. We only require that the editor
offers an API such that external representation of a model element, i.e. certain
characters, lines of text or text blocks, can be highlighted.

3.3 Integration with the Xtext Language Development Framework

An EMF-based reference implementation of our approach is available within the
model versioning framework SiLift [27]. In this work, we extend the SiLift frame-
work by an integration with the widely used language development environment
Xtext [30]. A download option is provided at the accompanying web site of this
paper [1].

The adaptation of the algorithmic components is straightforward since an
Ecore-based meta-model can be automatically generated by Xtext. The inte-
gration of the difference presentation GUI is illustrated in Fig. 2b. The GUI
is loosely coupled with generated Xtext editors via the Eclipse Selection Service.
All SiLift sub-windows implement the ISelectionProvider interface and thus report
which conceptual model elements are currently selected. The selection service no-
tifies registered ISelectionListeners about selection changes induced by a selection

Difference Calculator

Difference
Derivator

Operation
Detection

EngineMatcher

Difference
Presentation

GUI

Model
Editor

Edit Operations

SiLift Component Existing MDE
Tool Component

(a) Core difference tool components

SiLift GUI component
(implements ISelectionProvider)

selection changed

notify

Xtext document marker
(implements ISelectionListener)

Xtext-based editor

create marker(s)

Eclipse Selection Service

(b) Integration with Xtext

Fig. 2: Tool architecture and integration with the Xtext framework

provider. Our selection listener implementation is based on the Eclipse marker
framework which can be used to highlight text fragments in textual Eclipse ed-
itors. In order to get the position of a conceptual model element within the
textual representation of a model, we utilize the Xtext contribution to the EMF
adapter mechanism: For each EObject which originates from an Xtext resource,
we get an adapter for this EObject providing access to the corresponding node
of the Xtext parse tree. The nodes in a parse tree provide the required position
information.

4 Adaptation and Application to SWML

In this section, we outline the adaptation of our tool environment to the SWML.
An overview of the difference calculation configuration is given in Sec. 4.1. Fi-
nally, Sec. 4.2 presents the results of applying our difference tool which uses this
configuration to the example change scenario of Sec. 2.2.

4.1 Configuration of the Difference Calculation

Two of the core differencing components of Fig. 2a have to be adapted to SWML,
the matcher and the operation detection engine.

To determine corresponding elements in SWML models, we implemented a
signature-based matching strategy [17] using the Epsilon Comparison Language
(ECL) [20]. ECL is a domain-specific language for developing highly customized
model comparison rules, our SWML matching configuration can be found in the
Appendix A. Singleton objects of types WebModel, DataLayer, HypertextLayer are
matched immediately. Names of named model elements (Entity, Attribute, etc.)
are used as unique signature values, i.e. correspondences are established between

Fig. 3: SiLift SWML application: Difference between sample models v1 and v2

equally named elements having the same type. Finally, Link objects representing
hyperlinks between web pages are matched if they connect the same pages, i.e.
if the source and target pages of two links are matched.

The specification of edit rules is supported by one of our meta-tools known as
SiDiff Edit Rule Generator (SERGe) [26]. SERGe derives sets of basic edit rules
from a given meta-model with multiplicity constraints. These sets are complete
in the sense that all kinds of edit rules, i.e. create, delete, move and change
operations, are contained for every node type, edge type and attribute defined
by the meta-model. For SWML, 29 basic edit rules have been generated. In
addition, we manually specified 9 complex edit rules, 5 refactorings which could
be re-used from the EMF Refactor tool environment [11], and 4 evolutionary edit
operations which facilitate frequently recurring editing tasks. As an example, the
edit rule for refactoring ”Add Data Page to Index Page“, which is applied in step
2 of our motivating example of Sec. 2.2, is shown in Appendix B. The complete
set of edit rules is included in the SWML configuration, which is available from
the Eclipse update site at [1].

4.2 Application to the Example Change Scenario

Fig. 3 presents the results of applying our difference tool that uses the above
configuration to our example of Sec. 2.2. The edit step ”Add Data Page to
Index Page“ is currently selected and its effect can be inspected more closely in
the editor windows on the right. The inserted data page agencydata (s. marker

indicated by 1 in Fig. 3) and the new link to this page from the index page
agencyindex (s. marker 2 in Fig. 3) are easy to see in the lower editor window
which shows version v2. In the upper editor window showing version v1, we can
see the context of the respective changes, e.g., data page agencydata has been
inserted in the hypertext layer. In a similar way, one can interactively inspect
the other refactoring ”Insert Dynamic Pages“ (s. change 1 in Sec. 2.2) and the
evolutionary edit steps representing changes 3 and 4 of the change scenario of
Sec. 2.2.

5 Related Work

In this section, we briefly review related work regarding the two main aspects
of model difference tools addressed in this paper, namely i) the adaptability
to a new language, and ii) the integration with an MDE environment, thereby
putting a special emphasis on EMF technologies.

Many approaches and tools to model differencing have been proposed re-
cently, surveys can be found in [13,3]. Similar to ours, virtually all of them
work on a structural representation of models. However, only a few of them
are adaptable to a new modeling language and almost all of them use primitive
graph operations such as creating/deleting single nodes/edges as edit operations
for ASGs. The recognition of complex changes such as language-specific refac-
torings seems to be supported only by few approaches, e.g. [21,22,29]. A detailed
review of how these approaches differ from ours can be found in [18,19]. To the
best of our knowledge, none of them has yet been adapted to textual DSMLs,
which is the main contribution of the tool environment presented in this paper.

A dedicated difference presentation GUI is offered by only a few EMF-based
difference tools for models. EMF Compare [9], the currently most widely used
differencing tool for EMF-based models, displays two versions of a model in
parallel in their abstract syntax tree representation. A similar approach is im-
plemented in EMF Diff/Merge [10] and the RSA tool suite [14]. The parallel
display largely fails to present complex model changes. Again, to the best of our
knowledge, none of the existing EMF tools can be used with Xtext editors in an
integrated way.

6 Conclusion and Future Work

In this paper, we presented concepts and a tool environment to flexibly specify
and recognize complex changes in textual models. The tooling, called SiLift, is
based on EMF and tightly integrated with the widely used Xtext framework. It
enables developers to understand complex structural changes in textual models
and is an attractive alternative to traditional line-based difference tools. More-
over, the obtained differences can be converted to executable edit scripts [19]
serving as a basis for model patching and structural merging [25].

Obviously, the proposed solutions become more powerful from a practical
point of view if they are tightly integrated into an existing version control system
such as Git or Subversion. We leave such an integration for future work.

Acknowledgments

This work was partially supported by the DFG (German Research Foundation)
under the Priority Programme SPP1593: Design For Future - Managed Soft-
ware Evolution. Moreover, the authors would like to thank Thorsten Arendt for
providing us the quality assurance scenario of the SWML case study.

References

1. Accompanying materials for this paper:
http://pi.informatik.uni-siegen.de/projects/SiLift/ocl2015.php; 2015

2. Alanen, M.; Porres, I.: A relation between context-free grammars and meta ob-
ject facility metamodels; Technical Report No. 606, Turku Centre for Computer
Science; 2004

3. Altmanninger, K.; Seidl, M.; Wimmer, M.: A Survey On Model Versioning Ap-
proaches; p. 271-304 in: Intl. Journal of Web Information Systems 5:3; 2009

4. Arendt, T.; Biermann, E.; Jurack, S.; Krause, C.; Taentzer, G.: Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations; in: Proc. MoDELS
2010, LNCS 6394, Springer; 2010

5. Arendt, T.; Taentzer, G.; Weber, A.: Quality Assurance of Textual Models within
Eclipse using OCL and Model Transformations; in: Proc. OCL @ MoDELS; 2013

6. Bergmayr, A.; Wimmer, M.: Generating Metamodels from Grammars by Chaining
Translational and By-Example Techniques; in: Proc. MDEBE @ MoDELS; 2013

7. Brambilla, M.; Cabot, J.; Wimmer, M.: Model-driven software engineering in prac-
tice; p. 1-182 in: Synthesis Lectures on Software Engineering; 1(1); 2012

8. EMF: Eclipse Modeling Framework; http://www.eclipse.org/emf; 2015
9. EMF Compare; http://www.eclipse.org/emf/compare; 2015

10. EMF Diff/Merge; http://eclipse.org/diffmerge; 2015
11. EMF Refactor; https://www.eclipse.org/emf-refactor; 2015
12. Estublier, J.; Leblang, D.; van der Hoek, A.; Conradi, R.; Clemm, G.; Tichy, W.;

Wiborg-Weber, D.: Impact of software engineering research on the practice of
software configuration management; p. in 383-430: ACM Trans. on Software En-
gineering and Methodology 14:4; 2005

13. Förtsch, S.; Westfechtel, B.: Differencing and Merging of Software Diagrams -
State of the Art and Challenges; p. 90-99 in: Proc. Int. Conf. Software and Data
Technologies; 2007

14. IBM Rational Software Architect;
http://www.ibm.com/developerworks/rational/products/rsa; 2015

15. KDiff3: http://kdiff3.sourceforge.net; 2014
16. Kehrer, T.; Kelter, U.; Ohrndorf, M.; Sollbach, T.: Understanding Model Evolution

through Semantically Lifting Model Differences with SiLift; p. 638-641 in: Proc.
28th IEEE Int. Conf. on Software Maintenance; 2012

17. Kehrer, T.; Kelter, U.; Pietsch, P., Schmidt, M.: Adaptability of Model Comparison
Tools; in: Proc. 27th Int. Conf. on Automated Software Engineering; 2012

18. Kehrer, T.; Kelter, U.; Taentzer, G.: A Rule-Based Approach to the Semantic
Lifting of Model Differences in the Context of Model Versioning; p. 163-172 in:
Proc. 26th Int. Conf. on Automated Software Engineering; 2011

19. Kehrer, T.; Kelter, U.; Taentzer, G.: Consistency-Preserving Edit Scripts in Model
Versioning; p.191-201 in: Proc. 28th Int. Conf. on Automated Software Engineer-
ing; 2013

20. Kolovos, D.: Establishing Correspondences between Models with the Epsilon Com-
parison Language; p. 146-157 in: Proc. Intl. Conf. on Model Driven Architecture-
Foundations and Applications; 2009

21. Könemann, P.: Capturing the Intention of Model Changes; p.108-122 in: Proc. Int.
Conf. on Model Driven Engineering Languages and Systems; 2010

22. Langer, P.; Wimmer, M.; Brosch, P.; Herrmannsdörfer, M.; Seidl, M.; Wieland,
K.; Kappel, G.: A posteriori operation detection in evolving software models; p.
551-566 in: Journal of Systems and Software 86(2); 2013

23. MacKenzie, D.; Eggert, P.; Stallman, R.: Comparing and Merging Files with GNU
diff and patch; Network Theory Ltd.; 2003

24. Meld: http://meldmerge.org; 2015
25. Mens, T.: A State-of-the-Art Survey on Software Merging; p. 449-462 in: IEEE

Trans. Software Eng. 28:5; 2002
26. Rindt, M.; Kehrer, T.; Kelter, U.: Automatic Generation of Consistency-Preserving

Edit Operations for MDE Tools; in: Proc. Demonstrations Track of MoDELS; 2014
27. SiLift project; Semantic Lifting of Model Differences; http://pi.informatik.uni-

siegen.de/projects/SiLift; 2015
28. Wimmer, M.; Kramler, G.: Bridging grammarware and modelware; in: Satellite

Events at the MoDELS 2005 Conference; 2005
29. Xing, Z.; Stroulia, E.: Refactoring detection based on UMLDiff change-facts

queries; p.263-274 in: Working Conf. on Reverse Engineering; 2006
30. Xtext; http://eclipse.org/Xtext; 2015

A SWML Matching Configuration Implemented in ECL

rule WebModel2WebModel
match l e f t : Le f t ! WebModel
with r i g h t : Right ! WebModel {
compare {

return t rue ;
}

}
// Same f o r DataLayer and HypertextLayer
// . . .

rule Ent i ty2Ent i ty
match l e f t : Le f t ! Ent ity
with r i g h t : Right ! Entity {
compare {

return l e f t . name = r i g h t . name ;
}

}

// Same f o r Attr ibute , Reference and Page
// . . .

rule Link2Link
match l e f t : Le f t ! Link
with r i g h t : Right ! Link {
compare {

return l e f t . srcMatches (r i g h t) and l e f t . tgtMatches (r i g h t) ;
}

}
operation Link srcMatches (other : Link) : Boolean {

return se l f . eContainer . name = other . eContainer . name ;
}
operation Link tgtMatches (other : Link) : Boolean {

return se l f . t a r g e t . name = other . t a r g e t . name ;
}

Listing A-1: SWML Matching Configuration Implemented in ECL

B Refactoring ”Add Data Page to Index Page“
Implemented in Henshin

Fig. 4 shows how to implement the refactoring operation ”Add Data Page to
Index Page“ in Henshin. The example illustrates that Henshin offers an intu-
itive visual syntax to specify model patterns to be found and preserved, to be
deleted and to be created. Note that selectedEObject and entityname are input
parameters, while New DataPage and New Link are output parameters of the rule.
The change actions which are to be performed by the rule are specified based
on the SWML abstract syntax. Thus, the specification uses type definitions of
the SWML meta-model which is generated by the Xtext framework. Given an
index page selectedEObject which references an entity named entityname, a new
data page New DataPage referencing this entity is created. Moreover, a new link
New Link is created such that the inserted data page is linked by the index page.

Rule addDataPageToIndexPage(selectedEObject, entityname, New_DataPage, New_Link)

«preserve»
:Entity

name=entityname

«preserve»
selectedEObject:IndexPage «preserve»

:HypertextLayer

«create»
New_DataPage:DataPage

name=entityname + "Data"

«create»
New_Link:Link

target
«create»

entity
«preserve»

entity
«create»

links

«create»

pages
«create»

entity
«preserve»

pages
«create»

entity
«create»

links

«create»

target
«create»

Fig. 4: Refactoring ”Add Data Page to Index Page“ implemented in Henshin

	An Adaptable Tool Environment for High-level Differencing of Textual Models

