
Multi-Amalgamated Triple Graph Grammars

Erhan Leblebici1, Anthony Anjorin1, Andy Schürr1, and Gabriele Taentzer2

1Technische Universität Darmstadt, Germany
{erhan.leblebici,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

2Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract. Triple Graph Grammars (TGGs) are a well-known technique
for rule-based specification of bidirectional model transformation. TGG
rules build up consistent models simultaneously and are operationalized
automatically to forward and backward rules describing single transfor-
mation steps in the respective direction. These operational rules, how-
ever, are of fixed size and cannot describe transformation steps whose
size can only be determined at transformation time for concrete models.
In particular, transforming an element to arbitrary many elements de-
pending on the transformation context is not supported. To overcome this
limitation, we propose the integration of the multi-amalgamation concept
from classical graph transformation into TGGs. Multi-Amalgamation
formalizes the combination of multiple transformations sharing a com-
mon subpart to a single transformation. For TGGs, this enables repeating
certain parts of a forward or backward transformation step in a for each
loop-like manner depending on concrete models at transformation time.

Keywords: triple graph grammars, amalgamation, model transformation

1 Introduction and Motivation

Model-Driven Engineering (MDE) has established itself as a viable means for
dealing with the increasing complexity of modern software systems. Models in
MDE provide suitable abstractions of a system, serve as both design and imple-
mentation artifacts, and facilitate the communication between domain experts.
In most cases, several models co-exist and contain related information to describe
a system from different perspectives, tools, or domains. Important challenges in
this context are to create a related model from a given model, and to ensure
consistency between related models during their life-cycles. Bidirectional model
transformation automates these tasks and, therefore, plays a crucial role in MDE.

Triple Graph Grammars (TGGs) [17] are a declarative, rule-based technique
for specifying bidirectional model transformation. Bidirectionality in this context
means that forward (source to target) and backward (target to source) transfor-
mations are derived from the same TGG specification. Formalizing models as
graphs, a TGG specification comprises triple rules that describe how consistent
source and target graphs connected by a correspondence graph evolve simulta-
neously, and is thus a grammar over triple graphs.



For practical applications, TGGs are typically operationalized to deduce for-
ward and backward transformations. The main idea of the operationalization,
e.g., in the forward direction, is to decompose each triple rule into a source
part, parsing the elements of a given source model, and a forward part, creating
necessary correspondence and target model elements to perform the specified
transformation step. The same applies analogously to the backward direction.

A crucial limitation when tackling complex transformation tasks is that triple
rules are graph patterns of fixed size and cannot describe transformation steps
whose size depends on concrete models. In particular, transforming an element to
arbitrarily many elements in one step depending on the transformation context
is not possible as the context of an unknown size cannot be specified via fixed
patterns. To overcome this, we propose an extension to TGGs leveraging a formal
concept from classical graph transformation, namely amalgamation.

Amalgamation [1] combines the applications of two rules (called multi-rules)
over a shared application of a common subrule (called kernel rule). The concept
is generalized in [19] to combining n multi-rule applications, which is formalized
in [7] as multi-amalgamation within the algebraic framework for adhesive cat-
egories. Single transformation steps are specified via interaction schemes that
contain a kernel rule and multi-rules that embed this kernel rule. Depending
on a concrete model at transformation time, the multi-rules are combined over
the kernel rule to a multi-amalgamated rule. Intuitively, this provides a means
for repeating certain parts of a transformation step after a common kernel part
in a for each loop-like manner. The main challenge when incorporating multi-
amalgamation into TGGs is to revise their operationalization, i.e., to derive
forward (backward) transformations compatible with the combination process.

After discussing the shortcomings of TGGs without multi-amalgamation via
a compact but non-trivial example in Sect. 2, our contribution is to:
1. Extend the basic formalization of TGGs by multi-amalgamation in Sect. 3.
2. Operationalize multi-amalgamated TGGs in Sect. 4, yielding our main result,

namely multi-amalgamation with source-forward derivations (Thm.1).
3. Define model transformation with multi-amalgamated TGGs and its formal

properties in Sect. 5, based on our operationalization results.
Section 6 gives an overview of related work and Sect. 7 concludes the paper.
While this paper focuses on formal results, we refer to [12] for our tool support.

2 Running Example and Preliminaries

Our running example is a compact but nontrivial excerpt of a transformation
between class diagrams and a corresponding HTML-like documentation (e.g.,
Javadoc). In particular, we focus on transforming inheritance links in the class
diagrams to hyperlinks in the documents (and vice versa). Direct hyperlinks are
to be created for all transitive super classes. While allowing multiple inheritance,
we consider class diagrams without repeated inheritance for simplicity, i.e., a
transitive inheritance is not induced over multiple ways. An exemplary class
diagram and its consistent documentation is depicted in Fig. 1 in concrete syntax.



All Super Classes
Class Observable

All Super Classes
Serializable
Observable
Person
Employee

Class Worker

All Super Classes
Serializable
Observable

Class Person
All Super Classes
Class Serializable

All Super Classes
Serializable
Observable
Person

Class Employee
All Super Classes
Serializable
Observable
Person
Employee

Class Manager

Serializable Observable

Person

Employee

Worker Manager

Fig. 1. A class diagram and its corresponding documentation

An inheritance link corresponds to multiple hyperlinks whose exact number
can only be determined at transformation time for a concrete class diagram.
Consider the transformation of the inheritance link between the Employee and
Person classes in Fig.1 and assume all other inheritance links are already docu-
mented. Besides creating a hyperlink from the Employee document to the Person
document, three additional steps are necessary: (i) the subclass document must
get hyperlinks to the documents for new transitive super classes (in this case
from Employee to Serializable and Observable), (ii) documents for all transitive
subclasses must get a hyperlink to the super class document (from Worker and
Manager to Person), and (iii) documents for transitive subclasses must get hyper-
links to the documents for transitive super classes (from Worker and Manager to
Serializable and Observable in all four possible combinations). The transformation
of one inheritance link in our concrete case creates 1+(2+2+4)=9 hyperlinks in
the documentation. The portion in brackets ranges between 0 and arbitrarily
many depending on concrete models.

2.1 Consistency Specification with Triple Graph Grammars

In this section, we briefly review the existing TGG formalization and look closer
at our identified challenges with the running example. In line with the algebraic
formalization in [4], we formalize models and metamodels as typed graphs and
type graphs, respectively. For presentation purposes, we provide our formaliza-
tion on the level of typed graphs. The formalization can, however, be extended
compatibly to attributed typed graphs with type inheritance [4].

Definition 1 (Typed Graph and Typed Graph Morphism).
A graph G = (V,E, s, t) is defined by a set V of vertices, a set E of edges, and
two functions s, t : E → V assigning to each edge a source and target vertex,
respectively. A graph morphism f : G→ G′, with G′ = (V ′, E′, s′, t′), is defined
as a pair of functions f := (fV , fE) such that fV : V → V ′, fE : E → E′ and
fV ◦ s = s′ ◦ fE ∧ fV ◦ t = t′ ◦ fE.

A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). A typed
graph is a pair (G, type) of a graph G and a graph morphism type: G → TG.
Given (G, type) and (G′, type′), f : G → G′ is a typed graph morphism iff
type = type′ ◦ f . L(TG) denotes the set of all typed graphs of type TG



We now introduce triples of graphs as we shall be dealing with source and
target models connected via a correspondence model. Normal letters denote triple
graphs while single graphs have subscripts S, C, or T indicating their domains.

Definition 2 (Typed Triple Graph, Typed Triple Graph Morphism).

A triple graph G := GS
γS← GC

γT→ GT consists of typed graphs GX ∈ L(TGX),
X ∈ {S,C, T}, and morphisms γS : GC → GS and γT : GC → GT .

A triple morphism f : G → G′ with G′ = G′S
γ′S← G′C

γ′T→ G′T , is a triple
f : (fS , fC , fT ) of typed morphisms where fX : GX → G′X and X ∈ {S,C, T},
fS ◦ γS = γ′S ◦ fC and fT ◦ γT = γ′T ◦ fC . A type triple graph is a distinguished

triple graph TG = TGS
ΓS← TGC

ΓT→ TGT . A typed triple graph is a pair (G, type)
of a triple graph G and triple morphism type : G → TG. Given (G, type) and
(G′, type′), f : G → G′ is a typed triple graph morphism iff type = type′ ◦ f .
L(TG) denotes the set of all triple graphs of type TG.

Example 1. Fig. 2 depicts a type triple graph on the left, and a typed triple graph
on the right. We choose class diagrams as the source domain and documents as
the target domain. Hexagon-shaped vertices in the middle form the correspon-
dence domain. In our type triple graph, class diagrams consist of Classes that
might have super Classes. Accordingly, hyperlinked documents consist of Docs
(representing documents) that might reference each other via a ref edge (repre-
senting hyperlinks). The correspondence type C2D relates Classes to Docs.
The exemplary typed triple graph to the right conforms to our type triple graph
and represents the same pair of class diagram and documentation model depicted
in Fig. 1, now with explicit correspondences in the middle. The structural differ-
ence between the documentation and its class diagram is the presence of explicit
ref edges to the documents of all transitive super classes. Note that the super
edge between the vertices 3 and 4 represents the inheritance between Employee
and Person in Fig. 1 and will be used in further examples.

:Doc

:Doc

:Doc

:Doc

:Doc

:Doc

1:Class

2:Class

3:Class

4:Class

5:Class

6:Class

:C2D

:C2D

:C2D

:C2D

:C2D

:C2D

Class C2D Doc

super ref

Fig. 2. a) A type triple graph and b) A typed triple graph for the running example

Consistent source, correspondence, and target graphs are created simultan-
eously with triple rules. TGGs only support monotonic (i.e., non-deleting) rules
as they are a constructive description for a triple of graph languages. We simplify



the algebraic formalization [4] accordingly for monotonic rules. In this paper, we
consider rules without negative application conditions (NACs) [4] and leave the
lifting of all concepts to TGGs with NACs to future work.

Definition 3 (Monotonic Triple Rules and Derivations).

m m'
r

PO

G G '
g

L RGiven a type triple graph TG, a monotonic triple rule r : L→ R
is a typed triple monomorphism with L,R ∈ L(TG). A direct

derivation, denoted as G
r@m
===⇒ G′, is constructed by building a

pushout as depicted in the diagram to the right, i.e., by applying
r to a typed triple graph G ∈ L(TG) via a typed triple morphism
m : L→ G. The typed triple morphisms m and m′ are referred to as match and
comatch, respectively. We call g a direct derivation morphism.

A sequence d : G
r0@m0====⇒ G1

r1@m1====⇒ . . .
rn@mn====⇒ G′ with respective direct deriva-

tion morphisms {g0, . . . , gn} is a derivation where g = gn ◦ . . . ◦ g0 denotes the

derivation morphism. The decomposition of d into derivations d1 : G
r0@m0====⇒

G1...
ri@mi====⇒ Gi and d2 : Gi

ri+1@mi+1
=======⇒ Gi+1 . . .

rn@mn====⇒ G′ is denoted as (d1, d2).

Example 2. Figure 3 depicts two triple rules in an attempt to specify a TGG for
our running example. As triple rules are monotonic, we use a compact syntax
embedding L (context elements, i.e., the precondition of the rule) into R and
depicting created elements (R\L) in green with a ++ mark-up.

:Class

++

:C2D
++

:Doc
++

++

CtoD

++
:Class

++

:C2D :Doc

++

ItoR

:Class :C2D :Doc

Fig. 3. Triple rules for the running example

The first rule CtoD (Class to Document) does not require any elements as context
and creates a class and a document with a correspondence between them. The
second rule ItoR (Inheritance to Reference) requires two classes and their corre-
sponding documents. It creates an inheritance link (super) from one class to the
other, and a hyperlink (ref) between the documents in the same direction.

A triple rule creates in general a fixed number cS and ct of source and target
elements, respectively. The rule ItoR, for example, creates an inheritance link
(cs = 1) and a hyperlink (ct = 1). As we have discussed at the beginning of this
section, however, after creating a hyperlink we need to repeat three additional
steps to complement all corresponding hyperlinks. In total, the desired consis-
tency requires the creation of ct = 1 + ct1 + ct2 + ct3 target elements, where ct1 ,
ct2 , and ct3 are the numbers of hyperlinks to be created for these three cases.
They can only be determined at transformation time for a concrete model triple.



:Doc

:Doc

:Doc

:Doc

:Doc :Doc

++

++

:Doc

:Doc :Doc

:Doc

++

Note that specifying three further separate rules as depicted to
the right to create the missing hyperlinks in retrospect is not a so-
lution, as the application of these rules cannot be enforced exactly
once for ct1 , ct2 , and ct3 cases. The resulting grammar would allow
missing as well as superfluous transitive hyperlinks, leading to trans-
formations that exhibit undesired behaviour. To express consistency
in situations where the number of elements that are to be related
in one step is unknown at design time of a TGG, we propose the
integration of multi-amalgamation as established in classical graph
transformation, adhering to the rule-based nature of TGGs.

3 Multi-Amalgamated Triple Graph Grammars

The Amalgamation Theorem [1] combines applications of two rules (called multi-
rules) over an embedded subrule (kernel rule) application. This concept is gener-
alized to combining an arbitrary number of direct derivations via multi-rules [19],
formalized as multi-amalgamation in [7] within a categorical setting. Single trans-
formation steps in multi-amalgamation are specified as interaction schemes that
consist of a kernel rule and multi-rules that embed this kernel rule. When ap-
plying an interaction scheme to a concrete model, the multi-rules are glued over
the kernel rule depending on the collected multi-rule matches, i.e., the size of the
gluing is first determined at transformation time. With regard to TGGs, there-
fore, interaction schemes can be regarded as a generalization of triple rules with
which consistency of an unknown number of involved elements can be expressed.

Our goal in this section is to integrate multi-amalgamation into the basic
formalization of TGGs. We use the general framework of multi-amalgamation
as introduced in [7] but simplify the algebraic formalization by exploiting the
monotonicity of triple rules. As from now on, we refer to a family of morphisms
or direct derivations that start from the same typed triple graph as a bundle.

Definition 4 (Kernel Rule, Multi-Rule, Interaction Scheme).

m m'
r

PO

G G '
g

L R

k1,L k1,R

r0

PB

r1

L0 R0

L1 R1

Given triple rules r0 and r1, a kernel morphism k1 : r0 → r1
consists of two typed triple monomorphisms k1,L : L0 → L1

and k1,R : R0 → R1 such that the square to the right is a pull-
back, i.e., r1 at least includes r0 and might have a remainder.
In this case, r0 is called the kernel rule and r1 the multi-rule.
A kernel rule r0 and a set of multi-rules {r1, . . . , rn} with the respective kernel
morphisms {k1, . . . , kn} form an interaction scheme.

Example 3. Fig. 4 depicts the interaction scheme ItoR consisting of a kernel rule
ItoR0 and three multi-rules ItoR1, ItoR2, and ItoR3 embedding the kernel rule via
the kernel morphisms k1, k2, and k3, respectively. In a multi-rule, the vertices
originating from the kernel rule are highlighted via a gray shading. Consequently,
the white vertices and their incident edges form the remainder after the kernel.
The kernel rule ItoR0 is our original rule from Fig. 3 and creates an inheritance
link between two classes and a hyperlink between the respective super class



:Class

++

:C2D :Doc

++

ItoR0

:Class :C2D :Doc

:Class

++

:C2D :Doc

++

ItoR2

:Class :C2D :Doc :Doc

++

:Class

++

:C2D :Doc

++

ItoR1

:Class :C2D :Doc

:Doc

++

:Class

++

:C2D :Doc

++

ItoR3

:Class :C2D :Doc

:Doc

++

:Doc

k1

k2

k3

ItoR

Fig. 4. Interaction scheme ItoR

and subclass documents. The multi-rule ItoR1 includes the kernel rule and ad-
ditionally creates a hyperlink from the subclass document to a transitive super
class document. Analogously, ItoR2 creates a hyperlink from a transitive subclass
document to the super class document. Finally, ItoR3 creates a hyperlink from
a transitive subclass document to a transitive super class document. The re-
mainders of these multi-rules create hyperlinks between two documents as soon
as they are indirectly connected by the kernel part. Hyperlinks for transitive
inheritance relations of an arbitrary depth can therefore be created.

Next, we consider a bundle of direct derivations consisting of a kernel rule
application and multi-rule applications that embed this kernel rule application.
Moreover, we require maximal and unique multi-rule matches, which is essential
to achieve transformations behaving in line with a for each loop.

Definition 5 (Maximally Amalgamable).

Given an interaction scheme s and a typed triple graph G, let D : {G rj@mj
====⇒

Gj}j=0,...,t be a bundle of direct derivations, where r0 is the kernel rule of
s and {r1, . . . , rt} are multi-rules of s with the respective kernel morphisms
{k1, . . . , kt}. D is amalgamable for s if, ∀p, q ∈ {1, . . . , t} all multi-rule matches
are (1) unique, i.e., p 6= q ⇒ mp 6= mq, and (2) agree on the kernel match m0,
i.e., mp ◦ kp = mq ◦ kq = m0. We say D is maximally amalgamable for s if

@dz : G
rz@mz====⇒ Gz such that (D ∪ {dz}) is amalgamable for s.

Example 4. We now consider the interaction scheme ItoR from Fig. 4, applied
to create the inheritance link between the classes Person and Employee (the ver-
tices 3 and 4 in Fig. 2) with the corresponding hyperlinks. We assume that all
other inheritance links were already created with all respective hyperlinks. The
maximally amalgamable bundle applies ItoR0 once in order to create the inher-
itance link with the corresponding direct hyperlink, ItoR1 twice (by matching
the Serializable and Observable documents as the white vertex), ItoR2 twice (by
matching the Worker and Manager documents as the white vertex), and ItoR3

four times (by matching the Serializable and Observable documents as the upper
white vertex and the Worker and Manager documents as the lower white vertex).



The consolidation of a maximally amalgamable bundle results in a direct
derivation with a multi-amalgamated rule.

Definition 6 (Multi-Amalgamated Rule).

…L̃0 L̃1 L̃2
u1,L u2,L L̃t − 1 L̃t

L0

L1 L2 Lt − 1 Lt
…

ut,L

e1,L e2,L et-1,L et,L

k1,L
k2,L

kt-1,L

kt,L

(1)L (2)L (t)L

…u1,R u2,R ut,RR̃0 R̃1 R̃2 R̃t − 1 R̃t

R0

R1 R2 RtRt − 1

k1,R
k2,R kt-1,R kt,R

…e1,R e2,R et,Ret-1,R(1)R (2)R (t)R

r0
~ r1

~ rt-1
~r2

~

L̃=

= R̃
rt = r~ ~

e0,L=id

e0,R=id

r1 r2 rt-1 rt

Given an interaction scheme s, and a

bundle D : {G rj@mj
====⇒ Gj}j=0,...,t of

direct derivations that is maximally
amalgamable for s, let K̃ : {ki = r0 →
ri}i=1,...,t be the bundle of respective
kernel morphisms for D. The multi-
amalgamated rule r̃ : L̃ → R̃ is con-
structed by gluing multi-rules over the
kernel rule via iterated pushouts with
the kernel morphisms in K̃ as depicted
to the right, where the gray region marks
the results after each iteration: The
construction starts with r̃0 = r0, i.e.,
the kernel rule, and ends with r̃ = r̃t. After each iteration i ∈ {1, . . . , t}, the
pushouts (i)L and (i)R construct L̃i and R̃i, respectively. The rule morphism
r̃i : L̃i → R̃i is induced via the universal property of the pushout (i)L, i.e.,

r̃i ◦ ui,L = ui,R ◦ r̃i−1 and r̃i ◦ ei,L = ei,R ◦ ri. We call G
r̃@m̃
===⇒ G′ a multi-

amalgamated direct derivation where m̃ is determined by the multi-rule matches
in D, i.e., m̃◦et,L = mt and m̃◦(ut,L◦...◦uq+1,L)◦eq,L = mq, ∀q ∈ {0, . . . , t−1}.
Example 5. The multi-amalgamated rule for the maximally amalgamable bundle
from Ex. 4 is constructed by gluing ItoR1 twice, ItoR2 twice, and ItoR3 four times
over ItoR0. Figure 5 depicts this multi-amalgamated rule with its match m̃ where
vertices matching the same Doc are merged to one vertex.

3:Doc

4:Doc

5:Doc

6:Doc

8:Doc

7:Doc

1:Class

2:Class

:C2D

:C2D

++ ++

++

++

++

++
++

++

++

++

1 → Class Person
2 → Class Employee

3 → Doc Serializable
4 → Doc Observable
5 → Doc Person
6 → Doc Employee
7 → Doc Worker
8 → Doc Manager

m~

Fig. 5. A multi-amalgamated rule an its match for our example

Note that such a multi-amalgamated rule is not specified explicitly by the trans-
formation designer but induced given a triple graph at transformation time. The

multi-amalgamated direct derivation d̃ : G
r̃@m̃
===⇒ G′ in this case creates one

inheritance link in the source graph and nine hyperlinks in the target graph.



Having introduced interaction schemes of triple rules and multi-amalgamated
direct derivations, we finally define multi-amalgamated TGGs.

Definition 7 (Multi-Amalgamated Triple Graph Grammar).
A multi-amalgamated triple graph grammar TGG = (TG,S) consists of a type
triple graph TG and a set S of interaction schemes. The generated language
L(TGG) ⊆ L(TG) is defined as follows:

L(TGG) := {G∅} ∪ {G | ∃d̃ : G∅
r̃1@m̃1====⇒ G1

r̃2@m̃2====⇒ . . .
r̃n@m̃n====⇒ G}, where G∅

is the empty triple graph, each r̃i with i ∈ {1, . . . , n} is a multi-amalgamated
rule derived from an interaction scheme si ∈ S and Gi−1. LS(TGG) denotes all
source graphs in L(TGG), LT (TGG) analogously all target graphs.

Example 6. For a uniform handling, we consider CtoD from Fig. 3 also as an
interaction scheme with an empty set of multi-rules. The interaction schemes
CtoD and ItoR (Fig.4) together with the type triple graph in Fig. 2 constitute a
multi-amalgamated TGG, which is indeed able to generate class diagrams with
multiple inheritance and corresponding documents with all necessary hyperlinks.

4 Operationalizing Multi-Amalgamated TGGs

In this section, our goal is to operationalize interaction schemes in order to
deduce forward and backward transformation steps from a multi-amalgamated
TGG. From an interaction scheme s, we derive source and forward rules to
achieve forward transformation steps that are equivalent to a multi-amalgamated
direct derivation via s. All concepts apply analogously to the backward direction.

We apply two decompositions to interaction schemes, making use of the Con-
currency Theorem [5], which states that two sequential direct derivations can
be composed to (or decomposed from) a direct derivation with a so-called E-
concurrent rule. The following definition of an E-concurrent rule is a special case
of Def. 5.21 in [4]. We only consider the E-concurrent rule of two monotonic rules
rx : Lx → Rx and ry : Ly → Ry, where Rx can be embedded in Ly.

Definition 8 (E-Concurrent Rule).

k1,L

r0 j

c
PO

L0 L1

R0 L̄1

R̄1

r1

R1
=

r1k1,R
=

=

rx

e* ePO
Lx Rx

RyLyL *rx ry

Given triple rules rx : Lx → Rx and ry : Ly → Ry, a triple
morphism e : Rx → Ly, as depicted to the right, is an E-
dependency relation over rx and ry if the pushout complement
(i.e., e∗ : Lx → L and r∗x : L→ Ly) exists. The corresponding
E-concurrent rule rx ∗E ry is defined as ry ◦ r∗x : L→ Ry

First, we derive so-called complement rules from the multi-rules. A comple-
ment rule accomplishes the remainder of a multi-rule after its kernel [1], i.e., a
multi-rule is an E-concurrent rule of its kernel and complement rule.

As discussed in Sect. 3, multi-amalgamated rules are dynamically constructed
and are used to define the semantics of an interaction scheme for a particular
triple graph at transformation time. Complement rules, by contrast, are statically
constructed to realise multi-amalgamated direct derivations via repeated appli-
cation, representing a practical means of implementing multi-amalgamation [12].



Definition 9 (Complement Rule).

k1,L

r0 j

c
PO

L0 L1

R0 L̄1

R̄1

r1

R1
=

r1k1,R
=

=

rx

e* ePO
Lx Rx

RyLyL *rx ry

r0

ePO
*r0

L0 R0

L1 L̄1 R̄1 R1
=

k1,L

r1

k1,R
=

= r1

Given a kernel morphism k1 : r0 → r1, the respective com-
plement rule r1 : L1 → R1 is constructed, as depicted to
the right, such that L1 is a pushout over r0 and k1,L and
R1 = R1. The rule morphism r1 is induced uniquely via
the universal property of the pushout.

Example 7. Figure 6 depicts the complement rules of the interaction scheme
ItoR from Fig. 4. The complement rules ItoR1, ItoR2, and ItoR3 correspond to
the multi-rules ItoR1, ItoR2, and ItoR3, respectively, and only create the transitive
hyperlinks for an existing pair of an inheritance link and a direct hyperlink.

:Class :C2D :Doc

:Class :C2D :Doc :Doc

++

:Class :C2D :Doc

:Class :C2D :Doc

:Doc

++

:Class :C2D :Doc

:Class :C2D :Doc

:Doc

++

:Doc

ItoR1 ItoR2 ItoR3

Fig. 6. Complement rules for ItoR

Complement rules allow us to decompose multi-amalgamated direct deriva-
tions into a kernel direct derivation and a sequence of complement direct deriva-
tions. Having required maximal multi-matches in Def. 6, we now define the analo-
gous characterization for decomposed derivations with complement rule matches.

Definition 10 (Maximally Complemented Bundle).
Given an interaction scheme s with the respective set CR of complement rules

and kernel rule r0, and a typed triple graph G, let d0 : G
r0@m0====⇒ G0 be a direct

derivation via r0 with comatch m′0 and D : {G0
ri@mi====⇒ Hi}i=1,...,t a bundle of

direct derivations where (ri : Li → Ri) ∈ CR with ei : R0 → Li.
D is complemented for d0, if, ∀p, q ∈ {1, . . . , t}, all complement matches are
(1) unique, i.e., p 6= q ⇒ mp 6= mq, and (2) agree on the kernel comatch
m′0, i.e., mp ◦ ep = mq ◦ eq = m′0. D is maximally complemented for d0 if

@dz : G0
rz@mz====⇒ Hz such that (D ∪ {dz}) is complemented for d0.

The following lemma states the equivalence of a multi-amalgamated direct
derivation (Def. 6) to a derivation with a kernel and subsequent complement rule
applications. The complement rule applications form a maximal bundle (Def.10).
This yields our first decomposition to operationalize a multi-amalgamated TGG.

Lemma 1 ((De-)composition of Multi-Amalg. Direct Derivations).

Given an interaction scheme s and a typed triple graph G, ∃(d̃ : G
r̃@m̃
===⇒ G′) ⇔

∃(d : G
r0@m0====⇒ G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt = G′), where d̃ is a multi-amal-

gamated direct derivation with s and the bundle D : {G0
ri@mi====⇒ Hi}i=1,...,t is

maximally complemented for d0 : G
r0@m0====⇒ G0.



G G 'd~
d0 qG0

Proof. Using the Multi-Amalgamation Theorem [7], as depicted
to the right, d̃ can be decomposed into (or composed from) a

direct derivation d0 : G
r0@m0====⇒ G0 via the kernel rule r0, and

a subsequent direct derivation q that accomplishes the remainder of d̃ via the
complement rules of s. As d̃ is constructed via a maximally amalgamable bundle

D : {G rj@mj
====⇒ Hj}j=0,...,t (Def. 5), the remainder q corresponds to the maximally

complemented bundle D : {G0
ri@mi====⇒ Hi}i=1,...,t applied in one step. Moreover,

all direct derivations in D are pairwise parallel independent as they only require
d0. The Parallelism Theorem [6] leads to the equivalence of q with the sequence

G0
r1@m1====⇒ G1 . . .

rt@mt====⇒ Gt. That is, d is equivalent to (d0, q), and thus to d̃. ut

Definition 11 (Maximally Complemented Derivation).

Given a multi-amalgamated direct derivation d̃ : G
r̃@m̃
===⇒ G′ via an interaction

scheme s, we refer to d : G
r0@m0====⇒ G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt = G′, the

derivation induced according to Lemma 1, as maximally complemented for s.

Example 8. The multi-amalgamated direct derivation d̃ presented in Ex. 5 can
be decomposed into (or composed from) a derivation d that is maximally com-
plemented for ItoR as follows:

d : G
ItoR0@m0======⇒ G0

ItoR1@m1======⇒ G1
ItoR1@m2======⇒ G2

ItoR2@m3======⇒ G3
ItoR2@m4======⇒ G4

ItoR3@m5======⇒
G5

ItoR3@m6======⇒ G6
ItoR3@m7======⇒ G7

ItoR3@m8======⇒ G8 = G′

This corresponds to the creation of an inheritance link and a direct hyperlink
with the kernel rule, and eight transitive hyperlinks with complement rules.

Next, we apply basic operationalization results [3,17] for TGGs to kernel
and complement rules in order to decompose them further into their source and
forward rules. A source rule creates only source elements while the respective
forward rule creates the correspondence and target elements. Thus, each kernel
and complement rule is an E-concurrent rule of its source and forward rule. We
apply this decomposition to kernel and complement rules, yielding a static con-
struction of operationalized rules that together can achieve a multi-amalgamated
direct derivation.

Definition 12 (Source and Forward Rules).

PO
LS ᴓ ᴓ

LS LC LT LC LT

ᴓ ᴓRS

RC RTRS RS

sr

r =

fr
(id, ᴓ , ᴓ) e: (id, ᴓ , ᴓ)

(rS,id, id)

SL SR

L FL R=FR

Given a triple rule r : L → R with
L = LS ← LC → LT and R = RS ←
RC → RT , a source rule sr : SL →
SR is constructed such that SL = LS ←
∅ → ∅ and SR = RS ← ∅ → ∅, and a
forward rule fr : FL→ FR is constructed such that FL = RS ← LC → LT and
FR = RS ← RC → RT . The rule morphisms sr and fr are induced, as de-
picted in the diagram, such that r is an E-concurrent rule (Def. 8) of sr and fr.
We call the E-dependency relation e : SR → FL source rule embedding. Given
a kernel morphism k1 : r0 → r1, we call sr0 (fr0) the kernel source (forward)
rule and sr1 (fr1) the complement source (forward) rule.



Example 9. Fig. 7 depicts the source and forward rules derived from the kernel
and complement rules of the interaction scheme ItoR. The kernel source rule
sItoR0 creates an inheritance link between two classes while the kernel forward
rule fItoR0 requires such an inheritance link and creates a hyperlink between
the corresponding documents. The complement source rules sItoR1, sItoR2, and
sItoR3 are identical (as ItoR1, ItoR2, and ItoR3 are identical in their source parts),
and require an inheritance link without creating any elements. The complement
forward rules fItoR1, fItoR2, and fItoR3 create a transitive hyperlink in accordance
with ItoR1, ItoR2, and ItoR3, respectively.

:Class :C2D :Doc

:Class :C2D :Doc

:Doc

++

fItoR1

:Class :C2D :Doc

:Class :C2D :Doc

:Doc

++

:Doc

fItoR3

:Class :C2D :Doc

:Class :C2D :Doc :Doc

++

fItoR2

:Class :C2D :Doc

++

fItoR0

:Class :C2D :Doc

:Class

++

sItoR0

:Class

sItoR1 sItoR2 sItoR3= =

:Class

:Class

Fig. 7. Source and forward rules for ItoR

Source and forward rules enable us to decompose a derivation with triple
rules via the Concurrency Theorem [5] into a source and forward derivation.
The former creates the elements of a source graph via source rules while the
latter extends it to a triple via forward rules. Inversely, a derivation with triple
rules can be composed from such a source and forward derivation.

Fact 1 ((De-)composition of Derivations with Triple Rules)
Given triple rules {r0, . . . , rt} with their respective source rules {sr0, . . . , srt},
forward rules {fr0, . . . , frt}, and source rule embeddings {e0, . . . , et},
∃(d : G

r0@m0====⇒ G0 . . .
rt@mt====⇒ Gt) ⇔ ∃(sfd : G

sr0@sm0=====⇒ Gs0 . . .
srt@smt=====⇒ Gst

fr0@fm0
======⇒ Gf0 . . .

frt@fmt
=====⇒ Gft = Gt) where each forward rule match fmi is

determined by ei and the source rule comatch sm′i, i.e, gi ◦ sm′i = fmi ◦ ei while
gi is the derivation morphism Gs0 → Gst for i = 0 and Gsi → Gfi−1 for i > 0.

Proof. For the proof we refer the interested reader to Thm. 1 in [3]. ut

Fact 1 is a general (de-)composition result for derivations with triple rules.
Having kernel and complement rules as triple rules in case of a multi-amalgamated
TGG, we apply Fact 1 to a maximally complemented derivation (Def. 11) in or-
der to achieve an equivalent derivation with source and forward rules derived
from the kernel and complement rules of an interaction scheme.



Definition 13 (Maximally Complemented Source-Forward Derivation).

Given a derivation d : G
r0@m0====⇒ G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt that is max-

imally complemented for an interaction scheme s, we refer to the derivation

sfd : G
sr0@sm0=====⇒ Gs0

sr1@sm1=====⇒ Gs1 . . .
srt@smt=====⇒ Gst

fr0@fm0
======⇒ Gf0

fr1@fm1======⇒

Gf1 . . .
frt@smt
=====⇒ Gft = Gt, induced according to Fact 1, as a maximally comple-

mented source-forward derivation for s.

Finally, both (de-)compositions from Lemma 1 and Fact 1 lead to the equiv-
alence of a multi-amalgamated direct derivation (Def. 6) and a maximally com-
plemented source-forward derivation (Def. 13). The former describes a canonical
and multi-amalgamated step for building up consistent triples while the latter is
a conforming transformation step with source and forward rules.

Theorem 1 (Multi-Amalgamation with Source-Forward Derivations).

Given an interaction scheme s and a typed triple graph G, ∃(d̃ : G
r̃@m̃
===⇒ G′)⇔

∃(sfd : G
sr0@sm0=====⇒ Gs0

sr1@sm1=====⇒ Gs1 . . .
srt@smt=====⇒ Gst

fr0@fm0
======⇒ Gf0

fr1@fm1======⇒

Gf1 . . .
frt@smt
=====⇒ Gft = G′), where d̃ is a multi-amalgamated direct derivation

with s and sfd is a maximally complemented source-forward derivation for s.

Proof. ∃d̃ ⇐⇒ ∃d (Lemma 1) and ∃d ⇐⇒ ∃sfd (Fact 1) where the intermediate
derivation d is a maximally complemented derivation for s (Def. 10). ut

Example 10. d from Ex.8, whose equivalence to d̃ from Ex. 5 is shown by apply-
ing Lemma 1, can be further decomposed into (or composed from) the following
derivation sfd by applying Fact 1:

sfd : G
sItoR0@sm0=======⇒ Gs0

sItoR1@sm1=======⇒ Gs1
sItoR1@sm2=======⇒ Gs2

sItoR2@sm3=======⇒ Gs3
sItoR2@sm4=======⇒

Gs4
sItoR3@sm5=======⇒ Gs5

sItoR3@sm6=======⇒ Gs6
sItoR3@sm7=======⇒ Gs7

sItoR3@sm8=======⇒ Gs8
fItoR0@fm0
=======⇒

Gf0
fItoR1@fm1=======⇒ Gf1

fItoR1@fm2=======⇒ Gf2
fItoR2@fm3=======⇒ Gf3

fItoR2@fm4=======⇒ Gf4
fItoR3@fm5=======⇒

Gf5
fItoR3@fm6=======⇒ Gf6

fItoR3@fm7=======⇒ Gf7
fItoR3@fm8=======⇒ Gf8 = G′.

The overall decomposition in this case corresponds to the transformation of an
inheritance link to nine hyperlinks using source and forward rules derived from
kernel and complement rules.

5 Model Transformation with Multi-Amalgamated TGGs

Having discussed the (de-)composition of multi-amalgamated direct derivations,
we now apply our results to entire multi-amalgamated derivations, which gener-
ate the language of a TGG. This yields a notion of source-forward transformation,
stating how a source graph GS can be created via kernel and complement source
rules and extended to a triple GS ← GC → GT via kernel and complement
forward rules. All results are analogously applicable in the backward direction.



Definition 14 (Source-Forward Transformation).
Given a multi-amalgamated TGG with a set S of interaction schemes and a
source graph GS ∈ LS(TGG), a source-forward transformation for GS is a
derivation SFTGS

: (sfd1, . . . , sfdn) which (1) starts from the empty graph G∅,
(2) creates a typed triple graph G : GS ← GC → GT , i.e., GS is the source graph
of G, and (3) consists of maximally complemented source-forward derivations
sfdi, i ∈ {1, . . . , n}, for an interaction scheme si ∈ S.

Remark: In a source-forward transformation, each maximally complemented
source-forward derivation sfdi is sorted in itself such that a source sequence is
followed by a forward sequence, yielding together one multi-amalgamated trans-
formation step (cf. Thm. 1). For readability, we do not undertake this sorting
across different steps. Our proofs in the following, nonetheless, remain straight-
forwardly applicable to completely sorted source-forward transformations as a
consequence of Fact 1, which holds orthogonally to multi-amalgamation.

Theorem 1 leads to the fact that a source-forward transformation can be com-
posed to a sequence of multi-amalgamated direct derivations. A source-forward
transformation thus produces a typed triple graph that is in the language of a
multi-amalgamated TGG (Def. 7), referred to as correctness.

Theorem 2 (Correctness of SFT with Multi-Amalgamated TGGs).
Given a multi-amalgamated TGG, each source-forward transformation SFTGS

is correct, i.e., produces a typed triple graph G ∈ L(TGG).

Proof. Let SFTGS
: (sfd1, . . . , sfdn) where each sfdi with i ∈ {1, . . . , n} is a

maximally complemented source-forward derivation for an interaction scheme
si. Applying Thm. 1 to each sfdi, we get a derivation d̃ : (d̃1, . . . , d̃n) such that
each d̃i is a multi-amalgamated direct derivation via si and d̃ is equivalent to
SFTGS

. That is, SFTGS
produces a G ∈ L(TGG) according to Def. 7. ut

Furthermore, Thm. 1 shows the decomposability of each multi-amalgamated
direct derivation, and thus guarantees a forward transformation for each source
graph GS ∈ LS(TGG), referred to as completeness.

Theorem 3 (Completeness of SFT with Multi-Amalgamated TGGs).
Given a multi-amalgamated TGG, there exists a source-forward transformation
SFTGS

for each GS ∈ LS(TGG).

Proof. Having GS ∈ LS(TGG), there is a derivation d̃ : (d̃1, . . . , d̃n) such that d̃
creates a typed graph triple G : GS ← GC → GT and every d̃i with i ∈ {1, . . . , n}
is a multi-amalgamated direct derivation for an interaction scheme si (Def. 7).
Applying Thm. 1 to each d̃i, we get a derivation SFTGS

: (sfd1, . . . , sfdn) such
that each sfdi is a maximally complemented source-forward derivation for si. ut

6 Related Work

In the following, we consider two groups of related work: (1) alternative ap-
proaches to multi-amalgamation, which could also have been used to extend
TGGs, and (2) other bidirectional languages and their support for “for each”.



Alternatives to multi-amalgamation: Although different extensions to
graph transformation exist for transforming arbitrarily many occurrences of cer-
tain patterns, to the best of our knowledge none of them have been integrated
into TGGs. PROGRES [18] features set nodes that are to be matched optionally
once (or at least once) and arbitrarily often. Multi-amalgamation is more expres-
sive than set nodes as it handles multiple occurrences of graph patterns rather
than single nodes. Extensions such as collection operators [8], cloning [10], or
rule quantification [15] indicate that certain parts of a rule can be repeated. It
is, however, challenging to determine how these extensions interact with splitting
up triple rules into source and forward rules. Multi-amalgamation is the most
natural way for TGGs to describe repetitions, as repeated parts are formalized
via morphisms between plain rules. Basic source and forward rule construction
results [3,17] remain directly applicable to kernel and complement rules. Never-
theless, rule quantification in [15] allows for hierarchical nesting of multi-rules,
demonstrated in [16] on examples beyond the capabilities of multi-amalgamation.
However, (de-)composition results such as complement rule construction and the
Multi-Amalgamation Theorem [7], which enable a viable integration into TGGs
as we discuss, are yet to be adapted for hierarchical multi-rules.

Bidirectional languages: GRoundTram [9], a bidirectional programming
approach, features queries that are bidirectionally interpreted and inherently
not bounded to a constant number of elements. Similarly, the QVT (Query,
View, Transformation) standard [14], in particular QVT-R (QVT-Relations),
features language constructs (e.g., forall or closure) or recursive rule invoca-
tions to address the consistency of an unbounded number of involved elements.
Adopting the QVT-R syntax, bidirectional approaches such as Echo [13], JTL [2],
and medini QVT [11] allow for a constraint-based specification of consistency,
and find consistent models by checking and enforcing constraint satisfaction. Al-
though such approaches are more expressive than TGGs, TGGs have, nonethe-
less, gained acceptance due to efficient, scalable implementations and their con-
structive formal foundation based on graph transformation. Increasing the ex-
pressiveness of TGGs, however, is essential to ensure their competitiveness in an
MDE context. Our contribution takes a step towards this goal.

7 Conclusion and Future Work

In this paper, we integrated the multi-amalgamation concept into TGGs. This
enables us to derive forward and backward transformation steps that transform
and create an unbounded number of elements where the number is determined
via concrete models at transformation time. The achieved extension increase the
capabilities of TGGs while adhering to their rule-based and declarative nature.

Further tasks for future work include support for (i) incremental model syn-
chronization with multi-amalgamated TGGs, (ii) critical pair analysis [4] to
ensure efficient model synchronization, (iii) consistency checks between existing
models, (iv) hierarchical multi-rules comparable to nested for each loops and
(v) NACs in interaction schemes to further increase expressiveness.



References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: A
synchronization mechanism. JCSS 34(2-3), 377–408 (1987)

2. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: JTL : a bidirectional and
change propagating transformation language. In: Malloy, B.A., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer (2010)

3. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer (2007)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

5. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concur-
rency in high-level replacement systems. MSCS 1(03), 361–404 (1991)

6. Ehrig, H., Kreowski, H.J.: Parallelism of Manipulations in Multidimensional In-
formation Structures. In: Mazurkiewicz, A. (ed.) MFCS 76. LNCS, vol. 45, pp.
285–293. Springer (1976)

7. Golas, U., Ehrig, H., Habel, A.: Multi-Amalgamation in Adhesive Categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer (2010)

8. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A Collection Operator for Graph
Transformation. In: Paige, R. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82.
Springer (2009)

9. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An integrated
framework for developing well-behaved bidirectional model transformations. In:
Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011. pp. 480–483 (2011)

10. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and Expanding Graph
Transformation Rules for Refactoring. ENTCS 152, 53–67 (2006)

11. Ikv++: Medini QVT, http://projects.ikv.de/qvt
12. Leblebici, E., Anjorin, A., Schürr, A.: Tool Support for Multi-Amalgamated Triple

Graph Grammars. In: this volume (2015)
13. Macedo, N., Cunha, A.: Implementing QVT-R Bidirectional Model Transforma-

tions using Alloy. In: Cortelessa, V., Varro, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 297–311. Springer (2013)

14. OMG: QVT Specification, V1.1 (2011), http://www.omg.org/spec/QVT/1.1/
15. Rensink, A.: Nested Quantification in Graph Transformation Rules. In: Corradini,

A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 1–13. Springer (2006)

16. Rensink, A., Kuperus, J.H.: Repotting the Geraniums : On Nested Graph Trans-
formation Rules. In: Boronat, A., Heckel, R. (eds.) GT-VMT 2009. ECEASST,
vol. 18. EASST (2009)

17. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Tinhofer, G., Schmidt, G., Ernst, W.M. (eds.) WG 1994. LNCS, vol. 903, pp.
151–163. Springer (1994)

18. Schürr, A.: Programmed Graph Replacement Systems. In: Rozenberg, G. (ed.)
Handbook on Graph Grammars: Foundations, pp. 479–546. World Scientific (1997)

19. Taentzer, G.: Parallel and Distributed Graph Transformation : Formal Description
and Application to Communication-Based Systems. Ph.D. thesis (1996)

http://projects.ikv.de/qvt
http://www.omg.org/spec/QVT/1.1/

	Multi-Amalgamated Triple Graph Grammars
	Introduction and Motivation
	Running Example and Preliminaries
	Consistency Specification with Triple Graph Grammars

	Multi-Amalgamated Triple Graph Grammars
	Operationalizing Multi-Amalgamated TGGs
	Model Transformation with Multi-Amalgamated TGGs
	Related Work
	Conclusion and Future Work


