
Translating Essential OCL Invariants to Nested
Graph Constraints Focusing on Set Operations ?

Hendrik Radke1, Thorsten Arendt2, Jan Steffen Becker1,
Annegret Habel1, and Gabriele Taentzer2

1 Universität Oldenburg,
{radke,jan.steffen.becker,habel}@informatik.uni-oldenburg.de

2 Philipps-Universität Marburg,
{arendt,taentzer}@informatik.uni-marburg.de

Abstract. Domain-specific modeling languages (DSMLs) are usually
defined by meta-modeling where invariants are defined in the Object
Constraint Language (OCL). This approach is purely declarative in the
sense that instance construction is not incorporated but has to added.
In contrast, graph grammars incorporate the stepwise construction of
instances by applying transformation rules. Establishing a formal re-
lation between meta-modeling and graph transformation opens up the
possibility to integrate techniques of both fields. This integration can
be advantageously used for optimizing DSML definition. Generally, a
meta-model is translated to a type graph with a set of nested graph
constraints. In this paper, we consider the translation of Essential OCL
invariants to nested graph constraints. Building up on a translation of
Core OCL invariants, we focus here on the translation of set operations.
The main idea is to use the characteristic function of sets to translate set
operations to corresponding Boolean operations. We show that a model
satisfies an Essential OCL invariant iff its corresponding instance graph
satisfies the corresponding nested graph constraint.

Keywords: Meta modeling, Essential OCL, graph constraints, set operations

1 Introduction

Model-based software development causes the need for new, often domain-specific
modeling languages (DSMLs) to carry high-level knowledge about the software.
Nowadays, DSMLs are typically defined by meta-models following purely the
declarative approach. In this approach, language properties are specified by the
Object Constraint Language (OCL) [1]. Constructive aspects, however, such as

? This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-1 and TA 2941/3-1 (Meta modeling and graph grammars: integration of
two paradigms for the definition of visual modeling languages).



generating instances [2,3] for, e.g., testing of model transformations, and recog-
nizing applied edit operations [4] are useful as well to obtain a comprehensive
language definition. A constructive way to specify languages, especially textual
ones, are grammars. Graph grammars have shown to be suitable and natural to
specify (domain-specific) visual languages in a constructive way [5]. They can
be used for instance generation, for example.

DSML definition should come along with supporting tools such as model editors
and model version management tools. The use of graph grammars for language
definition has lead to the idea of generating edit operations from meta-models. In
[4], model change recognition as well as model patching are lifted to recognizing
and packaging edit operations to patches. To adapt such a general approach to
domain-specific needs, complete sets of edit operations have to be specified being
able to build up and destroy all models of a DSML. The automatic generation
of edit operations from a given meta-model would be of great help.

Given a meta-model, instance generation has been considered by several ap-
proaches in the literature. Most of them are logic-oriented as, e.g., [2,6]. They
translate class models with OCL constraints into logical facts and formulas. Logic
approaches such as Alloy [7] can be used for instance generation, as done, e.g.,
in [6]: After translating a class diagram to Alloy, an instance can be generated or
it can be shown that no instances exist. This generation relies on the use of SAT
solvers and can also enumerate all possible instances. All these approaches have
in common that they translate class models with OCL constraints into logical
facts and formulas forgetting about the graph properties of class models and
their instances.

In contrast, graph-based approaches translate OCL constraints to graph pat-
terns or graph constraints. Following this line, models and meta-models (without
OCL constraints) are translated to instance and type graphs. I.e., graph-based
approaches keep the graph structure of models as units of abstraction, hence,
graph axioms are satisfied by default. In [8], we started to formally translate
OCL constraints to nested graph constraints [9]. In this paper, we continue this
translation and focus on set operations such as select, collect, union and
size. Resulting graph constraints can be further translated to application con-
ditions of transformation rules [9]. Especially this work can be advantageously
used to translate meta-models (with OCL constraints) to edit operations with all
necessary pre-conditions. Meanwhile, Bergmann [10] has implemented a trans-
lator of OCL constraints to graph patterns. The focus of that work, however, is
not a formal translation but an efficient implementation of constraint checking.

Since graph-based approaches rely on (type and object) graphs, they support
flat object sets as the only form of OCL collections to be translated to. In
language definition, however, often neither a specific order nor the number of
duplicate values is crucial, but the collection of distinct values (see also [6]).
Moreover, OCL translation is restricted to a simpler form of meta-model spec-
ified by EMOF [12], hence OCL considerations are restricted to Essential OCL
being closer to supporting technologies such as the Eclipse Modeling Framework.

2



Furthermore, considerations are restricted to a first-order, two-valued logic, as
done for graph constraints, i.e., the translation is straitened to the correspond-
ing OCL features. However, existing meta-model specifications have shown that
this sub-language covers the substantial part to specify well-formedness rules in
OCL that are first-order. Since the focus of OCL usage is DSML definition, we
further restrict our translation to OCL invariants.

The contributions of this paper are the following:

(1) We continue the translation of OCL started in [8] and focus on set opera-
tions such as select, collect, union and size. The main idea for translating
constraints with set operations is to use the characteristic function of sets which
assigns each set operation its corresponding Boolean operation.

(2) We introduce a compact notion of graph conditions, so-called lax conditions.
They permit the translation of a substantial part of Essential OCL invariants to
graph constraints of comparable complexity. Hence, they present a new graph-
ical representation of OCL invariants being slightly more abstract since several
navigation paths can be combined in graphs and set operations are reduced to
Boolean operations. Lax conditions are extensively used in the OCL translation.

(3) The translation of Essential OCL invariants to nested graph constraints is
shown to be correct, i.e., a model satisfies an Essential OCL invariant iff its cor-
responding instance graph satisfies the corresponding nested graph constraint.
The aim of this work is to establish a formal relation between meta-modeling
and the theory of graph transformation. New contributions in modeling lan-
guage engineering may be expected by advantageously combining concepts and
techniques from both fields.

This paper is structured as follows: The next section presents Essential OCL
focusing on set operations. Section 3 recalls typed attributed graphs and graph
morphisms as well as nested graph conditions. It also introduces lax conditions
as compact notion of graph conditions. Section 4 presents our main contribution
of this paper, the translation of Essential OCL invariants to nested graph con-
straints, more precisely to lax conditions. Section 5 compares to related work
and Section 6 concludes the paper. Note that this paper comes along with a
long version [11] containing further information about this work, especially the
correctness proof.

2 Essential OCL Invariants

In this section, we recall Essential OCL presenting a small example first and
formally defining the syntax and semantics thereafter. For illustration purposes,
we use the following meta-model for Petri nets.

Example 1. A Petri net (PetriNet) is composed of several places (Place) and
transitions (Transition). Arcs between places and transitions are explicit. PTArc
and TPArc are respectively representing place-to-transition arcs and transition-
to-place ones. An arc is annotated with a weight. A place can have an arbitrary

3



number of incoming (preArc) and outgoing (postArc) arcs. In order to model
dynamic aspects, places need to be marked with tokens (Token).

Despite of multiplicities, this meta-model allows to build inappropriate instances,
e.g., one can model a Petri net without any tokens. Therefore, the meta-model
has to be complemented with invariants formulated in OCL, e.g.: There is at
least one place in a Petri net having at least one token.

1. context PetriNet inv: self.place -> exists(p:Place | p.token ->

notEmpty()) or alternatively
2. context PetriNet inv: self.place -> select(p:Place | p.token ->

notEmpty()) -> notEmpty() or alternatively
3. context PetriNet inv: self.place -> collect(p:Place | p.token)

-> notEmpty().

Essential OCL. The Object Constraint Language (OCL) [1] is a formal lan-
guage used to describe expressions on object-oriented models being consistent to
either the Meta Object Facility (MOF) [12] or the Unified Modeling Language
(UML) specifications of the OMG. These expressions typically specify invari-
ant conditions that must hold for the system being modeled (see Example 1)
or queries over objects described in a model. Whereas our preceding work [8]
concentrates on a restricted version of OCL, called Core OCL, that addresses
the OCL type system, navigation concepts, and the usage of invariants, we now
widen our approach to Essential OCL. According to [1], Essential OCL is “. . . the
minimal OCL required to work with EMOF”. Essential MOF (EMOF) is a sub-
set of MOF that allows to define simple meta-models using simple concepts.

The translation presented in this paper covers a substantial part the OCL speci-
fication. Compared to [8], we now support a significant number of set operations
(e.g., select, collect, includesAll, and union). In contrast to the OCL speci-
fication, we use a two-valued logic. Furthermore, and the only kind of collections
we consider are sets which seem to conform well with using OCL for meta-
modeling (i.e., we do not consider bags, sequences, ordered sets, and tuples).

4



Formalization. We describe the semantics of Essential OCL based on the for-
mal definitions included in the OCL specification [1], Annex A being based on
the doctoral thesis by Richters [13]. Due to space limitations, we recall the
main definitions and concepts only. For deeper considerations, we refer to the
long version of this paper [11] as well as to the documents mentioned above. As
a first preliminary step, we define an object model representing the EMOF-based
meta-model types as follows.

Definition 1 (Object Model). Let DSIG = (S,OP ) be a data signature
with S = {Integer,Real, Boolean, String} and corresponding operation sym-
bolsOP . An object model overDSIG is a structureM = (CLASS,ENUM,ATT,
ASSOC, associates, rsrc, rtgt,multiplicities,≺) consisting of finite sets of classes
(CLASS), enumerations (ENUM), and associations between classes (ASSOC),
a family of attributes for each class (ATT ), functions for mapping each associ-
ation to a pair of participating classes (associates), to a source respectively
target role name (rsrc and rtgt), and to a multiplicity specification for each as-
sociation end (multiplicities), and finally a partial order on CLASS reflecting
its generalization hierarchy (≺).

Since the evaluation of an OCL invariant requires knowledge about the complete
context of an object model at a discrete point in time, we recall the definition
of a system state of an object model M as follows.

Definition 2 (System State). A system state of an object model M is a
structure σ(M) = (σCLASS , σATT , σASSOC) consisting of a finite set of class
objects (σCLASS), functions assigning attribute values to each class object for
each attribute (σATT ), and a finite set of links connecting class objects (σASSOC).
The set States(M) consists of all system states σ(M) of M .

Based on the formal definition of an object model, the underlying type system
(signature) for expressions in Essential OCL is defined as follows:

Definition 3 (Signature). A signature over an object model M is a structure
ΣM = (TM ,≤M , ΩM ). TM is a set of types consisting of basic types S, all
class types CLASS, all enumeration types ENUM , the collection type Set(t)
for an arbitrary t ∈ TM , and OclAny as super type of all other types except
for Set(t). ≤M is partial order on TM representing a type hierarchy. ΩM is a
set of operations on TM consisting of OP , ATT , appropriate association end
operations, set operations such as isEmpty, includesAll, size, and union, and
operations equality (=) and non-equality ( 6=) for all types t ∈ TM . The semantics
of a data signature is based on sets and functions. It is fully presented in [11].

Definition 4 (Essential OCL Expressions). Let ΣM = (TM ,≤M , ΩM ) be a
signature over an object model M . Let V ar = {V art}t∈TM

be a family of variable
sets indexed by types t ∈ TM . The family of Essential OCL expressions over ΣM

is given by Expr = {Exprt}t∈TM
representing sets of expressions. Expressions

5



in Expr are VariableExpressions v ∈ Exprt for each variable v ∈ V art,
OperationExpressions e := ω(e1, · · · , en) ∈ Exprt for each operation symbol
ω : t1 × · · · × tn → t ∈ ΩM and for all ei ∈ Exprti(1 ≤ i ≤ n), IfExpressions:
e := if e1 then e2 else e3 ∈ ExprBoolean for all e1, e2, e3 ∈ ExprBoolean,
TypeExpressions such as e.oclIsTypeOf(t′) ∈ ExprBoolean for e ∈ Exprt and
some types t′ and t, and IteratorExpressions such as s → forAll(v | b) ∈
ExprBoolean and s→ select(v | b) ∈ ExprSet(t) for s ∈ ExprSet(t), v ∈ V art, and
b ∈ ExprBoolean. The semantics of an Essential OCL expression e ∈ Exprt is a
function I JeK : Env → I(t) with Env being pairs of system states and variable
assignments and I(t) the set of elements of type t. The complete semantics
definition can be found in the long version of this paper [11].

As mentioned above, we concentrate on invariants being formulated in Essential
OCL. Therefore, we consider invariants and OCL constraints as synonyms in the
remainder of this paper.

Definition 5 (Essential OCL Invariant). An Essential OCL invariant is a
Boolean OCL expression with a free variable v ∈ V arC where C is a classifier
type. The concrete syntax of an invariant is: context v:C inv : <expr>. The
set InvariantM denotes the set of all Essential OCL invariants over M .

Remark 1. An invariant context v:C inv: expr is equivalent to expression
C.allInstances -> forAll(v|expr). Consequently, the semantics of an in-
variant is equal to the semantics of the equivalent Essential OCL expression.

3 Nested Graph Constraints

In the following, we recall the main ingredients of typed, attributed graphs.
Their formal definition is presented in [14] and recalled in [11]. They form the
basis to define typed attributed nested graph constraints. Attributed graphs
as considered here allow to attribute nodes only while the original version [14]
supports also the attribution of edges.

Definition 6 (Attributed graph). An A-graph G = (GV , GD, GE , GA, srcG,
tgtG, srcA, tgtA) consists of setsGV andGD, called graph and data nodes (or ver-
tices), respectively, GE and GA, called graph and node attribute edges, respec-
tively, and source and target functions for graph and attribute edges. A-graph
morphisms are defined componentwise. Let DSIG = (S,OP ) be a data signature
with a family X of variables, and TDSIG(X) the term algebra w.r.t. DSIG and
X. An attributed graph is is a tuple AG = (G,D,Φ) where G is an A-graph, D
is a DSIG-algebra with

∑
s∈S Ds = GD, and Φ is a finite set of DSIG-formulas3

with free variables in X. An attributed graph morphism between two attributed
graphs consists of an A-graph morphism and a DSIG-homomorphism such that
codomain formulas follow from corresponding domain formulas.

3 DSIG-formulas are meant to be DSIG-terms of sort BOOL.

6



This definition is closely related to symbolic graphs [15]. Attributed graphs in
the sense of [16] correspond to attributed graphs with an empty sets of formulas.

Definition 7 (Typed attributed graph). An attributed type graph ATGI =
(TG,Z, {false}) consists of an A-graph TG and a final DSIG-algebra Z and
a simple (i.e. containing neither multiple edges nor loops) inheritance graph I.
The (inheritance) clan of a type is the set of all its sub-types (including itself);
the clan of a node (a graph) is the clan of its type (all its node’s types). A typed
attributed graph (AG, type) over ATGI, short ATGI-graph, consists of an at-
tributed graph AG and a morphism type : AG→ ATGI. Given two ATGI-graphs
AG1 = (G1, type1) and AG2 = (G2, type2), an ATGI-morphism f : AG1 → AG2

is an attributed graph morphism such that type2 ◦ f = type1.

Typed attributed graphs and morphisms form a category. In [8], attributed
graphs over attributed type graphs with inheritance [14] are considered as well.

Graph conditions [17,18] are nested constructs which can be represented as trees
of morphisms equipped with quantifiers and Boolean connectives. In the follow-
ing, we introduce ATGI-conditions as injective conditions over ATGI-graphs4,
closely related to attributed graph constraints [15] and E-conditions [19]. Graph
conditions are implemented e.g. in the systems AGG, GROOVE, and GrGen.

Definition 8 (Nested graph conditions). A (nested) graph condition on
typed attributed graphs, short condition, over a graph P is of the form true or
∃(a, c) where a : P → C is an injective morphism and c is a condition over C.
Boolean formulas over conditions over P yield conditions over P , that is, for
conditions c, ci (i ∈ I) over P , ¬c and

∧
i∈I ci are conditions over P . Conditions

over the empty graph ∅ are called constraints. In the context of rules, conditions
are called application conditions.

Notation. Graph conditions may be written in a more compact form: ∃a abbre-
viates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), false abbreviates ¬true,

∨
i∈I ci

abbreviates ¬
∧

i∈I ¬ci, c ⇒ c′ abbreviates ¬c ∨ c′, c ⇔ c′ abbreviates (c ⇒
c′) ∧ (c′ ⇒ c), and c Y c′ abbreviates (c ∧ ¬c′) ∨ (¬c ∧ c′).

The satisfaction of a condition is established by the presence and absence of
certain morphisms from the graphs within the condition to the tested graph. The
presented injective satisfiability notion restricts these morphisms to be injective:
no identification of nodes and edges is allowed. In this way, explicit counting
such as the existence/non-existence of n nodes is easily expressible.

Definition 9 (Semantics). Satisfiability of a condition over P by an injective
morphism p : P → G is inductively defined as
follows: p satisfies true. p : P → G satisfies
∃(P a→C, c) if there exists an injective mor-
phism q : C → G such that p = q ◦ a and q
satisfies c.

P C

G

a

p q

∃ c
=

4 A graph condition is injective if it is built by injective morphisms.

7



For Boolean formulas over conditions, the semantics is as usual: p satisfies ¬c if
p does not satisfy c, and p satisfies

∧
i∈I ci if p satisfies each ci (i ∈ I). We write

p |= c if p : P → G satisfies the condition c over P . Satisfiability of a constraint,
i.e. a condition over the empty graph ∅, by a graph is defined as follows: A graph
G satisfies a constraint c, short G |= c, if the injective morphism p : ∅ → G
satisfies c. Two conditions c and c′ over P are equivalent, denoted c ≡ c′, if, for
all injective morphisms p : P → G, p |= c iff p |= c′.

The definition of conditions is very rigid. In the following, we will be more flexible
and consider so-called lax conditions based on inclusions.

Definition 10 (Lax conditions). A lax condition on typed attributed graphs
is of the form true or ∃(C, c) where C is a graph and c is a lax condition. Boolean
formulas over lax conditions yield lax conditions. ∃(C) abbreviates ∃(C, true).

Convention. Lax conditions are drawn as follows: Graphs in lax conditions are
drawn in a standard way: Nodes are depicted by rectangles v:T carrying the
node name v (or, more general, a set of names) and its type T inside. In the
case of {u, v}, we write u = v inside the rectangle. Edges are drawn by arrows
pointing from the source to the target node and the edge label is placed next to
the arrow. Inclusions are given by the names of the nodes: Two occurrences of
v in different graphs of the lax condition, e.g. ∃( v ,∃( v , c)) or ∃( u ,∃( u=v )),
mean that they are in inclusion relation.

The semantics of lax conditions is defined by the semantics of conditions. For
this purpose, we “complete” lax conditions to conditions.

Construction (From lax conditions to conditions). For a graph P and a
lax condition d, Complete(P, d) denotes the condition over P , inductively defined
as follows:

∅

P

C ′

C

b

a

c
Complete(P, true) = true.

Complete(P,∃(C ′, c)) =
∨

(a,b)∈F ∃(P
a→C,Complete(C, c))

where F = {(a, b) | (a, b) jointly surjective, a, b inclusions.}.5
Complete(P,¬c) = ¬Complete(P, c).
Complete(P,∧i∈Jci) = ∧i∈JComplete(P, ci).

Definition 11 (Semantic of lax conditions). Satisfiability of a lax condition
is defined by the satisfiability of the corresponding condition: For an injective
morphism p : P → G and a lax condition c, p |= c iff p |= Complete(P, c). Two
lax conditions c and c′ are equivalent, denoted c ≡ c′, if, the corresponding
conditions are equivalent.

5 A pair of morphisms (a, b) is jointly surjective if, for each x ∈ C, there is a preimage
y ∈ P with a(y) = x or a preimage z ∈ C′ with b(z) = x.

8



By definition, lax conditions and nested graph conditions have the same expres-
sive power.

Example 2. The lax condition ∃( u ,∃( v ,∃( u vrole ))) means that there exist
two nodes and an edge of type role in between. Its completion over the empty
graph ∅ yields the condition ∃(∅ → x ,∃( u → u v ,∃( u v → u vrole )) ∨
∃( u → u=v , false)) ≡ ∃(∅ → u ,∃( u → u v ,∃( u v → u vrole ))). It is
equivalent to lax conditions ∃( u v ,∃( u vrole )) and ∃( u vrole ).

Since lax conditions can be transformed into conditions automatically, lax con-
ditions are also called conditions somewhat ambiguously.

The following equivalences can be used to simplify lax conditions.

Fact 1 (Equivalences). Let C1⊕P C2 denote the gluing or pushout of C1 and
C2 along P and let P denote the set of all intersections of C1 and C2.

(E1) (a) ∃(C1,∃(C2)) ≡
∨

P∈P ∃(C1 ⊕P C2).
(b) ∃(C1,∃(C2)) ≡ ∃(C1+C2) if C1 and C2 are clan-disjoint6.
(c) ∃(C1,∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

(E2) (a) ∃(C1,∃(C2) ∧ ∃(C3)) ≡ ∃(C1,
∨

P∈P ∃(C2 ⊕P C3)), if for all node names
occuring in both C2 and C3, a node with that name already exists in C1.

(b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have
disjoint sets of node names.

(E3) ∃( u:T ,∃(C)∧∃( u=v:T )) ≡ ∃( u:T ,∃(C[u=v])) provided that either u or v
does not exist in C and C[u=v] is the graph obtained from C by renaming
u by u = v.

4 Translation of Essential OCL Invariants

To translate Essential OCL invariants, we first show how to translate the type
information of meta-models, i.e. object models, to attributed type graphs with
inheritance [14]. Thereafter, system states are translated to typed attributed
graphs. Having these ingredients available, our main contribution, the translation
of Essential OCL invariants is presented and illustrated by several examples.
Finally, the correctness of the translation is stated.

Type and state correspondences. To translate Essential OCL invariants to
nested graph constraints, we relate an object model M to an attributed type
graph ATGI. Correspondence relation corrtype relates classes of M to graph
vertices of ATGI, attributes to attribute vertices and associations to graph edges
of ATGI. Data signatures of M and ATGI are almost the same. The only

6 Two graphs C1 and C2 are clan-disjoint if the clans of the types of C1 and C2 are
disjoint. For graphs C1 and C2, C1+C2 denotes the disjoint union.

9



difference are enumerations of M which are mapped to new sorts for type graphs
as well as to new equality and inequality operations.

Given such a type correspondence corrtype, a system state σ(M) corresponds to
an attributed graph AG typed over ATGI if there is a state correspondence rela-
tion corrstate bijectively relating classes to graph vertices, attributes to attribute
vertices, and links to graph edges of AG.

The formal definitions for these correspondences can be found in [11].

Methodology of the translation. In the following, we present the translation
of a substantial part of Essential OCL to nested conditions. This translation is
shown to correspond to the one given earlier in [8] and furthermore, it is proven
to be correct in [11].

– The translation proceeds along the abstract syntax tree of the OCL con-
straint. For example, given a->union(b)->notEmpty(), we first translate
notEmpty, followed by union and then its arguments a and b.

– The set operations themselves are translated with the characteristic function
in mind, e.g. the characteristic function of a->union(b) is the disjunction of
the characteristic functions of a and b: v ∈ A∪B iff v ∈ A∨v ∈ B. Navigation
expressions, which yield a single object, are treated like single-element sets.

– When translating an OCL operation which yields a set of objects (translation
trS), we pass a single node as an extra parameter serving as representative

of the set: trS(a->union(b), v:T ) := trS(a, v:T ) ∨ trS(b, v:T ).

Representing sets by their characteristic function allows us to translate OCL set
operations without a special set construct in the conditions. For example, we can
express expr1->exists(v:T | expr2) as “there exists an object v of type T
such that v is element of the set described by expr1 and v satisfies expr2”, and
expr1->forall(v:T | expr2) as “for all nodes v of type T, if v is in the set
described by expr1 then v also satisfies expr2”. Sets A and B are equal if every
node v is in A iff it is in B. The idea behind select is to restrict the set of nodes
described by expr1 such that each node v′ satisfying expr1 also satisfies expr2.

trS(expr1->collect(v:T|expr2), v’:T’ ) is true iff there is a node v that is (a)
contained in the set described by expr1 and (b) the relation between v and v′

given by expr2 is satisfied. For T.allInstances(), the characteristic function
is true for all nodes which are of type T.

Without loss of generality, we assume variable names to be unique in OCL ex-
pressions. This can easily be ensured by giving each variable a different name, e.g.
self.a->collect(v | v.b)->exists(v | expr) becomes self.a->collect(v
| v.b)->exists(v’ | expr).

The translation consists of several parts: Invariants are translated by function
trI . OCL expressions yielding a Boolean as result are translated by trE . We
use trN for expressions yielding single objects and trS for expressions yielding
collections (i.e., sets) of objects.

10



Definition 12 (Constraint translation). Let M be an object model as
defined above with ATGI = corrtype(M) being the corresponding attributed
type graph. Let t : Expr → T be a typing function which returns the type of
an OCL expression. Let InvariantM be the set of Essential OCL invariants over
M and GraphConditionATGI be the set of all graph constraints as defined in
Definition 8. The translation functions

– invariant translation trI : InvariantM → GraphConditionATGI,

– expression translation trE : ExprBoolean → GraphConditionATGI,

– navigation translation trN : ExprC × GraphATGI → GraphConditionATGI

with C ∈ CLASS,

– and set translation trS : ExprSet ×GraphATGI → GraphConditionATGI

are defined as follows:

Let expr, expr1 and expr2 be OCL expressions, u, v, v′ names of nodes (i.e.
variables), T = t(v) denote the type of v and likewise T′ = t(v’), attr1 and
attr2 be attribute names, op ∈ {<,>,≤,≥,=, <>} a comparison operator,
and role be a role of a class. Then

1. (a) trI(context C inv: expr) := ∀( self:C , trE(expr))

(b) trI(context var:C inv: expr) := ∀( var:C , trE(expr))

2. Translation of Boolean operators is unambiguous: trE(not expr) :=
¬trE(expr), trE(expr1 and expr2) := trE(expr1)∧trE(expr2) and similar
for operators true, or, implies and if.

3. (a) trE(expr1->exists(v:T | expr2)) :=

∃( v:T , trS(expr1, v:T ) ∧ trE(expr2))

(b) trE(expr1->forall(v:T|expr2)) :=

∀( v:T , trS(expr1, v:T )⇒ trE(expr2))

4. trE(expr1->includesAll(expr2)) :=

∀( v:T , trS(expr2, v:T )⇒ trS(expr1, v:T ))
where t(expr1) = t(expr2) = Set(T).
The translation of excludesAll is analogous.

5. trE(expr->notEmpty()) := ∃( v:T , trS(expr, v:T ))

6. trE(expr->size() >= n) := ∃( v1:T · · · vn:T ,
∧n

i=1 trS(expr, vi:T ))
where n is an integer constant ≥ 0, t(expr) = Set(T) and v1, . . . , vn are
fresh variables of type T.

7. (a) trE(expr1 = expr2) := ∃( v:T , trN (expr1, v:T ) ∧ trN (expr2, v:T ))
if t(expr1) = t(expr2) = T for some class T,

(b) trE(expr1 = expr2) := ∀( v:T , trS(expr1, v:T )⇔ trS(expr2, v:T ))
if t(expr1) = t(expr2) = Set(T) for some class T.

8. trE(expr.attr1 op con) := ∃( v:T , trN (expr, v:T ) ∧ ∃(
v:T

attr1 op con ))

where con is a constant and t(expr) = T for some class T.

11



9. trE(expr1.attr1 op expr2.attr2) :=

∃( v:T , trN (expr1,
v:T

attr1 op x ) ∧ trN (expr2,
v:T

attr2 = x )) ∨7

∃( v:T v’:T’ , trN (expr1,
v:T

attr1 op x ) ∧ trN (expr2,
v’:t(v’)

attr2 = x
))

where t(expr1) = T, t(expr2) = T′, t(x) = t(attr1) = t(attr2) and x, v
and v’ are fresh variables.

10. (a) trE(expr.oclIsKindOf(T)) := ∃( v:T’ ↪→ v:T , trN (expr, v:T’ ))

(b) trE(expr.oclIsTypeOf(T)) :=

∃( v:T’ ↪→ v:T ,
∧T ′′ 6=T

T ′′∈clan(T ) ¬∃( v:T ↪→ v:T” ) ∧ trN (expr, v:T’ ))

where T′ = t(expr) and T ∈ clan(T′).

11. trN (expr.oclAsType(T), v:T ) := ∃( v:T’ ↪→ v:T , trN (expr, v:T’ ))
where T′ = t(expr) and T ∈ clan(T′)

12. (a) trN (v, v’:T ) := ∃( v=v’:T ) if v is a variable,

(b) If role has a multiplicity of 1, trN (expr.role, v:T ) :=

∃( v’:T’ v:Trole
, trN (expr, v’:T’ )) if T′ 6∈ clan(T) and

∃( v’:T’ v:Trole
, trN (expr, v’:T’ )) ∨ ∃( v:T role, trN (expr, v:T )) else.

(c) If role has a multiplicity > 1, trS(expr.role, v:T ) :=

∃( v’:T’ v:Trole
, trN (expr, v’:T’ )) if T′ 6∈ clan(T) and

∃( v’:T’ v:Trole
, trN (expr, v’:T’ )) ∨ ∃( v:T role, trN (expr, v:T )) else,

where v’ is a fresh variable and t(expr) = T′8.

13. trS(expr1->select(v:T | expr2), v’:T ) :=

trS(expr1, v’:T )∧trE(expr2){v/v′} where expr2{v/v′} means replacing
v in expr2 with v′.
The translation of reject proceeds analogously.

14. (a) trS(expr1->collect(v:T | expr2), v’:T’ ) :=

∃( v:T , trS(expr1, v:T )∧trS(expr2, v’:T’ )) if expr2 yields a set, and

(b) trS(expr1->collect(v:T | expr2), v’:T’ ) :=

∃( v:T , trS(expr1, v:T )∧trN (expr2, v’:T’ )) if expr2 yields an object.

15. trS(expr1->union(expr2), v:T ) := trS(expr1, v:T ) ∨ trS(expr2, v:T )
Transformations for intersect, - (set difference) and symmetricDifference

are analogous, using a ∧ b, a ∧ ¬b and a Y b instead of a ∨ b, respectively.

16. trS(T.allInstances(), v:T ) := ∃( v:T )

17. trS(Set{expr1, ..., exprN}, v:T ) :=

trN (expr1, v:T ) ∨ · · · ∨ trN (exprN, v:T )
where expr1, . . . , exprN are OCL expressions of type T.

7 The part before ∨ is omitted if clan(t(expr1)) ∩ clan(t(expr2)) = ∅, and the part
after ∨ is omitted if expr1 = expr2.

8 Case (a) presents the final step in a chain of navigations, while cases (b) and (c)
present the navigation to single nodes and sets of nodes, respectively. Translations
(b) and (c) are identical, since single nodes are treated as single-element sets.

12



Further translations of Essential OCL constraints can be derived from equiv-
alences of OCL expressions. Most of these equivalences follow from basic set
theory and logic axioms, cf. Richters [13]. Such equivalences include operations
includes, excludes, including, excluding, <>, isEmpty, expr->size op n

for op in >,=,<=,<,<>, any and one.

Example 3. To demonstrate our approach, we translate the second alternative
of invariant There is at least one place in a Petri net having at least one token
presented in Example 1. Note that translating each alternative leads to the same
graph constraint, as shown in [11].

trI(context PetriNet inv:

self.place->select(p:Place|p.token->notEmpty())->notEmpty()) =1

∀( self:PN , trE(self.place->select(p:Place|p.token->notEmpty())->notEmpty())) =5

∀( self:PN ,∃( p:Pl , trS(self.place->select(p:Place|p.token->notEmpty()), p:Pl ))) =13

∀( self:PN ,∃( p:Pl , trS(self.place, p:Pl ) ∧ trE(p.token->notEmpty()))) =5

∀( self:PN ,∃( p:Pl , trS(self.place, p:Pl ) ∧ ∃( t:Tk , trS(p.token, t:Tk )))) =12

∀( self:PN ,∃( p:Pl ,∃( self:PN p:Plplace
) ∧ ∃( t:Tk ,∃( p:Pl t:Tktoken

)))) ≡E1,E2

∀( self:PN ,∃( self:PN p:Pl t:Tk
place token

))

An index above the = sign refers to the translation rule used; an index at the
equivalence sign ≡ refers to the used equivalence rule of Proposition 1.

Example 4 (Further invariant translations).

The name of a transition is not empty.

trI(context Transition inv: self.name <> ’’) = ∀( self:Tr , ∃(
self:Tr

name <> ’ ’ ))

There is no isolated place.

trI(context Place inv:self.preArc->notEmpty() or self.postArc->notEmpty()) =

∀( self:Pl , ∃( self:Pl v:TPArc
preArc

) ∨ ∃( self:Pl w:PTArc
postArc

))

Each two places of a Petri net have different names.

trI(context PetriNet inv:

self.place->forAll(p1,p2:Place | p1<>p2 implies p1.name <> p2.name)) =

∀( self:PN , ∃( self:PN
p1:Plplace

p2:Plplace
) ⇒ ∃(

p1:Pl

name<>x

p2:Pl

name=x ))

The translations of Core OCL constraints in [8] (in this paper denoted tr′) and
the translation tr of Essential OCL constraints are closely related, as stated by
the following proposition.

13



Proposition 1 (Translations of Core and Essential OCL). For every Core
OCL constraint expr, tr′(expr) ≡ tr(expr).

Proof. The proof of this proposition is given in [11]. 2

To show that the translation of Essential OCL invariants is correct, we consider
their semantics and the semantics of graph constraints. If an invariant holds for a
system state, the corresponding graph constraint is fulfilled by the corresponding
graph.

Theorem 1 (Correct Translation of Essential OCL invariants). Given
an object model M and its corresponding attributed type graph ATGI =
corrtype(M), for all Essential OCL invariants inv ∈ dom(trI) and all environ-
ments (σ, β) ∈ Env,

I[[inv]](σ, β) = true iff G = corrstate(σ) |= trI(inv).

Proof. The proof of this theorem is given in [11]. 2

Limitations. Since we focus on the use of OCL within DSML definitions, we
restrict our translation to invariants. Therefore, we do not consider expression
oclIsNew that is mainly used within post-condition specifications of operations.

Because graph-based approaches rely on (type and object) graphs, they support
flat object sets as the only form of OCL collections to be translated. Conse-
quently, we do not translate expressions related to further collection types (e.g.,
Sequence) such as sortedBy and isUnique as well as expressions related to
hierarchical sets (e.g., flatten) and sets of primitive values (e.g., sum).

Since graph constraints are restricted to a first-order, two-valued logic, our OCL
translation is straightened to corresponding OCL features, focusing on the equiv-
alence of constraints to true in our proofs. Therefore, we do not consider types
void and invalid as well as expressions like oclIsUndefined and iterate

which is not first order.

Finally, there are a few additional OCL features which have not been covered by
our OCL translation but will be in future work. These are, e.g., non-recursive
operation calls, as used in model queries, and LetExpressions which may be
iteratively replaced by their bodies with potential variable replacement. Also,
set operations any and one are not handled yet.

5 Related Work

In the literature, there are several approaches to translate OCL to formal frame-
works. Most of them are logic-oriented; they translate class models with OCL
invariants into logical facts and formulas. An overview on the significant logic-
oriented approaches is given in [8]. The advantage of the logic-oriented ap-
proaches is that there are a number of established theorem provers which can
be used.

14



In contrast to logic-oriented approaches, graph-based approaches translate OCL
constraints to graph patterns or graph constraints. Pennemann has shown in [20]
that a theorem prover for graph conditions works more efficient than theorem
provers for logical formulas being applied to graph conditions. The key idea is
here that graph axioms are always satisfied by default when using a theorem
prover for graph conditions. Lambers and Orejas [21] have shown that this the-
orem prover is also complete. Bergmann [10] has translated OCL constraints to
graph patterns. He considers a pretty similar subset of OCL than we do (ex-
cept of OCL expression not being first-order), and in fact, the way of translation
shows a lot of similarities. The focus of that work, however, is not a formal trans-
lation but an efficient implementation of constraint checking which is tested at
example constraints.

6 Conclusion

Translating Essential OCL invariants to nested graph constraints opens up a way
to construct application conditions of transformation rules ensuring consistency
already during transformations [9]. This missing link between meta-modeling and
transformation systems may be advantageously used by new applications such as
test model generation as well as recognition and auto-completion of model editing
operations. The backward translation of graph conditions to OCL may also be
interesting, e.g., to weakest pre-conditions in OCL as proposed in [22]. In future
work, we plan to implement the presented translation of OCL to application
conditions in the context of the Eclipse Modeling Framework and Henshin [23],
a model transformation environment based on graph transformation concepts,
and to apply it in various forms.

Acknowledgement. We are grateful to the anonymous referees for their helpful
comments on a draft version of this paper.

References

1. OMG: Object Constraint Language. http://www.omg.org/spec/OCL/

2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A Tool for the Formal Verification
of UML/OCL Models using Constraint Programming. In: 22nd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). (2007) 547–548

3. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and System Modeling 8(4) (2009) 479–500

4. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In Denney, E., Bultan, T., Zeller, A., eds.: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013, IEEE (2013) 191–201

5. Bardohl, R., Minas, M., Schürr, A., Taentzer, G.: Application of Graph Transfor-
mation to Visual Languages. In: Handbook of Graph Grammars and Computing
by Graph Transformation. Volume 2. World Scientific (1999) 105–180

15

http://www.omg.org/spec/OCL/


6. Kuhlmann, M., Gogolla, M.: From UML and OCL to Relational Logic and Back. In:
Model Driven Engineering Languages and Systems - 15th Int. Conference, MOD-
ELS 2012, Proceedings. Volume 7590 of LNCS., Springer (2012) 415–431

7. Jackson, D.: Alloy Analyzer website (2012) http://alloy.mit.edu/.
8. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core OCL Invariants to

Nested Graph Constraints. In: Graph Transformations (ICGT 2014). Volume 8571
of LNCS. (2014) 97–112 Extended version at: http://www.uni-marburg.de/fb12/
forschung/berichte/berichteinformtk/pdfbi/bi2014-01.pdf.

9. Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. Mathematical Structures in Computer Science 19
(2009) 245–296

10. Bergmann, G.: Translating OCL to Graph Patterns. In Dingel, J., Schulte, W.,
Ramos, I., Abraho, S., Insfran, E., eds.: Model-Driven Engineering Languages and
Systems (MoDELS). Volume 8767 of LNCS. Springer (2014) 670–686

11. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essen-
tial OCL Invariants to Nested Graph Constraints Focusing on Set Operations:
Long version (2015) Available at: http://www.uni-marburg.de/fb12/forschung/
berichte/berichteinformtk/pdfbi/bi2015-01.pdf.

12. OMG: Meta Object Facility. http://www.omg.org/spec/MOF/

13. Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universität Bremen, Logos Verlag, Berlin (2002)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental Theory of Typed At-
tributed Graph Transformation based on Adhesive HLR Categories. Fundamenta
Informaticae 74(1) (2006) 31–61

15. Orejas, F.: Symbolic Graphs for Attributed Graph Constraints. J. Symb. Comput.
46(3) (2011) 294–315

16. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. Springer
(2006)

17. Rensink, A.: Representing first-order logic by graphs. In: Graph Transformations
(ICGT’04). Volume 3256 of LNCS. (2004) 319–335

18. Habel, A., Pennemann, K.H.: Nested constraints and application conditions for
high-level structures. In: Formal Methods in Software and System Modeling. Vol-
ume 3393 of LNCS. (2005) 293–308

19. Poskitt, C.M., Plump, D.: Hoare-Style Verification of Graph Programs. Funda-
menta Informaticae 118(1-2) (2012) 135–175

20. Pennemann, K.H.: Development of Correct Graph Transformation Systems. PhD
thesis, Universität Oldenburg (2009)

21. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Graph
Transformation (ICGT 2014). Volume 8571 of LNCS. (2014) 17–32

22. Richa, E., Borde, E., Pautet, L., Bordin, M., Ruiz, J.F.: Towards Testing Model
Transformation Chains Using Precondition Construction in Algebraic Graph
Transformation. In: AMT 2014–Analysis of Model Transformations Workshop
Proceedings. (2014) 34–43

23. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced
Concepts and tools for In-Place EMF Model Transformation. In: Model Driven En-
gineering Languages and Systems, 13th International Conference, MoDELS 2010,
Oslo, Norway. Proceedings. Volume 6394 of LNCS., Springer (2010) 121–135

16

http://alloy.mit.edu/
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2014-01.pdf
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2014-01.pdf
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2015-01.pdf
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2015-01.pdf
http://www.omg.org/spec/MOF/

	 Translating Essential OCL Invariants to Nested Graph Constraints Focusing on Set Operations  

