
A Variability-Based Approach to Reusable and Efficient
Model Transformations

Daniel Strüber1, Julia Rubin2, Marsha Chechik3, and Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany
2 Massachusetts Institute of Technology, USA

3 University of Toronto, Canada
strueber@mathematik.uni-marburg.de, mjulia@csail.mit.edu,
chechik@cs.toronto.edu, taentzer@mathematik.uni-marburg.de

Abstract. Large model transformation systems often contain transformation rules
that are substantially similar to each other, causing performance bottlenecks for
systems in which rules are applied nondeterministically, as long as one of them is
applicable. We tackle this problem by introducing variability-based graph trans-
formations. We formally define variability-based rules and contribute a novel
match-finding algorithm for applying them. We prove correctness of our approach
by showing its equivalence to the classic one of applying the rules individually,
and demonstrate the achieved performance speed-up on a realistic transformation
scenario.

1 Introduction

Model-driven development emerged as a means to combat complexity of large-scale
software development through the use of abstraction and refinement. Model-to-model
and model-to-code transformations are key enablers of this development paradigm.
While there have been many advances in understanding the formal properties of model
transformations and devising their development environments, research on maintain-
ability is still in preliminary stages [1]. Large model transformation systems often con-
tain transformation rules that are substantially similar to each other. The most frequently
applied mechanism for creating such rules is copying and modifying existing variants.
This presents a maintainability obstacle (e.g., all related rules must be updated when a
bug is found). The maintainability concern is often combined with a performance con-
cern: In model-driven architecture [2], models go through a series of transformations
such as optimizations and code generation, each introducing computational effort.

Inspired by product line engineering approaches [3, 4], a number of existing works,
e.g., [5–7] tackle the reuse problem by introducing variability in model transformation
rules. These works focus on representing a set of similar rules in a compact manner, pro-
viding the user with the ability to later configure the rules and produce specific variants.
Rule variants are then matched and applied individually, using the classic approach.
Since the number of desired configurations of each rule depends on the transformation
input which may not be known upfront, the number of configured variants might be
high. Thus, even though these works address the maintainability concern by providing
a more compact representation of rule sets, they do not offer any performance-related
benefits: all variants of a rule must still be considered by the transformation engine.

2 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

In this paper, we instead propose to augment the transformation engine itself by
making it variability-based. We handle a scenario where all transformation rules need
to be considered as long as one of them is applicable. Such an approach is useful in
model refactoring suites or translators transforming models between a specific source
and target languages. We introduce a novel algorithm for resolving variability auto-
matically during the rule matching process, i.e., determination of application sites in
the input model. Our central idea is to find matches for the common parts of all rule
variants first and then to use them as starting points for the matching of the variable
parts. We show that the transformation output produced by our algorithm is equivalent
to the one produced when configuring and matching the rules individually, while our
approach offers a substantial improvement in performance.

We present our approach to variability-based transformation using graph transfor-
mations [8], and, specifically, make the following contributions: (1) a formalization
of variability-based rules, investigating their syntax and application semantics on the
basis of graph transformation and proving their equivalence to the application of the
corresponding classic rules; (2) a novel match-finding algorithm achieving a perfor-
mance gain when compared to matching the rules individually; (3) an implementation
of variability-based model transformation on top of Henshin, a rule-based model trans-
formation language and tool; (4) an evaluation based on a real-life model transformation
system that gives evidence of that performance gain.

The remainder of this paper is structured as follows: We introduce a motivating
scenario in Sec. 2. In Sec. 3, we give the necessary background and, in Sec. 4, formally
define the concept of variability-based graph transformation. We describe the algorithm
for directly applying variability-based transformations in Sec. 5 and its implementation
in Henshin in Sec. 6. Is effectiveness for model transformations when compared to
manipulating a corresponding set of classic model transformation rules is evaluated in
Sec. 7. In Sec. 8, we compare our approach with related work. We conclude in Sec. 9
with the summary and discussion of possible future directions.

2 Motivating Example

In this section, we give an example of variability-based transformation rules and their
application. Our example is inspired by a set of real-life rules for optimizing and sim-
plifying first-order logic expressions [9], aimed to improve performance of engines that
process the expressions, e.g., theorem provers or SAT solvers.

Fig. 1 shows four transformation rules that simplify first-order logic formulas by re-
moving redundant not symbols and thus reducing the “depth” of a formula. We present
the rules in an integrated form, with the left- and right-hand sides of the transformation
being represented in one graph. The elements of this graph have three kinds of labels:
delete, preserve, and create. Elements labeled with delete and preserve are matched to
an input model. The former are removed while the latter are kept in the output. Elements
labeled with create just specify additions to the output.

For the example in Fig. 1, Rule A removes a ¬∀¬ segment of a formula and trans-
forms it into an ∃ segment. This is done by removing nodes #2, #4 and their corre-
sponding edges, replacing the quantifier of node #3 to be “exists” (node #7) rather than

Variability-Based Transformations 3

Rule C: RemoveRedundantNot-ReplaceForallInQuantified Rule D: RemoveRedundantNot-ReplaceExistsInQuantified

Rule A: RemoveRedundantNot-ReplaceForallInBasic

«delete»
:BasicFormula

«preserve»
:BasicFormula

«preserve»
:QuantifiedFormula

«delete»
:BasicFormula

«preserve»
:Formula

«create»
nested

Rule B: RemoveRedundantNot-ReplaceExistsInBasic

«delete»
operator

«preserve»
:Quantifier

name="EXISTS"

7

«preserve»
:Quantifier

name="FORALL"

8

«preserve»
:Operator

name="NOT"

6

«create»
quantifier

«delete»
quantifier

3

2

1

45

«delete»
args

«delete»
args

«create»
args

«delete»
args

«delete»
nested

«delete»
operator

«delete»
:BasicFormula

«preserve»
:BasicFormula

«preserve»
:QuantifiedFormula

«delete»
:BasicFormula

«preserve»
:Formula

«delete»
nested

«delete»
operator

«preserve»
:Quantifier

name="FORALL"

8

«preserve»
:Quantifier

name="EXISTS"

7

«preserve»
:Operator

name="NOT"

6

«create»
quantifier

«delete»
quantifier

3

2

1

45

«delete»
args

«delete»
args

«create»
args

«delete»
args

«create»
nested

«delete»
operator

«delete»
:BasicFormula

«preserve»
:QuantifiedFormula

«preserve»
:QuantifiedFormula

«delete»
:BasicFormula

«preserve»
:Formula

«create»
nested

«delete»
operator

«preserve»
:Quantifier

name="EXISTS"

7

«preserve»
:Quantifier

name="FORALL"

8

«preserve»
:Operator

name="NOT"

6

«create»
quantifier

«delete»
quantifier

3

2

1

45

«delete»
args

«delete»
nested

«create»
nested

«delete»
args

«delete»
nested

«delete»
operator

«delete»
:BasicFormula

«preserve»
:QuantifiedFormula

«preserve»
:QuantifiedFormula

«delete»
:BasicFormula

«preserve»
:Formula

«delete»
nested

«delete»
operator

«preserve»
:Quantifier

name="FORALL"

8

«preserve»
:Quantifier

name="EXISTS"

7

«preserve»
:Operator

name="NOT"

6

«create»
quantifier

«delete»
quantifier

3

2

1

45

«delete»
args

«delete»
nested

«create»
nested

«delete»
args

«create»
nested

«delete»
operator

Fig. 1: Four variants of the Remove Double Negation refactoring rules.

“forall” (node #8), and connecting the modified quantifier to the enclosing and the en-
closed formulas – nodes #1 and #5, respectively. Similarly, Rule B removes a ¬∃¬
segment and transforms it into a ∀ segment. Rules C and D differ from A and B in
the type and adjacent edges of the topmost enclosing formula (element #1): basic vs.
quantified. A BasicFormula has an operator and a set of argument formulas, whereas a
QuantifiedFormula has a quantifier and nests exactly one other formula. Note that there
exists a third kind of formula, PredicateFormula, that encloses no other formulas.

Fig. 2 shows a first-order logic formula φ = (¬∀x · ¬F (x)) ∧ true that can be
simplified using one of these rules, namely, Rule A. The formula is also represented
as a graph, with formula-specific elements depicted on the left-hand side of the figure.

4 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

:Quantifier

name="FORALL"

:Operator

name="NOT"

:BasicFormula :Literal

value="TRUE"

:QuantifiedFormula 3

:BasicFormula

args

args

(:8x.:F(x)) ^ true

:Variable

name="x"

:PredicateFormula

name="F"

:Operator

name="AND"

:Literal

value="FALSE"

:Quantifier

name="EXISTS"

args

nested

:BasicFormula 2

operator

operator

var

argsvar

operator

quantifier

Fig. 2: Example first-order logic formula φ.

«delete»
:BasicFormula

«delete»
:BasicFormula

«preserve»
:QuantifiedFormula

«preserve»
:Operator

name="NOT"

«delete»
nested
[quantified]

«preserve»
:Formula

Rule: RemoveRedundantNot

6

«create»
nested
[quantified]

«delete»
quantifier [forall]

«create»
quantifier [¬forall]

«create»
quantifier [forall]

«delete»
quantifier [¬forall]

«delete»
operator

3

«create»
nested

2

«preserve» [¬quantified]
:BasicFormula

1a «preserve» [quantified]
:QuantifiedFormula

1b

«delete»
args
[¬quantified]

4

«delete»
args

5

«delete»
operator

«delete»
nested

«delete»
args «preserve»

:Quantifier

name="FORALL"

«preserve»
:Quantifier

name="EXISTS"

8

7

«create»
args
[¬quantified]

Fig. 3: Variability-based Remove Double Negation refactoring rule.

The right-hand side presents a library of “generic” reusable first-order logic operators.
Elements #1-#5, #9, #11, #10 match with the corresponding elements #1-#8 of Rule
A. We call this assignment a match mA. Finding mA triggers the application of Rule
A, producing the formula (∃x · F (x)) ∧ true. Note that mA is a valid match because
PredicateFormula (node #5 in Fig. 2) is a sub-type of the type Formula.

The four rules in Fig. 1 have a lot of commonalities: significant parts of their internal
structure and typing are the same. Matching each of these rules with the formula intro-
duces unnecessary complexity and may result in a performance overhead. Fig. 3 shows a
compact variability-based rule that represents all four individual rules in Fig. 1. The dif-

Variability-Based Transformations 5

ferences between the classic rules are explicitly captured and represented by variation
points. Rule elements are then annotated with presence conditions – boolean formu-
las over the variation points. In the visual representation, annotations are appended in
square brackets to the names of their corresponding nodes and edges. For the simplicity
of presentation, we omit the presence condition true, e.g., for nodes #2-#8.

In our example, there are two variation points: (1) The forall variation point controls
the direction of the quantifier inversion. When set to true, it corresponds to the ¬∀¬
to ∃ inversion, as in rules A and C; when set to false, it corresponds to the ¬∃¬ to
∀ inversion, as in B and D. (2) The quantified variation point controls the enclosing
formula and its adjacent edges. When set to true, it corresponds to a formula of the
type QuantifiedFormula with outgoing nested edges, as in C and D; when set to false, it
corresponds to a formula of the type BasicFormula with outgoing args edges, as in rules
A and B. Note that this variation pointed cannot be captured using node sub-typing, as
it affects edges with different types.

A variability-based rule can be configured by setting variation point values and
then selecting all elements whose presence conditions evaluate to true while removing
those whose presence conditions evaluate to false. In our example, configuring the rule
with forall=true and quantified=false produces Rule A in Fig. 1 while the configuration
forall=false and quantified=true produces Rule D.

Conceptually, a variability-based rule is equivalent to a set of rules for all its valid
configurations. However, the match-finding algorithm for a variability-based rule pro-
posed in this paper performs matching of all its valid configurations at once, thus pos-
itively affecting both the maintainability and the performance of the transformation
system. The algorithm automatically detects a configuration that induces a valid match
using a two-step process. In the first step, it matches the base rule – the portion of the
rule annotated with true and representing common parts of all individual rules. For the
example in Figs. 3 and 2, this results in exactly one match, mbase, assigning elements
#2, #6, #3, #8, #7, #4, #5 to #2, #9, #3, #11, #10, #4, #5 and connecting edges accord-
ingly. In the second step, to match the variable parts the algorithm enumerates the valid
configurations (in our example, Rules A to D) and tries to match them using mbase. This
yields exactly one match for Rule A: mA. The result of match-finding is mA paired with
the configuration forall=true and quantified=false that enabled this match.

3 Background: Algebraic Graph Transformation

We present our fundamental approach to variability-based transformation using graph
transformation [8]. Graphs can be used to represent the underlying structure of visual
models, and their conformance to a metamodel can be formally represented by typed
attributed graphs mapped to type graphs. For simplicity, our treatment here uses basic
graphs without types, attributes, and constraints, but our implementation and evaluation
use the full power of typed attributed graphs, with inheritance, etc. since the concept
of variability-basedness is orthogonal to these features. A directed multi-graph, simply
called a graph in the following, comprises a set of nodes and a set of edges connecting
these nodes. Structure-compatible mappings between graphs can be expressed in terms
of graph morphisms which are compatible to source and target functions.

6 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

L

m

��

I
loo

d

��

r // R

m′

��

(1) (2)

G D
goo h // H

Fig. 4: Rule application by a double pushout (DPO).

Definition 1 (Graph) A graph G = (GN , GE , srcG, trgG) consists of a set GN of
nodes, a set GE of edges, and source and target functions, srcG, trgG : GE → GN .

Definition 2 (Total (Partial) graph morphism) Given two graphs G and H , a pair of
total (partial) functions (fN , fE) with fN : GN → HN and fE : GE → HE forms a
total (partial) graph morphism f : G → H , a.k.a. morphism, if it fulfills the following
properties: (1) fN ◦ srcG = srcH ◦ fE and (2) fN ◦ trgG = trgH ◦ fE . If both
functions fN and fE are injective, f is called injective. If both functions fN and fE are
inclusions, f is called inclusion.

In the following, we recall the main definitions of the algebraic approach to graph
transformation called the gluing approach. In this rule-based approach, graph elements
occurring in the left and right-hand sides of a rule, i.e., in an interface graph, are used
to glue new elements to already existing ones.

Definition 3 (Rule) A (production) rule p = L
l←− I

r−→ R consists of graphs L, I
and R, called left-hand side, interface graph and right-hand side, respectively, and two
injective graph morphisms, l and r.

A graph rule is applied along a matchm of its left-hand side to a given graphG. The
application of a graph rule consists of two steps: First, all graph elements inm(L−l(I))
are deleted. Nodes to be deleted may have adjacent edges which have not been matched,
so the rule application may produce dangling edges. Therefore, all matches m have to
satisfy the gluing condition: If a node n ∈ m(L) is to be deleted by the rule application,
it has to delete all adjacent edges as well. Afterwards, unique copies of R − r(I) are
added. This behavior can be characterized by a double-pushout [8]. Given a rule and a
match, the resulting rule application is unique [8].

Definition 4 (Rule application) Let a rule p = L
l←− I

r−→ R and a graph G with a
total graph morphism m : L → G be given. A rule application from G to a graph H ,
written G ⇒p,m H , is given by the diagram in Fig. 4 where (1) and (2) are pushouts.
We refer to G, m and H as a start graph, a match, and a result graph, respectively.

For example, the upper part of Fig. 2 shows a typed attributed graph which can
be transformed by applying Rule A from Fig. 1. The rule match w.r.t. nodes has been
described in Sec. 2. In addition, the match can be extended to edges. By rule application,
nodes #2 and #4 are deleted, together with their adjacent edges. The edge between nodes
#3 and #10 is also deleted. As no dangling edges are left behind, the gluing condition is
satisfied. Edges between #3 and #9, #1 and #3, as well as between #3 and #4 are created
yielding the graph structure for the formula φ′ = (∃x · F (x)) ∧ true.

Variability-Based Transformations 7

GE

src //

pcGE ""

trg
// GN

pcGN||
LV

Fig. 5: Variability-based graph.

G
f̂ //

pc
Ĝ !!

H

pc
Ĥ}}

LV

Fig. 6: Variability-based graph morphism.

4 Variability-Based Graph Transformation

In this section, we introduce variability-based graphs and transformation rules and show
how to apply them. We provide proofs to all lemmas, propositions, and theorems in this
section in an accompanying technical report [10].

4.1 Variability-Based Graphs and Rules

We denote variability using presence conditions – propositional expressions over a set
of independent variation points. The set of these, called a language of presence condi-
tions, is fixed for the set of rules and not changed by transformation steps.

Definition 5 (Language of presence conditions) Given a set of variation points V ,
LV is the set of all propositional expressions over V , called presence conditions. A
total function cfg : V → {true, false} is a variability configuration. cfg satisfies a pres-
ence condition pc if pc evaluates to true when each variable v in pc is substituted by
cfg(v). A presence condition is valid if there is a variability configuration satisfying it.
A presence condition X is stronger than Y iff X =⇒ Y .

In the example in Sec. 2, V = {forall, quantified}. true, ¬quantified, and forall ∧
quantified are valid presence conditions; forall ∧ ¬forall is not valid.

Definition 6 (Variability-based graph) Given a language of presence conditions LV ,
a variability-based graph Ĝ over LV is a graph G = (GN , GE , srcG, trgG) and a pair
of functions (pcGN

, pcGE
) with pcGN

: GN → LV and pcGE
: GE → LV such

that (1) ∀e ∈ GE ·(pcGE
(e) =⇒ pcGN

(srcG(e)) and (2) ∀e ∈ GE ·(pcGE
(e) =⇒

pcGN
(trgG(e))) (see Fig. 5). For brevity, we conflate pcGN

and pcGE
into a single

function pcG : (GN ∪GE)→ LV assuming that GN ∩GE = ∅.

This definition ensures that the presence condition of each edge is stronger than or
equal to the presence conditions of both its source and target nodes. Note that pcGN

and
pcGE

are total functions, i.e., all graph elements are annotated with presence conditions.
Elements which are always present are annotated with true. Thus, any graph G without
variability can be considered variability-based by defining ∀x ∈ G · pcG(x) := true.

For example, the left-hand side of the variability-based rule in Fig. 3, i.e., all pre-
served or deleted graph elements, forms a variability-based graph. All graph elements
without annotation are mapped to the presence condition true, while nodes #1a and
#1b and the adjacent edges as well as edges outgoing from node #3 are mapped to the
depicted presence conditions.

In the following, we ensure that morphisms and rules over variability-based graphs
preserve existing presence conditions.

8 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

Definition 7 (Variability-based graph morphism) Given two variability-based graphs
Ĝ and Ĥ over LV as well as a graph morphism f̂ : G → H , f̂ is a variability-based
graph morphism if pcH ◦ f̂ = pcG (see Fig. 6).

Lemma 1 (Category of variability-based graphs) Given a fixedLV , variability-based
graphs and graph morphisms over LV form a category.

Definition 8 (Variability-based rule) Given LV , a variability-based rule p̂ = L̂
l̂←−

Î
r̂−→ R̂ over LV consists of a span of two variability-based graph morphisms l̂ and r̂

over LV . The underlying rule of p̂ is p = (L
l←− I r−→ R).

For example, Fig. 3 shows a variability-based rule where all preserved graph elements
do not change their presence conditions.

4.2 Application of Variability-Based Rules

We now show how to apply variability-based rules: (1) either by flattening them to a set
of classic rules and applying a maximal among them in the classic way, or (2) directly,
using a suitable variability configuration to identify the corresponding match. We then
prove the equivalence of these two approaches.

Variability-based transformation through flattening. We begin by showing how a
variability-based rule can be flattened, i.e., represented by a set of classic rules.

Definition 9 (Flattening of variability-based graph) Let a variability-based graph Ĝ
overLV be given. For each valid presence condition c ∈ LV ,Gc = (GcN , GcE , srcc, trgc)
is the flattened graph iff (1) ∀n ∈ GN ·n ∈ GcN if c =⇒ pcGN

(n); (2) ∀e ∈ GE ·e ∈
GcE if c =⇒ pcGE

(e); and (3) srcc = srcG|GcE
and trgc = trgG|GcE

. Flat(Ĝ) is
the set of all flattened graphs: {Gc | c ∈ LV ∧ c is valid}.

That is, a flattened graph Gc for presence condition c consists of those elements of LV

which are annotated by presence conditions implied by c. Note that different conditions
can yield the same flattened graphs if the same set of used presence conditions is im-
plied. The set of flattened graphs does not contain graphs for presence conditions equal
to false since no variability configurations satisfy it.

For example, flattening the left-hand side L̂ of the rule in Fig. 3 yields a set of
graphs containing the left-hand sides Lforall∧quantified, L¬forall∧quantified, Lforall∧¬quantified

and L¬forall∧quantifed of all the rules in Fig. 1 as well as the intersection of all these –
the base left-hand side Ltrue. In addition, Flat(L̂) contains four graphs where only one
of the variation points is bound. For all other valid presence conditions pc ∈ LV , Lpc

is equal to one from this list.

Lemma 2 (Smallest graph in flattening) Gtrue is the smallest subgraph ofG in Flat(Ĝ).

The flattening of graphs can be lifted to graph morphisms and rules straightfor-
wardly, yielding the rules ordered by the implication of their presence conditions to
ensure that application of larger rules, modeling more specific cases, is attempted first.

Variability-Based Transformations 9

Definition 10 (Flattening of variability-based graph morphism) Let a variability-based
graph morphism f̂ : Ĝ → Ĥ be given. Flattening of f̂ is Flat(f̂) = {fc : Gc →
Hc | c ∈ LV ∧ c is valid} with Gc ∈ Flat(Ĝ), Hc ∈ Flat(Ĥ) and fc = f |Gc .

Definition 11 (Flattening of variability-based rule) Given a variability-based rule p̂ =
L̂

l←− Î
r−→ R̂ over LV , we can apply the flattening of morphisms twice: Flat(p̂) =

({pc : Lc
lc←− Ic

rc−→ Rc | c ∈ LV ∧ c is valid},≤) with lc : Ic → Lc ∈ Flat(l̂), rc :
Ic → Rc ∈ Flat(r̂). For the resulting rule set, a partial order between rules is defined
through implication between their presence conditions: pc1 ≤ pc2 iff (c2 =⇒ c1).
Rule ptrue ∈ Flat(p̂) is also called base rule.

For example, flattening the rule in Fig. 3 yields a set containing the four rules shown
in Fig. 1 as well as their common maximal sub-rule (being the base rule) – the rule in
Fig. 3 with only elements annotated by true.

The base rule is smaller than all the other rules in the set w.r.t. the partial order ≤.
All rules of Fig. 1 are incomparable to each other. The additional four rules are larger
than the base rule but smaller than the rules in Fig. 1.

Definition 12 (Ordered rule set) An ordered rule setR = (Rrules,≤) consists of a set
Rrules of rules and a partial order ≤ over this set.

Definition 13 (Application of an ordered rule set) Given an ordered rule set R and
a graph G, the application of R to G is the set of rule applications: Trans(R, G) =

{G ⇒p,m H} with p ∈ Rrules, p = (L
l←− I

r−→ R) and a match m : L → G and
∀p′ ∈ Rrules with p′ ≥ p : ¬∃ a match m′ : L′ → G with m′(L′) ⊃ m(L).

For example, for the graph of formula φ in Fig. 2, there is exactly one match of base
rule ptrue. However, this rule is not maximal – Rule A = pforall∧¬quantified in Fig. 1 can be
matched as well. This match includes the match of the base rule, i.e., it is larger, and
there is no larger one. For the graph structure of the formula ((¬∀x · ¬F (x)) ∧ true) ∧
(¬∀x · ¬F (x)) ∧ true), Rule A can be applied twice and there are no larger rules that
match.

Direct application of variability-based rules. In the following, we consider the direct
application of variability-based rules by finding a suitable variability-based match on-
the-fly. The central task is to find a variability configuration such that the part of the
left-hand side that can be matched is locally maximal, i.e., the match of a rule part
cannot be extended by variable parts. If the resulting partial morphism of the left-hand
side to graph G satisfies the gluing condition for the corresponding flat rule, the rule
application can take place.

Definition 14 (Maximal partial morphism) Given two graphs G and H , let PMG,H

be the set of all partial graph morphisms from G to H . A partial morphism m ∈ PM
is maximal if ∀m′ ∈ PM · ¬(domm′(G) ⊃ domm(G)).

Definition 15 (Variability-based match) Given a variability-based rule p̂ over LV

and a graph G, a variability-based match m̂ = (m, cfg) over LV consists of a maximal

10 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

L

m
((

domm(L)
⊇oo

m|domm
��

Lcfg
idoo

mcfg
vv

G

Fig. 7: A match induced by variability configuration.

partial morphism m ∈ PML,G and a variability configuration cfg : V → {true, false}
such that ∀x ∈ domm(L) · cfg satisfies pcL(x). cfg induces a rule pcfg s.t. cfg satisfies
all presence conditions occurring in pcfg. Moreover, reducing m to its domain, we get a
morphism mcfg which has to satisfy the gluing condition w.r.t. pcfg (see Fig. 7).

To apply the rule in Fig. 3 to the graph for formula φ in Fig. 2 by mapping to the same
elements as Rule A in Fig.1, we choose the variability configurations cfg(quantified) =
false and cfg(forall) = true. Thus, pcfg is Rule A. The resulting morphism mcfg = mA

satisfies the gluing condition, hence, it is a match for Rule A.
In the following, we show that the matched left-hand side of the variability-based

rule is exactly the left-hand side of the chosen flat rule and there is no larger rule whose
match would comprise the chosen one.

Proposition 1 (Variability-induced rule) Given a variability-based rule p̂with a variability-
based match m̂ = (m, cfg) to graph G, m̂ induces a rule pcfg with the following prop-
erties: (1) pcfg ∈ Flat(p̂); (2) Lcfg = domm(L), and (3) ¬∃p′ ∈ Flat(p̂) s.t. pcfg ≤ p′

and cfg satisfies pcL′(x), ∀x ∈ L′.

Definition 16 (Application of a variability-based rule) Given a match m̂ for variability-
based rule p̂ and graph G, the application of p̂ at m̂ is the classic rule application of
pcfg to mcfg induced by m̂ leading to rule application G⇒pcfg,mcfg H .

Applying the rule in Fig. 3 to the graph of formula φ in Fig. 2 at the variability-based
match computed in the example after Def. 15 yields the graph structure of formula
φ′ described at the end of Sec. 3. Now, we show that the set of all applications of a
variability-based rule p̂ to a graph G is equal to the set of classic rule applications
obtained from flattening p̂ and applying these rules to G.

Theorem 1 (Equivalence of rule applications) Given a variability-based rule p̂ and
a graph G, the following holds: {G ⇒p̂,m̂ H| m̂ = (m, cfg) with m ∈ PML,G} =
Trans(Flat(p̂), G).

5 Variability-Based Matching Algorithm

In this section, we describe an algorithm for implementing the concept of variability-
based match (Def. 15). Our guiding intuition is to find matches for the base rule first,
then expand these matches for the variable parts and finally filter the result to contain
only maximal mappings.

Matching the base rule (see Def. 11) yields matches for the common parts that we
store in a collection called baseMatches. Function FINDMATCHES in Fig. 8 extends

Variability-Based Transformations 11

Input: model: Input model
Input: rule: Variability-annotated rule
Input: baseMatches: Classic matches of the base rule
Input: bindings: {Presence conditions used in rule} → {true, false, unbound}
Input: matches: Accumulated variability-based matches
Output: matches: Accumulated variability-based matches
1: function FINDMATCHES(model, rule, baseMatches, bindings, matches)
2: pc0 = bindings.select(unbound).get(0)
3: bindings.set(pc0, true)
4: FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)
5: bindings.set(pc0, false)
6: FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)
7: bindings.set(pc0, unbound)
8: return matches
9: function FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)

10: bindings = bindings.select(unbound).select(p | bindings.contradicts(p))
11: bindings→ = bindings.select(unbound).select(p | bindings.implies(p))
12: bindings.setAll(bindings → false, bindings→→ true)
13: if bindings.select(unbound).isEmpty() then
14: classicRule = rule.minus({x ∈ rule | x.pc ∈ bindings.select(false)})
15: classicMatches = Matcher.matchClassically(model, classicRule, baseMatches)
16: matches.addAll(createVariabilityBasedMatches(classicMatches))
17: else
18: FINDMATCHES(model, rule, baseMatches, bindings, matches)
19: bindings.setAll(bindings → unbound, bindings→→ unbound)
20: return

Fig. 8: Pseudocode for recursive function FINDMATCHES.

baseMatches to find matches for the variable parts. It enumerates all consistent vari-
ability configurations, derives the corresponding rules and matches them classically.
FINDMATCHES receives an input model, a variability-based rule, the baseMatches set,
and two intermediate parameters: a data structure bindings that assigns each of the rule’s
presence conditions to one of the literals true, false or unbound (initially all entries are
set to unbound) and a set to accumulate variability-based matches (initially empty). The
function outputs the set of variability-based matches.

An execution of FINDMATCHES systematically binds all presence conditions, start-
ing on Line 2 with an arbitrary one that we call pc0. To enumerate all valid configu-
rations, we first set pc0 to true and then to false (Lines 3-4 and 5-6). In both calls to
FINDMATCHESINNER, we first consider those presence conditions that were previously
unbound and now are either contradicting or implied by the current bindings. On Lines
10 and 11, we compute them using a SAT solver, calling the results bindings and
bindings→ (for false elements and true elements, respectively). We update the bind-
ings accordingly on Line 12. If all presence conditions are now bound, the problem
becomes classic matching. We determine the classic rule to be matched by removing
rule elements with a false presence condition on Line 14. The classic match-finder tries
to bind the rule elements contained in the derived rule, but not in the base rule. The
computed matches are translated into variability-based matches, being pairs of a clas-
sic match and the current variability configuration, on Lines 15-16. If some presence

12 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

conditions have not been bound, we call FINDMATCHES again on Line 18. On Lines 7
and 19, we reset temporary bindings of variables to clean up before backtracking. To
retain only the maximal matches, as demanded by Def. 15, we clean up after the outer
FINDMATCHES call by removing all non-maximal entries from the result.

To exemplify our algorithm, we continue with the scenario at the end of Sec. 2.
First, we create and match the base rule, comprising the elements annotated with true,
by classic match-finding. The computed baseMatches set contains exactly matchmbase.
We arbitrarily select a presence condition ¬qualified and set it to true on Line 3, thus
deriving qualified to be false on Lines 10-12. To bind the rest of the presence conditions,
we call FINDMATCHES again on Line 18. We then select forall and set it to true, thus
setting ¬forall to false and completing the binding of presence conditions. On Line 14,
we remove all rule elements labelled ¬forall or ¬qualified to derive Rule A. Calling the
classic match finder on this rule on Line 15 yields mA. We pair this classic match with
the current bindings to create a variability-based match. The remaining three configu-
rations are determined analogously; however, they do not yield any additional matches.

Complexity of our algorithm is determined by the number of configurations which
grows exponentially with the number of variation points. Of course, the configurations
determine rules that in the classic approach would be matched individually. Thus, com-
plexity of our algorithm is the same as that in classic matching. Yet, since we save
matching effort by precomputing base matches and then extending them, we expect our
algorithm to perform better than the classic one. We experimentally compare perfor-
mance of our approach with classic in Sec. 7.

6 Implementation

Our implementation is based on the Henshin model transformation suite [11] which
provides basic transformation functionalities for classic rules. Henshin consists of a
transformation meta-model, a graphical editor for rule specification, and an interpreter
engine for rule application. To specify variability-based rules, we extended the meta-
model and editor of the Henshin language, allowing annotations of rule elements with
presence conditions in the properties view. The user can highlight groups of rule ele-
ments sharing the same presence condition by assigning colors. To apply variability-
based rules, we extended the Henshin interpreter engine, implementing the algorithm
described in Sec. 5. We used FeatureExprLib [12], a tool which computes valid config-
urations of features using a SAT solver, for evaluating presence conditions. Finally, we
cached the results of all evaluations in order to avoid repeating the same computations.

Our implementation also allows the user to restrict the set of valid configurations
by defining relationships between variation points, such as mutual exclusion and re-
quire. These relationships can also be specified in terms of just presence conditions,
e.g., setting a condition to A ∧ ¬B if a variation point A excludes B.

7 Evaluation

In this section, we aim to answer two research questions: (RQ1) How compact are rule
sets with variability-based rules compared to classic? (RQ2) What is the speedup of
applying rules with variability instead of the corresponding classic ones?

Variability-Based Transformations 13

Scenario. We investigated a transformation system comprised of 54 classic transfor-
mation rules. The rules constitute a translator from Object Constraint Language (OCL)
expressions to nested graph constraints [9].

In this system, the main performance bottleneck, which we call bottleneck rule sub-
set (BRS), is a subset of 36 rules that are applied nondeterministically, as long as one of
them can be matched. The left-hand sides of the BRS rules have between 9 and 37 graph
elements and share a considerable amount of commonalities. We applied the transfor-
mation system to 10 constraints described in [9] – an assortment of OCL constraints
designed for a large coverage of applicable rules. The size of the input models, com-
prising individual constraints as well as the OCL standard library, containing operators
and literals referenced by the constraints, ranges from 1832 to 1854 model elements.

Setup and Metrics. We manually refactored the 36 classic rules in BRS into 10 variabil-
ity-based ones, relying on name similarities. We merged the original rules and annotated
the result with presence conditions. To ensure correctness of the refactoring, we checked
equality of the models yielded by both the original and the variability-based rule sets.

To investigate RQ1, we measured two metrics on both rule sets: number of rules and
number of elements per rule, allowing us to quantify compactness. To investigate RQ2,
we measured the execution time on both rule sets, allowing us to quantify performance.
We determined the execution time on a Windows 7 workstation with a 3.40 GHz Intel
i7-3770 processor and 8 GB of RAM.

Results of RQ1. In our example, variability-based rules help decrease the number of
rules by 72% while increasing the number of elements per rule by 17%. Specifically,
from 36 rules with the total of 1281 nodes and 1764 edges, we extracted 10 variability-
based rules with 399 nodes and 589 edges and 2-3 variation points each. The ratio be-
tween common and variable parts increased with the size of the rule: the smallest rules
had 10 common and 34 variable elements; the median – 69 common and 34 variable
elements; the largest – 102 common and 60 variable elements.

time (sec) time (sec)
classic var.-based

model mean sd mean sd

ocl01 <.1 <.1 <.1 <.1
ocl02 <.1 <.1 <.1 <.1
ocl03 <.1 <.1 <.1 <.1
ocl04 56.7 10.6 14.2 4.5
ocl05a 65.1 9.2 13.0 3.4
ocl05b 96.7 20.4 19.7 4.8
ocl06 49.0 13.4 11.5 3.9
ocl07 389.4 93.4 78.4 3.5
ocl08 191.0 11.7 48.4 12.7
ocl09 11.6 2.6 5.0 1.5

average 85.9 16.1 19.0 3.4

Table 1: Running time.

Results of RQ2. Table 1 shows the result of ap-
plying the classic and the variability-based rule
sets on each model, repeating the experiment 10
times.

We show the mean time (mean) and stan-
dard deviation (sd) for each rule set and model.
For three of the input models, ocl01 to ocl03, no
performance difference was observable. For the
remaining seven models, the execution time of
transformations using rules with variability was
on average 3.9 times faster than with the classic
rules. To examine the cause of the performance
difference more closely, we counted the number
of successful and failed matching attempts (for a
detailed account, please refer to [10]). In accor-
dance with Theorem 1, the number of successful
rule applications was always the same for both

14 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

rule sets. In our approach, for ocl04 to ocl09 the number of failed match attempts is
substantially lower, 1.72 times on average. We explain this observation by our reduced
number of rules that increases the ratio of applicable to total ones. Overall, our exper-
iments showed that in a scenario with a considerable amount of variability between
rules, our approach allowed to create more compact rules and considerably improve the
performance of their application.

Threats to Validity and Limitations. The most important threat to validity is our
choice of transformation rules and input models that may not be representative. We
attempted to mitigate it by selecting a set of realistic transformation rules and input
models already studied in the literature.

The performance gain achieved by our approach is affected by the amount of vari-
ability appearing within the rules. The maximum performance gain is observed for rule
bases with large common parts which we match globally, paired with small variable
parts which we match individually. Since the ratio of common and variable parts ob-
served in our study may not be the same in all systems, the results might be different.
Yet, matching common parts of similar rules only once is still expected to result in
performance improvements. Furthermore, we are aware of the following caveats: (1)
for very small examples, the overhead of variability processing might outweigh the re-
duced matching costs; and (2) if the left-hand side of the base rule does not represent a
connected graph and the left-hand sides of the rule variants do, matching the base rule
might become more expensive. We intend to investigate this issue in the future.

8 Related work

The variability-based rules introduced in this paper are inspired by annotative represen-
tations of product lines [13–15] and augment representations proposed in earlier works.

While our focus is on the batch processing of all valid configurations of a variability-
based rule, a number of related approaches, e.g., [6, 5, 7], target scenarios where a rule
configuration is set externally to derive a desired classic rule. In such cases, [5, 6] report
on a trade-off between better variability management and a performance overhead, the
latter caused by the derivation of rules. In contrast, variability-based rules and matching
improve both the compactness and the performance of a transformation system.

As for expressiveness, [5] and [7] are based on creating refinement rules for the
variable parts and assigning them to one feature (or variation point). In turn, we support
propositional presence conditions over variation points. In our evaluation example, we
avoided several redundancies by assigning rule elements to a conjunction of two vari-
ation points. In this respect, [6] goes even further by allowing users to annotate a rule
element with embedded C++ code, which, however, would produce an extremely large
search space for variability-based matching.

Several model transformation languages implement rule refinement [1] – an impor-
tant mechanism for reuse inside the same transformation system. In such languages, a
base rule is refined by a set of sub-rules modifying it. Then, some approaches [16, 17]
flatten the rules for application, i.e., compile them into simpler rules. The translational
semantics in the approach proposed in RubyTL [18] is closest to ours – it applies the
base rules first and then applies the refinement rules on the target model of the transfor-
mation. In contrast, our approach aims to efficiently find matches in the source model.

Variability-Based Transformations 15

In [19], the authors propose an approach for transformation “lifting”: given a clas-
sic model transformation, a transformation that operates on a family of related mod-
els is generated automatically. Instead, we do not focus on transforming a family of
models but rather on creating and applying a family of related transformation rules
in an efficient manner. [20] presents a reuse concept based on abstract transformation
rules that can be instantiated for variants of similar meta-models. The abstract trans-
formation rules are reverse engineered from existing transformation rules. In [21], the
authors apply incremental graph pattern matching based on Rete networks to improve
performance of transformation systems. However, they target the use case of successive
application of the same set of rules on a modified input model and do not deal with
variability inside the transformation system. These approaches are orthogonal to ours,
and we intend to combine them with ours in the future.

9 Conclusion

In this paper, we proposed a novel approach to improve reuse and performance in model
transformation systems. Aiming to handle a class of problems where rules with many
commonalities are to be applied nondeterministically as long as one of them is appli-
cable, we introduced variability not only to the rules but also to transformations using
them. We proved correctness of our approach and contributed an efficient matching
algorithm evaluated using a realistic model transformation system.

In this work, the refactoring of classic to variability-based rules was performed man-
ually. As a future work, we intend to automate this step, possibly by applying techniques
proposed by the product line engineering community for determining commonalities
and variabilities in models. Moreover, while this work focused on rule application,
other computationally expensive operations performed on rules, such as state-space
exploration or critical pair analysis, might also benefit from explicit variability man-
agement. We intend to investigate this in the future. Providing an efficient solution for
the matching of base rules represented as disconnected graphs is also subject for pos-
sible future work, as is to compare our approach against existing algorithms aiming at
specific tasks in compilers and theorem provers. Finally, we aim to apply variability-
based rules to distributed modeling scenarios with multiple variants of editing steps,
e.g., synchronous and asynchronous ones [22].

Acknowledgements

We thank Thorsten Arendt and Frank Hermann for providing input for our evaluation.

References

1. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger, W.:
Reuse in Model-to-Model Transformation Languages: Are We There Yet? SoSyM (2013)
1–36

2. Soley, R.: Model Driven Architecture. Object Management Group (2000)
3. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley (2001)
4. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering : Foundations,

Principles, and Techniques. Springer (2005)

16 Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer

5. Sijtema, M.: Introducing Bariability Rules in ATL for Managing Variability in MDE-based
Product Lines. Proc. of MtATL’10 (2010) 39–49

6. Kavimandan, A., Gokhale, A., Karsai, G., Gray, J.: Managing the Quality of Soft-
ware Product Line Architectures through Reusable Model Transformations. In: Proc. of
QoSA/ISARCS’11, ACM (2011) 13–22

7. Trujillo, S., Zubizarreta, A., De Sosa, J., Mendialdua, X.: On the Refinement of Model-to-
Text Transformations. In: Proc. of JISBD’09. (2009) 123–133

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graphs and Graph Transformation based on Adhesive HLR Categories. Fundamenta Infor-
matica Vol. 74 (1) (2006) 31–61

9. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core OCL Invariants to Nested Graph
Constraints. In: Proc. of ICGT 2014. (2014) 97–112

10. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A Variability-Based Approach to Reusable
and Efficient Model Transformation - Technical Report. https://www.uni-marburg.
de/fb12/swt/research/publications (2015)

11. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformation. In: Proc. of Int. Conference on Model
Driven Engineering Languages and Systems (MoDELS 2010). LNCS, Springer (2010)

12. Kenner, A., Kästner, C., Haase, S., Leich, T.: TypeChef: Toward Type Checking #ifdef
Variability in C. In: Proc. of FOSD’10. (2010) 25–32

13. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Proc. of the GPCE’05. (2005) 422–437

14. Kästner, C., Apel, S.: Integrating Compositional and Annotative Approaches for Product
Line Engineering. In: Proc. of the Wksp. on Modularization, Composition and Generative
Techniques for PLE (McGPLE) at GPCE’08. (2008) 35–40

15. Rubin, J., Chechik, M.: Combining Related Products into Product Lines. In: Proc. of
FASE’12. (2012) 285–300

16. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing Triple Graph Grammars Using
Rule Refinement. In: Proc. of FASE’14. Volume 8411 of LNCS. (2014) 340–354

17. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: A qvt-like transforma-
tion language. In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, ACM (2006) 719–720

18. Cuadrado, J.S., Molina, J.G.: A Model-Based Approach to Families of Embedded Domain-
Specific Languages. IEEE TSE, Vol. 35 (6) (2009) 825–840

19. Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting Model Transformations
to Product Lines. In: Proc. of ICSE 2014. (2014) 117–128

20. Cuadrado, J.S., Guerra, E., de Lara, J.: Reverse Engineering of Model Transformations for
Reusability. In: Proc. of ICMT’14. (2014) 186–201

21. Bergmann, G., Ráth, I., Szabó, T., Torrini, P., Varró, D.: Incremental Pattern Matching for
the Efficient Computation of Transitive Closure. In: Proc. of ICGT’12. (2012) 386–400

22. Strüber, D., Taentzer, G., Jurack, S., Schäfer, T.: Towards a Distributed Modeling Process
Based on Composite Models. In: Proc. of FASE’13. (2013) 6–20

