
Starting Model Development in Distributed Teams with
Incremental Model Splitting

Daniel Strüber, Gabriele Taentzer
Philipps-Universität Marburg

{strueber, taentzer}@mathematik.uni-marburg.de

Abstract: The rising impact of software development in globally distributed teams
strengthens the need for strategies that establish a clear separation of concerns in soft-
ware models. Large, weakly modularized models are hard to comprehend and to anal-
yse. A further maintainance obstacle is introduced by conflicting changes of the model.
In our recent work, we propose a structured process for distributed modeling based on
a variety of distributed modeling activities. To allow modularity and to facilitate devel-
oper independence, we focus on the problem of splitting a large monolithic model into
sub-models. The modeler is assisted in incrementally discovering the set of desired
sub-models. Our approach is supported by an automated tool that performs model
splitting using information retrieval and model crawling techniques. We demonstrate
the effectiveness of our approach on a set of real-life case studies, involving UML
class models and meta-models being based on the Eclipse Modeling Framework.

1 Introduction

Model-based engineering – the use of models as the core artifacts of the development
process – has become an industrially accepted best practice in many application domains.
Together with the increased popularity of modeling, models of practical use grow in size
and complexity to the point where large monolithic models are difficult to comprehend
and maintain. There is a need to split such large models into a set of dependent modules
(a.k.a. sub-models) and to modify these modules in a systematic way, increasing the over-
all comprehensibility and allowing multiple distributed teams to focus on each sub-model
separately. The realization of a distributed model-driven software development approach
is the aim of a recently started research project funded by the German Research Council.

2 Towards a Distributed Modeling Process for Composite Models

In [STJS13], we propose a structured process for distributed modeling. In order to untangle
intransparent dependencies between sub-models, we base the process on a modularization
technique called composite models. In composite models, the user defines interrelations
between sub-models using explicit export and import interfaces. The explicit dependency
management brought by composite models allows us to reason about asynchronous and
synchronous editing steps in a distributed modeling team. We formally introduce the split-
ting, editing and merging of composite meta-models and model instances. While we show
the soundness of splitting a model instance according to the split of its meta-model, we
leave the splitting of the meta-model as a manual step to the meta-model developer .



3 Incremental Model Splitting

Model	Splitting

Figure 1: Model splitting using information retrieval
and model crawling techniques.

In [SRTC14], we propose a heuristic
approach that allows splitting meta-
models and model instances into sub-
models. The target sub-models are
specified by the user upfront using
natural-language descriptions. In the
core of the new approach, outlined
in Fig. 1, is an automated technique
that applies information retrieval and
a topological analysis called model crawling. The user sets a completeness condition spec-
ifying whether the input set of sub-model descriptions is complete: For a complete set, the
resulting splitting suggestion assigns each model element to exactly one sub-model. For
an incomplete set, some elements are not assigned. The user can inspect the unassigned
elements to discover additional sub-models, incrementally creating a complete split.

Information retrieval. To obtain an initial mapping between the model and the textual
sub-model descriptions, we apply a statistical technique from information retrieval re-
search: Latent Semantic Analysis (LSA) [LFL98]. For a query (e.g., a sub-model descrip-
tion) over a fixed set of documents (e.g., a set of model element names), LSA scores the
relevance of each document to the input query using a vectorization technique.

Model crawling. To create the splitting suggestion, we use the model elements scored
highest by LSA as seeds. We score each model element’s relevance for each target sub-
model by traversing the model in breadth-first order for each set of seeds. We calculate the
scores of newly accessed model elements using a scoring formula inspired by [Rob05].
Each model element is assigned to the sub-model it was deemed most relevant for.

Tool support. We have implemented the outlined technique in an open-source Eclipse
plug-in aiming at the splitting of EMF meta-models and UML class models [SLT14]. The
user interface comprises a textual editor for assembling the descriptions and a visual editor
for reviewing and post-processing the splitting suggestion. In comparison to hand-tailored
model splitting, the accuracy of our implementation averaged at 80% in six case studies.

References
[LFL98] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An Introduction to Latent

Semantic Analysis. Discourse Processes, (25):259–284, 1998.
[Rob05] Martin P. Robillard. Automatic Generation of Suggestions for Program Investigation. In

Proc. of ESEC/FSE-13, pages 11–20, 2005.
[SLT14] Daniel Strüber, Michael Lukaszczyk, and Gabriele Taentzer. Tool Support for Model

Splitting using Information Retrieval and Model Crawling Techniques. In Proceedings
of the Workshop on Scalability in Model Driven Engineering. ACM, 2014.

[SRTC14] Daniel Strüber, Julia Rubin, Gabriele Taentzer, and Marsha Chechik. Splitting Models
Using Information Retrieval and Model Crawling Techniques. Fundamental Approaches
to Software Engineering, pages 47–62, 2014.

[STJS13] Daniel Strüber, Gabriele Taentzer, Stefan Jurack, and Tim Schäfer. Towards a distributed
modeling process based on composite models. Fundamental Approaches to Software
Engineering, pages 6–20, 2013.


