
An Algorithm for the Critical Pair Analysis of
Amalgamated Graph Transformations ?

Kristopher Born, Gabriele Taentzer

Philipps-Universität Marburg, Germany
{born,taentzer}@informatik.uni-marburg.de

Abstract. Graph transformation has been shown to be well suited as
formal foundation for model transformations. While simple model changes
may be specified by simple transformation rules, this is usually not suffi-
cient for more complex changes. In these situations, the concept of amal-
gamated transformation has been increasingly often used to model for
each loops of rule applications which coincide in common core actions.
Such a loop can be specified by a kernel rule and a set of extending
multi-rules forming an interaction scheme.

The Critical Pair Analysis (CPA) can be used to show local confluence of
graph transformation systems. Each critical pair reports on a potential
conflict between two rules. It has been shown recently that the generally
infinite set of critical pairs for interaction schemes can be reduced to a
finite set of non-redundant pairs being sufficient to show local confluence
of the transformation system. Building on this basic result, we present an
algorithm that is able to compute all non-redundant critical pairs for two
given interaction schemes. The algorithm is implemented for Henshin, a
model transformation environment based on graph transformation con-
cepts.

1 Introduction

In model-based software development, models play a primary role w.r.t. require-
ments elicitation, software design and software validation. Model changes can be
well specified as model transformations. If several developers work concurrently
on the same model, they may run into conflicts that have to be resolved. For
the execution of several model changes, a specific order may be necessary due
to causal dependencies. To analyze such conflicts and dependencies as early as
possible, critical pair analysis (CPA) [18, 8] has been used. This analysis allows
to check transformation rules for potential conflicts and dependencies at specifi-
cation time, i.e., before run time. A critical pair describes a minimal conflicting
situation that may occur in the transformation system. If every critical pair can
be resolved by finitely many transformation steps, the system is locally conflu-
ent. Potential dependencies between rules can be discovered by inverting the first

? This work was partially funded the German Research Foundation, Priority Program
SPP 1593 ”Design for Future - Managed Software Evolution”.

rule and using it as input to the CPA, together with the second rule. In that
case, local confluence of critical pairs show how resulting models of dependent
transformations can be reached alternatively.

Conflicts as well as dependencies of model transformations have been ana-
lyzed by the CPA for several different applications as, e.g., finding conflicts and
dependencies in functional requirement specifications of software systems [11],
analyzing conflicts and dependencies of model refactorings [17] as well as in
aspect-oriented modeling [16], and using conflict and dependency results to
find the right order of edit operations for reporting model differences on an
application-specific abstraction level [13].

While simple model changes can be well specified using simple rules, this
is usually not sufficient for more complex model changes. Amalgamated graph
transformation has proven to be suitable for specifying core actions equipped
with a number of optional or context-dependent actions. Considered applica-
tions are, e.g., an interpreter semantics for statecharts [4], automatic model mi-
gration [15], and the specification of complex model edit operations [13]. A typ-
ical example of such complex model changes are model refactorings where, e.g.,
equal attributes in subclasses are pulled up to one attribute in their super class.
Collaborative working developers are interested in understanding when model
changes can be applied in parallel and when they are a potential source for con-
flicts. Being in conflict, it would be interesting to understand if and how these
conflicts can be resolved. Hence, the notions of parallel independence, conflict
and conflict resolution have to be lifted to amalgamated graph transformation.

An amalgamated transformation is specified by a interaction scheme con-
taining a kernel rule and a set of extending multi-rules. While the kernel rule
is intended to be matched exactly once, each multi-rule is matched as often as
possible – in the general case, a fixed, but arbitrary number of times. An amal-
gamated rule over an interaction scheme contains at least the kernel rule and
arbitrary many copies of multi-rules overlapping at the kernel rule. Hence, an
interaction scheme specifies infinitely many amalgamated rules in general.

Applying the CPA to analyze conflicts and dependencies between interaction
schemes confronts us with the problem to check infinitely many rule pairs and
therefore, critical pairs. [22] shows that a finite set of CPs is enough to show
local confluence of the overall transformation system. This result is proven for
algebraic graph transformation [8]. Model transformations that are based on
the Eclipse Modeling Framework (EMF) have been formally based on graph
transformation in [5].

To apply the CPA to amalgamated transformations in practice, we need an
algorithm that implements it. The main challenge is to find out an effective
termination criterion when enumerating pairs of amalgamated rules and their
critical pairs. The main contributions of this paper are the following:

1. An algorithm for the CPA of pairs of interaction schemes. We argue for
the correctness of the presented algorithm w.r.t. the underlying theory. In
particular, we focus on the termination of this algorithm.

2

2. An implementation of the algorithm within the model transformation tool
Henshin based on EMF models.

3. First tests of the algorithm: We report on the CPA of an example transfor-
mation system, focussing on termination issues.

The paper is organized as follows: The main concepts of amalgamated graph
transformation are recalled in Section 2. The main ideas for the CPA for amalga-
mated graph transformation are summarized in Section 3. Thereafter, we present
our algorithm and argue for its correctness in Section 4.

2 Amalgamated Transformations

In the context of graph transformation, amalgamated transformation has been
introduced to perform a kernel action exactly once and context-dependent ac-
tions as often as possible. In this section, we consider amalgamated transforma-
tions based on EMF [21] and use model refactorings as running example. The
formal basis is given by amalgamated graph transformation as presented in [9]
and the conflict analysis in [22]. Since the subtle differences do not play a role
throughout this paper, we use the notions model and graph as synonyms in the
following.

EMF is a common and widely-used open source technology in model-based
software development. It extends Eclipse by modeling facilities and allows for
defining (meta-)models and modeling languages by means of structured data
models. An EMF-model can formally be considered as an instance graph with a
prominent containment hierarchy.

Example 1 (Simple class models). In the running example, we consider selected
refactorings of simple class models. A simple class model consists of a package
being the container of all classes. A class is named and may have any number
of attributes just given by their names. Classes may be related in two ways: A
class may have a superclass and any number of references to other classes. The
meta-model for simple class models is shown in Figure 1.

Fig. 1. Meta-model for class models

A very simple instance model to this meta-model is shown in Figure 2; it
represents two classes “List” and “Stack” where the stack is inheriting from the
list. Class “List” has an attribute called “first”. Since this design is not optimal,
it will be refactored later on.

3

Fig. 2. Example instance model

In the context of EMF, refactorings are specified by model transformations.
See e.g. [14] and [3]. In the following, we consider rule-based model transfor-
mations formulated in Henshin [2], a model transformation language based on
graph transformation concepts. In Henshin, rules may be depicted in an inte-
grated form annotating each model element node and reference edge by a change
action. Nodes and edges that have to exist but are not changed during trans-
formation are annotated with << preserve>> while others may be deleted or
created dependent on their annotations. In addition, rule may have application
conditions. In negative application conditions, nodes and edges may be forbid-
den meaning that they must not occur in the specified form for applying the
rule. In contrast, positive application conditions may require model elements.

When performing model refactorings, a restructuring action is often accom-
panied by update actions on all involved model elements. For example, pulling
up an attribute to a superclass implies the deletion of such an attribute from
all subclasses. Such for all actions are specified by additional multi-rules com-
prising the basic rule (also called kernel rule). The overall rule (with optionally
contained multi-rules) is also called interaction scheme; its semantics is defined
by a set of rules (see below). A rule without any multi-rule is a special case of
interaction scheme consisting of just one rule. In the following, an interaction
scheme is represented in an integrated way, i.e., all multi-rules are represented
in one diagram overlapping in the kernel rule. Note that - given an interaction
scheme - the kernel rule always performs a subset of actions specified in a multi-
rule of that scheme. If the kernel rule deletes a node, adjacent edges specified
in including multi-rule have to be deleted as well. If this condition is fulfilled,
interaction schemes follow their formal definition as presented in [9].

In the following, we present several interaction schemes for the refactoring of
simple class models. We will see that they all include for all actions specified by
multi-rules.

Example 2 (Interaction scheme “Replacing inheritance with delegation”). If we
find out that an inheritance relation between two classes is not adequate as,
e.g., pointed out in Example 1 for class “Stack” inheriting from class “List”,
the inheritance relation might be replaced by a reference. Formerly inherited
attributes have to be copied in that case. This refactoring can be specified by a

4

kernel rule just replacing the superclass reference while the extending multi-rule
copies all attributes. Figure 3 shows the corresponding specification in Henshin.
All cascaded nodes and adjacent edges are in the multi-rule only while all other
nodes and edges are also contained in the kernel rule.

Fig. 3. Interaction scheme for refactoring “Replace In-
heritance With Delegation” (RIWD)

Given an interaction
scheme, i.e. a kernel rule
with multi-rules, its se-
mantics consists of an in-
finite set of simple rules
called amalgamated rules.
Each rule of this set con-
sists of the kernel rule ex-
tended by 0, 1, 2 or more
copies of its multi-rules.
For each multi-rule, the
exact number of copies
depends on the number of
different matches found in
the instance graph the in-
teraction scheme is applied to. It is assumed that all multi-rule matches overlap
in the match of their common kernel rule. In the following, we show example
amalgamated rules for the refactoring “Replace Inheritance With Delegation”.

Example 3 (Amalgamated rules and their application). Given the interaction
scheme “replaceInheritanceWithDelegation” as in Figure 3, Figure 4 shows three
amalgamated rules as concrete examples using 0, 1 or 2 copies of the multi-rule.

Considering the instance model in Figure 2, the inheritance between classes
“List” and “Stack” shall be replaced by a delegation. Hence, we apply the refac-
toring “Replace Inheritance With Delegation” here. Since class “List” has one
attribute, the multi-rule is applied exactly once which means that amalgamated
rule riwd 1 is selected for application. The result is the model in Figure 5. The ef-
fect is that the inheritance relation between classes “List” and “Stack” is replaced
by a reference and an attribute with name “first” is added to class “Stack”.

After having specified one refactoring we consider three further refactoring
specifications below. They are used to investigate selected refactoring conflicts
and their potential resolutions below. They all use multi-rules.

Example 4 (Interaction scheme “Push down attribute”). An attribute of a given
superclass may be pushed down to all its subclasses. This refactoring is needed if
the modeled attribute shall be modified in its subclasses in different ways. This
refactoring is the opposite of “Pull up attribute” which is not considered in detail
in this paper. The diagram in Figure 6 shows the specifying interaction scheme.
The kernel rule pushes down an attribute to one subclass while the multi-rule
pushes down the attribute to all further subclasses.

5

Fig. 4. Amalgamated rules which replace inheritance with delegation for classes with
0 to 2 attributes

Fig. 5. Example instance model after refactoring

Example 5 (Further refactoring specifications). The interaction scheme in Fig-
ure 7 deletes all empty subclasses of a selected class indicated as superClass. Note
that model nodes may only be deleted if they do not leave any edges dangling.
This means for a class that it must not have attributes, references or subclasses.
I.e., the interaction scheme deletes all empty subclasses of a given superclass.

Another class refactoring is the inlining of classes shown in Figure 8. If all
the attributes of a class A have corresponding attributes (with the same names)
in a referenced class B then class A can be inlined into class B. This means that
class A and all its attributes are deleted. Again, the dangling condition checks

6

Fig. 7. Interaction scheme for refactor-
ing “Delete Empty Subclasses” (DES)

Fig. 8. Interaction scheme for refactor-
ing “Inline Class” (IC)

if there are no further attributes (with different names), adjacent references or
inheritance relations. In that case, the inlining must not take place.

3 Critical Pair Analysis

Fig. 6. Interaction scheme for refactoring “Push
Down Attribute” (PDA)

The critical pair analysis
(CPA) is a well-known tech-
nique to analyze potential
conflicts and dependencies of
transformation systems. It
has first been introduced for
term rewriting and later gen-
eralized to graph transforma-
tion [18, 8]. A critical pair de-
scribes a minimal conflicting
situation that may occur in
the transformation system. It
is well-known that if all criti-
cal pairs can be shown to be
strictly confluent, the trans-
formation system is locally
confluent. This means that
each pair of direct transfor-
mation steps can be resolved
by arbitrary many steps to a common graph. The notion of strict cofluence means

7

that the jointly preserved part of a critical pair is also preserved by its resolution
[19].

This theory has been extended to amalgamated graph transformation in [22].
Here, we have to face the problem that an interaction scheme generally describes
infinite many rules and therefore, also infinite many critical pairs may exist for
a given interaction scheme. In [22], we show that it is enough to check finitely
many critical pairs to decide for local confluence. The key observation is that,
from a certain number n of multi-rule copies, critical pairs over amalgamated
rules do not lead to new kinds of conflict resolutions, i.e., all larger critical
pairs are redundant to smaller ones. Up to now, however, there does not exist
a construction to determine this number n. As main contribution of this paper,
we present an algorithm for the CPA of amalgamated transformations below. As
a prerequisite, the main definitions are recalled and illustrated at the running
example here.

Two transformations are conflicting if (1) one transformation deletes a graph
element the other uses (delete/use conflict), (2) one transformation produces a
graph element the other forbids (produce/forbid conflict), or (3) one transfor-
mation changes an attribute the other uses (change/use conflict). A critical pair,

short CP, consists of two conflicting transformations G
r1,m1
=⇒ H1 and G

r2,m2
=⇒ H2

applying rules r1, r2 at matches m1,m2 such that G is minimal. If rules r1 and
r2 do not have application conditions, G is just an overlap graph of their left-
hand sides. For rules with negative application conditions (NACs), also slightly
larger graphs have to be considered taking parts of their NACs into account as
well.

Example 6 (Critical pair). Applying refactorings “Delete Empty Subclass” and
“Replace Inheritance With Delegation” in parallel may lead to conflicts. Figure 9
shows a CP over corresponding amalgamated rules, each one applying exactly
one multi-rule copy. In this case, exactly one empty subclass is deleted and one
attribute is copied to a referring class. This CP shows a delete/use conflict since
a subclass that is deleted cannot be changed to be a delegating class. This is
a potential conflict that may occur during transformations. It may be resolved
by inlining the delegating class on the right yielding the model graph on the
left. Note that the potential conflict shown here becomes concrete when all the
variables are instantiated by concrete values.

Given two critical pairs cps = (ts1 : Gs =⇒ H1s, ts2 : Gs =⇒ H2s) and
cpl = (tl1 : Gl =⇒ H1l, tl2 : Gl =⇒ H2l) of set CP (is1, is2) such that cpl is an
extension of cps, i.e., they distinguish just in the number of applied multi-rule
copies (on at least one side). Then these CPs are considered to be redundant
if their corresponding graphs H1s and H1l (as well as H2s and H2l) allow for
equivalent partial matches only, considering all rules of a given transformation
system. Two partial matches m and m′ to a graph H are equivalent if each pair
of isomorphic range elements has the same history, i.e., both are newly created
or both do already exist. Due to this definition, partial matches are considered
equivalent if they differ only in range elements stemming from different multi-

8

Fig. 9. Critical pair applying refactorings DES and RIWD with one multi-rule copy
each

rule copies. If the dangling condition is set for a rule, the equivalence check
comprises the satisfaction check of this condition as well.

Example 7 (Redundancy of critical pairs). Considering the critical pairs in Fig-
ures 9 and 10, we can notice that the CP in Figure 9 applies one multi-rule
copy on each side while the one in Figure 10 applies two copies on each side.
Basically, the same potential delete/use conflict is reported: A subclass that is
deleted cannot be changed to a delegating class. However, the contexts are dif-
ferent. Although this is the case, the conflict resolution for the larger CP can
be similar to the one for the smaller CP. Inlining the delegating class (with two
attributes now) on the right followed by deleting the remaining empty subclass
yields the model graph on the left. Any other interaction scheme is not appli-
cable on the left or right. Comparing all the partial matches that exist in both
cases and check whether they are equivalent w.r.t. the above definition, we find
out that this is the case for all interaction schemes except of DES. Since the
right graph in Figure 10 still contains a generalization relation, some new par-
tial matches can be found here. Hence, the CP in Figure 10 is not redundant to
the one in Figure 9 although a very similar conflict is reported.

4 Algorithm for the Critical Pair Analysis

In the following, we present the core algorithm for computing all relevant critical
pairs between two interaction schemes. As shown in [22], a finite set of critical

9

Fig. 10. Critical pair applying refactorings DES and RIWD with two multi-rule copies
each

pairs is enough to decide for local confluence of a given transformation system.
The computation is performed for increasingly larger amalgamated rules. The
maximal number of multi-rules applied define the level of computation. The
stop criterion is met if all critical pairs that are computed for the current level
turn out to be redundant to critical pairs of lower levels. The main algorithm is
presented in Figure 11.

Class RulePairHandler is a container for rule pairs and their critical pairs and
the associated partial matches of the transformation system. Function getRule-
PairsOfLevel computes all pairs of amalgamated rules where each rule has at
most as many multi-rule copies as level prescribes. Given a concrete rule pair,
function computeCps computes all critical pairs of this rule pair. Each critical
pair is reported by a minimal model with two matches of participating rules.
After having computed all critical pairs of a given level, function extractNonRe-
dundantCps filters out all those critical pairs that are not redundant to already
existing ones computed in lower levels. The identification of redundant critical

10

Input: is1,is2 : Input interaction schemes
Output: resultCps: Output set containing all non-redundant critical pairs
1: function computeCriticalPairs(InteractionScheme is1, InteractionScheme

is2): CpaResult
2: rulePairHandler = new RulePairHandler(is1,is2);
3: resultCps = new CpaResult();
4: levelCps = analyseLevelForNonRedundantCps(0, rulePairHandler);
5: resultCps.add(levelCps);
6: return resultCps;

7: function analyseLevelForNonRedundantCps(int level, RulePairHandler
rph): CpaResult

8: resultCps = new CpaResult();
9: currentRulePairs = rph.getRulePairsOfLevel(level);

10: for rulePair : currentRulePairs do
11: currentCps = computeCps(rulePair);
12: newCps = extractNonRedundantCps(currentCps,level);
13: rulePair.setCps(newCps);
14: resultCps.add(newCps);

15: if resultCps.size() != 0 || level == 0 then
16: resultOfNextLevel = analyseLevelForNonRedundantCps(level+1);
17: resultCps.add(resultOfNextLevel);

18: return resultCps;

Fig. 11. Pseudocode for computing critical pairs of interaction schemes.

pairs is achieved by comparing the partial matches of the whole transformation
system for each new critical pair against the already known.

Correctness. Given two interaction schemes is1 and is2, we have to show that
computeCriticalPairs yields the set of all non-redundant CPs between these
two rules schemes. The main design decision is here that CPs are computed level-
wise starting with level 0. All CPs of level n are computed if n ≤ 1 or new non-
redundant CPs have been computed for level n−1. Level one has to be considered
anytime due to the fact that level zero doesn’t involve the amalgamations at all.
Given level n, function analyseLevelForNonRedundantCps computes all
non-redundant CPs of rule pairs of that level. All rule pairs for that level where
each rule has at most n multi-rule copies, are collected in currentRulePairs.
All their CPs are collected in currentCps. Function extractNonRedundantCps
directly implements the check for non-redundant CPs based on the definition
given in [22] which is informally recalled above. If any rule pair of a level yields
new non-redundant CPs, the set of resulting CPs becomes non-empty and the
next level has to be considered. Finally, the non-redundant CPs of all levels are
joined to the set resultCps.

In the algorithm in 12 for each potential new critical pair (cP) all partial
matches (pMoOfR1, pMoOfR2) of the transformation system on the two in-
volved transformations (tl1, tl2) are analysed. If all the partial matches (pMoOfR1,
pMoOfR2) are already known by the critical pairs which are extended by the
evaluated critical pair (cP), then it’s a redundant critical pair and won’t be re-

11

1: function extractNonRedundantCps(CpaResult cPs): CpaResult
2: nonRedundantCps = new CpaResult();
3: for cP : cPs do
4: tl1 = cP.getResultOfR1 ();
5: pMOfR1 = findAllNonEquivPartialMatches(tl1);
6: tl2 = cP.getResultOfR2 ();
7: pMOfR2 = findAllNonEquivPartialMatches(tl2);
8: rulePairs = rph.getExtendedRulePairs(cP.getRulePair());
9: for rulePair : rulePairs do

10: reducedCPs = rulePair.getCriticalPairs();
11: for reducedCP : reducedCPs do
12: if isExtension(cP.minimalModel(), reducedCP.minimalModel()) &&

(pMOfR1.size()>0 || pMOfR2.size()>0) then
13: ts1 = reducedCP.getTransformation1();
14: alreadyKnownPMOfR1 = extractEquivParMatches(ts1, tl1);
15: pMOfR1.removeAll(alreadyKnownPMOfR1);
16: ts2 = reducedCP.getTransformation2();
17: alreadyKnownPMOfR2 = extractEquivParMatches(ts2, tl2);
18: pMOfR2.removeAll(alreadyKnownPMOfR2);

19: if pMOfR1.size() != 0 || pMOfR2.size() != 0 then
20: nonRedundantCps.addResult(criticalPair);

21: return nonRedundantCps;

Fig. 12. Pseudocode of function extractNonRedundantCps.

turned. To do so for each extended critical pair (reducedCp) the already known
critical pair get extracted by extractEquivParMatches. The set of partial matches
(pMoOfR1, pMoOfR2) of the investigated critical pair (cP) gets reduced by
them. This repeats until none of them are left and the critical pair (cP) is
identified as redundant. Otherwise this repeats until all extended critical pairs
(reducedCp) are investigated and the critical pair (cP) is identified as non-
redundant and part of the returned set of the function.

The central question to be answered here is: Does this algorithm terminate?
The answer should be yes due to the main result in [22]. The proof of this result
contains the following key idea: For each pair of interaction schemes, there are
two finite numbers c and d such that all rule pairs of amalgamated rules with at
most c and d multi-rule copies yield redundant CPs only. If we take max(c, d) as
current level, there would not be any further non-redundant conflict found. The
key idea for termination is that new CPs do not provide new partial matches for
the rules of our transformation system. An extreme over-approximation can go
like this: Given a transformation system with interaction schemes, let |L| = x
be the number of graph elements of the left-hand side of the largest (multi-
)rule. There are at most |P(L)| = 2x different subsets of elements, i.e., domains
for partial matches, over L. The different ranges are not interesting in detail.
We only check if range elements are preserved or newly created. If two partial
matches with the same domain are equal w.r.t. this range classification, they
are considered equivalent. Hence, the largest number of non-equivalent partial
matches is 22x = 4x. Although this number is extremely high, it tells us that

12

there is an upper limit for non-equivalent partial matches independent of the
result graphs H1 and H2 occurring in concrete CPs. Usually, the number of non-
equivalent partial matches is much smaller since element types, attributes and
graph structures have to be taken into account as well. Moreover, partial matches
cannot exist if sub-matches do not exist as well. The following examples produce
numbers of partial matches being smaller than 200 for any CP result graph
although the extreme over-approximation yields 49. The value nine is based
on the interaction scheme “Push down attribute”, which has the most model
elements in its left-hand side compared to the other ones in the transformation
system.

Example 8 (Algorithm run). To illustrate the algorithm, we consider an example
run now: Given the interaction schemes for refactorings DES and RIWD in
Figures 7 and 3, all non-redundant CPs with a DES rule as first and a RIWD
rule as second shall be computed. As pointed out above, the CPs of levels 0
and 1 always have to be computed. For all pairs of kernel and multi-rules of
participating interaction schemes, the number of CPs found are shown in Table 1.
Moreover, it shows the numbers of CPs for all pairs of amalgamated rules of levels
2 and 3. This is needed since the check by extractNonRedundantCps finds out
that RIWD and IC have new non-equivalent partial matches to CP graphs of
rule pairs of level 1, as shown in Table 2. Therefore, there are non-redundant
CPs on level 1 and hence, level 2 has to be considered. Note that the table entries
always show the number of non-redundant CPs as well as the number of all CPs.
One example CP of level 2 is shown in Figure 10. In contrast to CPs of level 1, an
inheritance relation may remain after applying refactoring RIWD which leads to
new non-eqivalent partial matches of refactorings DES and PDA. Therefore, new
non-redundant CPs occur on level 2 and the algorithm does not yet terminate.
Hence, amalgamated rules of level 3 have to be checked for non-redundant CPs
as well. As explained at Table 2, it turns out that new non-equivalent partial
matches do not occur and therefore, all newly found CPs are redundant leading
to the termination of the algorithm for the considered interaction schemes.

CPs RIWD RIWD RIWD RIWD
1./2. (0) (1) (2) (3)

DES(0) 0/0 0/0 0/0 0/0
DES(1) 1/1 1/1 1/1 0/1
DES(2) 2/2 2/2 0/2 0/2
DES(3) 0/3 0/3 0/3 0/3

Table 1. Numbers of non-
redundant/all critical pairs between
refactorings DES (first rule) and
RIWD (second rule)

Part. RIWD RIWD RIWD RIWD
matches (0) (1) (2) (3)

DES(0) - - - -
DES(1) 15/28 20/84 10/0 0/0
DES(2) 0/4 0/2 0/0 0/0
DES(3) 0/0 0/0 0/0 0/0

Table 2. Numbers of non-equivalent
partial matches to the left and right re-
sult graphs of CPs between refactorings
DES and RIWD

13

Given all the CPs between refactorings DES and RIWD, Table 2 shows the
numbers of non-equivalent matches to the left and right result graphs of each CP.
(Remember that a CP consists of two conflicting transformations both starting
from the same graph and resulting in two graphs. The left one is the result after
applying refactoring DES while the right one is obtained by applying refactoring
RIWD.) We see that on level 3, there are no further non-equivalent matches
discovered. Hence, the computation of non-redundant CPs terminates after level
3 as stated above.

In the following, we summarize the number of non-redundant CPs found in
our transformation system and show for each pair of interaction schemes how
many levels of amalgamation have to be considered for the CPA until the ter-
mination criterion is fulfilled. We consider two variants of our transformation
system: The first one contains all presented interaction schemes without PDA
while the second one includes PDA. Tables 3 and 4 show the results. In both
tables, we see that the number of levels needed is moderate. Often, the consid-
eration of levels 0 and 1 is already enough. Tables 3 and 4 do not only differ in
the numbers of rows and columns but also w.r.t. their entries. As an example,
the CPA for DES and RIWD needs 3 or 4 levels, resp. The tables also show the
numbers of non-redundant CPs found for pairs of interaction schemes which is 7
for pairs (DES,RIWD) as well as (RIWD,DES) on level 3 and 13 on level 4. The
differences arise due to the fact that PDA causes new kinds of partial matches.
These additional conflicts have to be taken into account for future confluence
check. A more detailed view of the results can be found at [12].

level of amalg./ DC RIWD DES IC
non-red. CPs

DC 1/0 1/0 1/2 1/0
RIWD 1/0 2/1 3/7 1/0

DES 1/0 3/7 1/0 1/0
IC 1/0 1/0 2/4 1/0

Table 3. Level of termination and
number of non-redundant critical pairs
with four interaction schemes

level of amalg. / DC RIWD DES IC PDA
non-red. CPs

DC 1/0 1/0 1/2 1/0 1/0
RIWD 1/0 2/1 4/13 1/0 2/10

DES 1/0 4/13 1/0 1/0 2/3
IC 1/0 1/0 2/4 1/0 1/0

PDA 1/0 3/4 3/8 3/4 2/6

Table 4. Level of termination and number
of non-redundant critical pairs with five in-
teraction schemes

The presented algorithm for the CPA of interaction schemes has been pro-
totypically implemented for rules specified in Henshin. It relies on the CPA
implementation for basic rules as presented in [6]. The current CPA implemen-
tation for interaction schemes supports the conflict detection only (i.e. does not
support the detection of dependencies yet). Furthermore, rules with application
conditions are not supported yet. These limitations are easy to erase which will
be done in the near future.

14

5 Related Work and Conclusion

Multi-objects and other variants that match graph parts as often as possible
have been considered in several graph transformation approaches: in tool en-
vironments such as PROGRES [20] and Fujaba [1] as well as in conceptual
approaches by Grönmo [10] and Drewes et.al. [7]. These tools and approaches,
however, do not support the critical pair analysis (CPA) for graph transforma-
tion systems expressing such variability.

While a basic graph transformation approach is taken in [22] to develop the
necessary theory for the CPA for amalgamated graph transformation, we switch
to model transformation based on the Eclipse Modeling Framework (EMF) and
Henshin here. EMF models have typed, attributed graphs as conceptual basis
while Henshin is based on graph transformation concepts. Hence, we have devel-
oped the CPA for the amalgamated transformation of typed, attributed graphs
here. However, we do not yet consider application conditions for rules.

The main contribution of this paper is an algorithm for computing all non-
redundant critical pairs of two given interaction schemes. It shows that the CPA
for pairs of simple rules can be reused. The key idea is to compute all critical pairs
for pairs of small amalgamated rules. This computation stops at level n when
all pairs of rules with at most n copies of multi-rules yield redundant critical
pairs only. We have implemented this algorithm in Henshin. First tests with a
set of refactoring interaction schemes have shown that the CPA for interaction
schemes is performed in a reasonable amount of time. An extensive evaluation
is planned for future work.

References

1. The Fujaba tool suite. www.fujaba.de
2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced

concepts and tools for in-place EMF model transformations. In: Proc. Int. Conf.
on Model Driven Engineering Languages and Systems (MoDELS’10). LNCS, vol.
6394, pp. 121–135 (2010)

3. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the
eclipse modeling framework. Autom. Softw. Eng. 20(2), 141–184 (2013)

4. Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel Independence
of Amalgamated Graph Transformations Applied to Model Transformation. In:
Graph Transformations and Model-Driven Engineering. LNCS, vol. 5765, pp. 121–
140. Springer (2010)

5. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Software and System Modeling
11(2), 227–250 (2012), http://dx.doi.org/10.1007/s10270-011-0199-7

6. Born, K., Arendt, T., Heß, F., Taentzer, G.: Analyzing conflicts and dependencies
of rule-based transformations in Henshin. In: Egyed, A., Schaefer, I. (eds.) Funda-
mental Approaches to Software Engineering - 18th International Conference, FASE
2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. vol. LNCS
9033, pp. 165–168. Springer (2015)

15

7. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34-36), 3090–3109 (2010)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

9. Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application con-
ditions in M-adhesive categories. Mathematical Structures in Computer Science
24(4) (2014)

10. Grönmo, R., Krogdahl, S., Möller-Pedersen, B.: A collection operator for graph
transformation. In: Proc. of ICMT 2009. LNCS, vol. 5563, pp. 67–82. Springer
(2009)

11. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional re-
quirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Proceedings of the 22rd International Conference on
Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA. pp.
105–115. ACM (2002)

12. More details on the results. http://www.uni-marburg.de/fb12/swt/cpa_amal
13. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model

versioning. In: 2013 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15, 2013. pp.
191–201. IEEE (2013)

14. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the
small with the epsilon wizard language. Journal of Object Technology 6(9), 53–69
(2007), http://dx.doi.org/10.5381/jot.2007.6.9.a3

15. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: A formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015)

16. Mehner-Heindl, K., Monga, M., Taentzer, G.: Analysis of aspect-oriented mod-
els using graph transformation systems. In: Moreira, A., Chitchyan, R., Araújo,
J., Rashid, A. (eds.) Aspect-Oriented Requirements Engineering, pp. 243–270.
Springer (2013)

17. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and System Modeling 6(3), 269–285 (2007)

18. Plump, D.: Critical Pairs in Term Graph Rewriting. In: Mathematical Foundations
of Computer Science. LNCS, vol. 841, pp. 556–566. Springer (1994)

19. Plump, D.: On termination of graph rewriting. In: Graph-Theoretic Concepts in
Computer Science, 21st Int. Workshop, WG ’95. LNCS, vol. 1017, pp. 88–100.
Springer (1995)

20. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 2: Applica-
tions, Languages and Tools, pp. 487–550. World Scientific (1999)

21. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd Edition. Pearson Eduction (2009)

22. Taentzer, G., Golas, U.: Towards Local Confluence Analysis for Amalgamated
Graph Transformation. In: Parisi-Presicce, F., Westfechtel, B. (eds.) Graph Trans-
formation - 8th International Conference, ICGT 2015, Held as Part of STAF
2015, L’Aquila, Italy, July 21-23, 2015. Proceedings. LNCS, vol. 9151, pp. 69–
86 (2015), Long Version as Technical Report at Zuse Institute Berlin, no. 15-29,
at https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5494

16

