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Abstract To optimally support continuous model evolution in model-
based software development, adequate tool support for model version
management is needed. Instead of reporting model differences to the
developer line-by-line or element-wise, their grouping into semantically
associated change sets helps in understanding model differences. Edit op-
erations are the concept of choice to group such change sets. Considering
visual models in particular, edit operations preserve a basic form of con-
sistency such that changed models can still be viewed in a standard edi-
tor. Using edit operations for the version management of domain-specific
models requires tool developers to specify all necessary edit operations in
order to produce or replicate every possible change on a model. However,
edit operations can be numerous and their manual specification is there-
fore tedious and error-prone. In this paper, we present a precise approach
to specify a complete set of consistency-preserving edit operations for a
given modeling language. The approach is supported by a generator and
has been evaluated in four case studies covering several visual modeling
languages and standard editors.
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1 Introduction

Model-driven engineering (MDE) raises the level of abstraction in engineering
by using models as primary development artifacts. In particular, domain-specific
modeling languages (DSMLs) promise to increase productivity and quality of
developments. The increase of productivity highly depends on the quality of the
provided tool environment, which has to be customized to the DSML.

To optimally support model evolution, developers need adequate tools for
model versioning tasks, including comparison, patching, and merging of mod-
els. Currently available tools mostly display and operate with low-level model
changes which assume a textual or graph-based internal model representation.
Such low-level changes are hard to understand for average tool users and often
confusing [2]. Moreover, patching and merging those low-level changes may lead
to inconsistent models [19]. Version management of visual models may trap into



particular pitfalls: It can happen that the synthesized result model can no longer
be opened in visual editors and must be corrected based on a serialized data for-
mat (e.g. XML) by using textual editors, which is obviously not attractive or
even no option at all.

Recent advances in model versioning [20,21] address this problem by lifting
model versioning concepts and tools to higher-level edit operations. Edit com-
mands in visual editors are typical forms of edit operations. They are better
suited to explain changes or to resolve conflicts since they cluster semantically
associated low-level changes and thus raise the abstraction level of model version
management. Edit operations are consistency-preserving in the sense that they
always lead to model versions that can be further displayed and edited. There-
fore, they are a promising solution to the problem that patching and merging
can fail at any point of time.

In model editors, specifications of the available edit operations are typically
hidden in the tool implementation. However, explicit declarative specifications
of edit operations are required as configuration parameter for the calculation of
model differences in [20,21]. In-place model transformations are well-suited for
that purpose [20,21,22]. In [20], edit operations are specified by model transfor-
mation rules, called edit rules. A set of edit rules must meet three challenging
requirements. To be a suitable basis for model patching and merging, edit rules
must preserve the level of consistency being enforced by the editor, i.e. synthe-
sized results can always be opened and corrected if needed (R1). In order to
obtain model differences which capture the changes between model versions cor-
rectly, a set of edit rules must be complete for a given DSML in the sense that
every model modification can be expressed by using rules of this set (R2). To be
understandable by tool users, edit rules should mimic the behavior of visual edi-
tors for the given DSML (R3). The specification of an edit rule set which meets
these requirements is a tedious and error-prone task when done manually.

Figure 1 outlines a methodology to deduce a suitable set of edit rules in a
step-wise manner. The meta-model of a given DSML serves as initial input of
this process. Such a meta-model is usually perfect in the sense that it specifies
valid models with well-defined semantics, which can be successfully processed
by code generators or model interpreters. The perfect meta-model may be stan-
dardized or stem from an authority such as a research standardization group
or tool vendor. The further processing is based on two general observations.
Firstly, many modeling editors do not fully comply with the standard, i.e., cer-
tain language features are not supported. Secondly, visual editors usually do not
enforce all consistency constraints defined in their DSMLs. These observations
apply to, e.g., UML editors such as Magic Draw [23], RSA [16] and EMF-based
editors [8]. Thus, the original meta-model is reduced to a meta-model effectively
used by the editor (Step 1 in Figure 1). For this reduction, parts of the meta-
model related to unsupported language features can be deleted. To make the
effective notion of consistency explicit, certain multiplicities can be relaxed and
unsupported well-formedness rules (typically formulated using the OCL) can be
dropped. The obtained effective meta-model forms the basis for Step 2, the au-



tomated specification of all elementary edit rules. In Step 3, these rules may be
further composed to specify more complex edit operations such as refactorings.

In previous work [26] we sketched our ideas and focused on their implemen-
tation and tooling. In this paper, we focus on the second step of the workflow
outlined in Figure 1. The contributions over previous work are the following: (1)
We present an algorithm for generating edit rules from a meta-model with re-
stricted multiplicities, which we claim to be a sufficient degree of consistency for
most effective meta-models. (2) We argue that our approach is able to generate
a complete set of consistency-preserving edit rules, i.e. it meets requirements R1
and R2. (3) Concerning requirement R3, we show empirically that our approach
is meaningful from a practical point of view.
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Figure 1. Process for creating a set of consistency-preserving edit operations

The paper is structured as follows: We start with an example in Section 2.
The formal basis for this work are graphs and graph transformations, they are
recalled in Section 3. The generation of a complete set of consistency-preserving
edit rules is presented in Section 4. Our approach is evaluated in Section 5.
Sections 6 and 7 present the related work and the conclusion.

2 Running Example

state

Figure 2. Effective meta-model of simple UML
state machines

In this section, we informally
present how a simplified meta-
model for state machines [14,24] is
used to generate a complete set of
consistency-preserving edit oper-
ations. The meta-model is shown
in Figure 2. It contains the main
model element types of state ma-
chines such as State and Transi-
tion as well as inter-relations like
source and target. Moreover, it
contains multiplicities requiring,
e.g., that each transition must
have a source and a target state. In addition, correct state machines have to
fulfill further constraints, e.g. transitions are not allowed to connect states of
two parallel regions. Usual visual editors can load and edit models which do not
satisfy these advanced constraints. Thus we do not consider them here, i.e. the



meta-model in Figure 2 is effective; it can serve as underlying meta-model for all
models to be edited, but is less restrictive than the UML standard meta-model
for state machines.

A total of 25 edit rules are generated, they are available on the accompanying
website of this paper [1]. Due to space limitations, we focus on the creation rules
here and neglect all other kinds of rules. A subset of the generated creation rules
is illustrated in Figure 3. We present the rules in an integrated form: the left- and
right-hand sides of a rule are merged into one graph following the visual syntax
of the model transformation language Henshin [3]. The left-hand side of a rule
comprises all model elements stereotyped by delete and preserve. The right-hand
side contains all model elements annotated by preserve and create.

The following rules are generated: The rule create StateMachine creates the
root node. Since it has a mandatory child of type Region, a model element of that
type has to be created as well. Moreover, there are rules create FinalState state, cre-

Rule create_Transition_transition(Selected, Existing, Existing1, Trigger, Guard, Effect, New)

«preserve»
Selected:Region

«preserve»
Existing:State

«preserve»
Existing1:State

«create»
New:Transition

trigger=Trigger
guard=Guard
effect=Effect

transition
«create»

outgoing

«create»
source

«create»

incoming
«create»

target
«create»

Rule create_StateMachine(New, Child)

«create»
New:StateMachine

«create»
Child:Region

region«create»

Rule create_Region_region(Selected, New)

«preserve»
Selected:StateMachine

«create»
New:Region

region«create»

Rule create_Transition_transition_1(Selected, Existing, Trigger, Guard, Effect, New)

«preserve»
Selected:Region

«preserve»
Existing:State

«create»
New:Transition

trigger=Trigger
guard=Guard
effect=Effect

source

«create»

target

«create»

outgoing

«create»

incoming

«create»transition
«create»

Figure 3. Subset of generated creation rules for UML state machines

ate State state, create Region region and create Region subregion (not shown in Figure
3). The rule create Transition transition creates a transition and immediately con-
nects it to its source and target states, which are so-called mandatory neighbors.
Since the edge types source and target are parallel and both have a multiplicity
[1..1] (s. Figure 2), we get a second variant of this rule: create Transition transition 1.
This variant creates edges of types source and target referencing the same State
node, i.e. it creates a “loop” in the visual representation. Note that attribute
declarations are conceptually handled as special edge types with a fixed multi-
plicity of [1..1]. Thus, attribute values are treated as mandatory neighbors as
well. This implies that all attributes have to be set in newly created nodes.



3 Background

The formal underpinning of edit rule generation is based on graphs and graph
transformation as presented in [4]. Here, we recall all needed concepts from [4]
in a semi-formal way.

3.1 Graph-based Representation of Models

Graphs are a natural means to formally define models and meta-models. While
a meta-model defines the allowed types formalized by type graphs, models are
considered as instances of meta-models and formally treated as typed graphs.
Hence, we abstract from the graphical layout of visual models here and concen-
trate on the underlying structure. In this sense, we consider models and graphs
as synonyms. A graph consists of a set of nodes, a set of edges, each one running
from source to target node.

A meta-model is basically a graph containing all type information including
a type hierarchy to represent the inheritance relation, a set of abstract types, a
containment relation between type nodes and a relation of opposite edge types.
Moreover, multiplicities can be attached to edge types. A multiplicity is a pair
[lb, ub] with lb ≤ ub or ub = ∗. An edge type et is called required if et.lb > 0,
bounded if et.ub 6= ∗, fixed if et.lb = e.ub, and many if (et.ub > 1) or et.ub = ∗.
Note that these properties are not mutually exclusive. A node type without
incoming containment edge types and without super types having incoming con-
tainment edge types is called root type. Attributes are usually single-valued, i.e.,
neither null-values nor multiple values are allowed. I.e., a multiplicity of [1..1]
is implicitly assigned to each attribute declaration in a type graph.

An edge with containment type is called containment edge. Its source and
target nodes are referred to as parent (or container) and child, respectively. The
target node of a non-containment edge is called a neighbor of the respective
source node. Target nodes of edge types with multiplicity property required are
also referred to as mandatory neighbors and mandatory children [28].

3.2 Consistency of Models

A model M is considered (syntactically) consistent w.r.t. a meta-model MM if it
is properly typed over MM and if it meets the consistency constraints specified in
MM . We distinguish among basic consistency constraints, multiplicity invariants
and further well-formedness rules.

Basic consistency constraints correspond to fundamental conditions imposed
by EMOF-based modeling frameworks. A formal treatment of basic consistency
constraints can be found in [4]; they can be summarized as follows: (1) The model
graph is correctly typed w.r.t. a given type graph deduced from a meta-model.
(2) Each node has at most one container and cycles of containment edges do not
occur. (3) There are no parallel edges of the same type. Edges are parallel if they
have the same source and target node. (4) For all pairs of opposite edge types
(et1, et2): If there is an edge of type et1 then there is also an edge of type et2
linking the same nodes in the opposite direction, and vice versa.



3.3 Specification of Edit Operations

In our approach, we use in-place model transformation techniques which are
based on graph transformation concepts [10]. This enables us to precisely spec-
ify edit operations as declarative transformation rules which we call edit rules.
An edit rule specifies i) the conditions under which the rule is applicable and
ii) a set of change actions which are to be performed when the rule is applied.
Each change action corresponds to a primitive graph operation, i.e., the cre-
ation/deletion of a model element or the setting of an attribute value.

A rule r = (L ⊇ K ⊆ R, TG,NAC,PAC) consists of three model graphs
L, K and R typed over TG. They are called left-hand side (L), intersection
(K), and right-hand side (R). In addition, there are NAC and PAC, two sets
of negative and positive application conditions. They are used to restrict rule
applications by forbidding or requiring context patterns. Examples for rules are
given in Figure 3.

A rule r can have several matches (“occurrences”) in a model M . A match
is a copy of L in M . Actual rule arguments form a partial match that has to be
completed. Rule nodes may have more general types than corresponding graph
nodes. A rule r is applicable at match m if m fulfills the dangling condition:
If model nodes are deleted by a rule, all their incident edges have to be in the
match as well. Moreover, the match can be extended by each positive application
condition in PAC but not by any negative one in NAC. The effects of applying a
rule r using match m in M can be described as follows: All elements in m(L\K)
are deleted and a new copy of R \K is added. In addition, attribute values may
be changed by instantiating attribute expressions of the right-hand side R and
evaluating them.

Several rules can be composed to one rule such that their actions are per-
formed concurrently. Therefore, the composed rule is called concurrent rule.
Roughly speaking, a concurrent rule combines all actions of the original rules.
Sequences of two actions that create and subsequently delete the same element,
however, are factored out. Application conditions of subsequent rules are shifted
to the beginning. If an application condition cannot be checked at the beginning
(since an element is missing), it does not occur in the concurrent rule. Details
of the construction of concurrent rules can be found in [10].

4 Generation of Edit Rules

In this section, we describe how to derive a set R of elementary edit rules from a
given meta-model which we assume to be the effective meta-model w.r.t. a par-
ticular model editor. We define four kinds of edit rules for the creation, deletion,
moving and changing of model elements. In the following, we mainly focus on
the generation of creation rules since their generation process is most complex.
The main design decision of our approach is that all generated edit rules are
consistency-preserving w.r.t. the effective meta-model, i.e., if applied to consis-
tent models, the resulting models are consistent as well. A consistency-preserving



node creation rule usually comprises a number of primitive operations which, al-
together, create a minimal graph pattern leading again to a consistent model.

In the following, we describe how creation rules are generated for a given
meta-model. We begin with the generation of basic node creation rules. Subse-
quently, we show how these rules are to be supplemented such that mandatory
children (see Section 3.1) are also created and all created nodes are connected
to their mandatory neighbors in a single step.

«create»
r:Bcreate_B(out: r)

«preserve»
p:A

«create»

«forbid#ub»
c_1:B

«forbid#ub»
c_l:B

create_B*_b(in: p; out: c)

b

b
a

b
l-times c:B*

Figure 4. Generation of basic node creation rules

Creation rules. For each non-
abstract root type B, a node
creation rule is generated.
This rule creates a single node
of type B (see meta-model
pattern P0 in Figure 4).

For each node type B
with an incoming contain-
ment edge type b, a rule ac-
cording to pattern P1 in Fig-
ure 4 is generated. This rule
creates a node of type B - if
non-abstract - and connects it immediately to its container. The notation B*
means that we derive such a rule for each concrete subtype of B as well.

If containment edge type b has a bounded multiplicity with upper bound l a
NAC with l outgoing edges of type b is generated; it checks whether the parent
node p has already the maximum number of outgoing edges of type b. If b has
an associated opposite edge type a, edges of types b and a are created in pairs.
Note that all figures show only the largest pattern/rule variants.

Basic node creation rules have to be extended by mandatory children since a
node can recursively have (indirect) mandatory children and since our intention
is to create all mandatory children by a single rule application. The supplemen-
tation is performed by subroutine supplementMcCreation(Rule r, Node n),
s. Figure 5. Each creation rule r for a node of type B is supplemented for each
(inherited) outgoing containment edge type c of B with a multiplicity property
required referencing a concrete node type C (see meta-model pattern P2). Rule r
is then further extended such that all mandatory children mc 1, ..., mc k of n are
created as well. Additionally, created nodes mc 1, ..., mc k are immediately con-
nected to their parent n via the respective containment edges of type c. Opposite
edges are created if necessary. This subroutine has to be recursively executed to
cover all (indirectly) connected mandatory children.

Rule create StateMachine in Figure 3 is an example of an mc-supplemented
rule. Initially, a node of type StateMachine is created. It has to be supplemented
with a node of type Region and a containment edge of type region since this type
is required.

In order to preserve multiplicity invariants defined by the effective meta-
model, each created node must be immediately connected to its mandatory
neighbors. We refer to extended rules which create these connections as mn-



«create»
n:B

«create»
mc_1:C

«create»
mc_k:C

b

b

c

c

«create»
n:B

r (.... out: ..., n) r (.... out: ..., n, mc_1, ..., mc_k)

k-times

Figure 5. Supplementing the creation of mandatory children

supplemented node creation rules. This supplementation is performed by sub-
routine supplementMnConnection(Rule r, Node n, EdgeType c), see Fig-
ure 6. If edge type c has an opposite edge type b, opposite edges are created
in pairs. Moreover, a NAC is created for each mandatory neighbor mn i (with
i ∈ {1, ..., k}) prohibiting a connection of mn i to m nodes of type B via edges
of type b. Furthermore, values of (inherited) attributes of created nodes are
set within a node creation rule since we conceptually treat them like manda-
tory neighbors. This supplementation has to be applied for all nodes created in
a node creation rule. An example for this kind of supplementation is rule cre-

ate Transition transition which does not only create a new transition, but also edges
of type source and target to its mandatory neighbors as well as their opposites.

«create»
n:B

«preserve»

«preserve»
b

b

c

c

b

mn_k:C

mn_1:C

«create»
n:B

r (in: ...; out: ..., n) r (in: ..., mn_1,...,mn_k; out: ..., n)

m-times

k-times

n..m

«fb.#ub_1»
:B

«fb.#ub_m»
:B

m-times

«fb.#ub_1»
:B

«fb.#ub_m»
:B

b

b

b

Figure 6. Supplementing the connection of mandatory neighbors

Since all generated rules are assumed to be applied injectively, there may
be models that cannot be created with the generated rules so far. Missing
rules can be generated by merging nodes of the same type if multiplicities
do allow this variant. This merge construction is done after supplementation.
Each merge variation leads to a further node creation rule. A simple exam-
ple is shown by rule create Transition transition 1 in Figure 3, a variant of rule
create Transition transition. A transition is created whose edges of types source
and target lead to the same State node, i.e. this rule creates a “loop” pattern.



Figure 7. A critical multi-
plicity

Moreover, it can happen that a required contain-
ment edge type points to a target node type with
subtypes. Such a type graph cannot be flattened
without using additional well-formedness rules.
This requires a concrete rule variant for each possi-
ble combination of concrete types. In Figure 7, we
need at least k containment edges of type b. Their
targets, however, can have types B, C and D. The
rule variants have to cover all possibilities.

To cover occasionally occurring meta-model patterns like cycles or parallel
paths (i.e. two paths having the same source and target node) consisting of a
mixture of required non-containment edges and non-required containment edges
(see 3.2), we need a final post-processing step. For each identified cycle or parallel
path, we identify the set of creation rules that cover it. These rules are brought
into a suitable order according to causal dependencies and are composed to a
concurrent rule. An example can be found in [1].

If a non-containment edge type b does not have a fixed multiplicity, then an
edge creation rule is derived. Such a rule takes two parameters as input, namely
the source and target nodes s and t of the new edge. If necessary, an opposite
edge is also created. Additional NACs ensure that upper bounds have not already
been reached.

Further kinds of edit rules. For each creation rule an inverse rule is generated,
performing deletion. To invert a rule, its left and right-hand sides are exchanged.
NACs which prohibit exceeding upper bounds are not needed. Instead, PACs are
generated to ensure lower bounds, i.e., nodes and edges may be deleted as long
as lower bounds are met. An example node deletion rule is shown in Figure 8.

Figure 8. A sample deletion rule

It deletes a Region from a StateMa-
chine. In order to not violate the lower
bound of edge type region (which
has a multiplicity of [1..*], see Fig-
ure 2), the selected Region can only
be deleted if the StateMachine con-
tains at least one other Region.

Move and change rules re-structure
the relations between existing model
nodes. While a move rule moves an
instance node from container to another one, a change rule just changes a link
of a node. Lower and upper bound checks are inserted to ensure no-lower-bound-
violation of the old reference links and no-upper-bound-violation of the new ref-
erence links.

Limitations of the approach. In general, there are combinations of multiplicities
which cannot be instantiated (examples are shown in [15,29]). For meta-models
that cannot be instantiated because of certain required-cycles, our generation
algorithm does not terminate. Since we want to have a clear and efficient (in



particular terminating) generation approach, we require an easy to check crite-
rion which is not too limited to cover effective meta-models occurring in prac-
tice: We do not allow meta-models having edge cycles with multiplicity pattern
required, irrespectively of edge directions. Such cycles do not allow a clear or-
der of element creation and would lead to large creation rules, if any. Those
rules would hardly specify edit operations. Small cycles of size ≤ 2, however,
are supported (as already described above, see rule create Transition transition 1 in
Figure 3). They are meaningful in effective meta-models. In the following, we
restrict our considerations to meta-models obeying the restriction above, i.e., we
also assume a corresponding restriction of type graphs.

Consistency-preservation and completeness of generated rules. Given a type
graph T with restricted multiplicities, a rule is consistency-preserving if it trans-
forms each consistent model graph to which it is applicable into a consistent
model graph again. Our generator produces consistency-preserving rules only.
An argumentation for this result can be found in Section 7.3.4 in [18].

A modeling language is defined by a set of models. Let L(T ) be the language
consisting of all models that are consistent w.r.t. T . A set RCre of creation rules
is complete w.r.t. T if every consistent model M ∈ L(T ) can be constructed from
the empty model ∅ by exclusively using rules available in RCre. Vice versa, a set
RDel of deletion rules is complete w.r.t. T if every consistent model M ∈ L(T )
can be reduced to the empty model ∅ by exclusively using rules available inRDel.
Our generator produces a complete set of creation rules since every model graph
of L(T ) can be partitioned into smaller graph fragments such that there is a
sequence of rule applications creating the graph structure fragment-by-fragment.
A detailed argumentation can be found in Section 7.4 in [18].

5 Evaluation

Our objective is to support tool developers at specifying consistency-preserving
edit operations to be used to adapt MDE tools to domain-specific needs. This
task should be highly automated. Moreover, the obtained edit rules should spec-
ify operations for conveniently editing domain-specific visual models. Conse-
quently, we have evaluated our approach w.r.t. the following two research ques-
tions: Q1: How limiting are our meta-model restrictions? Q2: Are the generated
edit rules meaningful from the developer’s point of view?

Case studies. We studied four modeling languages for which (1) a perfect meta-
model and (2) a visual editor are available. Table 1 presents an overview of
the selected case studies. Ecore models can be considered as design-level class
diagrams. They are widely used for various purposes in the Eclipse Modeling
Project [8], a visual editor is available within the Ecore Tools [9]. The Simple
Web Modeling Language (SWML) [5] is a domain-specific language which aims
at defining platform-independent models for a specific kind of web applications.
Feature models are typically used to define variability in software product line



engineering. They have an intuitive tree-like syntax which is supported by the
widely used feature modeling environment FeatureIDE [30]. A meta-model is
presented in [7]. Concerning UML state machines, we selected the subset of
the UML Superstructure Specification [24] which is shown in Figure 15.2 and
analyzed how elements of these types are edited in MagicDraw [23]. Details of
the case studies can be found in [1].

Standard MM. Effective MM.
Modeling Lang. Visual Editor #nt. #et. #wf. #nt. #et. #wf.

I Ecore EcoreTools 3.0.1 19 26 37 16 15 5
II SWML Gen. with GMF 1.6.0 11 10 - 11 10 -
III Feature models FeatureIDE 2.6.1 8 12 3 6 8 2
IV UML state mach. MagicDraw 18.1 14 21 17 14 19 11

Table 1. Overview of the selected case studies

Evaluation setup. For each case study, we constructed the effective meta-model
by reducing the perfect meta-model according to the effective level of consistency
implemented by the respective visual editor. A typical reduction is the relaxation
of multiplicities. E.g., the feature-related meta-model presented in [7] states that
a feature group comprises at least two features by a multiplicity [2..*]. Although
this is reasonable from a conceptual point of view, FeatureIDE offers the ca-
pability to create a group with a singleton feature only. Thus, the respective
lower bound has been relaxed to [1..*]. Most notably, however, most of the ad-
ditional well-formedness rules (#wf.) are neglected in effective meta-models (see
Table 1). Many rules address the well-formedness of String expressions such as
Boolean formulas over feature variables. Moreover, editors often do not support
all language constructs defined by a DSML. In such a case, the effective meta-
model is incomplete w.r.t. to the perfect meta-model in the sense that some node
types (#nt.) and edge types (#et.) are not included (see Table 1). FeatureIDE,
for example, does not support the visual modeling of cross-tree constraints as
intended by its perfect meta-model. Using effective meta-models as input, our
generator produces edit rules implemented in Henshin [3].

Limitations of the approach (Q1). For Q1, we are interested in whether effec-
tive meta-models contain consistency constraints which are not supported by
our approach. If so, we are further interested in the manual effort which is re-
quired to manually adapt a generated rule set. As shown by Table 2 in column
#Unsp.Mult., none of the studied effective meta-models contains unsupported
combinations of multiplicities, i.e. required-cycles, which are not supported by
our generation algorithm, never occur. The number of generated edit rules is
listed in column #Gen., column #Man. lists the number of rules which have to
be adjusted after the generation. The reason for manual adaptations of the gen-
erated rules is that well-formedness rules expressed in OCL are not yet supported
by our algorithm. A few of them are still present in effective meta-models (see the
last column of Table 1). An overview of the amount of manually adapted rules, on
average 13%, is presented in Table 2. Typically, a few of the generated edit rules



have to be complemented by additional application conditions. In FeatureIDE,
e.g., features and feature groups must be organized in a strictly hierarchical way,
violations of this well-formedness constraint have to be prevented.

Q1 Q2
#Unsp. Mult. #Gen. #Man. #(R∩ E) #(R∩≈ E) #(R \ E) #(E \ R)

I - 67 6 64 1 4 8
II - 38 - 30 6 - 2
III - 16 3 8 3 8 5
IV - 66 18 57 18 2 27

Table 2. Overview of the evaluation results

Suitability of the obtained edit rules (Q2). Concerning Q2, we compare the set R
of elementary edit rules finally obtained by our approach with the set E of rules
specifying edit commands which are offered by the respective editor. We assume
that these are meaningful from a modeler’s point of view. Note that we specified
the rules in E by hand. Table 2 summarizes the results. Columns R ∩ E and
R∩≈ E show the amount of identical and similar edit operations. Columns R\E
and E \R summarize the amount of edit rules which are exclusively available in
R and E , respectively.

Most edit rules in E are specified by edit rules available in R. Some of them,
usually deletion rules, are not completely identical but lead to slightly different
effects. A few deletion operations are rather complex in the sense that they delete
larger model fragments consisting of an element and its mandatory children. For
example, if an EClass is deleted in the Ecore diagram editor, EAttributes and
EOperations contained by this EClass as well as outgoing and incoming ERef-
erences to other EClasses are deleted as well. In contrast to that, our deletion
rule assumes that an EClass can only be deleted if it is empty and has no
inter-relations. A complex deletion rule, however, can be generated by inverting
creation rules (see Section 4). Moreover, we found some operations in E which
are not covered by R (E \ R). These rules can be considered as optional since
their effect can also be achieved by applying a sequence of edit rules in R. For
example, FeatureIDE offers the possibility to create a new feature above a se-
lected one. Using edit rules of R, we create a new feature as a leaf node and
then move the created feature to the designated position within the feature tree.
Finally, there are some edit rules in R not having correspondents in E (R \ E).
Typically, only a small subset of move operations is implemented in visual ed-
itors. The Ecore diagram editor, for instance, offers the possibility to move an
EAttribute to another EClass while moving EClasses between EPackages is not
supported.

Threats to validity. A threat to the external validity of our results is that the
selected case studies may not be representative. However, we selected modeling
languages which differ significantly from each other and cover a broad range of
application domains. Moreover, we selected visual editors having substantially
different origins; from the open source community (Ecore diagram editor), from



academia (SWML and FeatureIDE) and a commercial product (MagicDraw).
An internal threat to validity is our manual deduction of edit rules from existing
editors. Likewise, the reduction of a perfect meta-model to become the effective
is done manually, too.

6 Related Work

We consider other approaches for edit rule generation on the one hand and, w.r.t.
creation rules, compare to further approaches for creating meta-model instances
on the other hand.

The work closest to ours has been presented in the context of delta-oriented
implementation of model-based software product lines (SPLs). Products of an
SPL are generated by applying one or several deltas to the core version. A
delta is basically a patch which consists of a sequence of edit commands. For
a given DSML, a delta modeling language [13] must be engineered; it contains
basically a set of edit operations (called “delta operations”) for this DSML. To
that end, Seidl et al. [27] present an approach and a supporting tool known
as DeltaEcore to generate executable delta operations from EMOF-based meta-
models, however, with different goals and assumptions compared to our work.
In particular, they assume that the application of a delta will never fail and that
SPL developers are responsible for specifying consistency-preserving deltas. In
particular, they do not support any kind of multiplicities in meta-models.

Ehrig et al. [11] deduce graph grammar rules from meta-models. The gen-
erated set of rules is organized in three layers: Layer 1 rules create instances
of meta-model classes, Layer 2 establishes mandatory relationships between el-
ements. In this step additional elements are also created when necessary. Fi-
nally, Layer 3 rules establish optional relationships. Taentzer [29] extends the
approach from restricted multiplicities to arbitrary ones. Using the concept of
layered graph grammars obviously leads to inconsistent intermediate states since
instance models are created in small steps. Hence, the generated rules do not
implement consistency-preserving edit operations. Moreover, other kinds of edit
rules are not generated in that approach at all.

Hoffmann and Minas [15] describe how to translate a class diagram into a so-
called adaptive star grammar. Their generated rules use non-terminal symbols to
direct the generation process. Small steps are performed leading to intermediate
graphs with non-terminals. In the same vein, Fürst et al. [12] present an approach
for generating meta-model instances using graph grammars with non-terminals.

Edit operations are indirectly addressed in some approaches which aim at
generating instance models for a given meta-model. Virtually all of these ap-
proaches are based on the idea to systematically enumerate meta-model in-
stances. Brottier et al. [6] describe an enumeration algorithm which is based
on model fragments that must be specified manually. Other approaches use
SAT-solvers such as the Alloy Analyzer [17] to systematically enumerate valid
instances in a restricted search space. However, they do not identify which edit
operations have to be applied to obtain instances.



7 Conclusion

In this paper, we present the main concepts for a rule generator which takes a
meta-model with restricted multiplicities and yields a complete set of consistency-
preserving edit rules. Their main purpose is to raise the abstraction level in model
versioning. Concerning meta-models which are effectively used by model edi-
tors, our evaluation shows that the established meta-model restrictions are not
severely limiting in practice. It also outlines possible directions for future work:
The generator shall be extended to accept meta-models with well-formedness
rules. Radke et al. [25] present how OCL constraints can be translated to appli-
cation conditions, using nested graph constraints as intermediate representation.
That work may be used to generate edit rules which also take well-formedness
rules into account. The vision is the automated specification of a complete set of
consistency-preserving edit operations for any effective meta-model which may
be valuable not only for specific model versioning tasks but for model change
management in general.
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about product-line evolution using complex differences on feature models. Auto-
mated Software Engineering (2015)

8. Eclipse Modeling Project (EMP): (2015), http://eclipse.org/modeling
9. Ecore Tools - Graphical Modeling for Ecore: (2015), http://www.eclipse.org/

ecoretools
10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph

Transformation. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)
11. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-

els. Software & Systems Modeling 8(4), 479–500 (2009)
12. Fürst, L., Mernik, M., Mahnic, V.: Converting metamodels to graph grammars:

doing without advanced graph grammar features. Software and System Modeling
14(3), 1297–1317 (2015)



13. Haber, A., Hölldobler, K., Kolassa, C., Look, M., Rumpe, B., Müller, K., Schaefer,
I.: Engineering delta modeling languages. In: Proceedings of the 17th International
Software Product Line Conference. pp. 22–31. ACM (2013)

14. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

15. Hoffmann, B., Minas, M.: Generating instance graphs from class diagrams with
adaptive star grammars. ECEASST 39 (2011)

16. IBM, Rational Software Architect: (2015), http://www-03.ibm.com/software/

products/en/ratisoftarch

17. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2006)

18. Kehrer, T.: Calculation and Propagation of Model Changes Based on User-level
Edit Operations. Ph.D. thesis, University of Siegen (2015)

19. Kehrer, T., Kelter, U., Reuling, D.: Workspace updates of visual models. In:
ACM/IEEE International Conference on Automated Software Engineering (ASE).
pp. 827–830. ACM (2014)

20. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: 28th IEEE/ACM Intl. Conf. on Automated Software Engineering
(ASE). pp. 191–201. IEEE (2013)

21. Langer, P., Wimmer, M., Brosch, P., Herrmannsdörfer, M., Seidl, M., Wieland, K.,
Kappel, G.: A posteriori operation detection in evolving software models. Journal
of Systems and Software 86(2), 551–566 (2013)

22. Mens, T.: On the use of graph transformations for model refactoring. In: Generative
and transformational techniques in software engineering, pp. 219–257. Springer
(2006)

23. No Magic, MagicDraw: (2015), http://www.nomagic.com/products/magicdraw.

html

24. Object Management Group: Uml 2.4.1 superstructure specification. OMG Docu-
ment Number: formal/2011-08-06 (2011)

25. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential
OCL invariants to nested graph constraints focusing on set operations. In: 8th Intl.
Conf. on Graph Transformation (ICGT). pp. 155–170. Springer (2015)

26. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for MDE tools. In: Demonstrations Track of the ACM/IEEE 17th
Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS).
CEUR Workshop Proceedings, vol. 1255 (2014)

27. Seidl, C., Schaefer, I., Aßmann, U.: DeltaEcore-A Model-Based Delta Language
Generation Framework. In: Modellierung. pp. 81–96 (2014)

28. Selonen, P., Kettunen, M.: Metamodel-based inference of inter-model correspon-
dence. In: 11th European Conf. on Software Maintenance and Reengineering
(CSMR). pp. 71–80. IEEE (2007)

29. Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities.
Electronic Communications of the EASST 47 (2012)
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