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Abstract: The use of model-based software development has become more and more popular be-
cause it aims to increase the quality of software development. Therefore, the number and the size of
model instances are cumulatively growing and software quality and quality assurance consequently
lead back to the quality and quality assurance of the involved models. For model quality assurance,
several quality aspects can be checked by the use of dedicated metrics. However, when using a
domain specific modeling language, the manual creation of metrics for each specific domain is a
repetitive and tedious process. In this paper, we present an approach to derive basic model metrics
for any given modeling language by defining metric patterns typed by the corresponding meta-meta
model. We discuss several concrete patterns and present an Eclipse-based tool which automates the
process of basic model metrics derivation, generation, and calculation.
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1 Introduction

The paradigm of model-based software development (MBSD) has become more and more
popular since it promises an increase in the efficiency and quality of software development.
In this paradigm, models play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for model-driven software
development (MDD) [SVC06] where models are used directly for automatic code and
test generation, respectively. Furthermore, the use of domain specific modeling languages
(DSMLs) [BCW12] is a promising trend in modern software development processes to
overcome the drawbacks concerned with the universality and the broad scope of general-
purpose languages like the Unified Modeling Language (UML) [UML].

Since software models play an increasingly important role, software quality and quality
assurance consequently lead back to the quality and quality assurance of the involved
models. In [Ar11, Ar14], we introduced a structured syntax-oriented process for quality
assurance of software models that can be adapted to project-specific and domain-specific
needs according to a dedicated quality model (QM). The approach concentrates on quality
aspects to be checked on the abstract model syntax and is based on quality assurance
techniques model metrics, smells, and refactorings well-known from literature.

Metrics are useful to obtain quantitative information about software development pro-
cesses and artifacts. Metrics for measuring the success of modeling and analysis has always
been a challenge, especially in the area of enterprise modeling where very large models are
in practical use. They can be used to analyze model quality, especially to find anomalies in
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models, and to estimate project costs. To measure quality aspects (e.g., model complexity)
of DSMLs, basic model metrics are needed such as: total number of model elements of a
specific type, number and average number of model elements of a specific type owned by a
model element, number of incoming (outgoing) links of a specific type to (from) a model
element, and average number of incoming (outgoing) links of a specific type per model
element within the entire model. More really domain-specific metrics can be composed
from already defined ones.

For evaluating quality issues we adopt the Goal-Question-Metrics approach (GQM) that
is widely used and has been well established in practice [Va02]. Figure 1 illustrates the
steps of the GQM process described as follows: 1. To measure the quality of a model, the
first step is to define a measurement goal such as model comprehensibility [MDN09]. 2.
Questions should be defined to support data interpretation towards a measurement goal.
For example, the following question could be derived since a complex model is hard to
understand: How complex is a model wrt. the number of its elements? 3. Metrics should
be defined that help to provide all the quantitative information to answer the questions in
a satisfactory way. A way to measure complexity is to use the metric cyclomatic complex-
ity defined as number of links − number of elements + 2 [Mc76, Mc82] wrt. a control
flow graph. To define model metrics for a given domain, the following tasks should be
done: (a) find out (basic and complex) metrics needed to collect the related quantitative
information and define them, (b) find and derive the corresponding domain metrics wrt.
the definitions by analyzing and understanding the given domain structure, (c) identify the
specification of each derived metric, and (d) find out which domain information is needed
for specifying and implementing the derived metrics. 4. Once this information is identi-
fied, the corresponding code and artifacts of metrics calculation have to be developed for
each derived metrics. 5. Implemented metrics can be used to analyze specific models. 6.
After the defined metrics have been measured, sufficient information should be available
to answer the questions. A cyclomatic complexity of 10, for example, points to a pretty
complex control flow which might be hard to understand.
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Fig. 1: GQM process

Considering a DSML being either a completely new language or a changed one due to
evolution steps [HW14], its language and tool designers have to offer enough tool support
for convenient domain-specific modeling processes. Specifying and defining metrics for
a DSML by hand is time-consuming and error-prone. Although the definition and imple-
mentation of metrics cannot be automated completely, new ways are interesting to reduce
the manual effort as much as possible. An approach and corresponding tool support for
automatically deriving basic metrics from any given modeling language definition seems
to be promising. Automatically deriving basic metrics, the effort of specifying and imple-
menting model metrics would be reduced to composing basic metrics in a suitable way.
Considering again the GQM process in Figure 1, Steps 1, 2 and 6 would remain manually,
while 3 - 5 would be largely tool-supported.
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The contributions of this paper are the followings:

• An approach to derive basic model metrics for any given modeling language (DSML
or GPML 1) being defined by a meta-model. The approach is especially useful for
DSMLs to support the development of useful model metrics.

• An Eclipse-based tool to automate the definition of basic metrics for any given do-
main. The outcome of the tool is a high-level tool specification as an Eclipse plug-in
which comprises the specification of the derived metrics, and code generation for
metrics calculation, reporting and composition. (Steps 3 - 5 in Figure 1). The gen-
erated plug-in is used as input to EMF Refactor [Ref] for metrics calculation and
composition.

Generating basic domain-specific metrics from a given meta-model helps us to concentrate
on those metrics that really demand domain-specific knowledge. Our generation approach
does not stop at trivial metrics but can also incorporate more complex ones such as the
cyclomatic complexity and LCOM (Lack of cohesion of methods), or the definition of
model queries. We illustrate our approach by using a DSML for simple Petri nets and
discuss selected metrics patterns which are useful to derive basic metrics for this domain.
Moreover, we present an implementation of the approach based on the Eclipse Modeling
Framework (EMF) [EMF, St08] and EMF Refactor. To demonstrate the applicability and
usefulness of the approach, we present an example application of this implementation on
the UML class model domain.

The paper is structured as follows: The following section presents an example modeling
scenario motivating our work. In Section 3, we present our approach for deriving basic
model metrics in detail. Selected metrics patterns and their application on the example
scenario are discussed in Section 4. After presenting the Eclipse-based tool prototype in
Section 5, we demonstrate the applicability and usefulness of the approach in Section 6.
Section 7 compares to related work and Section 8 concludes the paper.

2 Running Example: Basic Metrics for Petri Nets

In this section, we motivate our work by using an example Petri net scenario. We first de-
scribe the corresponding Petri net meta model. Thereafter, we discuss several basic metrics
which can be used to analyze concrete Petri nets, i.e., instance models of this meta model.
Figure 2 shows the meta model of a Petri net language. A Petri net is composed of sev-
eral places and transitions. Arcs between places and transitions are explicit: PTArc and
TPArc are respectively representing place-to-transition arcs and transition-to-place ones.
Arcs are annotated with weight. Each transition has at least one input place and one out-
put place. Places can have an arbitrary number of incoming and outgoing arcs. In order to
model dynamic aspects, places need to be marked with tokens. Figure 3 shows an example
Petri net instance modeling some specific dynamic behavior. The Petri net consists of four
1 Here, GPML refers to any general-purpose modelling language.
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Fig. 2: Petri net meta model

places (P1 to P4), two transitions (T1 and T2) and altogether seven arcs connecting these
elements. Please note that we omit arc weights and inscriptions for simplicity reasons.

Fig. 3: Example Petri net instance

We present an example of the GQM process applied on the Petri net DSML as follows: Let
the quality goal be the comprehensibility of Petri net models, one derived question is: How
complex is a model wrt. the number of its elements (places and transitions)? A suitable
metric to answer this question is the cyclomatic complexity defined as number of
tparcs and ptarcs − number of places and transitions + 2. Applying this metric to the
given Petri net instance (in Figure 3), the result is 3. Hence, there are only 3 independent
paths and the given model is easy to understand and maintain.

To define metrics for analyzing models such as the cyclomatic complexity, some basic
metrics are useful [Ch95, SJM92], e.g., metrics which simply count elements of specific
types (like number of transitions in the Petri net, number of places in the Petri net and
number of arcs in the Petri net). These basic metrics may be composed using arithmetic
expressions to define the desired metrics.

When analyzing basic metrics such as the ones which calculate average values (like av-
erage number of outgoing (or incoming) arcs of all transitions in the Petri net), we ob-
serve that the structure of how they are specified is generic to some extent. The informa-
tion needed can be obtained from three classes in the meta model (in our case PetriNet,
Transition, and TPArc) where the first two classes are connected by a containment refer-
ence (transition) and the latter two classes are connected by a non-containment reference
(postArc). In the following, we identify recurring patterns in meta models that are useful
to derive basic model metrics.
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3 Approach

Considering tool support for domain specific modeling, we are faced with the dilemma
that we have to set up the tooling for metric calculation for each domain specific modeling
language, even for basic metrics. And if the DSML has changed due to some evolution
steps (e.g., the evolution of the Petri net meta model as described in [HW14]), its tooling
has to be adapted. Therefore, we address the following research problem throughout this
paper:

How can the information, stored in a meta model, be used to automate the
process of creating tool support for calculating basic metrics on corresponding
instance models?

As we have seen in the preceding section, some basic metrics are defined for the Petri net
domain such as Number of transitions in the Petri net and Number of tokens in the Petri
net. These metrics could be abstractly described as Number of instances of type X in an
instance of type Y. Moreover, we observe that several kinds of metrics can be derived by
the same (or at least similar) abstract description. This abstract description can be used
to specify basic metrics for any given domain by using the concrete domain data like the
name of the corresponding domain element, e.g., Transition, PetriNet, and Token.

So, our approach is to design several metrics patterns (i.e., structural descriptions) which
can represent the abstract description structure of several kinds of domain-specific metrics.
Domains are usually defined by a domain-specific language, more specifically by a meta
model. Therefore, the metrics patterns have to be typed by the meta-meta model so that
the patterns can be applied over any given domain (meta-model) to find and derive the
correspondences (the pattern matches). These correspondences within a specific domain
hold the concrete domain data needed to define, specify and generate basic domain-specific
metrics. These metrics are executable on instance models. In the following, we present the
process for defining a new metrics pattern and deriving basic metrics from this pattern for
a concrete meta model.

1. First, we design a pattern over the meta-meta model. This pattern consists, e.g., of
two nodes and a containment relation in between as shown in Figure 4.

Fig. 4: A simple example of a metrics pattern

2. Then, the pattern can be applied to a concrete domain in order to find and retrieve all
the pattern matches (correspondences) whose structures are instances of the pattern
structure. For the Petri net example presented in Section 2, the following pattern
matches are found:

• Node PetriNet, Node Place and a containment relation named place.



6 Nassar, Arendt, Taentzer: Deriving Model Metrics from Meta Models

• Node PetriNet, Node Transition and a containment relation named transition.

• Node Place, Node Token and a containment relation named token.

3. From each pattern match we now derive one or more basic model metrics. The
following Petri net metrics can be derived from the matches described above:

• Number of places in a selected Petri net.

• Number of transitions in a selected Petri net.

• Number of tokens in a selected place.

Using the data of the pattern matches we can define and specify the model metrics
for the given domain. Thereafter, an existing tool for metrics calculation on DSML
instance models may be extended.

Our approach helps to easily produce the ”boilerplate” information of metrics specifica-
tion. Having basic domain-specific metrics at hand, metrics and queries which require real
domain-specific knowledge can be specified on top of those.

To sum up, metrics patterns are designed independent of concrete DSMLs. These pat-
terns can be used to find and derive basic domain-specific metrics. Using the data of the
retrieved pattern matches, we can derive basic domain-specific metrics and specify them
in an appropriate query language like OCL. Furthermore, the corresponding code can be
also generated in order to calculate metric values of concrete instance model. Figure 5
illustrates our approach.
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Fig. 5: The general approach to derive basic model metrics

Specifying thresholds to interpret metric results, however, is out of scope of this work due
to individual interpretation opportunities depending on the modeling language, the model-
ing purpose, and the quality aspect considered by the measurement, respectively [Ar14].
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4 Metrics Patterns

We developed 20 metrics patterns typed by Ecore, the meta-meta model of EMF [EMF,
St08] representing the reference implementation of the Essential MOF (EMOF) standard
for defining meta models using simple concepts [MOF]. The patterns are divided into four
groups depending on the number of the EReference nodes in each pattern. In this section,
we firstly present two selected patterns in detail: the simplest pattern and a more complex
one. Finally, we give an overview about the remaining patterns.

4.1 Selected Metrics Patterns

Each metrics pattern can be used to describe the abstract structure of at least one kind of
metrics. In summary, the 20 metrics patterns can derive altogether 42 kinds of basic model
metrics. In the following descriptions of two selected patterns, the term concrete pattern
refers to an instance of the basic metrics pattern.

Example for a simple metrics pattern

Figure 6 shows a simple concrete pattern (in concrete syntax) matched to the Petri net
domain. It simply consists of one single class (Place) and can be used to derive and spec-
ify metric Number of places in the model. Now, our goal is to find all concrete patterns
(matches) which have the same structure so that we can derive metrics that have the same
abstract form. The pattern can be any class such as Place as shown in Figure 6.

Fig. 6: A node-related pattern Fig. 7: Metrics pattern

Figure 7 shows the corresponding pattern (in abstract syntax) typed by Ecore. It consists
of only one node of type standard EClass in order to represent non-abstract classes. 2 Ap-
plying this pattern to the Petri net domain, several concrete pattern matches exist as, e.g.,
Transition, Token, PTArc and TPArc. Each match can be used to specify a concrete metric.
Example metrics for the Petri net domain are: number of transitions in the model, number
of tokens in the model, number of place-to-transition arcs in the model, and number of
transition-to-place arcs in the model.

As a result, this pattern can be used to find and derive domain metrics which have the
following abstract description:

Number of all instances of type X in the model.

Here, X represents the name of any matched class from any given domain with respect to
the applied pattern.
2 Here, standard EClass means, that meta attributes abstract and interface are set to false.
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Example for a more complex metrics pattern

Figure 8 shows a more elaborated concrete pattern (in concrete syntax) matched to the
Petri net domain. It consists of class PetriNet connected by a containment relation named
transition to class Transition which is in turn connected to class TPArc (the referenced
class) by a non-containment relation named postArc.

Fig. 8: An edge-related pattern Fig. 9: Metrics pattern

This concrete pattern can be used to derive and specify the following concrete metrics:

• Number of all outgoing arcs of all transitions in a selected Petri net.
• Average number of outgoing arcs of all transitions in a selected Petri net.

Again, we want to find all concrete pattern matches for a given domain. Any concrete pat-
tern must consist of three classes with one containment relation and one non-containment
relation between these classes. Figure 9 shows the corresponding pattern (in abstract syn-
tax), again typed by Ecore. The pattern consists of altogether five nodes. The nodes on
the left are of type standard EClass (see above). Here, the top-left node is used to infer a
container class, the middle-left node is used to infer a contained class , and the bottom-left
node is used to infer a referenced class. The other nodes are of type EReference. Here, the
containment attribute of the top-right node is set to true whereas the containment attribute
of the other one is set to false. This means that the top-right node is used to infer the con-
tainment relation between the corresponding matched classes whereas the bottom-right
node is used to infer the non-containment one.
As a result, this pattern can be used to find and derive metrics which have the following
two abstract descriptions:

Number of all instances of type X referenced by all instances of type Y in a selected
instance of type Z.
Average number of all instances of type X which are referenced by all instances of type Y
in a selected instance of type Z.

Here, X represents the name of the matched referenced class, Y is the name of the matched
contained class and Z is the name of the matched container class.
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4.2 Metrics Pattern Groups

As mentioned above, we developed 20 metrics patterns which are separated into four
groups depending on the number of EReference nodes in each pattern. In the following,
we present an overview about the patterns in these groups and the kind of metrics which
can be derived.

Group “Single node pattern” The first group contains only one pattern which consists of
only one node of the type EClass to derive the atomic metrics (see Figure 7).

Group “One-edge patterns” The second group consists of seven patterns where each one
contains one EReference node and several nodes of type EClass. These patterns can be
used to derive the following kinds of metrics: average, percentage, sum or total number
of instances of a specific type in or for a selected instance. Please note that some patterns
are designed to support inheritance in order to match child classes of classes, abstract
classes or interfaces. For example, some patterns can derive the following kind of metrics:
number of instances of a child type in a selected instance. Concrete examples are: number
of transition-place arcs in a selected Petri net, number of place-transition arcs in a selected
Petri net, and total number of all arcs in a selected Petri net (the sum of both metrics
mentioned before).

Group “Two-edge patterns” The third group also consists of seven patterns. Here, each
pattern contains two EReference nodes and several nodes of type EClass. These patterns
can be used to derive the same kinds of metrics provided by group 2 as well as more com-
plex ones. For example, a pattern is designed using two EReference nodes which have the
same source standard EClass and the same target standard EClass node. The containment
attribute of one EReference node is set to true whereas the containment attribute of the
other one is set to false. This pattern can derive the following kind of metrics: Number of
“part”-instances in a selected “whole”-instance so that they have the same specific role
specified by non-containment reference. Some patterns of this group are designed to match
child classes of different pattern nodes such as the child classes of the whole part node, the
direct-part node or of both. The pattern in Figure 9 belongs to this group.

Further more-edge patterns can be defined in the similar way. We assume that our current
patterns may be matched often over any given domain because their structures are vital and
cardinally needed for representing several parts of any meta-model structure. Additionally,
some metrics derived by more-edge patterns could be defined by composing metrics de-
rived by less-edge patterns.

Group “Composed patterns” The last group consists of five patterns for deriving more
complex metrics respectively more specific ones. It contains some patterns for deriving
metrics used to calculate the sum (average, percentage) of the number of different kinds of
instances having the same whole instance as for example total number of transitions and
places in a selected Petri net. The patterns can also be used to derive metrics like average
number of places with respect to the number of transitions in a selected Petri net. However,
these kinds of metrics may not make sense for each domain.
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So far, we defined 20 metrics patterns to derive 42 different kinds of metrics. However, we
do not claim that this list is complete. Furthermore, the existing patterns could be used to
produce further kinds of metrics. The 42 kinds of metrics are only some suggested ones.
We can also think of combining several kinds of metrics. Additionally, we can also use the
approach to design further metrics patterns by using, as an example, a different number of
nodes and relations with different attributes values. Additionally, we can design patterns
for producing metrics used to inquiry on attributes values of nodes.

5 Tooling

In this section, we present the Nas tool that we developed to automate the process of model
basic metrics creation, i.e., metrics derivation and specification for any given domain, and
to automatically generate a high-level tool specification as an Eclipse plugin thereafter.
The entire tooling is based on the Eclipse Modeling Framework (EMF) [EMF, St08].

Nas Tool We developed an Eclipse-based tool, called Nas Tool, which uses metrics pat-
terns to automatically find matches and to automatically derive, specify and generate basic
metrics of any given domain modeled in Ecore thereafter. The metrics patterns are de-
signed by Henshin [Ar10, Hen], a model transformation engine for EMF based on graph
transformation concepts, as pattern-based rules. Each rule mimics the EMF abstract syntax
of a structure to be matched in a given meta-model. During the pattern matching process,
an isomorphic mapping from EMF node and edge symbols in the pattern to actual nodes
and edges in the meta-model is computed. The Nas tool can be easily applied: The only
input is a meta model in Ecore. The outcome of the Nas tool is a high-level tool specifi-
cation as an Eclipse plug-in which comprises the following: A specification tool support
for model metrics containing already a number of basic metrics specified by OCL being
derived from the meta model. This tool support can be used to define further model met-
rics as compositions of existing ones. An application tool support for model metrics which
can be used to calculate the defined metrics on concrete domain-specific models. The gen-
erated plug-in is used as input to EMF Refactor which is an Eclipse tool that supports
metrics calculation, reporting and composition. Figure 10 depicts the use of the Nas tool
in combination with EMF Refactor.

Nas Tool

Metrics Derivation
Metrics Specification
Metrics Generation

EMF Refactor

Metrics Calculation
Metrics Reporting
Metrics Composition

Meta-
model

Metrics Plugin

Fig. 10: The use of the Nas tool in combination with EMF Refactor

In addition, the Nas tool provides a view component for statistical information about de-
rived metrics: It shows the number of pattern matches, the number of derived metrics for
each applied pattern and the total number of matches and metrics.
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Consequently, the Nas tool provides the following features:

• Automation: Creating (i.e. deriving, specifying and generating) basic model metrics
automatically. Thus, the design and implementation time for each generated metrics
is reduced.

• Abstraction: The Nas tool can be used to define and implement basic model metrics
for any domain-specific language.

• Simplicity: The tool is easy to use, i.e., the user does have not to know about the
metrics definitions, meta model structure and query languages.

• Extendability: The tool is extensible, i.e., it provides the ability to add further metrics
patterns.

More information about the Nas tool, especially about its installation and the provided
patterns, can be found at the accompanying web site of this paper [Nas].

6 Application Case

In this section, we demonstrate metrics generated by the Nas tool and compare them
to the metrics provided by EMF Refactor [Ref] for a simple class modeling language
(SCM) [AT13]. SCM represents the class diagram part of UML but it is much more sim-
pler since it omits concepts like operations and association classes. Figure 11 shows the
SCM meta model specified in Ecore.

Fig. 11: The SCM meta model

The SCM metrics provided by EMF Refactor are manually specified and implemented us-
ing different perspectives and technologies like Henshin, OCL and Java. However, when
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running the Nas tool on the SCM meta model, 127 basic metrics are automatically gener-
ated using only a few mouse clicks. 14 patterns are matched over the SCM model and some
of them can generate several kinds of metrics. The 127 metrics are derived by altogether
72 matches of these metrics patterns. The number of pattern matches will be different from
one domain to another one but we are convinced that the first six patterns (see [Nas]) have
a high possibility to be matched over most given domains because the structure of each
pattern of them could be considered as a simple basic structure.

After analyzing the SCM metrics provided by EMF Refactor, we found out that those
metrics can be abstractly represented by 9 different metrics patterns. 6 of them are common
with the patterns of the Nas tool whereas the other three patterns are too specific to the
SCM model. The total number of the created metrics from these common patterns is 12 in
EMF Refactor and 52 from the Nas tool.

Table 1 presents the SCM metrics provided by EMF Refactor and shows whether the met-
rics can be directly generated by the current version of the Nas tool, whether it can be
defined by combining two generated metrics, or whether it cannot be generated. 12 out of
19 SCM metrics provided by EMF Refactor are also generated by the Nas tool. In addition,
three metrics (i.e., 14, 15 and 17) are combinations of generated basic metrics. Hence, they
profit from the Nas tool. We only need to combine two generated metrics using a mathe-
matical operation, namely the division operation, like the metric called Average number of
attributes in concrete classes.

In the following, we discuss the uncovered metrics: Metrics 2 and 18 could be derived
by adding further metrics patterns, e.g., metric 2 can be derived by adding a pattern which
takes incoming references into account. This metrics pattern shall be included into a future
version of the Nas tool. Metrics 8 and 16 are too specific to the SCM model in the sense
that they check a specific attributes value of the SCM model, e.g., if attribute isAbstract of
ScmClass is set. In the future, we intend to consider ratio metrics for attribute values that
are boolean or enumerations with literals.

The SCM metrics provided by EMF Refactor do not contain all the basic metrics of all
SCM elements like the derived metrics from pattern 1, e.g., number of all comments in the
model. The metrics in EMF Refactor are created using several different technologies and
the process of creation took its time whereas creating the 127 SCM metrics generated by
the Nas tool requires only a few mouse clicks. Please note that the non-covered metrics can
be generated by adding new patterns or by extending some existing ones in the Nas tool.
To summarize, the most of our selected patterns are matched with the SCM meta model
and more than 78.5% of the metrics provided so far can be generated by the Nas tool or
composed from generated ones.

Considering SDMetrics [SDM], a tool dedicated to the calculation of UML metrics, 96
metrics are provided by that tool, all specified by hand. We show that over 80% of them
can be generated by the current version of the Nas tool or composed from generated ones.
The rest of metrics could also be derived if the existence patterns were extended or new
metrics patterns were added. More information about this comparison can be found at the
web site of this paper [Nas].
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Id Metrics description State
1 Number of direct children covered
2 Number of external attributes with class type not covered
3 Number of outgoing associations covered
4 Number of incoming associations covered
5 Number of associated classes covered
6 Number of redefining attributes covered
7 Total number of classes in the package covered
8 Number of abstract classes in the package not covered
9 Number of concrete classes in the package covered
10 Number of associations in the package covered
11 Total number of attributes in concrete classes covered
12 Number of owned attributes in concrete classes covered
13 Number of inherited attributes in concrete classes covered
14 Average number of attributes in concrete classes combination
15 Average number of associations per concrete class combination
16 Ratio of the number of abstract classes not covered
17 Ratio of the number of inherited attributes combination
18 Number of equal attributes with other classes not covered
19 Total number of model elements covered

Tab. 1: The SCM metrics provided by EMF Refactor [AT13, Ref]

7 Related Work

To the best of our knowledge there is no directly related work on deriving model metrics
from the corresponding meta model specification of a DSML. However, in this section, we
discuss several topics being related to our work to some extent.

Model metrics. The problem of measuring the quality of models has been approached in
several ways. Most of the presented metrics measure the quality of UML models. A survey
of metrics applicable to UML models can be found in [GPC05]. Furthermore, in [La06,
MP07], some general observations on managing quality, defining and reusing metrics for
UML models are drawn.

The existing tool support for model metrics calculation is mainly aiming at UML and
EMF modeling. Considering UML modeling, metrics calculation tools are integrated in
standard UML CASE tools such as the IBM Rational Software Architect [RSA] and Mag-
icDraw [MD]. A tool for UML metrics calculation is SDMetrics [SDM] (see above).

Related work in the context of quality metrics for meta models can be categorized into two
groups: Firstly, work that deals with quality on the meta level, i.e., on meta models. Sec-
ondly, approaches that address quality on the instance level, i.e., on models. In [MA07],
quality dimensions for MDD are derived. In [BV10], a taxonomy of meta model quality
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attributes is presented. Both works use metrics to analyze the quality of the meta model in-
stead of corresponding instance models. In [Vé06], a repository for meta models, models,
and transformations is presented. The authors transfer metrics that were designed for class
diagrams to meta models and apply them to contents of the repository. However, these
works do not address the opposite direction to use structural information that is implicitly
given in the meta model to derive basic metrics for instance models.

Metric definition and generation approaches. The closest relation to our work is pre-
sented in [YA14]. Here, the authors present a quality measurement framework for defining
quality metrics at the meta model to measure the quality of conforming instance models.
However, the motivation of this work is not to derive basic quality metrics like in our
approach, but for evaluating a model by comparing it with a reference model which is
motivated in the context of empirical studies, for example. In [AST10, Ar11, AT13] we
present an EMF Metrics plug-in, as a part of EMF Refactor, supporting specification and
calculation of model metrics for a given meta-model. Here, the derivation and specifica-
tion of each model metric for each given meta-model have to be done manually by users.
That work does not consider the automatic creation of model metrics for DSMLs.

In [Mo11], the authors present a model-driven measurement approach allowing model-
ers to dynamically add measurement capabilities to a DSML. The core of this work is to
develop a metric specification meta model which enables to declare metric specifications
as instance models. A metric specification model is taken as input to a prototype gen-
erator which outputs a full-fledge measurement software integrated into Eclipse. In this
approach, the user should manually declare the metrics as instance models for each given
meta model, whereas in our approach, the declaration of metrics will be automatically
derived and specified from any given meta model.

In [Al09], the authors produce source-code representations of object-oriented applica-
tions. The generated representations should conform to a meta model that represents object-
oriented languages such as Java and C++. A metric declarative language is developed to
add new metrics without modifying the code of the framework. The metrics are executed
on the generated representations. In that approach, the metric descriptions are declared
concerning the object-oriented meta model, whereas in our approach, we derive metrics
from any given meta model using characteristic patterns typed by Ecore (a meta-meta
model) and using metrics descriptions.

8 Conclusion

In this paper we presented an approach for deriving basic metrics from the meta-model
of a given domain-specific modeling language. In our work, 20 patterns are designed and
described to derive metrics from any domain (meta-model) based on Ecore. The patterns
are typed by the meta-meta model of EMF. Each pattern can be used to produce one or
several kinds of basic model metrics.

We developed the Nas tool which takes the meta-model of any domain-specific language
to automatically derive, specify and generate basic metrics based on the Eclipse technol-
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ogy [Nas]. The use of the Nas tool is quite simple, only a few mouse clicks are required to
create the metrics. Furthermore, the tooling provides an extension mechanism to add new
custom metrics patterns. In this context, future work will concentrate on extending the ex-
isting metrics pattern base, supporting other metric kinds and more facilities for default
calculation and compositions of metrics. Furthermore, we intend to figure out a vital set
of metrics to be generated by analyzing, for example, user requirement specifications for
the modeling language, to derive thresholds for the derived metrics, and to conduct further
case studies.
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[Vé06] Vépa, Eric; Bézivin, Jean; Brunelière, Hugo; Jouault, Frédéric: Measuring Model Repos-
itories. In: Proceedings of the 1st Workshop on Model Size Metrics (MSM’06) co-located
with MoDELS. volume 2006, 2006.

[YA14] Yue, Tao; Ali, Shaukat: A MOF-Based Framework for Defining Metrics to Measure the
Quality of Models. In: Modelling Foundations and Applications, pp. 213–229. Springer,
2014.


