
JooMDD: A Model-Driven Development Environment for
Web Content Management System Extensions

Dennis Priefer
KITE - Kompetenzzentrum für

Informationstechnologie,
Technische Hochschule
Mittelhessen, Germany

dennis.priefer@mni.thm.de

Peter Kneisel
KITE - Kompetenzzentrum für

Informationstechnologie,
Technische Hochschule
Mittelhessen, Germany
kneisel@mni.thm.de

Gabriele Taentzer
Philipps-Universität Marburg,

Germany
taentzer@mathematik.uni-

marburg.de

ABSTRACT
Developing software extensions for Web Content Manage-
ment Systems (WCMSs) like Joomla, WordPress, or Drupal
can be a difficult and time consuming process. In this demo
we present JooMDD, an environment for model-driven de-
velopment of software extensions for the WCMS Joomla.
JooMDD allows the rapid development of standardised soft-
ware extensions requiring reduced technological knowledge
of Joomla. This implies that even inexperienced developers
are able to create their own functional WCMS extensions.
This demonstrates that a model-driven approach is suitable
for the domain of WCMSs.

A supporting video illustrating the main features and a
demonstration of JooMDD can be found at: https://youtu.
be/Uy WBIjPldI.

CCS Concepts
•Software and its engineering→ Application specific
development environments; Software design tech-
niques; Software prototyping;

Keywords
Model-Driven Development; Web Content Management Sys-
tems; Joomla

1. INTRODUCTION
In today’s web, Open Source Web Content Management

Systems, or so called “second-generation content manage-
ment systems” [13] like Joomla [3], WordPress [7], and Dru-
pal [1] play a significant role. Due to their providing core
functionality, they are used as base platforms for dynamic
web applications by experienced web designers and inexpe-
rienced users alike.

One of the biggest advantages of using a WCMS as a
platform for dynamic websites is the functional extensibil-
ity through several standardised extension types. Through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889176

Figure 1: Model-Driven Tool Chain for the Development of
Joomla Extensions

the use of extensible APIs, extensions can be implemented
without changing the platform itself. Furthermore, through
using already developed API functionality, written extension
code can be reduced, which in turn allows a more rapid de-
velopment. Experienced extension developers can use such
mechanisms to increase the development speed. Inexperi-
enced developers get less use from the API, because they
don’t know which functions are available and when to use
them.

Due to this problem and the fact that most WCMS ex-
tensions, independent of their underlying platform, contain
much redundant code, we propose a model-driven approach
to develop WCMS extensions faster and more easily in com-
parison to manual programming. We assume that the cre-
ation of design models and the subsequent code generation
increase the development speed independently of the devel-
oper’s experience. To demonstrate the usefulness of our ap-
proach in the domain of WCMSs, we have developed an
environment for the model-driven development of Joomla
extensions. Figure 1 illustrates our model-driven approach.
Generated extensions can be installed on existing Joomla-
based websites to extend their functionality with features,
which are not part of the core system itself. Another ad-
vantage of a model-driven approach is, that whenever the
underlying platform is being updated to new versions, the
models can be reused without changes. Only the generator
has to be updated by the new features.

We selected Joomla as the target platform, because it is
one of the most widely used WCMS [6], it provides a large
core platform with various functions and can be used to
create either simple or complex websites.

Within the next sections we describe how Joomla-based

Figure 2: Joomla-Based Website and Component Views of a Conference Management (Joomla 3.x)

websites can be extended in a model-driven way, followed
by a presentation of the supporting tools. Our approach is
explained using the example of a conference management
extension.

2. EXTENSION OF JOOMLA-BASED WEB-
SITES

To extend Joomla, developers may implement several ex-
tension types, which can be installed into a Joomla-based
website. The most complex extension type is called Compo-
nent . This complexity is even reflected by the menu struc-
ture within the administration of a Joomla-based website.
Examples for components can be the implementation of a
web shop or, as in our example, a conference management
with all the necessary functionality. The Joomla platform
provides a wide range of core functionality, whereas com-
ponents can provide specific features within a Joomla-based
website using functionality of the API. This ensures a homo-
geneous look and feel for users of the website. Figure 2 illus-
trates a typical administration section of a standard Joomla
website and shows some component views, which are not
part of the Joomla core. In general, components have their
own data model, represented in the form of database ta-
bles. These extend the basic application’s database. Joomla
highly recommends that components implement a Model
View Controller (MVC) architecture on file and code base.
Following this structure allows a more comprehensible way
of using the API. However, this architecture also brings a
certain overhead and schematically redundant code which
requires more effort during the manual implementation pro-
cess.

To tackle this problem, we present a model-driven ap-
proach to develop Joomla extensions illustrated using the
example of a conference website. Proceeding from the as-
sumption, that a conference management is not part of a
standard Joomla application, the required functionality has
to be implemented in the form of at least one Joomla com-
ponent. In addition, using the environment, presented in
this demo, Joomla extension developers are able to create
even other extension types like modules, plugins, libraries
and templates in a model-driven way.

3. A DOMAIN-SPECIFIC LANGUAGE FOR
CMS EXTENSIONS

To ensure the universality of our approach, our Domain-
Specific Language (DSL) should allow the creation of mod-
els as abstract as possible. At the same time the models
must be as concrete as needed to ensure a code generation
as complete as possible. We defined a DSL for WCMS ex-
tensions named eJSL. This language is based on the Simple
Web Application Language (SWAL) [10], which separates
web applications into a data model and a hypertext model
for defining the page flow of a website. We adapted this
approach to model WCMS extensions. Our DSL contains
three main parts: Entities (data modelling), Pages (page
flow), and Extensions. Figure 3 shows how to apply this
DSL to model a simple conference component. The illustra-
tion shows an entity section (Figure 3a), which represents
the data entity Participant and a page section (Figure 3b)
for a list view. This list view represents all the existing par-
ticipants with a link to a detail page, which shows the details
for one participant. Furthermore, an exemplary model def-
inition of a Joomla component is shown in Figure 3c. This
model contains references to the previously defined pages,
and includes them as component views.

The entity and page parts can be used independently of
the underlying platform, whereas the extension part of our
modelling language is currently tailored to Joomla exten-
sions, specifically to the different extension types charac-
teristic to Joomla. These types do not necessarily apply to
other WCMSs. We plan to generalise the extension part, and
enable it to be used for the creation of platform-independent
extension models.

4. DEVELOPMENT ENVIRONMENT FOR
JOOMLA EXTENSIONS

According to [11], PHPStorm [4] by JetBrains is the most
popular development environment in the web domain, in
which our target users develop. This IDE is based on the
IntelliJ IDEA [2], a professional and widely distributed Java
IDE. This IDE is easy to use and provides a fast familiari-
sation. To support this trend, we created an IntelliJ plug-in
with Xtext [8]. This allows the rapid development of a text-

(a) Entity (b) Index- and Details Page (c) Joomla Component

Figure 3: Excerpt of a Simple Conference Model Based on the DSL (eJSL) for WCMS Extensions

based editor for our DSL. Used together with our Joomla
extension-specific generator, which is written in Xtend [8],
we get a working environment. In creating the plug-in for
IntelliJ, we get to use JetBrains’ core environment and port
these plug-ins to its base environments such as PHPStorm.
Figure 4 illustrates the textual editor of JooMDD within the
IntelliJ IDEA. This editor supports code completion, model
validation, and quick-fixes.

Currently, our generator creates code for Joomla 3.x ex-
tensions. These can be found within the src-gen folder of
the eJSL project, wherein the extension models are created.
The generator structure itself follows a modular architec-
ture. This allows its straightforward enlargement to gener-
ate code for other Joomla versions or even for other WCMSs,
without starting from scratch. Generated extensions can be
installed directly into a Joomla-based website. They follow
the Joomla standards ensuring a homogeneous look and feel
for Joomla users (c.f. Figure 2).

In addition to the IntelliJ plug-ins, JooMDD also has tex-
tual and visual editors for the Eclipse IDE. The use of the
textual editor and the behaviour of the built-in code gen-
erator is identical to their counterparts for IntelliJ. Other
tools are being planned, among them is the creation of a
web-based model editor which allows the creation of eJSL
models.

5. PRELIMINARY EVALUATION
A model-driven approach must allow the development of

simple, such as the example in this paper, as well as complex
extensions. Such extensions are currently installed within
the department websites of our university, providing features
for the academic sector. One example is the staff manage-
ment extension family THM Groups1. Recently, JooMDD
was used to implement a functional version of the THM
Groups component. Currently, we are planning the develop-
ment of a pre-course management extension with JooMDD.

To evaluate the usefulness of our approach we have to
compare the development of WCMS extensions in a model-
driven way with the traditional manual development. More
precisely we want to find out if a model-driven approach
can quantifiably speed up and simplify the development and
maintenance of WCMS extensions.

The conference example shows that development effort
can be reduced considerably using our tools. The same ap-

1An example view can be found at [5].

Table 1: Model-Driven Joomla Components

Component E P LoC (M) LoC (GC)
Conference 4 8 220 5964

THM Groups 17 14 691 16194

plies to our more complex in-house component THM Groups.
Table 1 illustrates the number of entities (E), pages (P),
code lines of the extension model (LoC (M)), and the lines
of generated code (LoC (GC)) for both components. We as-
sume that the amount of manually written code without the
use of JooMDD is at least equal to the amount of generated
code. The DSL model abstracts from technical details and
allows to concentrate on the extension itself. [12] conducted
a research on the usability of DSLs with the result that the
use of DSLs improves the development speed, code quality,
and ease of learning.

Many Joomla developers have expressed interest in using
JooMDD especially for the migration of their developed ex-
tensions, as proposed in [14]. This gives us the opportunity
to provide our infrastructure directly to a large group of de-
velopers as part of a field study (in vivo). We plan to collect
the findings of the study and hopefully empirically infer the
usefulness of our approach.

In addition we plan a field study within a controllable
academic environment (in vitro) with developers having dif-
ferent experience levels to evaluate our approach. A set of
controlled experiments is planned to quantify the qualitative
findings of the case studies.

The implemented and planned tools for different IDEs
should prevent biases favouring any specific IDE from any
collected data.

6. RELATED WORK
In accordance to [13], there is little recent research on

modern web development practices, especially concerning
the use of current WCMSs. Model-driven development is
one such modern development practice. Using this approach,
developers elevate application development to a more ab-
stract level, which may save maintenance time and effort.
This approach is important in today’s research and has en-
joyed much attention over the past decade.

General web approaches like [9] can be used to create com-
plete websites, but are not suitable for our problem since
they do not address WCMSs and the model-driven devel-
opment of their extensions. [16], [17], and [15] deal with

Figure 4: eJSL Editor within the IntelliJ IDEA

platform-independent meta models for the WCMS domain,
whereas [15] also generates concrete WCMS-based web ap-
plications. However, all of these works overlook their mod-
els’ extensibility, which necessitates further abstraction.

7. CONCLUSIONS
Web Content Management Systems are the leading plat-

forms for dynamic web applications. Their functional exten-
sibility is a powerful feature allowing developers to build in-
dividual software without changing the platform itself. Even
though modern WCMSs provide extension APIs for a sim-
plified implementation of extensions, this can still be a time-
consuming and complex task for extension developers, even
for experienced ones.

In this demo, we present JooMDD, an environment which
allows the model-driven development of software extensions
for the WCMS Joomla. This enables the rapid develop-
ment of standardised Joomla extensions for Joomla version
3.x. In addition, the model-driven approach further sim-
plifies development, which hopefully will help inexperienced
developers to create their own extensions. The tools can be
used within different development environments like Intel-
liJ IDEA and Eclipse. Further tools, including a web-based
editor, are in progress. Furthermore, we plan to make the
approach platform-independent, so that other WCMSs like
WordPress or Drupal will benefit from it.

8. REFERENCES
[1] Drupal.org [online]: https://www.drupal.org/.

[2] IntelliJ IDEA [online]:
https://www.jetbrains.com/idea/.

[3] Joomla!.org [online]: https://www.joomla.org/.

[4] PhpStorm [online]: https://www jetbrains.

[5] THM - MNI Website [online]:
http://www.mni.thm.de/index.php/fachbereich/
mitarbeiter.

[6] Usage Statistics and Market Share of Content
Management Systems for Websites [online]:
http://w3techs.com/technologies/overview/
content management/all.

[7] WordPress.org [online]: https://wordpress.org/.

[8] L. Bettini. Implementing domain-specific languages
with Xtext and Xtend: Learn how to implement a DSL

with Xtext and Xtend using easy-to-understand
examples and best practices. Packt Publ, Birmingham,
2013.

[9] M. Brambilla. Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps
with IFML. Morgan Kaufmann, Waltham, MA, 2015.

[10] M. Brambilla, J. Cabot, and M. Wimmer.
Model-driven software engineering in practice. Morgan
& Claypool, San Rafael, Calif., 2012.

[11] B. Skvorc. Best PHP IDE in 2014 - Survey Results
[online]: http://www.sitepoint.com/best-php-ide-2014-
survey-results/.

[12] J. Kärnä, J.-P. Tolvanen, and S. Kelly. Evaluating the
Use of Domain-Specific Modeling in Practice. In
Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM ’09), volume B-108
in HSE-Print. Helsinki, 2009.

[13] M. C. Norrie et al. The Forgotten Many? A Survey of
Modern Web Development Practices. In Current
Trends in Web Engineering, volume 8541 of Lecture
Notes in Computer Science, pages 290–307. Springer
International Publishing, Cham, 2014.

[14] D. Priefer. Model-driven development of content
management systems based on Joomla. In Proceedings
of the 29th ACM/IEEE International Conference on
Automated Software Engineering : September 15-19,
2014, Väster̊as, Sweden, pages 911–914. ACM, New
York, 2014.

[15] J. d. S. Saraiva. Development of CMS-based Web
Applications with a Multi-Language Model-Driven
Approach. Dissertation, Universidade Técinica de
Lisboa, Lisbon, Portugal, 2012.

[16] F. Trias. Building CMS-based Web applications using
a model-driven approach. In Sixth International
Conference on Research Challenges in Information
Science, pages 1–6. IEEE, Piscataway, New Jersey,
2012.

[17] K. Vlaanderen, F. Valverde, and O. Pastor.
Model-Driven Web Engineering in the CMS Domain:
A Preliminary Research Applying SME. In Enterprise
Information Systems, volume 19 of Lecture Notes in
Business Information Processing, pages 226–237.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

