
A Model-Driven Process to Migrate Web

Content Management System Extensions

Dennis Priefer1,2, Peter Kneisel2, and Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany
{taentzer}@mathematik.uni-marburg.de

2 KITE - Kompetenzzentrum für Informationstechnologie, Technische Hochschule
Mittelhessen, Germany

{dennis.priefer,peter.kneisel}@mni.thm.de

Abstract. Developing and maintaining software extensions for Web Con-
tent Management Systems (WCMSs) like Joomla, WordPress, or Dru-
pal can be a difficult and time consuming process. This poster presents
a model-driven process which addresses typical challenges during the
migration of software extensions for WCMSs. We introduce JooMDD
as a prototypical environment for the development and maintenance of
Joomla extensions. JooMDD consists of a domain-specific modelling lan-
guage for WCMS extensions, a reverse engineering tool to create models
based on existing WCMS extensions, and a code generator for software
extensions, which can be used to enrich Joomla-based applications. The
use of JooMDD within our research demonstrates the application of a
model-driven migration process for WCMS extensions.

Keywords: Model-Driven Development,Web Content Management Sys-
tems, Joomla, Software Extensions, Software Migration

1 Introduction

Today’s web mainly consists of dynamic web applications, often instances of
web content management systems like Joomla, WordPress, and Drupal. These
systems provide the necessary functionality for administrators to create these
instances independent of their experience in web development.

One of the biggest advantages of using a WCMS as platform for dynamic
websites is the functional extensibility through standardised extension types.
Through the use of APIs, extensions can be implemented without changing the
platform itself. The dependency on these APIs has a large impact on the main-
tenance of developed extensions. If the API of the underlying WCMS platform
changes, e.g. through a new major release, extensions must be changed as well.
Normally, developers have to change their extension’s code by hand. This can
lead to inconsistencies within the extension, if the responsible developers do not
meticulously update all altered dependencies. Consequently, if developers have
to migrate multiple extension, the overall effort can increase exponentially. The
same applies to both platform internal and platform external extension migra-
tion.



2 Dennis Priefer, Peter Kneisel, and Gabriele Taentzer

Due to the amount of schematically recurring code in standard WCMS ex-
tensions, independent of their underlying platform, we propose a model-driven
approach to migrate WCMS extensions faster and more easily in comparison to
manual migration. In addition, we obtain the typical benefits of model-driven
approaches, such as reusability and enhanced code quality.

Using a model-driven approach for software migration on a higher abstraction
level is seen as a promising approach in today’s research. In [4] the authors intro-
duce a meta-model for the definition of migration processes. These processes are
based on model-driven sub-processes as are ours. The reengineering method and
reverse engineering tool as presented in [5] deal with the migration of complete
CMSs. As our work progresses, we plan to incorporate these approaches into our
research and check their suitability for the migration of WCMS extensions. In [3]
we consider similar model-driven approaches such as presented in [1], whereby
existing work deals with complete systems, web applications in general, or the
data of concrete WCMS instances and not the migration of their extensions’
code.

Our main contribution is a concept for a model-driven migration pro-

cess explicitly for WCMS extensions and prototypical tools to migrate
Joomla extensions. Our set of tools encompasses:

– a domain-specific modelling language for the abstract description of WCMS
extensions,

– a transformation tool for creating models from existing Joomla extensions
(supporting usual extension types like components, modules, plugins, and
libraries),

– a code generator for installable Joomla extensions based on an extension
model

2 Model-Driven Migration Process

As an alternative to manually performed migration of the source code, a model-
driven migration process of WCMS extensions is done at a higher abstraction
level. This allows the use of common model-driven engineering practices, like
model refactoring for improving the software quality.

Figure 1 illustrates the migration process of installable WCMS extensions
which is divided into three main steps (cf. [2] and [5]):

Reverse Engineering: Existing extension packages (code) are used as input
for an automated text-to-model (T2M ) transformation. This transformation
should be as complete as possible. To consider individual code fragments,
we suggest to create code models, which contain platform-specific code frag-
ments and can be bound to abstract extension models.

Model Migration: Models can be refactored, extended, or migrated to mod-
els based on differing modelling languages through model-to-model (M2M )
transformations. These transformations can be performed semi-automatically
(e.g. model refactoring), or manual (e.g. model extension).



A Model-Driven Process to Migrate WCMS Extensions 3

Forward Engineering: Through an automated model-to-text (M2T ) transfor-
mation, models can be transformed to software code, in our case to installable
WCMS extensions.

Fig. 1. Model-Driven Migration Process

3 Prototypical Realisation

To test our approach, we have developed an environment (JooMDD) for the
model-driven migration of Joomla3 3.x extensions. We provide the domain-
specific language (DSL) eJSL, which divides a Joomla extension into entities

(data model), pages (views), and extensions (extension structure and meta
data). For the creation and maintenance (or reengineering) of eJSL models, we
provide plugins for the current development environments (IDEs) Eclipse, Intel-
liJ IDEA, and PHPStorm. These plugins consist of textual editors which support
the modellers with features such as auto completion and model validation.

In addition, we developed the prototype jext2eJSL to support reverse en-
gineering by a model extractor. The tool uses existing Joomla 3.x extensions
(PHP, HTML, JavaScript, and SQL files) as input and creates a domain model
based on the eJSL language. It supports the common Joomla extension types
(components, modules, plugins, libraries, and templates), on the conditions that
they follow the Joomla coding standards and use the typical design pattern for
the particular extension type (e.g. Model-View-Controller within components or
Observer within plugins), meaning that jext2eJSL searches for prescribed file
and code schemes expected by the Joomla platform. In order to support Word-
Press and Drupal extensions, we plan to incorporate the tools presented in [5].
Even though these tools were developed to migrate web-based to WCMS-based
applications, we believe the parsers could be further developed to handle the
code of WCMS extension as well.

For the forward engineering step we created a code generator for installable
extension packages for Joomla 3.x. If the Joomla platform is changed, the gener-
ator has to be updated, but because of the nature of model-driven approaches,

3 We selected Joomla as the target platform, because it is one of the most
widely used WCMSs (according to http://w3techs.com/technologies/overview/

contentmanagement/all).



4 Dennis Priefer, Peter Kneisel, and Gabriele Taentzer

most parts of the models can be reused. In [3] we demonstrate the forward en-
gineering process. The demonstration describes how eJSL-based models can be
created within current IDEs (IntelliJ, PHPStorm, and Eclipse) and how gener-
ated extensions can be used within existing Joomla-based websites. A video can
be found at https://youtu.be/Uy_WBIjPldI.

We applied our process, consisting of an automated model extraction, a semi-
automated model reengineering, and a code generation, to reengineer convention-
ally developed Joomla 3.x extensions. Since the extensions already existed for
the current platform, this is not a migration in the usual sense. However, the
application of our approach ensures that the resulting extensions are in compli-
ance with the quality standards implicit in the process. This step is an initial
investment for further migrations.

4 Perspective

We plan to abstract the modelling language and simplify the migration process
as much as possible to support further WCMSs and provide a simpler integration
of our approach into existing development processes.

To ensure the correctness and usefulness of our approach we will test it
extensively by migrating actual WCMS extensions. We expect the next major
release of Joomla (version 4.x) within the next two years. Since we are developing
and maintaining different types of Joomla extension for the academic sector, we
have an adequate set of reference extensions for testing our proposed migration
process. Our intention is to reduce the effort involved in the migration of the
reference extensions to the new Joomla version as much as possible. In addition
we plan an empirical evaluation of our approach to assess the model-driven
migration speed and the quality of the migrated extensions.

References

1. M. Brambilla. Interaction flow modeling language: Model-driven UI engineering of

web and mobile apps with IFML. Morgan Kaufmann, Waltham, MA, 2015.
2. S. Demeyer, S. Ducasse, and O. M. Nierstrasz. Object-oriented reengineering pat-

terns. The Morgan Kaufmann Series in Software Engineering and Programming.
Morgan Kaufman Publishers, San Francisco, 2003.

3. D. Priefer, P. Kneisel, and G. Taentzer. JooMDD: A Model-Driven Development

Environment for Web Content Management System Extensions. In ICSE Compan-

ion ’16: Companion Proceedings of the 38th International Conference on Software

Engineering, page in press, New York, NY, USA, 2016. ACM.
4. F. J. B. Ruiz, Ó. S. Ramón, and J. G. Molina. Definition of processes for MDE-based

migrations. In PMDE ’13: Proceedings of the Third Workshop on Process-Based

Approaches for Model-Driven Engineering, pages 1–9, New York, NY, USA, 2013.
ACM.

5. F. Trias, V. de Castro, M. López-Sanz, and E. Marcos. RE-CMS: a reverse engineer-

ing toolkit for the migration to CMS-based web applications. In SAC ’15: Proceedings

of the 30th Annual ACM Symposium on Applied Computing, pages 810–812, New
York, NY, USA, 2015. ACM.


