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Abstract. Cloning is a convenient mechanism to enable reuse across and
within software artifacts. On the downside, it is also a practice related to
signi�cant long-term maintainability impediments, thus generating a need
to identify clones in a�ected artifacts. A large variety of clone detection
techniques has been proposed for programming and modeling languages;
yet no speci�c ones have emerged for model transformation languages.
In this paper, we explore clone detection for graph-based model transfor-
mation languages. We introduce potential use cases for such techniques
in the context of constructive and analytical quality assurance. From
these use cases, we derive a set of key requirements. We describe our
customization of existing model clone detection techniques allowing us
to address these requirements. Finally, we provide an experimental eval-
uation, indicating that our customization of ConQAT, one of the existing
techniques, is well-suited to satisfy all identi�ed requirements.

1 Introduction

Model transformation is of paramount importance to Model-Driven Engineer-
ing. Like all software artifacts, model transformation systems undergo a life-cycle
including at least two main phases: an initial creation phase, followed by a long-
term maintenance phase. Cloning, the development of transformations in the
copy-paste-modify paradigm, provides key bene�ts for the creation phase; it is a
fast, easy, and universally applicable practice. Still, cloning is related to substan-
tial maintainability drawbacks. For instance, once a bug is found, many a�ected
transformation rules may have to be updated correspondingly, a tedious and
error-prone process. As maintenance tasks are estimated to account for 60% of
all software costs [1], it seems advisable to address this trade-o� explicitly.

The drawbacks of cloning are well-known from research on the more general
issue of software clones. Yet, despite a substantial body of research [2], there is
no universally accepted directive for how to proceed with clones. In the seminal
work by Fowler [3], clones are deemed one particular kind of �bad smell�. In
this view, a refactoring towards a better suited abstraction is generally recom-
mended. Empirical studies lead to a more nuanced view: Kim et al. [4] identify
di�erent types of clones, some of them warranting a refactoring towards suitable



abstractions, others rendering such e�orts clearly unjusti�ed. Still, despite con-
troversy on the question of how to proceed with clones, there appears to be a
consensus that software clones �should at least be detected � [5].

While numerous automated clone detection techniques for programming and
modeling languages have been proposed [6], no speci�c ones have emerged for
model transformation languages. The lack of such techniques is particularly sur-
prising since existing model transformations may be a�ected heavily by cloning:
Unlike in the case of most programming languages, reuse mechanisms for model
transformations are just starting to become available [7]. Clone detection can
be an enabling technology for the evolution of existing transformations towards
these reuse mechanisms. But the variety of potential use cases for clone detection
is even broader. It includes the quality assessment of existing transformations,
performance optimizations, and even the identi�cation of new design patterns.

The combination of di�erent model transformation paradigms and clone de-
tection use cases leads to a considerable design space for clone detection tech-
niques. The goal of this paper is to approach this design space from a speci�c
angle: We focus on graph-based transformation languages, one of the main model
transformation paradigms [8]. Graph-based languages are popular since they al-
low to specify behavior in a high-level and intuitive manner.
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Fig. 1: Rules a�ected by cloning (from [9]).

Example. Consider three in-
place model transformation rules
expressed in a graph-based lan-
guage. The rules, shown in Fig. 1,
specify variants of the move
method refactoring : Rule A de-
scribes the basic relocation of
a method between two classes
related through a �eld. Rule B
additionally creates a �wrapper�
method as a delegate for this
method. Rule C adds an anno-
tation to mark the wrapper as
deprecated.

Such rule sets are often cre-
ated by copying a seed rule and
modifying the copies. If a rule
set contains many copied rules,
maintaining it may be daunting
and error-prone. It is advisable
to provide dedicated support for
the editing of such rules. For in-
stance, the rules could be uni�ed
using a reuse concept provided
by the transformation language. Alternatively, the consistent editing of the rules
could be facilitated by tool support. In each case, clones need to be detected �rst.



Contributions. In this paper, we make the following contributions:

• We discuss use cases of clone detection for model transformation lan-
guages. The discussion is informed by recent developments in research
on model transformations and software clones.

• Based on these use cases, we identify �ve key requirements for a clone
detection technique for graph-based model transformations.

• We propose a customization of existing model clone detection techniques
to address these requirements. To explore the feasibility of this idea, we
provide experimental data and experiences.

This work is the �rst to investigate clone detection for model transformations
systematically. While we have applied clone detection in an ad-hoc manner in
a recent work [9,10], the outlined contributions, in particular the experimental
data from adapting and applying di�erent clone detection techniques, are new.

The rest of this paper is structured as follows. In Sect. 2, we outline the identi-
�ed use-cases. In Sect. 3, we �x preliminaries. In Sect. 4, we propose requirements
derived from the use-cases. We discuss our customization of existing techniques
in Sect. 5 and our evaluation of this approach in Sect. 6. After discussing related
work in Sect. 7, we conclude and suggest future research directions in Sect. 8.

2 Use cases

In this section, we introduce potential use cases. In each case, we pair a descrip-
tion of the use case with an account of the research state of the art.

Clone refactoring. The replacement of clones with a suitable reuse mecha-
nism is a typical refactoring process [3]. Its outcome is a semantically equivalent,
yet syntactically re�ned representation of the input artifacts. In the case of model
transformations, reuse approaches such as rule inheritance [11], re�nement [12]
or variability-based rules [13] have emerged recently and are now available to
developers. For instance, the rules in Fig. 1 can be expressed as one base rule
with two sub-rules, or as one variability-based rule. Usually, such refactorings
are performed manually. In legacy transformations with hundreds of rules, such
a task is daunting and error-prone. An automated clone detection technique is
an important prerequisite for automating this process.

Clone management. A suitable clone refactoring may not always be avail-
able. Even if the language provides a reuse mechanism, this mechanism may not
match the scale or granularity of a�ected clones. For instance, an external reuse
mechanism [7] does not help avoiding duplications in the same rule set, such as
that shown in Fig. 1. We explore this issue further in Sect. 4. Furthermore, a
refactoring may not always be desirable: It has been observed that expert devel-
opers create software clones intentionally with speci�c maintainability-related
bene�ts in mind [5]. In these situations, the remaining maintainability draw-
backs can be mitigated by tool support: A recent idea is to manage clones,
using a system to monitor all clones constantly and to update a�ected artifacts
automatically when one of them is edited [14,15].



Assessing speci�cations and languages. Clone detection can be used
during the assessment of transformation speci�cations, for instance, in a quality
assurance process or during the evaluation of solutions in a student assignment.
Furthermore, the number of detected clones might be an indicator that the reuse
mechanisms of the employed model transformation language are not adequate or
not used enough. The detection of frequent patterns in transformation speci�ca-
tions can even lead to the identi�cation of new design patterns and antipatterns.
In contrast to object-oriented programming languages, where a catalog of fun-
damentally accepted patterns is available, the identi�cation of transformation
patterns is a recent idea [16]. Clone detection may contribute to this emerging
branch of research by supporting the discovery of new design patterns.

Usability improvements. The level of support o�ered by most transforma-
tion editors to developers is below that o�ered by programming language IDEs.
For instance, none of these editors bene�ts from advanced auto-complete func-
tionality. Detecting clones introduced during an editing step could help providing
such functionality by asking the developer if the reuse of an existing element is
preferred. The clone detection algorithm would run in the background, much
like the Java compiler runs in the background of Eclipse.

Performance improvements.While the impact of software clones on main-
tainability has been studied intensively, maintainability is by no means the only
quality concern a�ected by cloning. Creating a large set of mutually similar rules
may also entail a substantial computational e�ort during the application or anal-
ysis of these rules. As a result, cloning may give rise to longer execution times
or even render entire transformations infeasible. Blouin et al. report on a case
where a rule set of 250 similar rules was too large for execution [17]. While most
existing performance optimizations for model transformations focus on acceler-
ating the application of individual rules, clone detection might be highly useful
in improving the performance of a whole model transformation system.

3 Preliminaries

In this section, we present formal preliminaries for clones in graph-based model
transformation systems. To address the requirements identi�ed later in this work,
we extend our formalization from [9] by the distinction of full and incomplete
clones, as well as scopes. We leave the notion of �graph� unspeci�ed, which allows
us to insert a graph kind with certain desired features. For instance, meta-model
conformance and attributes can be expressed using typed attributed graphs [18].

De�nition 1 (Rule) A rule r = L
le←− I

ri−→ R consists of graphs L, I and R,
called left-hand side, interface graph and right-hand side, respectively, and two
embedding morphisms, le and ri. A transformation system is a set of rules.

The rules in Fig. 1 conform to this de�nition, representing it in an integrated
form: Elements of I are annotated with the action preserve, elements of L \ I
and R \ I with the actions delete and create.



Our de�nition of clone re�ects the idea that rules specify structural patterns:
The left-hand side is a pattern to be matched in the source model. The right-hand
side is a pattern specifying actions to derive the target model. Thus, we de�ne
�clone� as common sub-pattern being present in a set of rules. Such a sub-pattern
is a fully formed rule itself, an idea captured by the concept of subrules.

De�nition 2 (Subrule) Given a pair of rules r0 = (L0
le0←− I0

ri0−→ R0) and

r1 = (L1
le1←− I1

ri1−→ R1) with embeddings lei, rii for i ∈ {0, 1}, a subrule
morphism s : r0 → r1, s = (sL, sI , sR) comprises injective morphisms sL : L0 →
L1, sI : I0 → I1 and sR : R0 → R1 s.t. (1) and (2) in Fig. 2 commute and

(i) the intersection of sL(L0) and le1(I1) is isomorphic to I0,
(ii) the intersection of sR(R0) and ri1(I1) is isomorphic to I0, and
(iii) L1 − (sL(L0)− sL(le0(I0))) is a graph.

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 2: Subrule morphism.

Conditions (i)-(iii) ensure that a sub-
rule always performs the same actions on
related elements as the original rule.

For example, in Fig. 1, A is a subrule
of B since A can be injectively mapped
to B and the actions on the original and
mapped elements are identical.

Given a set of rules, a clone is a subrule
that can be embedded into a subset of this rule set.

De�nition 3 (Clone) Given a set R = {ri|i ∈ I} of rules, a clone CR = (rc, C)
over R consists of rule rc and set C = {cj |j ∈ J, J ⊂ I} of subrule morphisms
ci : rc → rj. A clone CR induces a set of a�ected rules Ra�(CR) = {r ∈
R | ∃c ∈ C : rc → r}.

In the example, any subrule of rule A is a clone over the entire rule set {A, B, C}
since it can be embedded in each of these rules.

We discern full clones from partial clones. A full clone is a largest subrule,
i.e., one not fully covered by another clone over the same subset.

De�nition 4 (Full and partial clone) A clone CR = (rc, C) over a set R of
rules is a full clone i� there is no clone C ′

R = (r′c, C′) over R with a subrule
mapping i : rc → r′c such that i 6= id. Non-full clones are called partial clones.

Name Rules Size

C1 {B, C} 10
C2 {A, B, C} 8

Table 1: Full clones in the
running example.

The full clones present in the example rules are
listed in Table 1. Clones are given by their size,
calculated as the total number of involved nodes
and edges. In particular, C2 represents all nodes and
edges found in rule A. In addition, C1 incorporates
the nodes and edges present in B, but not in A.
All subrules of A except for the complete rule are
partial clones. Please note that we omit attributes
here for simplicity.



In the established taxonomy of software clones [2], our de�nition includes Type
I and II clones, identical and almost identical (except for naming) duplications.
Furthermore, depending on the selected base graph kind, the de�nition may ex-
tend to Type III or near-miss clones, di�ering just in the presence or absence
of certain attributes. In contrast, Type IV or semantic clones cannot be cap-
tured using syntactic properties, as we do. Identifying semantic clones in rule
sets requires to analyze their behavior, an interesting avenue for future work.

We further distinguish clones based on their scope.

De�nition 5 (Scope) The scope of a clone is either Micro, Internal or
External.

scope(CR) =


Micro |Ra�(CR)| = 1

Internal |Ra�(CR)| ≥ 2 and ∃ transformation system T
s.t. Ra�(CR) ⊂ T

External else

This de�nition is illustrated in Fig. 3. Micro-clones are pattern duplications
within the same rule. In the case of code clones, an e�ect has been observed that
the last in a set of micro-clones is particularly prone to errors [19]. Internal clones,
as exempli�ed in our running example, extend to multiple rules within the same
model transformation system. Transformation systems are prone to internal
clones if they capture multiple variants of a rule: Some included actions may be
common to all variants, others optional. External clones shared between multiple
transformation systems may occur if a system or parts of it are adapted for a
new purpose, for instance in exogenous transformations: The target language of
the transformation may be replaced while retaining the source language.

The reuse mechanisms found in transformation languages [7] correspond to
these scopes. Micro-clones can be avoided by specifying multiplicity at the level
of individual graph nodes and edges [20]. Internal clones can be replaced using
reuse mechanisms such as rule inheritance [11], re�nement [12], or variability-
based rules [13]. A suitable alternative to the creation of external clones are
external reuse approaches, such as generic model transformations [21].

Micro-clones
Duplications within the

same rule

Internal clones
Duplications across rules in the
same transformation system

External clones
Duplications across multiple 

transformation systems

Fig. 3: Granularity of clones in model transformation systems.



4 Requirements

In this section, we present key requirements for a clone detection technique for
graph-based model transformations. The requirements were identi�ed from the
use cases introduced in Sect. 2. We summarize them in Table 2.

Requirement Summary Target use case

U1 U2 U3 U4 U5

R1: Pattern-based Must identify common structural patterns. � � � � �
R2: Performance Must be able to deliver results rapidly. � � � � �
R3: Exhaustiveness Must prefer full over partial clones. � � � � �
R4: Scope Must operate in a speci�c cloning scope. � � � � �
R5: Tool integration Must integrate with existing tool environments. � � � � �

Table 2: Key requirements for clone detection techniques in the identi�ed use
cases: Clone refactoring (U1), clone management (U2), assessment (U3), usabil-
ity improvement (U4), performance improvement (U5). � = Hard requirement,
� = Soft requirement, � = Not required.

(R1) Pattern-based. In accordance with our de�nition of clones, the iden-
ti�cation of structural patterns is a hard requirement in all identi�ed use cases.
A detection technique capable of identifying cloned patterns is required, rather
than one aimed at identifying pairs of similar elements. The latter typically as-
sumes that individual elements contain a signi�cant amount of information, such
as names [22]. In rules, conversely, nodes and edges usually express only limited
amounts of information, such as just a type and an action. Moreover, for the per-
formance improvement use case, it is crucial to �nd patterns; individual elements
in isolation are hard to handle e�ciently during rule application [23].

(R2) Performance. Clone detection needs to support scenarios with many
rules and large individual rules � arguably situations where maintainability is
problematic [24]. In such scenarios, performance becomes a signi�cant challenge.
The task at hand is pattern-mining, the identi�cation of structurally correspond-
ing subgraphs, which boils down to the NP-complete sub-graph isomorphism
problem [25]. Clearly, a high execution time in the range of hours or days would
not be bene�cial for use cases that are applied constantly, such as refactorings.
Still, a high latency may be acceptable if clone detection is to be used in a nonre-
curring manner: Performance optimizations can be carried out statically before
running the transformation. Clone management may require a one-time setup of
the transformation system. Yet even in such cases, execution time is not the only
issue � a large search space may lead to memory-related program terminations.

(R3) Exhaustiveness. To deal with the computational cost, a clone detec-
tion tool might trade-o� performance for exhaustiveness: It may apply a heuristic
to trim its search space. As a result, certain duplications may not be considered,
leading to the reporting of partial clones (Def. 4). In three use cases, this kind
of outcome is problematic: In clone refactoring, using partial clones as a starting



point leads to unnatural results that retain certain duplications. A clone manage-
ment tool that only propagates arbitrary updates to corresponding instances is
undesirable. The quality of a speci�cation may be assessed incorrectly if the full
extent of cloning is not discovered. In contrast, exhaustiveness plays no evident
role in auto-completion features and performance optimizations that normally
operate on a best-e�ort basis.

(R4) Scope. Since all identi�ed use cases operate on a speci�c scope, a
clone detection technique needs to match this scope. For instance, during clone
refactoring, it is essential that the upfront clone detection step operates in a scope
where a suitable reuse mechanism is available for refactoring. The refactoring of
internal clones requires an internal reuse mechanism, while that of external clones
requires an external reuse mechanism (see the discussion after Def. 5).

(R5) Tool integration. It is best to enable the exploration of clones in the
environment familiar to maintainers, that is, their transformation editor. Even in
scenarios where clone detection is an upfront step to an automated refactoring,
developers need to inspect the reported clones to in�uence the refactoring re-
sult. This requirement can be neglected in performance optimizations since they
are usually transparent to the user, and to some extent in usability-oriented
recommender systems that use clone detection as a background technique only.

5 Adapting Existing Clone Detection Techniques

In this section, we explore the idea that existing clone detection techniques can
be adapted to the requirements of graph-based model transformations.

Since patterns are abstractions of model structures, the most suitable can-
didate techniques are those focusing on model clone detection. We consider two
techniques, eScan [26] and ConQAT [27], as they allow us to address R1, the
identi�cation of identical patterns in their input models. Both techniques were
originally devised for the domain of Simulink models. It is noteworthy that they
may not seem a natural �t for our purpose: Simulink models are structured based
on control �ow, while rules do not prescribe a speci�c navigation order.

Both techniques apply the same basic process: First, a suitable encoding is
provided as input. Second, the actual clone detection takes place. Third, the
results are post-processed to retain only the most useful results.

Phase 1: Creating an encoding. Both eScan and ConQAT assume a
directed, labeled graph as input data structure. We devised a suitable encoding
of graph transformation rules: (i) To represent the graph spans constituting a
rule as one graph, we use the integrated representation indicated in Fig. 1. The
action assigned to an element is re�ected in its label. This encoding allows us to
capture the subrule relation: For instance, a clone never includes the left-hand
side instance of a preserve node while neglecting the right-hand side counterpart,
which would lead to invalid results during clone refactoring. (ii) To preserve
the typing information of an element, we encode its type as part of the label.
(iii) We represent attributes as additional elements in the graph. Each attribute



becomes a pair of a node and an edge, labeled with the attribute value, type and
action. Encoding attributes as distinct elements allows us to account for reuse
mechanisms that accommodate the attribute level.

Phase 2: Clone search. We use the search phases of the considered ap-
proaches in a black-box manner. For completeness, we still give a brief account
of the internal workings of these approaches. Details are found elsewhere [26,27].

ConQAT proceeds by �nding pairs of nodes with the same label and com-
bining these node pairs to clone pairs. A clone pair represents two isomorphic
sub-graphs of the input graph. To group only promising node pairs together, a
heuristics is applied. To this end, a similarity function is used, comparing the
neighborhoods of two input nodes. Starting with one of the node pairs with the
highest similarity value, ConQAT executes a breadth �rst search to �nd a clone
pair of the largest possible size, i.e., number of included node pairs. In each step,
one of the node pairs of highest similarity is used to extend the clone pair.

In the example, there are 26 relevant node pairs.1 The �src� nodes in Rules B
and C are determined most similar as they share the largest number of common
adjacent nodes and edges. Starting at this pair, phase 2 produces six clone pairs,
four of size 4 (rule A with corresponding parts of rule B and C, and reversed)
and two of size 5 (rule B with the corresponding part of rule C, and reversed).

eScan works by systematically deriving all clone fragments, i.e., sub-graphs
with an isomorphic counterpart, contained in the input graph. Starting with
sub-graphs comprising of just one edge and its source and target node, eScan
produces larger sub-graphs incrementally. In each iteration, given the cloned sub-
graphs with k edges, eScan �nds the set of (k+1) edge sub-graphs by including
additional edges from the graph. Sub-graphs without isomorphic counterparts
are discarded. Isomorphy between sub-graphs is detected by comparing their
canonical labels, an encoded representation of their elements. An optimization
ensures that each sub-graph is used as a starting point just once.

In the example, the input graph contains 15 sub-graphs of size 1: four in rule
A, �ve in rule B and six in rule C.1 With the exception of the annotations edge
in rule C, each of these sub-graphs is a clone fragment and is consequently used
to derive sub-graphs of size 2. After termination, there are 14 clone fragments
of size 1, 16 of size 2, 16 of size 3, 11 of size 4, and 2 of size 5.

Phase 3: Post-processing. In both approaches, the result of phase 2 is clus-
tered, producing sets of isomorphic subgraphs. The result may contain sets that
are completely covered by other sets. For instance, in the eScan result, the groups
containing the sub-graphs of size 1, 2 and 3 are completely covered by the group
of size 4. Covered groups are discarded since they are typically not useful to
developers. Furthermore, ConQAT and eScan report only connected sub-graphs.
Larger unconnected ones may be assembled from connected ones. To obtain
clones (Def. 3), we map the results of phase 2 back to the rules.

In the example, both approaches produce the output shown in Table 1. In
general, the employed strategy during Phase 2 may have implications for the

1 In favor of simplicity, we neglect attributes and their encoding in these illustrations.



exhaustiveness of the result (R3). Since eScan eventually produces every possible
sub-graph, it �nds all full clones (Def. 4) � assuming unlimited memory and
time. In practice, eScan has been shown not to scale up to larger models in the
Simulink domain [27]. In contrast, ConQAT shows good scalability behavior, yet
the employed heuristic might lead to some detected clones being incomplete.

6 Evaluation

In this section, we present an evaluation of our approach. We address the follow-
ing research question: Can the requirements for graph-based model transforma-
tion clone detection be satis�ed by adapting existing clone detection techniques?

Methods and Materials. Using our customization of ConQAT and eScan,
described in Sect. 5. we addressed the requirements as follows:

� ConQAT and eScan are pattern-based (R1) by design. Since this requirement
is important in all identi�ed use-cases, we selected these particular techniques
to investigate clone detection in model transformation rules.

� To study performance (R2), we applied each technique on rule sets from real
model transformation systems and measured execution time.

� While eScan guarantees exhaustiveness (R3) by design, we devised a custom
set-up to study the exhaustiveness of ConQAT: We fed the largest clones re-
ported by ConQAT as input to eScan-Inc [26], an incremental variant of eS-
can that allows continuing the clone search from clones of a given size. This
method, called ScanQAT, can �nd full clones missed by ConQAT. The num-
ber of full clones missed by ConQAT gives an indication of its exhaustiveness.

� To study scope (R4), we discuss how our customization of the existing tech-
niques accounts for the di�erent scopes of clones.

� To study tool integration (R5), we report on our experience with integrating
the studied techniques in the existing tool environment of the Henshin model
transformation language [28].

In the experiments for R2 and R3, we used rule sets from two transforma-
tion systems. The rule sets were chosen since they represent realistic, non-trivial
rule sets available to the authors (convenience sampling). Ocl2Ngc is a set of
rules from an OCL to nested graph constraint translator [29]. FmEdit is a set
of editing rules for feature models, used in the context of model di�erencing
[30]. We present statistical information on both rule sets in Table 3. The rules
in Ocl2Ngc are organized in sets of 4 to 7 rules. The rules in FmEdit are
organized in sets of 2 to 11 rules. In the case of Ocl2Ngc, we selected small,
average, and large rules as samples for our experiments, presenting them in the
table. In the case of FmEdit, we studied all rule sets. These sets provide a se-
mantic grouping of the transformations without prescribing a particular control
�ow. In fact, the Ocl2Ngc transformation exhibits an elaborate control �ow
expressed using units, an activity-diagram-like control mechanism, which we ne-
glected as it was orthogonal to the grouping into rule sets. To explore scalability,
we also applied the considered techniques to the entire rule sets.



Rule set #R #N #E #A

trE04 4 8.0 10.0 2.3
trE0506 4 8.0 10.0 3.3
trE1112 4 14.0 18.0 7.3
trE09 4 11.0 16.0 4.3
trE10 4 10.0 13.0 3.3
trE13 6 19.5 29.5 10.0
trE16 4 20.0 29.0 12.3
trE17 7 26.7 41.7 17.9
all 54 19.7 30.7 10.0

(a) Ocl2Ngc

Rule set #R #N #E #A

a.arbitrary 7 3.9 5.1 2.7
a.generalize 9 3.2 4.3 2.2
a.refactor 2 2.0 1.0 2.0
a.specialize 9 3.1 3.6 3.0
c.arbitrary 4 5.3 9.3 4.5
c.generalize 8 6.9 35.8 8.5
c.refactor 11 6.6 17.0 4.7
c.specialize 7 8.1 39.9 7.4
all 57 5.2 15.8 4.6

(b) FmEdit

Table 3: Sample rule sets with number of rules (#R) and average number of
nodes (#N), edges (#E), and attributes (#A) in each rule.

We created an implementation prototype for our experiments, implementing
the customization outlined in Sect. 5. For Phase 2 and the clustering step of
Phase 3, in the case of ConQAT we used the publicly available implementation2.
We created our own implementation of eScan as no existing one was available to
us. We ran all experiments on a Windows 7 system (3.4 GHz; 8 GB of RAM).

Results and Discussion. We applied the techniques on all rule sets, yielding
the results shown in Table 4. For each combination of technique and rule set,
we show the largest and the broadest clone. The largest clone is the one with
the greatest number of common elements. The broadest clone is the one found
in the greatest number of input rules; ties are broken by selecting the one with
the greatest number of common elements.

Performance. ConQAT took between 1 and 544 msec for each individual rule
set. For the full rule sets, it took 26.5 seconds and 783 msec. Our ScanQAT and
eScan implementations took between 2 msec and 13.5 seconds for smaller rule
sets. On the larger ones, they terminated with memory over�ow errors or did
not terminate within one hour. While our implementations could be �awed, this
experience is in accordance with earlier experiments in the Simulink domain [27].

Exhaustiveness. Where available, the clones reported by ConQAT, ScanQAT
and eScan were identical in size. Only in the case of two larger individual sets
and the entire rule sets, both ScanQAT and eScan did not scale up. In these
cases, we cannot evaluate the exhaustiveness of ConQAT. In all other cases, the
largest and broadest clones reported by ConQAT were full clones. The largest
clones found by ConQAT for all rules were larger than those in the individual
rule sets � these clones spanned over several rule sets. In sum, it is indicated
that ConQAT is generally suitable to address the exhaustiveness requirement.

Scope. The encoding described in Sect. 5 can be used to apply the consid-
ered techniques on all desired scopes: The input graph provided to the technique

2 https://www.cqse.eu/en/products/conqat/install/



ConQAT ScanQAT eScan

Rules R N E A R N E A R N E A

trE04 2 7 8 1 2 7 8 1 2 7 8 1
4 6 5 1 4 6 5 1 4 6 5 1

trE0506 2 7 8 2 2 7 8 2 2 7 8 2
4 6 5 2 4 6 5 2 4 6 5 2

trE09 2 10 14 3 2 10 14 3 �
4 9 11 3 4 9 11 3 �

trE10 2 9 11 2 2 9 11 2 2 9 11 2
4 8 8 2 4 8 8 2 4 8 8 2

trE1112 2 13 16 6 2 13 16 6 �
4 12 13 6 4 12 13 6 �

trE13 2 20 30 10 � �
6 2 1 1 � �

trE16 2 19 27 11 2 19 27 11 �
4 18 24 11 4 18 24 11 �

trE17 2 28 42 19 � �
7 4 2 1 � �

all 2 33 55 16 � �
31 2 1 1 � �

(a) Ocl2Ngc

ConQAT ScanQAT eScan

Rules R N E A R N E A R N E A

a.arbitary 2 3 2 0 2 3 2 0 2 3 2 0
2 3 2 0 2 3 2 0 2 3 2 0

a.generalize 2 3 2 0 2 3 2 0 2 3 2 0
2 3 2 0 2 3 2 0 2 3 2 0

a.refactor 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

a.specialize 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

c.arbitary 2 4 5 1 2 4 5 1 2 4 5 1
3 2 1 0 3 2 1 0 3 2 1 0

c.generalize 2 5 7 2 2 5 7 2 2 5 7 2
7 2 2 0 7 2 2 0 7 2 2 0

c.refactor 2 6 13 1 2 6 13 1 2 6 13 1
10 2 1 0 10 2 1 0 10 2 1 0

c.specialize 2 5 7 2 2 5 7 2 2 5 7 2
6 3 2 0 6 3 2 0 6 3 2 0

all 2 8 18 1 � �
18 3 2 0 � �

(b) FmEdit

Table 4: Results. For each rule set, the largest (�rst row) and the broadest (second
row) clones found are detailed with their number of rules (R) and number of
nodes (N), edges (E), and attributes (A). ��� denotes memory-related program
exits or execution times longer than one hour.

may represent one rule as well as multiple rules from the same or di�erent trans-
formation systems. An interesting edge case we observed in the larger rules of
Ocl2Ngc includes clones that cover other clones of a separate scope: Internal
clones may exhibit multiple embeddings to the same rule, i.e., cover a micro-
clone. The preferable directive in this case depends on the use case. For instance,
if adequate reuse concepts are available, clones can be refactored incrementally,
�rst explicating the reuse inside the rule and then that across multiple rules.

Tool integration. To explore the integration with existing tools, we designed
and implemented an Eclipse plug-in on top of the Henshin language [28]. We de-
vised a custom Clone Detection view as an extension to the Henshin transforma-
tion editor, listing reported clones. When the user selects an entry in this view,
the corresponding elements are highlighted in the editor. This view can be com-
bined with most considered use-cases, for instance, by serving as an entry point
for a clone refactoring. We describe the use of this plug-in in another work [31].

Threats to validity. A threat to external validity is our limited sample size of
rule sets from two transformation systems. While the studied scenarios are het-
erogeneous, more examples are required to justify extensive generality claims.
A threat to construct validity concerns our study of exhaustiveness. We have not
compared the results against a list of known clones, which would be the most
reliable strategy. Unfortunately, such lists are hard to produce manually for
large rule sets. Furthermore, we focus on largest clones, neglecting smaller ones.
While more comprehensive exhaustiveness studies are desirable, large clones are
arguably the most relevant in refactorings and performance optimizations.



Conclusions. In conclusion, ConQAT, ScanQAT and eScan were on par with
regards to all identi�ed requirements except performance, where ConQAT out-
performed the other approaches. Notably, the promising exhaustiveness results
for ConQAT complement the �ndings from our recent work where we used this
technique to construct rules in a performance optimization scenario [9]. This
�nding indicates that ConQAT is potentially useful in all considered use-cases,
a hypothesis that still needs to be validated for larger industrial examples.

7 Related Work

Several more techniques for model clone detection have been proposed. While the
approaches by Störrle [22,32] and Ekanayake et al. [33] enable the identi�cation
of groups of similar elements in UML and business process models, respectively,
we focus on the detection of identical patterns. Liang et al. [34] propose a suitable
technique based on identifying longest sub-sequences in paths through the input
models. The technique shows a comparable accuracy to that of ConQAT while
yielding a runtime improvement. We focus on ConQAT due to its publicly avail-
able implementation that fully satis�ed the requirements in our experiments.
The approach by Alal� et al. [35] focuses on Type III clones in Simulink models.

A number of quality assurance approaches for model transformations are re-
lated. Van Amstel et al. [36] propose a variety of analytical methods, such as
metrics and dependency graphs. Without mentioning speci�cs, they also foresee
the use of clone detection. Kapová et al. [37] propose a set of quality metrics to
evaluate QVT-R transformations; number of clones is mentioned as one metric.
Wimmer et al. [38] introduce a refactoring catalog to improve the quality of M2M
transformations; duplicate code is mentioned as a bad smell. Gerpheide et al. [39]
present a quality model for QVT-O comprising 37 quality properties and four
quality goals: functionality, understandability, performance, and maintainability.

8 Conclusion and Future Work

In this work, we present the �rst approach to address clone detection for model
transformations, focusing on the graph-based transformation paradigm. We con-
sidered Type I and II clones, which are routinely produced when rules are created
in a copy-and-paste manner. Our experiments indicate that our adaptation of
ConQAT, a technique from the Simulink domain, is well-suited to satisfy the
requirements of clone detection in graph-based model transformations.

There are several directions for future work. To validate the hypothesis that
transformation developers can bene�t from clone detection, a user experiment
based on our prototypical tool is appropriate. Moreover, we aim to broaden the
scope of our work towards additional transformation and clone detection fea-
tures. First, to extend the expressiveness of the considered language, control �ow
and NACs can be addressed. Second, as our work focuses on graph-based model
transformation, we aim to establish whether similar results can be obtained for
other paradigms. Desirable clone detection features include support for Type III
and IV clones and, addressing the performance optimization and usability im-
provement use cases, an incremental execution mode that reuses earlier results.
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