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Abstract. During the unit testing of model-driven tools, a large num-
ber of models and test classes needs to be managed and maintained.
Typically, some of these artifacts are specified manually, some are gener-
ated automatically. Existing approaches to test management rely on the
available visual and textual modeling notations. As these notations are
not tailored to unit testing, distinct maintainability trade-offs arise.
In this paper, we propose a notation that aims to combine the benefits
of visual and text-based approaches. The notation is at the same time
visual and text-based, as it uses ASCII characters to emulate the familiar
graphical notations. In our evaluation based on real models, we identify
problematic model shapes challenging the scalability our notation, while
finding that it is well-suited to capture typical test models.

1 Introduction

In Model-Driven Engineering, software engineers employ a large variety of tools
to specify, transform, and manage models. Such model-driven tools, like all soft-
ware artifacts, are routinely affected by software defects.

A standard practice to detect and resolve software defects is unit testing, the
process of testing individual parts of a system to determine if they comply with
its behavior specification [1]. In the context of model-driven tools, behavior is
usually defined in relationship to the models processed by the tool. Therefore, a
minimal unit test contains a model together with some test code that feeds the
model as input to the tool. A growing body of work focuses on automating the
creation of such unit tests to enable a high coverage of the involved code parts
and meta-models [2–4]. As a result, a test suite typically contains a large number
of models, some of them specified manually, some created automatically [5].

An important concern of unit tests that has recently attracted attention is
their maintainability. Based on their findings from a broad developer study, Daka
and Fraser point out that ”even when automatically generated, a unit test may
be integrated into the regular code base, where it needs to be manually maintained
like any other code.” [6] Several issues contribute to this concern. Foremost, to
fix a bug uncovered during testing, maintainers need to understand the test case
eliciting the bug. Moreover, developers use tests as usage examples to understand
a system’s behavior. It is noteworthy that coverage and maintainability are not
necessarily conflicting goals: Daka et al. found that readable unit tests can be
generated without loss of coverage [7].



Arguably, a software artifact can only be as maintainable as the notation used
to express it allows it to be [8, 9]. Therefore, in this work, we address maintain-
ability as a function of the used specification notation. In the context of model
creation for testing, developers can choose between two kinds of notation:

The first are textual model notations or APIs. At first glance, this options
seems appealing as it allows developers to work with their familiar IDEs and code
editors. However, during maintenance, understanding models from textual spec-
ifications can be challenging. Consider a test for the pull up attribute refactoring
of class models (Fig. 1). In lines 2-10, a test model is created: A package acting
as container, classes, and their attributes are created. In lines 11-12, person is
set as common superclass for the professor and student classes. In lines 14-
15, the refactoring is applied and an assertion is checked. The API used here
is that of the Eclipse Modeling Framework (EMF), a modeling platform often
used to create models [11]. While test cases such as this one can be generated
automatically, understanding them is a necessary and time-consuming activity.

The second are graphical model notations. This option makes the benefits of
visual notations available, such as the intuitive appeal to the human cognition
and the use of layout to give cues [12]. In the case of unit tests, models need to

1 public void testRefactoring () {
2 EFactory fact = EcoreFactory.eINSTANCE;
3 EPackage pkg = fact.createEPackage ();
4 EClass person = fact.createEClass(pkg);
5 EClass professor = fact.createEClass(pkg);
6 EClass student = fact.createEClass(pkg);
7 EAttribute attr1 = fact.createEAttribute(
8 "name", String.class , professor);
9 EAttribute attr2 = fact.createEAttribute(

10 "name", String.class , student);
11 professor.setSuperClass(person);
12 student.setSuperClass(person);
13

14 new PullUpRefactoring(pkg).execute ();
15 assertTrue(person.getAttributes ().size()==1);
16 }

Fig. 1: Test specification with textual API.

1 public void testRefactoring () {
2 String path =

"test1/mod/refac/pkg.ecore";
3 EPackage pkg = (EPackage)

loader.loadResource(path);
4 new PullUpRefactoring(pkg)

.execute ();
5 assertTrue(person.getAttributes ()

.size()==1);
6 }

Fig. 2: Test specification with a graphical notation.



1 @Test
2 /** @InputModel EPackage pkg =
3

4 +------------+
5 | Person |
6 +------------+
7 A A
8 .-------' '-------.
9 | |

10 +--------------+ +--------------+
11 | Professor | | Student |
12 |--------------| |--------------|
13 | name: String | | name: String |
14 +--------------+ +--------------+
15 */
16 public void testRefactoring () {
17 EPackage pkg = VisiText.getPackage("pkg");
18 EClass person = pkg.getEClass("Person");
19

20 new PullUpRefactoring(pkg).execute ();
21 assertTrue(person.getAttributes ().size()==1);
22 }

Fig. 3: Specifying a test model using VisiText.

be viewed in the context of test code in order to be understood. However support
for traceability between models and test code is widely unavailable. Maintaining
models and code as separate artifacts as illustrated in Fig. 2 can be a complicated
process where users need to switch repeatedly between model and code editors.

In this work, we propose a third solution that aims to offer the “best of both
worlds” to developers. The key idea is to provide a notation that is visual and
text-based at the same time: it uses standard ASCII characters to emulate the
syntax of the modeling language at hand. This notation, called VisiText, can be
used to specify models in the Javadoc comments of test methods. In the usage
example in Fig. 3, boxes indicate classes. Generalization is denoted by arrows;
the character A resembles a closed arrowhead. To specify input and output mod-
els, parameters @InputModel and @OutputModel can be used. This way, direct
visibility and traceability of all models involved in the test case is established.

To support the use of such annotations as specification artifacts, the notation
is machine-readable. We provide a model compiler that extracts models from the
annotated test classes and converts them to the standard XMI format. Since this
compiler is added to the IDE’s build chain, it updates the XMI file automatically
whenever the code is changed. The contents of the model can be referred to via
a runtime library, using method calls such as those in lines 17–18. During test
execution, this library reads the XMI file from the file system. An overview of
this process is outlined in Fig. 4. Note that the only user involvement is the
editing of Java files. While we currently require the user to specify the models
manually, it is conceivable to generate them automatically, as we discuss later.

Benefits Our approach offers a unique combination of maintainability benefits:
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Fig. 4: VisiText: Overview

Readability. In comparison to textual notations, showing models in a two-
dimensional layout, rather than as a series of statements, is a promising
way to enhance their readability: The effort imposed on developers to work
out things in their minds is reduced. The use of layout can give cues beyond
the formal language semantics [12].

Tool independence. Visual diagrams are bound to specific tools. Requiring all
current and future maintainers to use these tools can be infeasible for techni-
cal, financial, and organizational reasons. Worse, downward compatibility of
these tools during evolution is not always ensured1. In contrast, our notation
can be viewed without any tool setup. Integrating the compiler is simple:
users include it into their preferred IDE by adding an entry to the build
configuration. Furthermore, VisiText is not bound to a specific modeling
platform. Other platforms can be supported through additional compilers.

Traceability. Models specified using visual tools are usually not directly trace-
able to code parts where they are used, which can lead to a complicated pro-
cess when users need to view a model to understand a unit test. In turn,
diagrams in our notation are directly present in the test code, thus estab-
lishing a direct traceability between models and referencing code.

Reusability. To establish a good test coverage during the unit testing of model-
tools, a large set of models needs to be produced. In our experience of testing
a model transformation using the default EMF tools, we found the creation
of many similar, but different model diagrams highly tedious, since diagrams
are maintained as separate resources with hard-wired links to the underlying
models. Our notation mitigates the encountered issues since its text-based
specifications can be easily copied and adapted.

Limitations Conversely, we are aware of a number of limitations of our ap-
proach. At this point, we address the two most crucial ones. The first concerns
the required manual effort: clearly, using plain text editors to create diagrams
as shown in Fig. 3 is infeasible; a simple action such as moving a box horizon-
tally would require to add or remove white-space in multiple lines. To our rescue
comes a relatively unknown, but highly helpful feature found in state-of-the-art

1 An infamous example is the release of the EcoreTools 2.0 diagram editor that brought
various usability improvements, but rendered EcoreTools 1.2 diagrams useless.



IDEs: in block selection mode2, users can select and edit “rectangles” and “lines”,
which allows them to create, delete, copy, paste and move boxes and lines, the
building blocks of our notation.

The seconds limitation concerns the scalability of our notation: the standard
space restriction to 80–100 characters per line and the lack of zooming facilities
in text editors prohibits the application of our notation to draw models with
hundreds of elements. We study the effect of this limitation and suggest various
mitigation strategies in our evaluation.

In our evaluation, we focus on the usefulness of our notation to specify typ-
ical test models as well as the scalability to larger models. Our overall findings
indicate that our approach is suitable to specify typical test models, while the
handling of large ones can be infeasible, depending on their shape. Note that we
do not claim that our approach establishes optimal maintainability; our goal is
to study its unique combination of maintainability trade-offs. A user study to
explore these trade-offs further is left to future work and will complement our
current findings.

Our notation and tool support currently support class and object diagrams.
We selected these diagram types based on the following rationale: Class mod-
els are frequently reported to be the most important notation in UML [13].
Moreover, since they are used to specify meta-models, class diagrams play an
important role for MDE in general. Class models are an important data struc-
ture in many different applications – for instance, code generators and quality
assurance tools. Object diagrams, in turn, can be used to specify models of arbi-
trary modeling languages in terms of their abstract syntax : objects can be used
to represent typed model elements, associations between objects denote links be-
tween model elements. Therefore, object diagrams allow us to establish support
for arbitrary modeling languages. An interesting future challenge is to extend
our notation to provide support for a larger class of concrete syntaxes.

This paper is an extended version of our earlier work [14] whereby two major
parts have been added: the language description and the evaluation.

The rest of this paper is structured as follows: We present our notation and
tool support in Sec. 2. We describe and discuss a preliminary evaluation in Sec. 3.
We discuss related work and conclude in Secs. 4 and 5.

2 Language description

In this section, we present the proposed notation and our tool support to make
the notation available to developers. We start with an example that illustrates its
main features. Aftwards, we give a reference of the available language concepts.
Finally, we give an overview of the implementation of our tool.

2 Eclipse: block selection mode, IntelliJ and Visual Studio: column mode.



2.1 Example: Class and Object Diagrams

Our example contains an application model for a company management system
and one possible instance of this model. In a testing context, such models could
be used to test a model transformation or a code generator.

Fig. 5: Example test with class diagram.

The application model, shown in Fig. 5, contains three classes: “Company”,
“Department”, and “Employee”. Compositions, denoted as arrows with a dash
sign, are used to assign departments and employees to a company. In addition,
a plain association relates employees to departments. Each association has car-
dinalities and a name, denoted in curly brackets. Attributes are used to specify
the budget and name of an department, and the name and type of an employee.
Attributes have a name and a type, separated by a colon. There are two em-
ployment types: part-time and full-time, being specified using an enumeration.

The @InputModel and @OutputModel annotations used to specify models
can have two or three parameters. The first, optional, parameter can be used to
specify the namespace URI of the underlying meta-model in quotation marks.
If no URI is provided, the diagram is considered a class diagram and processed
using the Ecore meta-model [11]. The second parameter is the root element’s
type, in this case EPackage. The third parameter is the root element’s name.

The company in the input model of Fig. 6 has two departments called R&D
and Accounting and three employees: Alice, Boss, and Bob. Each model ele-
ment has a (potentially empty) name and type, separated using colons. In the
example, only the root element theCompany has a name, allowing it to be ac-
cessed from test code. To assign the employees to the company, the diagram
contains abbreviated edges, denoted with [e]. Abbreviated edges are a way to



Fig. 6: Object diagrams



specify a “wormhole” in the diagram, aiming to reduce the writing and reading
effort by disposing visual clutter. In the specified output model, all employees
are removed, which reflects the expected behavior in this test case. In line 50,
this model is compared to the one produced by the method under test. The
assertEquals() method called here uses EMF’s default method for structural
equality checks, provided by the EqualityHelper class.

2.2 Language features

In what follows, we give a reference of available language features. Tables 1 and
2 show the available node and edge kinds for class diagrams, Table 3 shows the
features available for object diagrams. For each feature, we give a small usage
example and a description of the concept’s correct usage. We selected these
features since they represent the most important language concepts of class and
object diagrams. We evaluate the usefulness of this selection in Sect. 3.

Complete coverage of class diagram features is currently not provided. Gen-
erally, additional box- and line-based features (e.g., sub-packages, interfaces, and
stereotypes) are easy to include in the future. Some distinct shapes, e.g. dashed
lines in the case of interface realization, appear to be more problematic.

2.3 Implementation Prototype

The two main components of our implementation are a model compiler and
a runtime library. The model compiler can extract models from annotated test
cases and export them as XMI files to the file system. The runtime library makes
these XMI files available to be accessed from the test code. Installation of these
tools is intended to be simple: the model compiler be plugged into any given IDE
by adding an entry to the build configuration. The runtime library is a regular
library. Instructions for plugging these tool components into Eclipse are found
at https://github.com/frieger/visitext.

The development of these tools was straight-forward for the most part. The
compiler has two main components: a scanner that collects information on ob-
jects and their relations, and a model builder using this information and EMF’s
model and resource APIs to create the XMI files. To read these files, the runtime
library provides a set of convenience functions on top of EMF’s persistence API.
The main engineering effort was necessary for the development of the scanner.
In what follows, we shortly describe the main idea of its implementation.

To assemble the required information, the scanner first detects all boxes, us-
ing + signs as cues to identify corners. The content of these boxes is read in a
line-based fashion to extract information on names, types, and attributes. The
scanner goes on to identify edges connected to these boxes. It follows all edges
until another box or abbreviated edge label is hit. It detects and follows remain-
ing abbreviated edges, connecting those with identical labels and converting
multi-edges to multiple single edges.

We initially planned to use Java annotations to specify input and output
models, which proved infeasible since multi-line String literals are not supported



Feature name Example Description

Class A box made up of +, -, and |

characters. For concrete classes, the
class name is given in the first line.
Abstract classes have the keyword
<<abstract>> as first line, followed
by the name in the second line. Can
contain a section for attributes and
a section for methods, separated by
lines. Empty sections and their sep-
arators may be left out.

Enumeration A box made up of +, -, and |

characters, containing the keyword
<<enum>> as the first line, a name as
the second line, a line separator as
the third line, and a list of literals
(one per line).

Attribute An entry in the attribute section of
a class; consists of a name, followed
by a colon and a type. Primitive
types, String and Enumerations are
supported. Object types have to be
modeled as references. The charac-
ters +, -, or no character before the
name denotes the visibility as pub-
lic, private, or package-private.

Method An entry in the method section of a
box; consists of the method name,
method parameters in parentheses,
a colon, and the return type.
Multiple parameters and exactly
one return type are supported.

Table 1: Class diagrams: Nodes and sections.

in Java. Instead, as shown in the previous usage examples, we embed models in
the Javadoc of test methods. Conceptually, Javadoc is a suitable location for this
purpose since input and output models are part of a unit test’s documentation.

3 Evaluation

In this section, we present a preliminary evaluation of our approach. The goal
of this evaluation is twofold: First, we intend to assess the general usefulness of



Feature name Example Description

Generalization An arrow between two class boxes,
from the subclass to the superclass.
Currently needs to be pointed up-
wards.

Association A line between two class boxes, with
a name enclosed in {} and multi-
plicities at each line end. Directed
associations have an arrowhead of
the form <, >, ^ or v. Multiplicity
can be given in the form x..y or 1

or *, placed directly at the end of
an association.

Aggregation (com-
posite and shared)

A line between two class boxes, with
the end of the containing class re-
placed by # for a composite or @ for
a shared aggregation. Shared aggre-
gations are only available for UML.

Table 2: Class diagrams: edges.

the proposed notation in the context of realistic test models. Second, we aim to
explore the scalability issue, which we highlighted to be crucial due to the limited
amount of space and lacking zooming capabilities. We studied the following two
research questions:

– RQ1: How useful is our approach to specify test models in real test suites?
– RQ2: How well does our approach scale up to different model sizes?

We evaluated these research questions in the domain of class models, a se-
lection that is justified at the start of Sect. 2.

3.1 Subjects

We used different types of subject models to address RQ1 and RQ2. For RQ1,
to study usefulness in a realistic context, we considered existing test models. In



Feature name Example Description/Notes

Objects A box containing the object name,
followed by a colon, followed by the
object type, with + in all 4 cor-
ners. May contain a section for at-
tribute values, separated by a hori-
zontal line.
The name can be used to refer to
this object from other parts of the
model or for documentation.

Attributes The name of the attribute, followed
by =, followed by the value.
The value can be a String, a num-
ber, a boolean or an enumeration
literal

Reference An arrow between two objects, with
the name of the reference enclosed
in .
Only set semantics are supported.
The order of elements in the refer-
ence is unspecified.

Table 3: Objects diagrams.

the case of RQ2, to explore the scalability of our approach, we obtained class
models of varying size from an online repository. The models for RQ2 represent
a broader scope of contexts and purposes than just testing.

We obtained the test models for RQ1 from an existing code base. The models
were taken from EMF Refactor [15], an Eclipse incubation project familiar to the
authors (convenience sampling). EMF Refactor is a tool environment aiming to
enable a structured quality assurance process for models. Its main components
are a metrics computation tool, a smell detection tool, and a model refactoring
tool. We retrieved two test suites from the metrics component, one of them
constituted by UML class models, the other by Ecore class models.

In total, we obtained 11 Ecore and 26 UML class models. Table 4 gives an
overview of these models. Each row represents a set of test models for one specific
metric in EMF Refactor. The ID denotes the targeted metric, for instance, nassc
for number of associations. Columns provide size information for the included
models. We computed model size using the metric proposed by Störrle [16],
counting the number of visual elements – boxes, arrows, and member labels –
in the diagram. This simple metric is simple to compute on the one hand, while
potentially exhibiting a strong correlation to more sophisticated metrics on the



Group ID # Cl. At. Op. As. Gen. Size

Ecore haggec 2 3 0 0 2 0 5
maxidtec 3 2.3 0 0 0 1.3 3.7
dummy 3 2 3.3 0 0 0 5.3
nepec 3 1 0 3 0 0 4

UML cbc 4 1.8 0.5 0 0.5 0 2.8
dnh 1 0 0 0 0 0 0
dummy 1 1 3 0 0 0 4
hagg 3 2.3 0 0 1.3 0 3.7
maxditc 3 2.3 0 0 0 1.3 3.7
nassc 2 1 0 0 0.5 0 1.5
neatc 2 2 1.5 0 0 0 3.5
neipo 3 1.7 0 2 0 0 3.7
nih 2 3 0 0 0 1 4
nsupc2 3 2.3 0 0 0 1.3 3.7
tncp 2 1 0 0 0 0 1

Table 4: Test models used for RQ1. Each row represents a set of class models.
Columns give an ID for each set, the number of models included in the set
(#), their Average Number of Classes (Cl.), Attributes (At.), Operations (Op.),
Associations (As.) and Generalizations (Gen.) and Average Size.

other hand [16]. In accordance with our earlier conjecture that unit test models
tend to be of limited size, no model in the test suite exceeded a size of 7.

To study RQ2, scalability, we sampled class models from a comprehensive on-
line repository of class models [17]. The repository comprises 810 class diagrams
from experiments, development projects, and web resources. Our selection pro-
ceeded in two steps: First, we visually inspected 100 randomly selected models
for potential scalability issues. In this process, we found that many of included
models are of moderate size and did not demonstrate any specific scalability
issues. In addition, we noticed that the larger models in the repository occurred
in different shapes with different implications for the scalability of our approach.
We found five shapes to be problematic:

– “Panorama” Layout. Aligning a large number of elements horizontally, thereby
creating a “panorama” layout, is detrimental to meeting the horizontal space
restriction in code formatting guidelines.

– Long Member Names. Since the width of an element is determined by the
length of its longest member, layouting is inherently more difficult for models
with long member names; their elements use up more horizontal space.

– High Member-to-Class-Ratio. The height of an element is determined by the
number of its members. Despite the absence of a vertical space restriction, a
high vertical extension of classes might still complicate the layouting process.



– High Edge-to-Class Ratio. Association arrows are usually labelled. Thus,
maintaining a high number of association and generalization edges between
classes may lead to complications with intersections and label alignment.

– Large Network of Sparse Classes. An interesting edge case is the one where
a large network of sparse classes, classes with few or no members, is main-
tained. In this scenario, the layouting of edges may be challenging.

On the basis of these observations, we selected ten class models in total for our
experiment: five deemed as “typical” and five deemed as “large” (see Table 5).
The typical models were chosen as representative for average-sized class models
not showing any particular scalability issues. The large models were selected to
exhibit one of the problematic shapes each. This selection allowed us to explore
issues for typical cases as well as edge cases in our experiments.

To ensure that the typical class models were indeed representative, we com-
pared their size to the repository average, using the size metric from [16]. We
found that the selected models, ranging between a size of 44 to 59, resembled the
repository average of 48.4. Interestingly, the repository average and all typical
models were in the preferable size scope for developer efficiency in comprehension
tasks: according to [16], this scope ranges from 20 to 60.

Our selection was further informed by two criteria. First, we excluded class
models with features not supported by our prototypical implementation: inter-
faces, sub-packages, and stereotypes. Second, to avoid impairing the specification
process by language issues, we only used class models with English labels.

Group ID Cl. At. Op. As. Gen. Size Remark

Typical 433 8 15 13 2 6 44
564 8 22 21 2 5 59
159 8 35 0 5 2 50
262 9 35 5 8 2 58
794 12 19 11 6 6 54

Large 467 7 84 22 7 3 123 High member-to-class ratio.
616 10 49 45 9 22 135 High edge-to-class ratio.
276 13 43 0 27 2 85 Long member names.
108 29 111 0 25 3 168 Panorama layout.
611 45 0 0 0 50 95 Large network of sparse classes.

Full Repository ∅ 10.1 14.4 14.5 5.7 3.7 48.4
(n=810) ±6.4 ±20.4 ±24.3 ±5.8 ±5.0

Table 5: Test models used for RQ2. Each of the first ten rows represents one
sample model, given by its ID. The last row presents the repository average, ±
denoting the standard deviation. Columns give the Number of Classes (Cl.), At-
tributes (At.), Operations (Op.), Associations (As.) and Generalizations (Gen.),
Size and Remarks.



3.2 Set-Up

To address RQ1 and RQ2 in a qualitative and quantitative manner, we refined
these questions into two sub-questions each:

– RQ1.1: What is the impact of our approach on the complexity of the overall
test suite?

– RQ1.2: What is the coverage of modeling language elements included in the
models?

We quantified complexity in RQ1.1 by measuring the maximum number of
nested directories contained in the test suite. A high nesting depth entails an
increased effort when tracing test models to test code.

For RQ1.2, we studied the coverage of language features by counting the
number of test models supported by our approach.

– RQ2.1: What is the effect of the horizontal space restriction?
– RQ2.2: How much effort does the approach entail during the editing pro-

cess?

To study RQ2.1, we devised each specification with the goal to keep the
horizontal space limitation of 100 characters while retaining a layout closely re-
sembling the original one. If doing so was not possible, we loosened the limitation
to 120 characters. If this was still insufficient, we tried to rearrange the diagram
to fit into this limitation. When this was not possible, we ignored the space
limitation altogether. We measured the used amount of space in each example.

We quantified effort in RQ2.2 by measuring the time required to create each
specification and tracking the perceived effort of included sub-tasks. For all sub-
questions, we also gathered quantitative evidence by documenting our experi-
ences after performing each task.

3.3 Results and Discussion

Following a pre-study to compare the applicability two kinds of editors (detailed
in our later discussion), we decided to create all test models using the Eclipse
IDE with its included block selection mode feature. We used the notation intro-
duced in Sect. 2. All test models created for our experiments are provided online3.

RQ1.1 We compared the complexity in terms of the maximum number of nested
directories in the tests specifications.

Ts illustrated in Fig. 7, the original test suite contains a Java directory and
a directory for test artifacts. The Java directory has one class per test group,
containing several tests. The model directory is comprised of three levels of
nesting: A directory for each test group, comprising a directory for each test,
comprising a pair of the test model and a text file with additional information
each. In sum, the maximum nesting depth in the original specification was 3.

3 https://frieger.github.io/visitext



Our specification comprises just the Java source directory. All test models
and information relevant for the test specification are directly embedded in the
source code. This results in one Java class per test group, containing several
tests, their test models and test specifications. In sum, the maximum nesting
depth in our specification was 1.

Consequently, our approach reduces the complexity of the test project struc-
ture considerably. Consider Fig. 8 for an illustration of the simplified structure.
In the sunburst charts, innermost rings represent the top-level directory, whereas
each additional ring represents a separate level of directory nesting.

Using our approach, the complexity of existing test suites in terms of artifact
nesting could be considerably reduced.

Fig. 7: Directory structure in the original test suite.

RQ1.2 We studied coverage by determining the percentage of supported test
models from each test suite.

Our implementation prototype supported all 12 tests based on Ecore. In
terms of modeling languages feature, these test models are constituted by classes,
attributes, operations, associations and generalizations.

Our prototype was able to support 26 of the 31 UML test models. Five
models are unsupported because they use nested packages, a concept currently
not supported by our visual syntax. In addition, one model relies on datatypes
from external models, which we do not support as well. Two models did not
contain any elements except for their container package, which is supported.

In summary, the models contained in the test suited were generally minimal-
istic, with very few modeling language elements used. The models in the test



Existing project structure of Ecore
metrics tests.

Project structure of Ecore metrics tests
using our approach.

Existing project structure of UML met-
rics tests.

Project structure of UML metrics tests
using our approach.

Fig. 8: Sunburst charts visualizing the test specifications.

suite do not contain multiplicities other than 1, associations and references are
always unidirectional, and there are no compositions.

Fig. 9 shows a test case specified using our approach. The test model, com-
prising a class with two operations, is provided in the Javadoc comment of the
test method.

Our approach was suitable to capture realistic test models that feature a limited
set of language concepts.



Fig. 9: Using our approach to specify a test case

RQ2.1: We studied the impact of the horizontal space restriction on the
specification of models. Details are provided in Table 6.

The typical models fit well into the 100 or 120 character limit. At around
40 lines each, they are all of comparable vertical extent. We had to make slight
changes to the layout of model #564, where generalization arrows were not all
directed upwards. Our current implementation assumes a minimalistic alphabet
of one-character arrowheads; hence generalization, indicated by the A character,
is generally directed upwards.

The large models posed various problems. We could only fit one of them in
100 characters per line. Another one could be layouted to take up less than 120
characters per line. The remaining three took 154 to 168 characters of vertical
dimension. In what follows, we describe our experience of deriving specifications
for all considered large diagrams.

– Diagram #467 has a high member-to-class ratio. It is likely to be reverse-
engineered from an existing code base. Each member requires a separate line,
which results in a large vertical extent. The resulting diagram is 103 lines
high, taking up multiple screens.

– Diagram #616 has long member names. Layouting this diagram was straight-
forward. However, we could not fulfill our line length constraints due to the
very long member names. The diagram is 158 characters wide and 98 lines
long, spanning multiple screens horizontally and vertically.

– Diagram #277 has a high edge-to-class ratio. This diagram was hard to
layout. Overlapping elements are a problem with purely text-based notation.



Group ID Longest
line

Number
of lines

Total editing
time (min.)

Typical 433 100 36 11
564 95 39 18
159 99 32 13
262 83 37 16
794 116 38 21

Large 467 100 103 33
616 158 98 26
277 154 52 46
108 168 96 55
611 119 48 80

Table 6: Results for RQ2

Hence, in order to fit many edges between classes, the classes themselves need
to be drawn in larger boxes, increasing the overall extent of the diagram. Our
diagram takes up 154 characters horizontally and is 52 lines high.

– Diagram #108 has a panorama layout. We had to re-layout this diagram.
For this, we identified one class that connected two otherwise unconnected
parts of the diagram. We placed this class in the centre of the diagram
and arranged the two parts above and below this class. Nonetheless, the
resulting diagram is 168 characters wide and 96 lines high. However, since
it is essentially two diagrams connected by a single class in the middle, each
of the two parts fits on roughly one vertical screen.

– Diagram #611 consists of a large network of sparse classes. This diagram was
practically impossible to layout. The original diagram has many overlapping
and non-straight edges. We managed to fit it into 120 characters and 48
lines. However, this took far more effort than any of the other diagrams. The
resulting diagram contains multiple closely-spaced parallel edges, making it
very hard to read.

Our approach scaled up to class models of average size, while showing severe
limitations when used to specify larger models.

RQ2.2: We studied the effort imposed by our notation by measuring the
time it took a single developer to specify each example model. These times are
given in Table 6.

We could create the typical models quickly, taking around 15 minutes for
each. The large diagrams from our example data set took considerably longer,
ranging from 26 to 80 minutes. Diagrams with many edges, such as #277 and
#611, were especially hard to layout, requiring considerable time and effort. The
layouting process entailed the tasks of entering data (labels), drawing boxes, and



layouting (including the drawing of edges). To study the effort for these tasks
separately, we performed them in isolation for models #616 and #277. For the
other diagrams, data entry, drawing boxes, and layouting were integrated.

Entering the label data and drawing boxes for model #277 took 13 minutes,
yet layouting and edge drawing took 33 minutes. The reason for this exception-
ally high layouting effort is a very compact layout of the original diagram. The
original diagram spaces many edges close to each other. Fig. 10 illustrates one
of the occurrences that required complicated re-layouting, thus increasing time
needed for layouting. Diagram #611 consists of a large number of members per
class, but only few classes and associations. Data entry and box-drawing took
21 minutes, while layouting and drawing edges only took another 6 minutes.

Fig. 10: Problematic group of edge agglomeration.

The effort to specify average-size class models was reasonable, while the specifi-
cation of larger models partly showed to be impractical.

3.4 Discussion

Usefulness. Our approach was very suitable for expressing unit tests for
computing metrics on models. We argue that it can be generalized for a larger
variety of application domains where models for unit testing also tend to be
small. Since our approach allows to specify a pair of input and output models,
it may be especially suitable for test models for model refactorings. In addition,
reusing and slightly modifying model specifications is very easy with our ap-
proach. This makes it also suitable for testing model queries, where there might
be many similar input models.

Limitations for larger models. Horizontal space restrictions restrict the
amount of unused space available in a diagram. This space is often used to visu-
ally group related elements, which is impossible if there is little space. Existing
groupings may also be prone to be destroyed by re-layouting the diagram in or-
der to fit into existing space constraints, leading to visual clutter. Fig. 11 shows
an example of the impact of different maximum line lengths on the layout. The
specification within 100 characters gives a slightly more crowded impression,
while the one of larger horizontal extent reflects the grouping of sub-clases more
consequently.



Fig. 11: Textual test model specification with 100 characters per line (top) and
120 characters per line (bottom)



Graphical editors can overlay elements on top of each other. In text, each
position is used by exactly one character. Thus, our approach only allows very
limited overlapping of elements. In our implementation, only edges can cross.
This makes diagrams that make heavy use of overlapping elements difficult to
layout. Long names of members or associations amplify this problem: edges need
to navigate around unrelated association labels. This will result in more changes
of direction, making edges hard to follow.

Layouting diagrams with a large number of edges is challenging. Each charac-
ter in text is separated by a small amount of space to either side. This makes all
edges appear slightly discontinuous. Edges are not an uninterrupted line, making
them harder to follow. This might become a problem when very long edges or
a large number of edges are used in a diagram. Figure 13 provides an example.
Since edges and box outlines share the same characters in our representation,
closely spaced edges and boxes will make the diagram hard to follow. Alterna-
tively, the layout can be stretched horizontally, requiring longer line lengths.

+------------+
| :School |#--{teachers}--[c]
+------------+

+----------------+ +-------------+
| :Teacher [n=9] | [c]--->| :Teacher |
|----------------| |-------------|
| name = "Mary" |<---[c] | name = "Ed" |
+----------------+ +-------------+

Fig. 12: Model with multi-node and abbreviated multi-edge.

Mitigation strategies. The space limitation can be addressed by two kinds
of mitigation strategies. The first is to augment the notation to increase its
compactness. The second is to provide a mechanism to compose a larger model
from smaller ones.

To compact multiple links of the same type, edges can be multi-edges in our
notation, i.e., have multiple source or targets. To further increase compactness,
we have introduced abbreviated edges, a concept inspired by net labels in ECAD
software4. Another option to increase notational compactness would be multiple
objects of the same type by using node multiplicity, indicated by the character n
in Fig. 12. The example model in Fig. 12 shows a school with ten teachers, nine
of them named Mary, one named Ed.

Composing a larger model from smaller ones could be done in two ways: First,
a visual base model can be extended by adding model elements programmati-
cally. This option is already supported since models can be modified using our
API. Second, a facility to split models over several fragments can be introduced.
This option is left to future work.

4 e.g., KiCad, techdocs.altium.com/display/ADOH/Connectivity+and+Multi-Sheet+Design.
Retrieved on 2016-09-09.



Fig. 13: Visual clutter caused by a large number of closely-spaced edges

Layout-sensitive semantics. Usually, graphical model editors provide a
graphical representation of an underlying model. Conversely, in our approach,
models are created from an ASCII-based specification. This leads to a number
of unique challenges. Our approach relies on the proximity of elements to pro-
vide context. Role names of associations are specified by writing them directly
adjacent to the association. If the name is written close to the source, it will be
the role name of the source. Conversely, if it is written close to the target, it will



be the role name of the target. Graphical editors allow moving labels arbitrarily
if they are placed in an inconvenient location. Our approach requires proximity
cues for parsing, so this is not supported. There are various substructures in ex-
isting models that are problematic when it comes to expressing them using our
notation. Fig. 14 illustrates this problem. In the original diagram, role names
were moved away from their association end in order to fit more associations in
a small area. Fitting many associations in a small area exposes another pitfall
of text-based notation. Edges can accidentally capture neighboring edges’ mul-
tiplicities and role names if they are spaced to close to each other. Fig. 10 gives
an example of a diagram where we encountered this problem.

graphical diagram ambiguousity:
legalIdentifier and
0..1 could belong to
multiple edges

unambiguous solution

Fig. 14: Ambiguous specification

Syntax errors. In present-day visual and textual editors, developers are
supported by syntax checks, allowing them to discover specification errors early,
during editing rather than at runtime. Feedback on syntax errors is part of our
basic approach: Its central component, a model compiler, is able to return specific
error messages in case that syntax errors are found. These error messages are
forwarded to the IDE by means of the build script invoking the compiler.

3.5 Threats to Validity

External validity. We only considered models from two actual test suites. In our
discussion, we discussed different project kinds that might benefit from the treat-
ment proposed in our approach. Still, a larger variety of samples is required to
justify extensive generality claims. Furthermore, our experiences and time mea-
surements regarding specification effort are based on one developer and might
not generalize to a larger population. In our experiments, we focused on provid-
ing preliminary evidence for capabilities and limitations of our approach, using
an evaluation setup with a high internal validity. A complementary study max-
imizing external validity is intended as future work. Finally, we only considered
class models with English identifiers. The drawbacks related to the vertical space
limitations might be more relevant in languages with larger average word length.



Internal validity. Selection bias is one of the most important threats to internal
validity. Since we identified the scalability issues in larger models manually and
based on random samples from the repository, we cannot guarantee that the
results represent the most important issues in the total population. Still, our
setup allowed us to identify potential caveats and also to consider typical cases
as constituted by average models from the repository.

Construct validity. Our operationalization of usefulness focuses on limitations
during the creation and editing of test models. We did not study complementary
facets of usefulness, such as the readability of the created diagrams. Since they
employ a different aesthetics than the one familiar to developers, the created
diagrams may impose an increased reading effort. To mitigate this effect, we
studied if the approach is suited to capture the layout of the original diagrams.
Learnability is an additional aspect not studied; the proposed notation might not
be intuitive to other developers. We intend to assess the effect of our approach
on readability and learnability in the future.

4 Related Work

4.1 Testing model-driven tools and artifacts

OMG’s Human-Usable Textual Notation (HUTN) [18] is a textual notation for
instances of MOF-based meta-models. The construction of models for tests has
been pointed out as a key motivation for HUTN’s implementation in [19]. Sim-
ilar to our object diagram notation, HUTN provides a generic concrete syntax
that can be used to support a broad range of modeling languages. HUTN’s syn-
tax is structured around the containment tree of the specified model, which is
suitable to specify models with a limited number of cross-references. Conversely,
our notation is particularly suitable for models where cross-references play an
important role, that is, models that are “graph-like“ rather than “tree-like”.

A holistic approach to unit testing for model management tasks is provided
by EUnit [19]. EUnit provides a custom testing framework based on the Epsilon
Object Language. The involved models can be specified using a broad variety of
notations, including HUTN, and be mapped to and parametrized for particular
test cases. Test cases can be orchestrated using Ant tasks. Traceability between
models and code, an issue addressed by our approach, is not dealt with explicitly.

Another line of work is concerned with the testing of meta-models. Sadilek
and Weißleder propose an approach based on the specification of positive and
negative example models using a graphical tool [20]. Test code can be generated
automatically from these example models. López-Fernández et al. [21] propose
two approaches for meta-model testing, the first of them being example-based as
well. The examples can be specified using a textual notation or general-purpose
sketching tools; converters to produce test specifications are provided. The sec-
ond approach is based on specifying domain-specific invariants for the meta-
model. Similar to EUnit, these approaches are based on reusing existing visual
or textual languages to specify models.



4.2 ASCII-based Notations in Software Engineering

Several software engineering problems have been tackled using ASCII-based for-
mats. TextTest [22] is a tool for graphical user interface (GUI) testing based
on the capture-replay paradigm: Developers interact with the GUI under test.
After each interaction, a GUI snapshot is saved using ASCII-art, enabling auto-
mated regression tests. This approach is complementary to ours: Capture-replay
is only available for GUIs, while our approach targets model-driven tools. An-
other complementary approach [23] uses an ASCII-based model notation for
code generation. The authors mention converters from models to ASCII-based
class models and back; however, they do not explicate their realization strategy.
In [24], diagram parsing is used to recover grammars for existing programming
languages from reference manuals. The authors discuss an interesting solution
based on attributed multiset grammars [25]. [26] proposes a context-free grammar
for ASCII-art tables as found in network protocol RFCs.

4.3 Embedded Visualizations in Textual IDEs

The lack of visual expressiveness associated with textual notations has motivated
work on visualization in code IDEs. The JetBrains MPS language workbench [27]
supports a form of integrated textual and visual editing: Language developers can
define custom box-and-arrow type diagram views that are embedded into source
code editors. Such embedded views mitigate several of the problems of purely
visual or textual editing, such as comprehension effort and context switching.
Still, this approach is coupled to a specific IDE. Developers are forced to use this
IDE, which is undesirable if a particular preferred IDE exists in their domain. In
addition, specific IDEs come with an increased business risk: It is not guaranteed
that support is continued in the future. In contrast, our approach offers a drop-in
solution designed to support arbitrary IDEs. To combine the benefits of both
approaches, we consider customizing MPS to use its embedded views as front-end
editors for ASCII-art model representations.

mbeddr [28], an extension of JetBrains MPS targeted at embedded software
development, provides built-in visualizations for state machines. The Xtext lan-
guage workbench [29] allows to visualize instances of textual DSLs using the
ZEST visualization library [30]. Both approaches provide read-only visualiza-
tions, while the embedded views in MPS are also editable.

4.4 Deriving Visual Models from Textual Specifications

The identified trade-offs between visual and textual notations are also reflected
in recent approaches to derive visual models from textual notations. PlantUML5

allows specifying selected UML diagrams in a simple syntax and deriving a suit-
able visualization automatically. While this syntax is easy to adopt, the downside
of this approach is that the user cannot influence the outcome of the layouting

5 http://plantuml.com/. Retrieved on 2016-09-09.



process. Gregorics et al. [31] propose a refined approach where the user also spec-
ifies layout aspects of the generated visualization. A benefit of these approaches
compared to using a visual editor is their technology-independence. Still, visual
models and code relying on these models are maintained separately. Maro et al.
[32] investigate an approach for integrating graphical and textual editors for a
given DSL. The approach addresses the relevant problems of deriving a textual
editor and keeping it synchronized with the graphical editor. Yet, it does not
solve the challenges of ensuring an adequate layout in the visual notation and
integrating the visual notation with a version control system.

4.5 Model-driven testing

Model-driven testing (MDT) aims to derive tests from abstract specifications
such as coverage criteria [33], dedicated profiles [34], and visual contracts [35], or
model-transformation contracts [2]. Since these specifications are used to derive
plain test cases that need to be read and understood by a maintainer, these
works are orthogonal to our approach. To reap the benefits of these approaches,
we aim to provide converters for the derived test models.

5 Conclusion

5.1 Summary

Tests are of paramount importance in software engineering. We target the chal-
lenge of testing model-driven tools, a scenario where the challenge lies in main-
taining a large set of models and test classes. Instead of using external editors to
view and edit test models, we embed the models in the Javadoc comments ac-
companying the test cases. The approach is text-based and does not modify the
programming language’s syntax, allowing to use existing IDEs and editors. The
text-based visual syntax is designed to resemble the well-known graphical nota-
tions while allowing to reduce visual clutter. As in visual tools, model elements
are aligned freely, supporting comprehension through spatial clues.

Our preliminary evaluation indicates that the approach is useful to specify
models of small to moderate size. Such models are common in the context of
boundary analysis [36], where tests are edge cases, representing distilled essences
of critical scenarios. For larger models, we distinguished five problematic mod-
els shapes and applied our approach to each of them. We experienced that our
approach does not scale up well in most cases. Altogether, this finding is consis-
tent with evidence indicating a negative correlation between diagram size and
maintainability [16].

We address a set of challenges and solution ideas that we aim to investi-
gate more deeply in the future. These challenges include the development of
converters from external specifications to ASCII-art and the development of a
framework to support multiple modeling languages through their concrete syn-
tax. Tackling these challenges will lead to a set of domain- and IDE-independent
tools enabling developers to write tests more easily, combining the benefits of
Test-Driven Development and Model-Driven Engineering.



5.2 Future Work

Our object diagram notation provides support for creating models of arbitrary
MOF-based modeling languages. Still, developers may prefer the known domain-
specific concrete syntaxes from their application domains. To support extensi-
bility for arbitrary languages, we envision the development of a notation frame-
work, allowing customization for new languages by defining visual tokens and
their mapping to the underlying meta-model.

To enable the automated translation between external specifications and our
notation, converters are required. Sources of external specification may include
regular models in custom layout formats, PowerPoint and Visio documents, and
even photographed hand-drawn sketches. A promising technique to address this
challenge is provided by an ASCII-art generation heuristics that accounts for line
structures found inside an input graphic [37]. If such a technique is used, post-
processing is required to ensure that valid instances of the proposed syntax are
created. Furthermore, if the existing test models were generated automatically,
they might not have a layout in the first place or be too large to be visualized. To
support them, we intend to apply layouting [38, 39] and splitting tools [40–42].

In addition to tests, a variety of further use-cases of our notation can be
investigated. First, it can serve as a communication aid: developer communica-
tion over channels such as e-mail or instant messengers has been observed to
contain a wide variety of informal notations, including ASCII-art [43]. Second,
the notation can help as a documentation artifact. It allows usage examples and
counter-examples to be specified without relying on a graphical tools, rendering
it suitable for use in Javadoc and Wikis. In this area, MarkDeep6 is another
ASCII-based technique that has recently attracted developer attention7. Third,
the tool independence of our notation makes it suitable as a neutral exchange
format for conversion between proprietary diagram formats. In all of these use-
cases, our provided tool set can help to bridge the gap between informal sketches
and machine-readable diagrams.
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5. A. Garćıa-Domı́nguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and I. Medina-Bulo,
“EUnit: A unit testing framework for model management tasks,” in Model Driven
Engineering Languages and Systems. Springer, 2011, pp. 395–409.

6. E. Daka and G. Fraser, “A survey on unit testing practices and problems,” in Soft-
ware Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium
on. IEEE, 2014, pp. 201–211.

7. E. Daka, J. Campos, J. Dorn, G. Fraser, and W. Weimer, “Generating readable
unit tests for guava,” in International Symposium on Search Based Software Engi-
neering. Springer, 2015, pp. 235–241.

8. D. Fahland, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, and S. Zugal,
“Declarative versus Imperative Process Modeling Languages: The Issue of Main-
tainability,” in Business Process Management Workshops, vol. 43. Springer, 2009,
pp. 477–488.

9. A. van Deursen and P. Klint, “Little languages: little maintenance?” Journal of
Software Maintenance, vol. 10, no. 2, pp. 75–92, 1998.

10. P. Klint, T. Van Der Storm, and J. Vinju, “On the impact of DSL tools on the
maintainability of language implementations,” in Proceedings of the Tenth Work-
shop on Language Descriptions, Tools and Applications. ACM, 2010, p. 10.

11. D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling
Framework. Pearson Education, 2008.

12. A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr, G. Kadoda, M. Kutar,
M. Loomes, C. L. Nehaniv, M. Petre et al., “Cognitive dimensions of notations:
Design tools for cognitive technology,” in Cognitive Technology: Instruments of
Mind. Springer, 2001, pp. 325–341.

13. P. Langer, T. Mayerhofer, M. Wimmer, and G. Kappel, “On the Usage of UML:
Initial Results of Analyzing Open UML Models,” in Modellierung, vol. 19, 2014,
p. 21.
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24. R. Lämmel and C. Verhoef, “Semi-automatic Grammar Recovery,” Software: Prac-
tice and Experience, vol. 31, no. 15, pp. 1395–1438, 2001.

25. S.-K. Chang, “Picture Processing Grammar and its Applications,” Information
Sciences, vol. 3, no. 2, pp. 121–148, 1971.

26. A. Kay, D. Ingalls, Y. Ohshima, I. Piumarta, and A. Raab, “Steps toward the Rein-
vention of Programming,” Technical report, National Science Foundation, Tech.
Rep., 2006.

27. M. Voelter and K. Solomatov, “Language modularization and composition with
projectional language workbenches illustrated with MPS,” Software Language En-
gineering, vol. 16, 2010.

28. M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “mbeddr: an Extensible C-based
Programming Language and IDE for Embedded Systems,” in C. on Systems,
Progr., and Apps. ACM, 2012, pp. 121–140.

29. M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the
quick and dirty way,” in ACM International Conf. Object-Oriented Programming
Systems Languages and Applications Companion. ACM, 2010, pp. 307–309.

30. R. I. Bull, Model Driven Visualization: Towards a Model Driven Engineering Ap-
proach for Information Visualization. PhD diss., University of Victoria, 2008.
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