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Abstract

Model-Driven Engineering (MDE) is a software engineering paradigm
that aims to increase the productivity of developers by raising the ab-
straction level of software development. It envisions the use of models
as key artifacts during design, implementation and deployment. From
the recent arrival of MDE in large-scale industrial software develop-
ment – a trend we refer to as MDE in the large –, a set of challenges
emerges: First, models are now developed at distributed locations, by
teams of teams. In such highly collaborative settings, the presence of
large monolithic models gives rise to certain issues, such as their prone-
ness to editing conflicts. Second, in large-scale system development,
models are created using various domain-specific modeling languages.
Combining these models in a disciplined manner calls for adequate
modularization mechanisms. Third, the development of models is han-
dled systematically by expressing the involved operations using model
transformation rules. Such rules are often created by cloning, a practice
related to performance and maintainability issues.

In this thesis, we contribute three refactoring techniques, each aiming to
tackle one of these challenges. First, we propose a technique to split a
large monolithic model into a set of sub-models. The aim of this tech-
nique is to enable a separation of concerns within models, promoting
a concern-based collaboration style: Collaborators operate on the sub-
models relevant for their task at hand. Second, we suggest a technique
to encapsulate model components by introducing modular interfaces in
a set of related models. The goal of this technique is to establish modu-
larity in these models. Third, we introduce a refactoring to merge a set of
model transformation rules exhibiting a high degree of similarity. The
aim of this technique is to improve maintainability and performance
by eliminating the drawbacks associated with cloning. The refactoring
creates variability-based rules, a novel type of rule allowing to capture
variability by using annotations.
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The refactoring techniques contributed in this work help to reduce
the manual effort during the refactoring of models and transformation
rules to a large extent. As indicated in a series of realistic case studies,
the output produced by the techniques is comparable or, in the case of
transformation rules, partly even preferable to the result of manual refac-
toring, yielding a promising outlook on the applicability in real-world
settings.
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Überblick

Model-Driven Engineering (MDE) ist ein Paradigma der Softwaretech-
nik, in dem es darum geht, das Abstrationsniveau und dadurch die En-
twicklerproduktivität während der Softwareentwicklung zu erhöhen.
Hierzu lässt man Software-Modellen eine wesentliche Rolle während
Entwurf, Implementierung und Einführung eines Systems zukommen.
In jüngerer Zeit wurde MDE verhäuft in industriellen Projekten ho-
her Komplexität und großen Umfangs eingesetzt – ein Trend, den wir
als MDE im Großen bezeichnen. Wir betrachten drei Herausforderun-
gen, die durch den Einsatz von MDE in solchen Szenarien entstehen:
1. Modelle werden an verteilten Standorten, durch Teams von Teams en-
twickelt. Dabei führt die Verwendung großer und unzureichend struk-
turierter Modelle zu erheblichen Problemen, etwa zu einer erhöhten
Anfälligkeit für Editierkonflikte. 2. Große Systeme werden oft durch
einen Verbund von Modellen spezifiziert, die auf domänenspezifischen
Modellierungssprachen (DSMLs) basieren. Die Modelle heterogener
DSMLs in systematischer Weise zu integrieren erfordert geeignete
Modularisierungsstrategien. 3. Um die Entwicklung von Modellen sys-
tematisch zu beschreiben, spezifiziert man die dazu notwendigen Op-
erationen durch Modelltransformationsregeln. Modelltransformation-
sregeln werden oft durch Klonierung erzeugt, also durch das Kopieren
und Modifizieren vorhandener Regeln. Damit sind Nachteile für die
Wartbarkeit und Performanz der erzeugten Regelsysteme verbunden.

Im Rahmen dieser Arbeit präsentieren wir drei neue Refactoring-
Verfahren. Jedes dieser Verfahren zielt auf eine der benannten Heraus-
forderungen ab: 1. Wir stellen ein Verfahren für das Aufsplitten eines
monolithischen Modells in eine Menge von Teilmodellen vor. Dieses
Verfahren ermöglicht die Umstrukturierung von Modellen hin zu einer
Trennung der Belange. Bei der kollaborativen Entwicklung eines Systems
können die beteiligten Entwickler somit auf Teilmodellen arbeiten,
die für ihr aktuelles Arbeitspaket relevant sind. 2. Wir beschreiben
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ein Verfahren zur Kapselung von Modellkomponenten durch die Ein-
führung von Schnittstellen in einem Verbund von Modellen. Dieses
Verfahren ermöglicht es, in Modellen von heterogenen DSMLs Mod-
ularität einzuführen. 3. Wir präsentieren ein Verfahren, um Mod-
elltransformationsregeln, die gemeinsame Anteile aufweisen, zu ver-
schmelzen. Dieses Verfahren zielt darauf ab, die Wartbarkeit und Per-
formanz in Modelltransformationssystemen zu verbessern. Das Ver-
fahren erstellt variabiliätsbasierte Regeln, ein neuartiger Typ von Regeln,
in dem Variabilität anhand von Annotationen spezifiziert wird.

Die im Rahmen dieser Arbeit vorgestellten Verfahren ermöglichen es,
den manuellen Aufwand während des Refactorings von Modellen und
Modelltransformationsregeln erheblich zu reduzieren. In einer Reihe
von realistischen Fallstudien zeigen wir, dass die erstellten Modelle
und Regeln von vergleichbarer oder, im Fall von Regeln, teilweise
sogar von zu bevorzugender Qualität gegenüber dem Ergebnis eines
manuellen Refactorings sind. Wir versprechen uns daher eine hohe
Relevanz der Beiträge für MDE im Kontext industrieller Softwareen-
twicklung.
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Chapter 1

Introduction

The productivity of software developers can be substantially increased
by raising the abstraction level of the languages at their disposal. As
one of the most important and consistent threads running through the
entire history of software engineering, the advancement in levels of ab-
straction has enabled a shift in focus from hardware-centric to human-
oriented language paradigms. Milestones on the way to the state of the
art include structured [28], object-oriented [15], and finally, declarative
programming [66].

Model-Driven Engineering (MDE, [98]) has been established as a soft-
ware paradigm envisioning models as first-class citizens in the design,
implementation and deployment of software systems. MDE has al-
ready become an industrially accepted best practice in many applica-
tion domains such as automotive and aerospace development, where
the structure and behavior of complex systems are specified using mod-
els [65]. MDE includes, but is not limited to the practice of Model-
Driven Development (MDD, [105]), the automated translation of a
model towards a running software system. In Model-Driven Archi-
tecture (MDA, [104]), a well-known instantiation of MDD, models go
through a series of refinements from abstract to concrete: A computa-
tion independent model (CIM) becomes platform-independent (PIM),
platform-dependent (PDM), and finally, source code.

Catering to the different application domains and usage contexts of
MDE, a large variety of modeling languages has evolved. Inspired
by the success of general-purpose programming languages (GPLs), the
Unified Modeling Language (UML, [78]) has been devised and widely
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popularized as a general-purpose modeling language. In contrast to
textual GPLs, UML focused on visual notations, providing 14 diagram
types for purposes such as structural, behavioral, and deployment
modeling. Yet, due to rapidly evolving technologies and diversifying
developer groups, an increasing need for flexibility in the employed
modeling languages has manifested. In recent years, we saw a rise of
domain-specific modeling languages (DSMLs), providing abstractions
and notations tailored to various domains and user groups. DSMLs
are frequently developed using modeling platforms such as the Eclipse
Modeling Framework (EMF, [106]) or Xtext [34]. In these platforms, the
DSML is specified by defining a meta-model, a model of models. The
models conforming to this meta-model are the words of the DSML.1

In MDE, models are not static artifacts, but routinely undergo changes.
Model transformation, the automated modification or translation of a
model, is a key enabling technology for MDE [101], pervasive in all its
activities. Two major types of model transformation are distinguished:
endogenous and exogenous transformation [27]. An endogenous trans-
formation is either in-place, if it updates its input model, or out-place,
if it produces a new model of the same modeling language. Exam-
ples include model optimizations, refinements, and refactorings in the
context of quality assurance. An exogenous transformation produces
a model or textual artifact of a different language. Examples include
model translations, migration between DSMLs, and code generation.
Model transformation is supported by a large variety of dedicated lan-
guages. An important paradigm embodied by many of these languages
is graph transformation [33]: By representing them as graph patterns,
model transformations can be specified in a high-level, visual manner.

Like all software artifacts, models exhibit certain quality characteristics
that may change over the course of their lifecycles. Model quality as-
surance [5] is a cornerstone in MDE ensuring that the involved artifacts
live up to the challenges imposed by maintenance and evolution. Based
on their purpose, two main categories of techniques, tools, and pro-
cesses are distinguished: Analytical quality assurance techniques allow
to evaluate the quality of a given software model. Constructive quality
assurance techniques enable to improve the quality of the model. A key
example for a constructive technique is model refactoring, improving the
structure of a model without changing its behavior [12].

A recent trend is the introduction of MDE in large-scale industrial set-
tings to create and maintain systems of substantial size [108, 109, 60].

1In the case of Xtext, a user-specified grammar is transformed into a meta-model.
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In the scope of this work, we term this trend MDE in the large. While
MDE is a promising approach to tame the increased complexity in-
volved in these settings, state-of-the-art MDE techniques and tools
were frequently designed for and tested in scenarios of smaller scale,
giving rise to scalability issues when the involved systems and models
grow. In this work, we aim to tackle several of these challenges.

1.1 Challenges and Research Directions

Kolovos et al. [60] propose a research roadmap to investigate the chal-
lenges arising from the application of MDE in industrial large-scale sce-
narios. They identify three major categories: Challenges to collaborative
modeling, challenges to domain-specific modeling languages (DSMLs), and
challenges to model queries and transformations2. The three main research
directions of this thesis span over these categories. In this section, we
outline our research direction within each category.

Modes of

collaboration in

collaborative

modeling

Reuse of model

transformations

Model combination in domain-

specific modeling languages

Concern-based

collaboration

Families of

transformations

Collaboration on

simple models

No

combination

Disciplined

combination

Ad-hoc

combination

Collaboration on

monolithic models

No reuse

Ad-hoc reuse

Figure 1.1: Research directions of this thesis.

In the overview shown in Fig. 1.1, each axis represents one of the re-
search directions: modes of collaboration in collaborative modeling, model
combination in DSMLs, and reuse in model transformations. Dashed trian-

2A fourth category mentioned in [60] is scalable model persistence.
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gles indicate the achieved and targeted state of the art: The small trian-
gle denotes traditional MDE as applied in small-scale scenarios. The
medium-sized triangle delineates the current state of applying MDE in
large-scale scenarios. The large triangle indicates our guiding vision for
MDE in the large. The challenges we aim to address are represented by
the vertices of the medium-sized triangle, i.e., those related to mono-
lithic models, ad-hoc model combination and ad-hoc transformation reuse.
Our guiding principles to tackle these challenges are represented by the
vertices of the large triangle, i.e., concern-based collaboration, disciplined
combination, and dedicated support for families of model transformations.

In the rest of this section, to introduce each direction, we revisit its gen-
eral context as per [60] and discuss the addressed challenges in detail.

1.1.1 Collaborative Modeling

The first research direction deals with “enabling large teams of modellers
to construct and refine large models in a collaborative manner“ ([60], p.1). In
general, the collaborative development of a software system is a well-
understood task, supported by powerful collaboration and versioning
tools [67]. Yet, when applying these established tools in a MDE con-
text, developers face several impediments: Unlike in code repositories
which are divided into extensive hierarchies of files that are viewed
and modified independently, models tend to be large monolithic arti-
facts [109]. Moreover, the established text-based versioning tools are
unsuited to account for the semantic differences between model re-
visions. Finally, collaboration tools must account for the large vari-
ety of domain-specific modeling languages (DSMLs) by providing cus-
tomization capabilities for the DSML at hand with reasonable effort .

In this work, we focus on challenges imposed by monolithic models. We
use the term monolithic (“constituting a massive undifferentiated and often
rigid whole“, [72]) to refer to a model that is large (massive) and lacks
an adequate internal organization to reflect its functional concerns (un-
differentiated). Several situations can give rise to monolithic models:
A monolithic model may be the result of an insufficient initial design ef-
fort. Furthermore, a model may exhibit an organization that was found
adequate at an earlier point in time, but has turned ineffective as the
model has evolved. Finally, monolithic models may occur in scenar-
ios where the model is created automatically, for instance by reverse
engineering a design model from a code base.
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Monolithic models are related to the following issues:

Proneness to editing conflicts: The state-of-the-art tool used for collabo-
rative software development are version control systems (VCS), such
as Git [67] or Subversion [22]. In a VCS, each developer owns a local
copy of the project, performs changes on that copy and continuously
commits the modifications to a central repository. The central reposi-
tory maintains an official, stable state of the project. The state-of-the-art
VCS operate in a file-based manner. When they are used to collaborate
on a single-file monolithic model, frequent editing conflicts are a direct
consequence. Some editing conflicts are easy to reconcile automatically.
However, it is not uncommon that developers are forced to resolve con-
flicts manually, an error-prone and time-consuming activity.

Scattering and tangling: In visual modeling, users inspect and modify
models by means of diagrams. Diagrams provide views on selected
portions of the model at hand. If a model exhibits an inadequate orga-
nization, it is likely that the associated diagrams do so as well. In partic-
ular, this is the case if the diagram is generated automatically [69] rather
than manually devised. Due to an inadequate organization, related el-
ements may be scattered among several diagrams, while diagrams may
be tangled with unrelated elements. Understanding diagrams affected
by scattering and tangling may impose a high mental effort on devel-
opers, increasing maintenance time and impairing productivity.

Diagram size: As models grow in size and complexity, so do their dia-
grams, giving rise to issues related to diagram size. While visual rep-
resentations are commonly related to advantages such as their appeal
to certain cognitive facilities of the human mind [77], a diagram might
become so large that its navigation becomes tedious, achieving the op-
posite effect as intended. In a study on the effect of diagram size to
the performance of expert and novice modelers, Störrle determined a
maximum size of “safe“ diagrams, ranging in the magnitude of 50 el-
ements [110]. A diagram size exceeding this boundary is linked to di-
minished developer performance.

1.1.2 Domain-Specific Modeling Languages

The second research direction is concerned with “being able to construct
large models and domain specific languages in a systematic manner“ ([60],
p.1). First, to account for the various aspects of a complex system, its
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specification requires multiple purpose-tailored DSMLs rather than a
single monolithic one. Combining the models in heterogeneous DSMLs
requires adequate composition and modularization concepts on the
level of meta-models and models. Moreover, a DSML might be used to
create large models. To query and transform these models efficiently,
it might be recommended to extend the DSML with facilities for the
management of large models. Finally, combing heterogeneous DSMLs
poses challenges to their syntactical representations.

In this thesis, we focus on the disciplined combination of DSMLs and
their models. The state-of-the-art modeling platforms used to develop
DSMLs, such as EMF and Xtext, provide basic means to combine mod-
els by allowing remote references, links between models. While this
mechanism is sufficient for spreading a model over a set of files, it pro-
motes an undisciplined combination style, neglecting important engi-
neering principles such as encapsulation and information hiding.

The following challenges are related to model combination in DSMLs:

Lack of systematic development methods: As there exists a shortage of sys-
tematic development methods, DSMLs and their conforming models
are frequently developed in an ad-hoc way. Pointing out their crucial
relevance for MDE, Kolovos et al. emphasize that these artifacts “should
be engineered using sound principles and methods“ [60]. The lack of ade-
quate modularization mechanisms is a crucial obstacle to efforts in this
direction: It gives rise to an undisciplined combination of models, ne-
glecting important and generally acknowledged engineering principles
such as high cohesion and low coupling [107].

Difficult reuse: Instead of building software components from scratch,
there has been a recent shift towards the construction of systems from
reusable components [16]. It is promising to view the models created
using DSMLs as reusable components: Encapsulating the design mod-
els of selected system concerns, each represented by a dedicated DSML,
into reusable artifacts may help to avoid redundant modeling effort in
subsequently developed systems. To identify components suitable to
the task at hand, the developers of these systems must be able to iden-
tify the abstract behavior of components easily. Yet modeling platforms
do not provide dedicated means to separate a model’s behavior specifi-
cation from its implementation. In this respect, modeling platforms lag
behind the capabilities of established programming languages, where
information hiding [81], the separation of a module’s functional interface
from is implementation, has been established for decades.
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Information exposure: Models created using DSMLs are frequently ex-
changed among multiple independent actors, such as enterprises or
freelance developers. Yet, due to business, security, or legal reasons, it
may be undesirable or even illegal to make the entire models available
between all stakeholders. Consider a company maintaining a corporate
data model that includes detailed information on all of its products.
While displaying the general product information in a suited form to
customers might be highly desirable, the company has no interest in
exposing the product building plans. Thus, concepts to restrict the vis-
ibility of selected portions of a model are required. Such concepts are
not included in state-of-the-art modeling platforms.

1.1.3 Model Transformations

The third research direction deals with “advancing the state of the art in
model querying and transformations tools so that they can cope with large
models“ ([60], p.1). The task performed by model transformation tools
is the application of one or multiple transformation rules on an input
model. As a result, the input model is updated or a new model is cre-
ated. There are two dimensions of scalability of model transformation
tools: First, the model under transformation might be large. Second,
the considered rule set might be large.3

In contrast to various approaches dealing with performance optimiza-
tions for large input models, as surveyed in [60], we consider the scala-
bility issues involving large rule sets. Specifically, we focus on families of
model transformations: variability-intensive transformation systems in-
corporating a substantial amount of redundancies between individual
rules. Such rules are often created by copying and modifying a seed
rule in order to create multiple similar variants – a mechanism referred
to as cloning or ad-hoc reuse.

We consider the following challenges related to families of model trans-
formations:

Maintainability: In the traditional view shared by many software engi-
neering professionals, the practice of cloning is considered with suspi-

3It is worth pointing out that large transformation systems are large models, too:
Model transformation languages are essentially domain-specific modeling languages
for the domain of model transformation. Consequently, model transformation rule is a type
of model.
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cion [91]. Fowler [36] deems clones a severe kind of bad smell, related
to drawbacks for the maintainability of the involved artifacts. For in-
stance, if a bug is found, all instances of the clone must be updated to
remove the bug. While programming languages equip developers with
adequate concepts to avoid cloning and the related drawbacks, e.g.,
inheritance or subroutines, the development of reuse concepts is still in
its preliminary stages in various model transformation languages [63].
In these languages, developers had no alternative to cloning until re-
cently, leaving ad-hoc reuse the most frequently applied mechanism,
an impediment to the maintainability of transformation systems.

Performance: Model transformations are applied in various execution
modes, such as change-driven [86], incremental [44], or streaming [23]
transformation. Batch transformation is one of the default modes, be-
ing frequently applied in model translations, simulations, and refactor-
ing suites. In batch mode, each rule in the transformation system is
considered non-deterministically, as long as one of the rules is applica-
ble. When executed in batch mode, a transformation system compris-
ing many similar rules may show significant performance bottlenecks:
Each rule variant increases the computational effort of the transforma-
tion system. The larger the rule set becomes, he harder it is to handle ef-
ficiently, possibly rendering the entire transformation infeasible. Blouin
et al. [14] report on a case study where the transformation engine was
not able to execute a large transformation system with 250 rules.

1.2 Contributions

In this previous section, we have outlined three categories of scalabil-
ity challenges related to collaborative modeling, domain-specific mod-
eling languages (DSMLs), and model transformations. The first three
contributions of this thesis are three refactoring techniques, each ad-
dressing one of these categories.

1. Model splitting. We propose a refactoring to split a monolithic
model into a set of interconnected sub-models. The aim of this
technique is to enable a separation of concerns within models,
promoting a concern-based collaboration style: Each collabora-
tor is assigned the sub-model for the task at hand. To derive
its output, the technique uses information retrieval and model
crawling techniques. It distinguishes itself from earlier split-
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ting approaches by reflecting the stakeholders’ intention more
closely, taking into account textual descriptions of the desired
sub-models. The textual descriptions may stem from require-
ment documents, existing documentation artifacts, or interview
records. To give rise for a practical usage of the technique, it is not
required to provide a complete list of textual descriptions upfront:
The technique supports an incremental use, allowing to discover
new sub-models successively. We applied the technique on a set
of real-life class models, detecting a promising outcome in terms
of precision and recall.

2. Component encapsulation. We suggest a refactoring allowing
to derive modular interfaces for models created using DSMLs. By
creating these interfaces, the technique produces composite models
[51], an extension of standard modeling frameworks aiming to es-
tablish a disciplined combination of models: A composite model
is a model with a set of export and import interfaces. Portions of
the model are assigned to an export or import interface, declaring
the portion to be exported to or imported from the environment.
We reiterate and extend the existing formalization of composite
models. As a main result, we obtain that the introduction of meta-
model interfaces can be propagated to introduce interfaces in the
conforming models.

3. Rule merging. We introduce a refactoring to merge a set of model
transformation rules exhibiting a high degree of similarity. To
eliminate the maintainability drawbacks and performance bottle-
neck, the proposed refactoring creates variability-based rules, ex-
plicating commonalities and differences between the rules by an-
notating portions with variability information. To construct the
rules, we employ state-of-the-art clone detection and clustering
techniques and introduce a novel merge construction algorithm.
We applied the refactoring in three case studies, witnessing a de-
crease of clone portions together with significant performance
savings.

Moreover, the third contribution rule merging gives rise to the introduc-
tion of a novel approach to model transformation that provides dedi-
cated support for families of transformations. The key idea is to expli-
cate the commonalities and differences of a set of rule variants and to
use this information during the application of the variants. We put this
approach forward as a fourth contribution of this thesis.
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4. Variability-based model transformation. We propose a novel
approach to model transformation based on variability-based (VB)
rules. VB rules are a compact way to represent multiple rule vari-
ants in a model transformation system. Portions of a VB rule are
annotated with presence conditions to indicate them as being part
of one or several rule variants. During the application of rules, a
significant performance speed-up can be achieved by considering
the base rule – the portion without annotations – first. We give a
formal definition of VB model transformation based on algebraic
graph transformation, proving that VB rule application yields the
same results as applying the corresponding rule variants individ-
ually. We show that VB model transformation can improve the
compactness and performance of the involved rules considerably.

1.3 Methodology

The research methodology guiding this thesis is informed by a taxon-
omy of software engineering research proposed by Shaw [102]. Based
on the intended research results – the “tangible products“ created as out-
put of the research – Shaw distinguishes five ways to approach a soft-
ware engineering problem. In this taxonomy, possible results are qual-
itative/descriptive models, techniques, systems, empirical predictive models,
and analytic models.

Each of the four contributions put forward by this thesis comprises a
technique supported by an analytic model:

“Technique. Invent new ways to do some tasks, including pro-
cedures and implementation techniques. Develop a technique to
choose among alternatives.

Analytic model. Develop structural (quantitative or symbolic)
models that permit formal analysis.“ ([102], p.660)

Our Contributions 1–3 provide novel automated techniques to facilitate
tasks previously imposing a considerable manual effort on developers.
Contribution 4 includes a new technique to improve the efficiency of
an already fully automated technique. In Contributions 1–4, formal
models based on algebraic graph transformations are used to specify
the input and output of each technique and argue for its correctness.
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Moreover, Shaw distinguishes five kinds of validation techniques to
show that a research result satisfies the requirements posed by the mo-
tivating problem: persuasion, analysis, implementation, evaluation, and ex-
perience.

In this work, we apply all of these techniques. Throughout the the-
sis, persuasion is used to motivate our design choices and rationales. In
Contributions 1–4, we give formal analytic proofs to argue for correct-
ness. For Contributions 1–4, we provide and discuss implementations.
Contributions 1, 3 and 4 include empirical evaluations based on mea-
surements of quantities relevant to address their motivating problems.
Contributions 1 and 2 are validated using narrative demonstrations ex-
emplifying potential experiences of applying the approaches.

1.4 Outline

The remainder of this thesis is structured as follows.

• In chapter 2, we introduce model splitting. We demonstrate the
technique by example, give formal definitions of sub-models and
model splitting, outline the central algorithm, discuss tool sup-
port, and evaluate the approach by giving qualitative and quan-
titative evidence of its usefulness.

• In chapter 3, we propose component encapsulation. We revisit the
existing formal foundation of composite modeling, demonstrate
the novel technique by example and give a formal proof of its
soundness. To argue for its usefulness, we embed it into the larger
context of a collaborative modeling process. We exemplify this
process using a case demonstration.

• In chapter 4, we put forward rule merging. We introduce
variability-based rules and their application formally and by ex-
ample. We then demonstrate the novel refactoring technique, un-
derpinning its concepts with formal definitions and a correctness
proof. We evaluate its impact on the efficiency of model transfor-
mation systems in two realistic case studies.

• In chapter 5, we summarize and conclude this thesis. We give an
outline on possible future research directions.
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Chapter 2

Model Splitting

This chapter shares material with the FASE’14 paper “Splitting Models Us-
ing Information Retrieval and Model Crawling Techniques“ [117] and the
BigMDE’14 paper “Tool Support for Model Splitting Using Information Re-
trieval and Model Crawling Techniques“ [112].

In this chapter, we consider the problem of splitting a model into
sub-models to facilitate developer independence. We propose an au-
tomated technique that creates purpose-tailored decompositions by
leveraging domain knowledge provided in the form of textual descrip-
tions. The technique is based on information retrieval and model crawl-
ing techniques. We embed it in an approach that assists users in incre-
mentally discovering the set of desired sub-models. We demonstrate
the effectiveness of our approach on a set of real-life case studies, in-
volving UML class models and EMF meta-models.

2.1 Introduction

Together with the increased popularity of modeling, models of prac-
tical use grow in size and complexity to the point where large mono-
lithic models are difficult to comprehend and maintain. There is a need
to split such large models into a set of dependent modules (a.k.a. sub-
models), increasing the overall comprehensibility and allowing multiple
distributed teams to focus on each sub-model separately. Earlier works,
e.g., [58], suggest approaches for splitting models based on an analysis
of strongly connected components, largely ignoring the semantics of
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the split and the user intention for performing it. Other works require
to fully annotate the model upfront [37], which allows reflecting the
user intention precisely, but imposes a considerable effort on the user.

In this work, we propose an alternative, heuristic approach that allows
splitting a model along functional concerns. The approach assumes
that these functional concerns are explicitly specified by the user us-
ing natural-language descriptions. These descriptions may be retrieved
from existing requirements documents, system documentation, or tran-
scripts of developer interviews. The proposed approach is inspired by
feature location techniques [30, 93], which discover implementation ar-
tifacts corresponding to a particular, user-defined, functionality.

In the core of our approach is an automated technique that employs
information retrieval (IR) and model crawling. Given an input model and
a set of its sub-model descriptions, the technique assigns each element
to one of the specified sub-models, effectively producing a partition-
ing. The technique is applicable to any model for which a split results
in sub-models that satisfy the well-formedness constraints of the orig-
inal one, e.g., UML Class models, EMF models and MOF-based meta-
models.

The user can decide whether the list of sub-models describes a com-
plete or a partial split of the input model. In the former case, each input
model element is assigned to exactly one sub-model, like in the exam-
ple in Fig. 2.2, where the three sub-models “cover” the entire input
model. In the latter case, when the complete set of the desired sub-
models is unknown upfront, the technique produces assignments to
known sub-models only. The remaining elements are placed in a sub-
model called “rest”. The user can inspect the “rest” sub-model in order
to discover remaining sub-models in an incremental and iterative fash-
ion, until the desired level of completeness is achieved.

Considering the challenges outlined in Sec. 1.1.1, this approach allows
us to address the issues arising from the use of monolithic models. We
briefly revisit these issues and discuss how the technique helps to alle-
viate them.

• Proneness to editing conflicts is an issue of monolithic models in
state-of-the-art versioning control systems. As these systems op-
erate in a file-based manner, frequent editing conflicts are ex-
pected if two or more parties collaborate on the same monolithic
model at the same time, leading to a manual effort to resolve these
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conflicts. Splitting a model in a set of sub-models, each being per-
sisted in a separate file, helps to reduce this issue.

• Scattering and tangling refers to the situation that a diagram may
inherit an inadequate organization of its associated model: Func-
tionally related elements might be scattered across several dia-
grams, while a diagram might be tangled with functionally unre-
lated elements. By reorganizing the model into sub-models based
on functional concerns, the proposed technique helps to establish
models and diagrams that do not suffer from this issue.

• Diagram size becomes an issue when a diagram representation of
a model becomes too large to be navigated and understood effi-
ciently [110]. Splitting a model into multiple smaller sub-models
helps to reduce the size of the involved models and the associ-
ated diagrams. Additionally, the technique can be used to split
a model into disjoint sets of model elements that are displayed
in several diagrams, without changing the actual organization of
the model.

We make the following contributions:

• We describe an automated model splitting technique that com-
bines information retrieval and model crawling.

• We propose a computer-supported iterative process for model
splitting.

• We introduce a tool implementing the automated technique, dis-
cussing its design goals and implementation.

• We evaluate our approach on a set of benchmark case studies, in-
cluding real-life UML and EMF models. Our results demonstrate
that the proposed approach achieves high accuracy compared to
the manually produced results and is able to assist the user in the
iterative discovery of the desired sub-models.

The rest of the chapter is structured as follows. Sec. 2.2 gives a high-
level overview of our approach. We describe the necessary preliminar-
ies in Sec. 2.3, present a formal framework underpinning the approach
in Sec. 2.4 and introduce its instantiation in the form of an automated
algorithm in Sec. 2.5. We discuss tool support in Sec. 2.6. We report on
the results of evaluating our approach in Sec. 2.7. We put our contribu-
tion in the context of related work in Sec. 2.8 and conclude in Sec. 2.9.
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Figure 2.1: An overview of model splitting.

2.2 Overview

A high-level overview of the proposed approach is given in Fig. 2.1.
The user provides as input a model that requires splitting, a set of
textual descriptions of the desired sub-models, and the completeness
configuration parameter that declares whether this set of sub-models is
complete or partial. For the example in Fig. 2.2, the complete set would
contain descriptions of all three sub-models – medical team, physical
structure, and patient care, while a partial set would contain only some
of these descriptions.

2.2.1 Example

Consider the class model of a hospital system (HSM) [84, p. 125] shown
in Fig. 2.2. It describes the organization of the hospital in terms of its
medical team (elements #1-7), physical structure (elements #8-17), and
patient care (elements #18-29). Each of these concepts corresponds to a
desired sub-model, visually encircled by a dashed line for presentation
purposes. The goal of our work is to assist the user in determining
elements that comprise each sub-model. The user describes the desired
sub-models using natural-language text, e.g., using parts of the system
documentation.

For example, the medical team sub-model in Fig. 2.2 is described in [84].
A fragment of the description is: “Nurses are affiliated with a single ward,
while physicians and technicians can be affiliated with several different wards.
All personnel have access to a calendar detailing the hours that they need to
be present at the various wards. Nurses record physicians’ decisions. These
are written on paper and handed to an administrative assistant to enter. The
administrative assistant needs to figure out who needs to be at a particular
procedure before they enter it in the system.” The technique uses such de-



2.2 Overview 17

scriptions in order to map model elements to desired sub-models. The
labels for the sub-models, e.g., “Medical Team”, are assigned manually.

Figure 2.2: A UML class model of a hospital system.

2.2.2 Automated Technique

In the core of the proposed approach is an automated technique that
scores the model elements wrt. their relevance to each of the desired
sub-models. The scoring is done in two phases. The first one is based
on Information Retrieval (IR) and uses sub-model descriptions: it builds
a textual query for each model element, e.g., based on its name, mea-
sures its relevance to each of the descriptions and identifies those ele-
ments that are deemed to be most relevant for each of the descriptions.

The identified elements are used as seeds for the second phase, Model
Crawling. In this phase, structural relationships between model ele-
ments are explored in order to identify additional relevant elements
that were missed by the IR phase. The additional elements are scored
based on their structural proximity to the already scored elements. In
HSM, when identifying elements relevant to the medical team sub-
model using the description fragment shown in Sec. 2.2, the IR phase
correctly identifies elements #2,4,6,7 as seeds. It misses element #3
though, which is assigned a high score in the first iteration of crawling
as it is closely related to the seeds. Once element #3 is scored, it im-
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pacts the scoring of elements identified during later iterations of crawl-
ing. Eventually, each model element’s relevance to each sub-model is
scored.

The third phase, Element Assignment, assigns elements to sub-models
based on their score. If a complete set of sub-models is given, each
element is assigned to a sub-model for which it has the highest score1.
In this case, the assignment results in a model partition. If a partial set
of sub-models in given as an input, some model elements might not
belong to any of these sub-models. Hence, we apply a threshold-based
approach and assign elements to sub-models only if their scores are
above a certain threshold.

2.2.3 Process

A partial set of sub-model descriptions can be further refined in an itera-
tive manner, by focusing user attention on the set of remaining elements
– those that were not assigned to any of the input sub-models. Addi-
tional sub-models identified by the user, as well as the completeness
parameter assessing the user’s satisfaction with the set of known sub-
models are used as input to the next iteration of the algorithm, until the
desired level of completeness is achieved.

Clearly, as additional sub-models are identified, element assignments
might change. For example, when only the description of the medi-
cal team sub-model is used during a split, element #8 is assigned to
that sub-model due to the high similarity between its name and the de-
scription: the term ward is used in the description multiple times. Yet,
when the same input model is split w.r.t. the sub-model descriptions of
both the medical team and the physical structure, this element is placed
in the latter sub-model: Both its IR score and its structural relevance to
that sub-model are higher. In fact, the more detailed information about
sub-models and their description is given, the more accurate the results
produced by our technique become, as we demonstrate in Sec. 4.8.

1An element that has the highest score for two or more sub-models is assigned to
one of them randomly.
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2.3 Preliminaries

In this section, we introduce the preliminaries to the proposed ap-
proach. We discuss a selection of relevant information retrieval and fea-
ture location techniques.

2.3.1 Information Retrieval Techniques

Term Frequency - Inverse Document Frequency Metric (TF-IDF) [85].
Tf-idf is a statistical measure often used by IR techniques to evaluate
how important a term is to a specific document in the context of a set
of documents (corpus). It is calculated by combining two metrics: term
frequency and inverse document frequency. The first one measures the rel-
evance of a specific document d to a term t (tf (t, d)) by calculating the
number of occurrences of t in d. Intuitively, the more frequently a term
occurs in the document, the more relevant the document is. For the
HSM example where documents are descriptions of the desired sub-
models, the term nurse appears in the description d of the medical team
sub-model in Sec. 2.2 twice, so tf (nurse, d) = 2.

The drawback of term frequency is that uninformative terms appearing
throughout the set D of all documents can distract from less frequent,
but relevant, terms. Intuitively, the more documents include a term,
the less this term discriminates between documents. The inverse docu-
ment frequency, idf(t), is calculated as follows: idf (t) = log( |D|

|{d∈D | t∈d}|).
This metric is higher for terms that are included in a smaller number of
documents.

The total tf-idf score for a term t and a document d is calculated by
multiplying its tf and idf scores: tf-idf (t, d) = tf (t, d) × idf (t). In our
example, since the term nurse appears neither in the description of the
physical structure nor in patient care, idf (nurse) = log(31) = 0.47 and
tf-idf (nurse, d) = 2× 0.47 = 0.94.

Given a query which contains multiple terms, the tf-idf score of a docu-
ment w.r.t. the query is commonly calculated by adding the tf-idf scores
of all query terms. For example, the tf-idf score of the query “med-
ical member” w.r.t. the description of the medical team sub-model is
0 + 0 = 0 as none of the terms appear in the description and thus their
tf score is 0. The latent semantic analysis (LSA) technique described
below is used to “normalize” scores produced by tf-idf.
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Latent Semantic Analysis (LSA) [64]. LSA is an automatic mathe-
matical/statistical technique that analyzes the relationships between
queries and passages in large bodies of text. It constructs vector rep-
resentations of both a user query and a corpus of text documents by
encoding them as a term-by-document co-occurrence matrix. It is a sparse
matrix whose rows correspond to terms and whose columns corre-
spond to documents and the query. The weighing of the elements of
the matrix is typically done using the tf-idf metric.

Vector representations of the documents and the query are obtained
by normalizing and decomposing the term-by-document co-occurrence
matrix using a matrix factorization technique called singular value de-
composition [64]. The similarity between a document and a query is
then measured by calculating the cosine between their corresponding
vectors, yielding a value between 0 and 1. The similarity increases as
the vectors point “in the same general direction”, i.e., as more terms are
shared between the documents. For example, the queries “assistant”,
“nurse” and “physician” result in the highest score w.r.t. the description
of the medical team sub-model. Intuitively, this happens because all
these queries only have a single term, and each of the terms has the
highest tf-idf score w.r.t. the description. The query “medical member”
results in the lowest score: none of the terms comprising that query
appear in the description.

2.3.2 Feature Location Techniques

Feature location techniques aim at locating pieces of code that implement
a specific program functionality, a.k.a. a feature. A number of feature lo-
cation techniques for code have been proposed and extensively studied
in the literature [30, 93]. The techniques are based on static or dynamic
program analysis, IR, change set analysis, or some combination of the
above.

While the IR phase of our technique is fairly standard and is used by
several existing feature location techniques, e.g., SNIAFL [136], our
model crawling phase is heavily inspired by a code crawling approach
proposed by Suade [90]. Suade leverages static program analysis to
find elements that are related to an initial set of interest provided by the
user – a set of functions and data fields that the user considers rele-
vant to the feature of interest. Given that set, the system explores the
program dependence graph whose nodes are functions or data fields and
edges are function calls or data access links, to find all neighbors of
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the elements in the set of interest. The discovered neighbors are scored
based on their specificity – an element is specific if it relates to few other
elements, and reinforcement – an element is reinforced if it is related to
other elements of interest. The set of all elements related to those in
the initial set of interest is scored and returned to the user as a sorted
suggestion set. The user browses the result, adds additional elements to
the set of interest and reiterates.

Our modifications to this algorithm, including those that allow it to op-
erate on models rather than code and automatically perform multiple
iterations until a “fixed point” is achieved, are described in Sec. 2.5.

2.4 Framework

In this section, we describe a formal framework for model splitting: We
specify the input and output of splitting – models and their decompo-
sition to sub-models – on the basis of algebraic graph transformation
concepts. As long as this specification is satisfied, the concrete instan-
tiation of splitting may vary. We later describe our instantiation based
on information retrieval and model crawling techniques.

Graphs, Typed Graphs, and Graph Splitting

The formal foundation of this thesis is Algebraic Graph Transforma-
tion [33], a key paradigm in formal reasoning about models. Graphs are
a suited concept to capture the structure of visual models: Model ele-
ments can be considered as nodes, while their relationships – including
distinguished ones, such as typing and containment – can be considered
as edges.

According to these considerations, the input model in model splitting
is essentially a graph. The meta-model that was used to create the input
model is a distinguished graph called type graph. The typing of model
elements is expressed using a structure-preserving mapping between
these graphs, called graph morphism. The existence of a total morphism
between the graph and the type graph renders the graph a typed graph.

Definition 1 (Graph). A graph G = (GN , GE , srcG, trgG) consists of a set
GN of nodes, a set GE of edges, and source and target functions, srcG, trgG :
GE → GN .
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Definition 2 (Total (Partial) graph morphism). Given two graphs G and
H , a pair of total (partial) functions (fN , fE) with fN : GN → HN and
fE : GE → HE forms a total (partial) graph morphism f : G → H , a.k.a.
morphism, if it fulfills the following properties: (1) fN ◦ srcG = srcH ◦ fE
and (2) fN ◦ trgG = trgH ◦ fE . If both functions fN and fE are injective,
f is called injective. If both functions fN and fE are inclusions, f is called
inclusion.

Definition 3 (Typed Graph). A typed graph over a distinguished graph
TG, called type graph, is a tuple (G, type) with type : G → TG. Nodes
x, y ∈ GN are related, written related(x, y), iff ∃e ∈ GE s.t. either
srcG(e) = x ∧ trgG(e) = y, or srcG(e) = y ∧ trgG(e) = x. If type(e) = t,
we further say that x and y are related through t, written relatedt(x, y).

For example, the HSM in Fig. 2.2 can be considered a graph with ele-
ments #1-29 as nodes and their relationships as edges. Element #7 is
related to elements #3, #8 and #20. Assuming that this model conforms
to a simple meta-model for class models, the corresponding type graph
may have a node named class being simultaneously source and target
to three edges named association, composition, and inheritance.

Definition 4 (Sub-graph). Let a typed graph (G, type) be given. (S, typeS)
is a sub-graph of G, written S ⊆ G, iff SN ⊆ GN , SE ⊆ GE , srcS = src|SE

with srcS(SE) ⊆ SN , tgtS = tgt|SE
and typeS = type|S

2.

That is, while sources of all of a sub-graph’s relationship are elements
within the model, it does not have to be true about the targets. For
example, each dashed frame in the example in Fig. 2.2 denotes a valid
sub-graph of HSM. All elements inside each frame form the element set
of the corresponding sub-graph. There are two types of relationships
between these elements: those with the source and the target within the
sub-graph, e.g., all inheritance relations within the medical team sub-
graph, and those spanning two different sub-graphs (often, these are
association relationships).

Definition 5 (Constraint). A constraint ϕ is an atomic statement about a
graph. A satisfaction relation, written `, determines whether a given graph G

satisfies ϕ, written G ` ϕ.

For instance, HSM satisfies the constraint “there are less than 42 nodes“.

Definition 6 (Splittability). A graph satisfying a constraint ϕ is ϕ-
splittable iff every sub-graph of G satisfies ϕ.

2For a function f : G→ H with S ⊆ G, f|S : S → H denotes the restriction of f to S.



2.5 Instantiation 23

Considering the basic constraints of class models (without packages),
all class models are splittable: We can take any set of classes with their
relationships and obtain a class model. Class models with packages
have a constraint “every class belongs to exactly one package”. To
make them splittable, we may remove the packages before splitting
and then reintroduce them after the splitting is performed, in a
new form.

Definition 7 (Graph split). Given a typed graph (G, type), a graph split
Split(G) = {S|S ⊆ G} is a set of sub-graphs s.t. ∀S1, S2 ∈ Split(M) :
(S1 6= S2)⇒ (S1N ∩ S2N = ∅).

By Def. 4, if
⋃

S∈Split(G)
SN = GN , then

⋃
S∈Split(M)

SE = GE . A split
of HSM, consisting of three sub-graphs, is shown in Fig. 2.2.

2.5 Instantiation
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Figure 2.3: An outline of the proposed splitting algorithm.

In this section, we describe our instantiation of model splitting. Our in-
stantiation is based on an algorithm that incorporates Latent Semantic
Analysis (LSA) and model crawling, being outlined in Fig. 2.3. Its in-
puts are a model M , a set of textual descriptions of desired sub-models
SubDocs, and a completeness condition φ which is true if SubDocs rep-
resents a desired partitioning of M and false if this set is partial. The
splitting suggestion Sug represents a graph split (Def. 7). To ensure
that the sub-models in Sug are valid, M needs to be splittable as per
Def. 6 w.r.t. to the constraints of its modeling language.

The algorithm is based on scoring the relevance of model elements for
each target sub-model (steps 1-2), and then assigning each element to
the most relevant sub-model (step 3). The relevance scoring is done
by first applying LSA and then using the scored sets of elements as
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seeds for model crawling. The latter scores the relevance of all model
elements w.r.t. specificity, reinforcement, and cohesiveness of their re-
lations. The algorithm also uses parameters w, α and π which can be
user adjusted for the models being analyzed. Our experience adjusting
them for class model splitting is discussed in Sec. 2.7.

Step 1a: Retrieve Initial Scores Using LSA. The user provides the in-
put model M and natural-language sub-model descriptions SubDocs as
unrelated artifacts. They need to be preprocessed before LSA can es-
tablish connections between them. SubDocs are textual and can be used
as input documents directly. Textual queries are retrieved from ele-
ments of M by extracting a description – in class models, the element’s
name. LSA then scores the relevance of each sub-model description
to each model element description as described in Sec. 2.3.1. The re-
sulting scores are stored in Score, a data structure that maintains a map
from (sub-model number, element) pairs to scores between 0 and 1.

Step 1b: Refine initial scores to seed scores. Some scored elements
may not be suited as starting points for model crawling. If a model el-
ement description occurred in many different sub-model descriptions,
its score might be too low. In this step, we use the technique proposed
in [136] which involves inspecting the scores in descending order. The
first gap greater than the previous is determined to be a separation point;
all scores below it are discarded. The remaining scores are normalized
for each sub-model to take the entire (0, 1] range.

Step 2: Model crawling. The aim of model crawling is to score the rel-
evance of each model element for each target sub-model. Model crawl-
ing is a breadth-first search: beginning with a set of seeds, it scores the
neighbors of the seeds, then the neighbors’ neighbors, et cetera.

This step is outlined in Fig. 1: An exhaustive crawl is performed for
each target sub-model. While there exists a scored element with un-
scored neighbors, we determine for each of these elements x and each
relationship type t the set of directly related elements, calling it One-
Hop (lines 5-7). To score each unscored element in OneHop, the TwoHop
set comprising their related elements is obtained (lines 8-9). The score
is computed at line 10 as a product of x’s score, a fraction quantifying
specificity and reinforcement, and a type-specific weighting factor w(t):

calculateScore(j,y) = Score(j,x) ∗
|TwoHop ∩ Scored|

|OneHop| ∗ |TwoHop|
∗ w(t))α
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Algorithm 1 Crawl model.

Input: M: Model conforming to meta-model MM

Input: SubDocs: A set of i target sub-model descriptions
Input: Score : ((1..i)×MN )→ [0, 1]: Map of (sub-model number, element)

pairs to scores
Constant: w : MME→ (0, 1]: Weighting function for relationship types
Constant: α ∈ (0, 1]: Calibration parameter
Output: Score : ((1..i)× E)→ [0, 1]

1 function CRAWLMODEL(M , SubDocs, Score)
2 for each 1 ≤ j ≤ i

3 while ∃x, y∈MN : related(x, y) ∧ Score(j, x)>0 ∧ Score(j, y)=0
4 for each t ∈MME

5 Var Scored← {x ∈MN | Score(j, x) > 0}
6 for each x ∈ Scored
7 Var OneHop← {y ∈MN | relatedt(x, y)}
8 for y ∈ OneHop \ Scored
9 Var TwoHop← {z ∈MN | relatedt(z, y)}

10 Score.put((j, y),calculateScore(j,y))

11 return Score

A constant exponent α is applied to fine-tune the scoring distribution.
Finally, we use a special operator, proposed by [90], to account for ele-
ments related to already scored elements through multiple relations.
The operator, denoted by the underlined put command, merges the
scores obtained for each relationship. It assigns a value higher than
the maximum of these scores, but lower than 1.

This procedure adjusts the feature location algorithm proposed in [90]
in three respects: (A1) We perceive neighborhood as being undirected;
relations are navigated in both directions. Not considering direction-
ality is powerful: It allows us to eventually access and score all model
elements, provided the model is connected. (A2) The weighting factor
embodies the intuition that some relations imply a stronger coherence
than others. An example is composition in UML, which binds the life
cycles of elements together. (A3) We modified the scoring formula to
reflect our intuition of reinforcement and specificity. The enumerator
rewards a large overlap of the set of scored elements and those related
to the element being scored, promoting high specificity and high rein-
forcement. The denominator punishes high connectivity of elements
being analyzed, i.e., low specificity, and elements being scored, i.e., low
reinforcement.
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Step 3: Element Assignment. The scores can now be used to construct
a splitting suggestion. A splitting suggestion Sug is constructed by as-
signing suggested model elements to sub-models. When the complete
split is desired, i.e., φ = true, each element is put into the sub-model
for which it has the highest score. Ties are broken by selecting one at
random. This guarantees that each element is assigned to exactly one
sub-model. For a partial split, i.e., φ = false, an element is assigned to a
sub-model only if its score exceeds the user-provided threshold value
π. As a result, each element is assigned to zero or one sub-models.

Proposition 1. Given a set of constraints C and a graph G that is ϕ-splittable
for every ϕ ∈ C, the algorithm described in this section computes a graph split
Split(G) as defined in Def. 7 s.t. every sub-graph satisfies each ϕ ∈ C.

Proof sketch: In step 3, each element is assigned to at most one sub-
graph. Thus, all pairs of sub-graphs eventually have disjoint sets of
model elements, as required by Def. 7. The resulting sub-graphs satisfy
each constraint ϕ ∈ C because G was already ϕ-splittable (Def. 6).

2.6 Tool Support

In this section, we present tool support for the proposed model splitting
technique, comprising a set of editors and an engine for creating the
splitting suggestion. First, we describe the tool support from the user
perspective. Second, we explicate the design goals and actions taken
to implement these goals. Third, we discuss the implementation of the
tools.

User Process

The user process, shown in Fig. 2.4, comprises two manual tasks (2
and 4) and three automated tasks (1, 3 and 5). The manual tasks rely
on human intelligence and domain knowledge. They are facilitated by
textual and visual tool support. The automated tasks are triggered by
context menu entries.

(1) Start the splitting process. Using a context menu entry on the input
model, the user triggers the creation of a splitting description file. The
splitting description is automatically opened in a textual editor, shown
in Fig. 2.5. By default, the file contains a small usage example.
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ited and progressive evaluation is promoted by providing an incremental
process that allows tweaking with input values while receiving instant
feedback. For traceability, our file-based approach to user input allows
the user to keep the splitting description and use it later, e.g., for docu-
mentation purposes.

Implementation

Eclipse Modeling Framework [106] is the de-facto reference implemen-
tation of the EMOF modeling standard [79]. Consequently, it was nat-
ural for us to design the tool as an extension for EMF. As such, it can be
plugged into an existing Eclipse installation without further effort.

The prototype implementation for the splitting algorithm is written
in Java. As input, it receives an input model and text files provid-
ing the sub-model descriptions and configuration parameters. For the
IR phase, we used the LSA implementation from the open-source Se-
manticVectors library3, treating class and interface names as queries,
and sub-model descriptions as documents. The crawling phase is per-
formed using a model-type agnostic graph-based representation allow-
ing us to analyze models of different types. We thus transformed the
input UML models into that internal representation, focusing only on
the elements of interest described above. We disregarded existing pack-
age structures in order to compare our results against them. The output
sub-models were then transformed back to UML by creating a desig-
nated package for each.

For the splitting description editor, we leveraged the powerful code
generation facilities of Xtext4. We defined a simple domain-specific lan-
guage for splitting descriptions. The editor with its syntax highlighting
and code completion features was fully generated by Xtext. For cus-
tomization, we added a couple of checks (e.g., forbidden characters,
uniqueness of sub-model names). The visual splitting layer is an ex-
tension of EcoreTools 2.05 which is based on the Sirius6 framework and
part of the Eclipse release Luna 4.4. We decided to use this new tech-
nology as we benefit from its support for multiple viewpoints, allowing
us to fully customize a splitting viewpoint to our needs.

3http://code.google.com/p/semanticvectors/
4https://www.eclipse.org/Xtext/
5https://www.eclipse.org/ecoretools/
6https://www.eclipse.org/sirius/
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2.7 Evaluation

In this section, we introduce an evaluation of model splitting. Our goal
is to study the applicability and the accuracy of model splitting when
applied to real-life models. We focus on two research questions:

• RQ1: How useful is the incremental approach for model split-
ting?

• RQ2: How accurate is the automatic splitting?

First, we present the subject models that we considered and the mea-
sures taken to obtain splitting descriptions and manual decompositions
for comparison. Second, we discuss the methodology and measure-
ments in our evaluation. Third, we discuss our evaluation results, indi-
vidually addressing each of the research questions.

Subjects

Example Decomposition Type SM CI AS CS AG GE IR

HSM Diagram split 3 28 10 5 4 16 0
GMF Sub-model decomposition 4 156 62 101 0 70 65
UML Package decomposition 14 242 283 213 0 205 0
WASL Package decomposition 4 30 18 13 0 14 0
WebML Package decomposition 2 23 11 13 0 12 0
R2ML Package decomposition 6 104 96 27 0 76 0

Table 2.1: Subject models, with numbers of sub-models (SM), Classes
and Interfaces (CI), Associations (AS), Compositions (CS), Aggrega-
tions (AG), Generalizations (GE) and Interface Realizations (IR)

We chose subject models for our evaluation based on the following cri-
teria: (1) the models should be splittable, as per Def. 6, modulo trivial
pre- and post-processing; (2) we have access to an existing, hand-made
splitting of the model which can be used for assessing our results; and
(3) the splitting is documented, so that we can extract descriptions of
the desired sub-models without introducing evaluator bias.



32 2 Model Splitting

We selected six models that satisfy these criteria. The first four of these
were known to the authors (convenience sampling); the last two were
obtained by scanning the AtlanMod Zoo on-line collection of meta-
models7. All models were either initially captured in UML or trans-
formed from EMF to UML. The subjects are shown in Table 2.1 along
with their particular decomposition types and metrics: The number of
sub-models, classes and interfaces, associations, compositions, aggre-
gations, generalizations, and interface realizations.

The first model, HSM [84], comprises three different diagrams and was
already described in Sec. 2.1. Textual descriptions of the sub-models
were extracted from [84]. The second, GMF8, is a meta-model for the
specification of graphical editors, consisting of four viewpoint-specific
sub-models. Three out of four textual descriptions of the sub-models
were obtained from the user documentation on the GMF website. One
missing description was taken from a tutorial web site for Eclipse de-
velopers9. The UML meta-model10 is organized into 14 packages. The
descriptions of these packages were extracted from the overview sec-
tions in the UML specification. The description of the four WASL pack-
ages was extracted from [132]. The description of the two WebML pack-
ages was obtained from the online documentation. Finally, R2ML is a
markup language designed for rule interchange between systems and
tools. It comprises six packages, each documented in [130].

The second and the third columns in Table 2.1 list the decomposition
type and the number of target sub-models for each of the subjects. The
last four columns present the size of the subject models in terms of the
number of classes and relationships.

In the IR step of our technique, we assume that all provided descrip-
tions focus on explaining their target sub-model. However, in the ob-
tained descriptions, we found that this was frequently not the case: the
explanations incorporated explanations of neighboring sub-models. As
these misattributed explanations were easy to spot, we manually dis-
carded affected portions from the descriptions. To enable reproducibil-
ity, we provide all shortened descriptions online.11 We recommend
users of the technique to carry out the same manual preprocessing.

7http://www.emn.fr/z-info/atlanmod/index.php/Zoos
8http://www.eclipse.org/modeling/gmp/
9http://www.vogella.com/articles/EclipseEMF/article.html

10http://www.omg.org/spec/UML/2.5/Beta1/
11https://github.com/dstrueber/splittr/tree/master/de.uni_marburg.splittr.

evaluation/input
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Methodology and Measurement

To investigate RQ1, we performed a qualitative analysis using a case
study. For RQ2, we performed a set of quantitative experiments. To
evaluate the accuracy of our splitting technique, we used the following
metrics:

1. Expected: the number of elements in the predetermined result, i.e.,
sub-model.

2. Reported: the number of elements assigned to the sub-model.

3. Correct: the number of elements correctly assigned to the sub-
model.

4. Precision: the fraction of relevant elements among those reported,
calculated as Correct

Reported .

5. Recall: the fraction of all relevant elements reported, calculated as
Correct

Expected .

6. F-measure: a harmonized measure combining precision and recall,
whose value is high if both precision and recall are high, calcu-
lated as 2×Precision×Recall

Precision+Recall . This measure is usually used to evaluate
the accuracy of a technique as it does not allow trading-off preci-
sion for recall and vice versa.

Our technique relies on a number of configuration parameters de-
scribed in Sec. 2.5: the calibration parameter α shaping the distribution
of scores and the weight map w balancing weights of specific relation-
ship types. We fine-tuned these parameters using the hill climbing op-
timization technique [83]. Our goal was to find a single combination
of parameter values yielding the best average accuracy for all cases.
The motivation for doing so was the premise that a configuration that
achieved good results on most members of a set of unrelated class mod-
els might produce good results on other class models, too. The results
are summarized in Table 2.2.

Results and Discussion

RQ1: How useful is the incremental approach for model splitting?

We evaluate this research question on a case study based on the Graphi-
cal Modeling Framework (GMF). GMF comprises four sub-models: Do-
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Association 0.04
Aggregation 0.13
Composition 0.26

Generalization 0.44
Interface Realization 0.13

α 0.86

Table 2.2: Parameter assignment for class models.

main, Graphical, Tooling, and Mapping. While the sub-models of GMF are
already known, they may not necessarily be explicitly present in histor-
ically grown meta-models comparable to GMF. We assume that the per-
son in charge of splitting the model is aware of two major viewpoints,
Domain and Graphical, and wants to discover the remaining ones. She
provides the meta-model and describes the sub-models as follows:

“Sub-model Domain contains the information about the defined classes. It
shows a root object representing the whole model. This model has children
which represent the packages, whose children represent the classes, while the
children of the classes represent the attributes of these classes. Sub-model
Graphical is used to describe composition of figures forming diagram ele-
ments: node, connection, compartment and label.”

The user decides to begin with an incomplete splitting, since her goal
is discovery of potential candidates for new sub-models. An incom-
plete splitting creates suggestions for sub-models Domain, Graphical
as well as a “Rest” – for elements that were not assigned to either of
the first two because they did not score above a predefined threshold
value. The user can control the size of the Rest part by adjusting the
threshold value according to her understanding of the model. After a
suitable splitting is obtained, the Rest part contains the following el-
ements: ContributionItem, AuditedMetricTarget, DomainElementTarget, Image,

Palette, BundleImage, DefaultImage, ToolGroup, MenuAction, MetricRule, Nota-

tionElementTarget, ToolRegistry. From the inspection of these, the user con-
cludes that a portion of the monolithic model seems to be concerned
with tooling aspects of graphical editors comprising different kinds of
toolbars, menu items, and palettes aligned around the graphical can-
vas. She describes this intuition:

“Sub-model Tooling includes the definitions of a Palette, MenuActions, and
other UI actions. The palette consists of basic tools being organized in Tool-
Groups and assigned to a ToolRegistry.”
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Run Domain Graphical Tooling Mapping

1 80% 77% – –
2 80% 84% 90% –
3 86% 94% 90% 68%

Table 2.3: F-Measure during three runs of incremental splitting.

A next iteration of splitting is performed. This time, the Rest comprises
only four items: MetricRule, DomainElementTarget, NotationElementTarget, Au-

ditedMetricTarget. Three out of these four elements signify a notion of
defining relationships between elements of already known sub-models.
She concludes that a separate sub-model is required for defining the in-
tegration and interrelation of individual sub-models. She performs a
third and last splitting after providing a final sub-model description:

“Sub-model Mapping binds the aspects of editor specification together. To
define a mapping, the user creates elements such as NotationElementTarget
and DomainElementTarget establishing an assignment between domain and
notational elements.”

To investigate RQ1 we split it into two research questions: RQ1.1: Does
the accuracy of splitting improve with each iteration? and RQ1.2: Does
the approach assist the user in identifying missing sub-models?

RQ1.1: This question can be explored by considering the delta of each
sub-model’s F-measure during multiple incremental splitting steps. As
shown in Table 2.3, the increase of accuracy is monotonic in all sub-
models! The same threshold value was used for all splits. The discov-
ery process not only helped the user to discover the desired sub-models
but also to create short sub-model descriptions which can later be used
for documentation.

RQ1.2: In the first query, the Rest part has 12 elements, whereas in the
original model, its size was 139. All 12 elements actually belong to the
yet undiscovered sub-models, Tooling and Mapping. Thus, we are able
to conclude that the user was successfully guided to concentrate on
discovering these sub-models without being distracted by contents of
those sub-models she knew about upfront.
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RQ2: How accurate is the automatic splitting?

We investigate RQ2 by answering two research questions: RQ2.1:
What is the overall accuracy of the splitting approach? and RQ2.2:
What is the relative contribution of individual aspects of the splitting
algorithm on the overall quality of the results?

RQ2.1: Column 4 in Table 2.4 presents average precision, recall and
F-measure of our automated technique for each of the subject models.
For five out of the six models, the achieved level of accuracy in terms
of F-measure was good to excellent (74%-95%). However, the result for
UML was not as good (48%). Detailed inspection of this model revealed
that package organization of UML has a special, centralized structure:
it is based on a set of global hub packages such as CommonStructure
or CommonBehavior that provide basic elements to packages with more
specific functionality such as UseCase or StateMachine. Hub packages
are strongly coupled with most other packages, i.e., they have a low ratio
of inter- to intra-relations. For example, the class Element is a transitive
superclass for all model elements. This violation of the software engi-
neering principle of low coupling hinders our topology-based approach
for splitting.

To evaluate whether our algorithm produces meaningful results except
for hubs, we derived a sub-model of UML which is restricted only to the
functional packages. This sub-model, umlfunct, comprises 10 out of 14
packages and 188 out of 242 model elements of UML. As shown in Ta-
ble 2.4, the accuracy results of umlfunctwere similar to the five successful
case studies (80%).

RQ2.2: Columns 1, 2 and 3 of Table 2.4 list contributions of individ-
ual steps of the algorithm and of the adjustments (A1-3) described in
Sec. 2.5. The results after the IR phase are shown in column 1. Com-
pared to the overall quality of the algorithm (column 4), the results are
constantly worse in terms of the F-measure, due to low recall values.
That is, IR alone is unable to find a sufficient number of relevant ele-
ments.

In column 2, we present the results of IR augmented with basic crawl-
ing which respects directionality, i.e., does not navigate relations from
their inverse end. This version is similar to the crawling technique pro-
posed by Suade but adjusted to operate on models rather than on code-
level artifacts. The results are again worse than those of the overall
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1: IR Only 2: IR + Plain 3: IR + Undirected 4: Overall
Prec. Rec. F-M. Prec. Rec. F-M. Prec. Rec F-M. Prec. Rec. F-M.

HSM 93% 42% 56% 93% 53% 67% 78% 78% 75% 90% 92% 89%
GMF 100% 9% 17% 99% 30% 38% 68% 72% 68% 86% 87% 86%
UML 57% 21% 24% 37% 20% 22% 34% 38% 30% 50% 58% 48%
WASL 88% 48% 61% 72% 29% 38% 68% 64% 63% 92% 91% 89%
WebML 100% 37% 52% 100% 40% 56% 88% 94% 90% 93% 97% 95%
R2ML 81% 22% 32% 74% 30% 30% 46% 49% 42% 75% 77% 74%
UMLfn 67% 22% 30% 76% 24% 33% 64% 66% 61% 84% 80% 80%

Table 2.4: Accuracy of model splitting.

technique due to low recall values. Interestingly, in some cases, e.g.,
WASL, the results are also worse than those of the plain IR technique in
terms of both precision and recall, making the scoring schema related
to this crawling strategy really inefficient.

Column 3 shows the results when crawling discards directionality, i.e.,
applies A1. This strategy results in a significant improvement in re-
call and the overall F-measure compared to the previous approach, but
comes together with some decrease in precision.

Column 4 shows the results when the previous approach is extended
with scoring modifications (A2-A3). This approach is clearly superior
to the previous ones in terms of both precision and recall, and, as a
consequence, of the overall F-measure.

We conclude that the basic crawling technique that worked well for
code in case of Suade is not directly applicable to models, while our
improvements allowed the algorithm to reach high accuracy in terms
of both precision and recall.

Threats to Validity

Threats to external validity are most significant for our work: the re-
sults of our study might not generalize to other cases. Moreover, be-
cause we used a limited number of subjects, the configuration parame-
ters might not generalize without an appropriate tuning. We attempted
to mitigate this threat by using real-life case studies of considerable
size from various application domains. The ability to select appropriate
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sub-model descriptions also influences the general applicability of our
results. We attempted to mitigate this threat by retrieving descriptions
from publicly available documentation artifacts and documenting the
used descriptions online.

2.8 Related Work

Formal approaches to model decomposition. A formally founded ap-
proach to model splitting was investigated in [58]. This approach uses
strongly connected components (SCCs) to calculate the space of possi-
ble decompositions. The user of the technique may either examine the
set of all SCCs or try to find reasonable unions of SCCs according to
her needs. In [68], the same authors rule out invalid decompositions by
providing precise conditions for the splitting of models conforming to
arbitrary meta-models. Basic forms of model splitting and joining are
considered in [31] where a global model view is split into two local ones
with a common interface. These works are orthogonal to ours: Our
technique requires a basic notion of a model being splittable, mostly
motivated by the need to split class models and meta-models.

Annotation-based splitting. Garmendia et al. propose EMF Split-
ter [37], a tool that facilitates model decomposition as inspired by pro-
gramming languages and IDEs: The whole model is organized as a
project that is divided into packages. Packages are further decomposed
into units. As a prerequisite, the tool requires that the input model is
annotated manually. This technique is orthogonal to the approach pro-
posed in this work, which provides a heuristic to recommend a spe-
cific splitting automatically regardless of the underlying decomposi-
tion mechanism. In [38], Garmendia et al. combine EMF Splitter with
SAMPLER, a novel tool that provides visual support for the exploration
of large models. It allows focusing on a selected scope of model ele-
ments of interest, while elements outside of this scope are combined
into placeholder nodes. This technique is orthogonal to the proposed
approach as well, which is not concerned with the visual representation
of the created sub-models.

Graph clustering for meta-models and architecture models. Graph
clustering is the activity of finding a partition of a given graph into a
set of sub-graphs based on a given objective. Voigt [129] uses graph
clustering to provide a divide-and-conquer approach for the matching
of meta-models of 1 million elements. Of the different graph clustering
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algorithms, the author chose Planar Edge Separator (PES) for its run-
time performance, and then adapted it to meta-model matching. Like
us, he provides weighting constants for specific relationships kinds; yet
[129] only presents the values of these constants and does not evaluate
their impact on the quality of the match. From a software engineering
perspective, the main drawback of this approach is that the user cannot
influence the decomposition in terms of the concepts represented in the
resulting sub-models. The same objection may be raised for the meta-
model splitting tool proposed in [119]. Our approach bases the decom-
position on user description of the desired sub-models, thus avoiding
the need for the user to comprehend and classify the resulting compo-
nents.

Architecture restructing. The architecture restructuring technique by
Streekmann [111] is similar to our approach. This technique assumes a
legacy architecture that is to be replaced by an improved one. Similar to
our technique, the starting point for the new organization is a set of tar-
get components together with a set of seeds ([111] calls them initial map-
pings) from which the content is derived. Yet, unlike in our approach,
these seeds are specified manually by the developer. The clustering is
performed by applying a traditional hierarchical clustering algorithm
assigning model elements to components. The algorithm supports the
weighting of different types of relationships; tuning these strongly im-
pacts the quality of the decomposition. For the scenarios given in [111],
the weighting differs from case to case significantly. In this work, in
turn, we were able to find a specific setting of values that produced
good results for an (albeit small) selection of unrelated class models.
Streekmann also discusses algorithm stability w.r.t. arbitrary decisions
made by it. During hierarchical clustering, once two elements are as-
signed to the same cluster (which, in the case of multiple assignment
options, may be an arbitrary choice), this decision is not reversible. Ar-
bitrary decisions in this style do not occur in our approach since we
calculate relevance scorings for each sub-model individually.

Model slicing. Model slicing is a technique that computes a fragment
of the model specified by a property. In the approach by Blouin et
al. [13], slicing of a UML class model results in a sub-model which
is either strict, i.e., it satisfies all structural constraints imposed by the
meta-model, or soft, if conformity constraints are relaxed in exchange
of additional features. For example, slicing a class model can select a
class and all of its subclasses, or a class and its supertypes within ra-
dius 1, etc. Compared to model splitting, model slicing concentrates
on computing a sub-model of interest, ignoring the remainder of the
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model. In contrast, we use textual descriptions as input to IR to iden-
tify sub-models. The techniques are orthogonal and can be combined,
as we plan to do in the future.

2.9 Conclusion

Splitting large monolithic models into disjoint sub-models can improve
comprehensibility and facilitate distributed development. In this pa-
per, we proposed an incremental approach for model splitting, sup-
ported by an automated technique that relies on information retrieval
and model crawling. Our technique was inspired by code-level fea-
ture location approaches which we extended and adapted to operate on
model-level artifacts. We demonstrated the feasibility of our approach
and a high accuracy of the automated model splitting technique on a
number of real-life case studies.
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Chapter 3

Component Encapsulation for
Composite Modeling

This chapter shares material with the FASE’13 paper “Towards a Distributed
Modeling Process based on Composite Models“ [120].

In this chapter, we address the problem of combining heterogeneous
domain-specific modeling languages (DSMLs) used in the specification
of large-scale systems. We propose a technique to establish explicit in-
terfaces in a set of related models created using DSMLs. The technique
is based on composite models [50], an extension of standard modeling
platforms that allows introducing export and import interfaces in mod-
els. We give a formalization of the technique based on algebraic graph
transformation. To discuss its usefulness, we embed it in a modeling
process that gives rise to the systematic development of models.

3.1 Introduction

DSMLs are frequently developed using standard modeling platforms
such as EMF [106] and Xtext [34]. In these platforms, models created
using separate DSMLs can be combined using remote references, links
between models. This mechanism is sufficient to establish a physical
separation by distributing models over multiple files. Yet, it gives rise
to several issues: First, as each model element is allowed to be a target
of a remote reference, there is no support for a systematic and disci-
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plined combination of models. Second, the target model elements of re-
mote references are temporarily represented by proxy elements. These
proxies are replaced by the actual model element on demand. In conse-
quence, all involved models constitute one big model with unrestricted
visibility. We conclude that remote reference are not suited to enable
a refined, logical separation of concerns: Important engineering princi-
ples such as encapsulation and information hiding are not neglected.

Composite modeling [50] is an approach aiming to introduce a logical
separation of concerns in models. Models are extended to exhibit ex-
port and import interfaces, subsets of model elements provided to or
obtained from the environment. A model together with its export and
import interfaces is a model component. A set of related model compo-
nents is called a composite model. Each model component can have an ar-
bitrary number of interfaces. The design space of possible interfaces is
defined in the meta-model of the DSML used to create the model com-
ponent. Composite modeling is supported by a comprehensive formal
theory [51, 52, 53] and basic tooling [50].

We investigate the application of composite modeling in a scenario
where a set of related DSMLs and conforming models already exist.
In this scenario, we consider component encapsulation – the conversion
of a set of plain models to a set of model components. Our approach is
typing-based: Certain language types, meta-model elements, are stip-
ulated as exported and imported. The technique automatically derives
suitable export and import interfaces for the models created using the
DSMLs. Thereby, these models are encapsulated to yield a composite
model.

We briefly revisit the challenges introduced in Sec. 1.1.2 and discuss the
prospective improvements.

• Addressing the lack of systematic development requires that DSMLs
are devised using “sound principles and methods“ [60]. Remote ref-
erences, the default mechanism for establishing separation of con-
cerns in standard modeling platforms, promotes an undisciplined
combination of models: Fundamentally acknowledged principles
such as high coherence and low coupling [107] are not accounted for.
The proposed technique allows enforcing these properties by en-
capsulating substantial portions of a model behind interfaces. By
replacing remote references with designated interfaces, an undis-
ciplined combination of models with its implications for coher-
ence and coupling properties is prohibited.
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• Being able to reuse a model created using a DSML requires facili-
ties to separate the model’s behavior specification from its inter-
nal design decisions. In standard modeling platforms, this fun-
damentally accepted practice known as information hiding [80] is
complicated by a lack of dedicated concepts. To this end, the pro-
posed technique allows identifying certain types as relevant for
the abstract behavior of a component. For instance, in the context
of a web service DSML, services may be exposed, while processes
and tasks related to internal design decisions are kept internal.

• Information exposure refers to the undesired visibility of certain
portions of a model to the outside world. This issue is particularly
relevant in contexts where secrecy is necessitated by business in-
terests, security, or law. The proposed technique is suited to ad-
dress this issue by allowing to designate certain types and their
elements as exported. Non-exported types and their elements are
made inaccessible to the environment. In the context of a corpo-
rate data model, an enterprise might be interested in providing its
products to customers while maintaining secrecy with types such
as, e.g., building plan.

We make the following contributions:

• We introduce a component encapsulation technique to derive the ex-
port and import interfaces of a model automatically.

• We formalize this technique in category theory, on the basis of
composite graphs.

• We embed the proposed technique into a systematic modeling pro-
cess to show its usefulness. We address questions of how the con-
sistency of model components can be preserved during editing
and how model components can be used for code generation.

• We provide a case scenario to demonstrate the application of the
proposed technique and process.

The rest of this chapter is structured as follows: In Sec. 3.2, we give an
overview on encapsulation, illustrating it using a running example. In
Sec. 3.3, we describe a modeling process based on composite models,
which is a part of the motivation for encapsulation. The underlying
theory of composite models is recapitulated in Sec. 3.4. In Sec. 3.5, we
consider component encapsulation on a formal level. In Sec. 3.6, we
provide an algorithm implementing this formal construction. In Sec.
3.7, we discuss tool support. Sec. 3.8 is dedicated to an application
scenario. We discuss related work and conclude in Secs. 3.9 and 3.10.
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Figure 3.1: An overview of component encapsulation.

3.2 Overview

The key idea of component encapsulation is to derive an encapsulation
of models from the encapsulation of their meta-models. A high-level
overview of component encapsulation is given in Fig. 3.1. A language
developer provides the meta-models to language-level encapsulation, an
operation that encapsulates these meta-models automatically. It works
by replacing all remote references with export and import interfaces.
This step is performed once for each set of meta-models. The resulting
meta-model components can be used to establish interfaces in any set
of conforming models provided by an application developer. The op-
eration producing model components based on these inputs is called
application-level encapsulation.

The language and application developers in this overview do not neces-
sarily have to be different developers. Specifically in scenarios involv-
ing the co-evolution of meta-models and their models, such as the one
described in [128], the developer in charge of encapsulating the models
may trigger the encapsulation of the meta-models as a prerequisite.

3.2.1 Example

As a running example, consider the model-driven development of web
applications using DSMLs. This example is inspired by visual web
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3.3 Modeling Process based on Composite Models

As a key motivation for component encapsulation, we put forward the
claim that component encapsulation facilitates “constructing large mod-
els in a systematic manner“ [60]. To substantiate this claim, we consider
an overarching process for the model-driven development of software
systems. The process uses component encapsulation to address the fol-
lowing three questions arising during model-driven development: (1)
How can the structure of existing models be improved to support mod-
ularity? (2) How can the consistency of related models be ensured dur-
ing collaborative modeling? (3) How can related models be used for
code generation?

Component

Encapsulation

Model

Model

Model

Component

Model

Component
Code 

Generation

Editing

System

Figure 3.6: Systematic modeling process based on composite models.

Fig. 3.3 gives an outline of the process: It assumes that a set of mod-
els created using related DSMLs is provided as input. The models are
then encapsulated to become model components. In the subsequent
phase, editing steps are performed, possibly involving multiple devel-
opers collaborating on the components in parallel. Once that a stable
revision of the model components has been established, code genera-
tion is performed to obtain the specified system.

An optional extension of this process involves the scenario where the
starting point is a single language with a monolithic meta-model and
conforming models. In this case, the meta-model needs to be split up-
front: To this end, the splitting technique outlined in Chapter 2 can be
applied. After the meta-model has been split, the conforming models
have to be split along the meta-model decomposition. It is worth point-
ing out that, while neither splitting nor encapsulation are tied to a spe-
cific process, the process introduced in this chapter can be considered a
methodological framework that allows combining them.

Encapsulation. As discussed in Sec. 3.1, component encapsulation can
be performed automatically if an encapsulation of the meta-models for
the input models is provided. To encapsulate models conforming to
large meta-models, such as UML, it makes sense to proceed in several
iterations of encapsulation. An example scenario for UML can look like
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this: (1) encapsulate the structure component from the behavioral com-
ponent, (2) encapsulate the structure component further into package
and class structure components, (3) encapsulate the behavioral com-
ponent into a basic action component and a behavior diagrams com-
ponent, and (4) continue encapsulating this component until the well-
known behavior diagrams are each separated in model components.

Editing. A crucial challenge of collaborative editing is to keep editing
steps as independent as possible while preserving the consistency of
models.1 Component encapsulation enables an inconsistency avoidance
strategy of giving editing steps at hand that are classified as either safe
or critical to the consistency of models. To avoid dead-lock situations
and foster the natural evolution of software projects, we provide the no-
tion of a relaxed consistency avoidance that allows performing critical
steps if necessary. This strategy stands in contrast to approaches in-
corporating an entirely liberal strategy of allowing arbitrary operations
and providing tool support to detect and repair inconsistencies [40, 74].
Such strategies pose the risk that a later reconciliation is not possible
without significant manual effort. Furthermore, it relies on the capa-
bility to perform a global consistency check, which may be unavailable
for business, security, or legal reasons.

We consider asynchronous and synchronous editing: Components
might be evolved by multiple developers in parallel or by one devel-
oper. For example, during the evolution of the model specified in
Fig. 3.5, new requirements may emerge, e.g., the management of books.
When domain and hypertext components are developed in an asyn-
chronous manner, the domain modeler begins by adding this new en-
tity to the body and export of the SwalData component. The hypertext
modeler then adds the entity to the import interface and body of the
SwalHt component and creates corresponding pages for the entity, re-
sulting in the model shown in Fig. 3.7. This change could also be per-
formed in a synchronous manner, using an editing command that adds
an entity and corresponding pages to both components.

Synchronous and asynchronous editing steps can be expressed as
model transformation rules on a composite model. Two example rules
are shown in Fig. 3.8. Del and New tags denote nodes as being deleted
from the model or newly created, respectively. Rule a specifies the syn-
chronous addition of a new entity and corresponding index and details
pages to both components. Rule b specifies an asynchronous editing

1Consistency refers to the absence of inconsistencies, i.e., contradictory information
within a set of models.
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3.4.1 Composite Graphs

In a composite model, modularity is established through the definition
of explicit export and import interfaces. Export and import interfaces
identify model elements provided to and obtained from the environ-
ment. A model together with its export and import interfaces is a model
component. A set of related model components is a composite model. The
core model of a component is called its body. Export and import in-
terfaces specify subsets of the body’s model elements: Model elements
contained in export and import interfaces are identified with model el-
ements in the body. Import interface elements are also identified with
elements in an export. An import is assigned to exactly one export in-
terface. An export can correspond to an arbitrary number of import
interfaces. An interface can hide structural complexity of the body, e.g.,
flatten its inheritance hierarchy. The design space of possible interfaces
is defined in the meta-model of the component.

Graphs are well-suited to capture the structure of composite models.
The basis of our formalization are typed graphs and graph morphisms
as defined in Sec. 2.4. Graph morphisms are structure-preserving map-
pings between graphs. The typing relation between a model and its
meta-model is formalized using a graph morphism called type mor-
phism. Furthermore, our formalization of composite models will be
based on category theory, a framework that allows considering graph
structures in a very generic manner. Typed graphs and graph mor-
phisms form the category GRAPHSTG [33]. Due to the generic nature of
category theory, it is also possible to use other kinds of graphs and mor-
phisms as basic ingredients of composite graphs. For example, compos-
ite graphs over typed graphs with inheritance and containment as well
as suitable graph morphisms are considered in [53].

Definition 8 (Composite network graph). A composite network graph
is a graph G (Def. 1) typed over graph CNG (shown in Fig. 3.10) by a graph
morphism t : G→ CNG (Def. 3) such that the following properties hold:

• each export node is source of exactly one network edge running to a
body node

• each import node is source of exactly two network edges, one edge is
running to a body node and the other to an export node.

If there are export nodes without outgoing edges, corresponding composite net-
work graphs are called weak.
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Figure 3.10: Type graph CNG for composite network graphs.

The notion of weak composite graphs allows us to consider settings
with restricted visibility, a crucial concern in the motivating problems
considered in this chapter. For instance, a developer team might be
granted visibility for one full component and visibility of the export
interfaces of all related components.

For example, just considering its network graph, the composite model
in Fig. 3.5 comprises two body, one export, and one import node to-
gether with the required network edges. The body of the swaldata com-
ponent might be hidden from visibility of the swalht developers, ren-
dering their scope of visibility a weak composite network graph.

Definition 9 (Composite network graph morphism). Given two network
graphs g : G → CNG and h : H → CNG, an injective graph morphism
f : G→ H forms a valid composite network graph morphism, short net-
work morphism, if h ◦ f = g.

Composite network graphs and network graph morphisms form a cat-
egory, called COMPONETGRAPHS, that is co-complete [53]. Weak com-
posite network graphs and their morphisms also form a category, how-
ever, this one does not have pushouts.

Definition 10 (Composite graph). Given a (weak) composite network graph
G, a (weak) composite graph Ĝ over G is defined as Ĝ = (G,G(G),M(G))
with

• G(G) being a set of graphs, called local graphs, of category GRAPHS

with each graph uniquely refining a network node in GN : G(G) =
{Ĝ(n)| Ĝ(n) is a graph and n ∈ GN},

• M(G) being a set of graph morphisms, called local (graph) mor-
phisms, each refining a network edge in GE :M(G) = {Ĝ(e) : Ĝ(i)→
Ĝ(j)|Ĝ(e) is a graph morphism and e ∈ GE with s(e) = i and
t(e) = j}, and

• for all paths Ĝ(x)◦Ĝ(y), Ĝ(z) : Ĝ(A)→ Ĝ(B) we have Ĝ(x)◦Ĝ(y) =
Ĝ(z) with x, y, z ∈ GE . (commutative morphisms)
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For example, the composite model in Fig. 3.5 has one local graph for
each of its four network nodes. The model is shown in a compact rep-
resentation where corresponding elements in body and adjacent export
or import graphs are only shown once, as part of the interface.

Definition 11 (Composite graph morphism). Given two (weak) composite
graphs Ĝ and Ĥ with composite network graphs G and H , resp., a (weak)
composite (graph) morphism, written f̂ : Ĝ → Ĥ , is a pair f̂ = (f,m)
where

• f : G→ H is a composite network graph morphism and

• m is a family of morphisms
{f̂(n) | n ∈ GN} such that

– for all nodes i ∈ GN : f̂(i) : Ĝ(i) → Ĥ(fN (i)) is a graph mor-
phism and

– for all edges e : i→ j ∈ GE : Ĥ(fE(e)) ◦ f̂(i) = f̂(j) ◦ Ĝ(e) (see
Fig. 3.11).

i

e

��

Ĝ(i)
f̂(i) //

Ĝ(e)

��

Ĥ(fN (i))

Ĥ(fE(e))

��

j Ĝ(j)
f̂(j) // Ĥ(fN (j))

Figure 3.11: Illustration of a composite graph morphism.

If morphism f and all morphisms in m are inclusions (injective), f̂ is called
inclusion (injective). Given a graph ˆTG and a composite morphism t̂ : Ĝ →
ˆTG is called typed composite graph.

Composite graphs and graph morphisms form a category, called
COMPGRAPHS, being co-complete. Weak composite graphs and
weak composite morphisms form category COMPGRAPHSweak. Typed
composite graphs and their morphisms form a category called
COMPGRAPHSTG [53].

This formalization induces that composite graphs are consistent in a
certain sense: Since all morphisms have to be total, especially the ones
between import and export interfaces, inconsistencies between compo-
nents in the sense of unsatisfied imports may not occur. It is up to future
work to adapt composite models such that temporary inconsistencies
are tolerated, i.e., partial import mappings are allowed.
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3.4.2 Rules and Composite Graph Rules

The systematic modification and evolution of composite models can be
formalized using rules. In the following, we recall the main definitions
of the rule-based algebraic approach to graph transformation called the
gluing approach. In this approach, graph elements occurring in the left
and right-hand sides of a rule, i.e., in an interface graph, are used to glue
new elements to already existing ones.

Definition 12 (Rule). A (production) rule p = L
l
←− I

r
−→ R consists of

graphs L, I and R, called left-hand side, interface graph and right-hand
side, respectively, and two injective graph morphisms, l and r.

An example for a simple rule is obtained by considering Fig. 3.8 with-
out the rectangle labeled “Exp“. The Del annotation of the remaining
node denotes it as being contained in L \ I . Since the intention of this
rule is to specify a deletion, the I and R graphs are empty.

A rule is applied using a match m of its left-hand side to a given graph
G. The application of a graph rule consists of two steps: First, all graph
elements in m(L− l(I)) are deleted. Nodes to be deleted may have ad-
jacent edges which have not been matched, so the rule application may
produce dangling edges. Therefore, all matches m have to satisfy the
gluing condition: If a node n ∈ m(L) is to be deleted by the rule appli-
cation, it has to delete all adjacent edges as well. Afterwards, unique
copies of R − r(I) are added. This behavior can be characterized by
a double-pushout [32]. Given a rule and a match, the resulting rule
application is unique [32].

Definition 13 (Rule application). Let a rule p = L
l
←− I

r
−→ R and a graph

G with a total graph morphism m : L → G be given. A rule application
from G to a graph H , written G⇒p,m H , is given by the diagram in Fig. 3.12
where (1) and (2) are pushouts. We refer to G, m and H as a start graph, a
match, and a result graph, respectively.

L

m

��

I
loo

d

��

r // R

m′

��

(1) (2)

G D
goo h // H

Figure 3.12: Rule application by a double pushout (DPO).
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We now lift the established concepts of rules and their application to
composite models. A composite graph rule is a rule that allows the
transformation of a composite model.

Definition 14 (Composite graph rule). Given a distinguished graph
ˆTG, called composite type graph, a composite graph rule p̂ =

(L̂
l̂
←↩ K̂

r̂
↪→ R̂, ˆtype) consists of composite graphs L̂, K̂, and R̂ typed over

ˆTG by the triple ˆtype = ( ˆtype
L̂
: L̂ → ˆTG, ˆtype

K̂
: K̂ → ˆTG, ˆtype

R̂
: R̂ →

ˆTG) being composite morphisms and typed composite morphisms l̂ : K̂ ↪→ L̂

and r̂ : K̂ ↪→ R̂ being inclusions such that ∀n ∈ KN : p̂(n) = (L̂(n)
l̂(n)
←↩

K̂(n)
r̂(n)
↪→ R̂(n), ˆtype(n)) is a rule.

Two composite graph rules are shown in Fig. 3.8. Del and New tags
denote nodes as being contained in L̂− K̂ or R̂− K̂, respectively.

Definition 15 (Composite graph transformation). A composite graph

transformation (step) Ĝ
p̂,m̂
=⇒ Ĥ of a typed composite graph Ĝ to Ĥ by

a (weak) composite graph rule p̂ and a typed injective composite morphism
m̂ : L̂ → Ĝ is shown in Fig. 3.13. (1) and (2) are pushouts in the category of
COMPGRAPHSTG (COMPGRAPHSweak

TG ).

A composite graph transformation is a sequence Ĝ0 ⇒ Ĝ1 ⇒ ...⇒ Ĝn of

direct composite graph transformations, written Ĝ0
∗
⇒ Ĝn.

L̂

m̂

��

K̂?
_l̂oo

d̂

��

� � r̂ // R̂

n̂

��
(1) (2)

Ĝ D̂?
_ĝoo � � ĥ // Ĥ

Figure 3.13: Illustration of a composite graph transformation step by
means of two pushouts.

In general, a transformation step Ĝ
p̂,m̂
=⇒ Ĥ can be performed if m̂ fulfills

the composite gluing condition: The resulting structure must be a well-
formed composite graph. Otherwise, it can happen that context edges
dangle afterwards. The gluing condition has to be checked on the net-
work and all local transformations. Moreover, for all deleted network
nodes, the local graphs have to be fully determined by the match, and
local graph elements may be deleted only if there are no preserved in-
terface elements being mapped to them. Weak composite rules are not
allowed to change stand-alone exports or to produce stand-alone ex-
ports by deleting their body. (For more details see [50].)
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Transformation steps are performed component-wise, i.e., by perform-
ing the network transformation first and all local transformations for
the involved network nodes afterwards if all composite morphisms are
injective. Fig. 3.14 exemplifies this process. Rule p̂ is applied on input
model Ĝ by first applying the network rule p on the network graph G:
p comprises just the “large“ nodes, labeled B and E, and the edge be-
tween these nodes. It specifies the creation of an export node and a net-
work edge connecting the export to an existing body node. In the sec-
ond step, the object graphs of the existing body node and the new ex-
port node are updated to contain the specified nodes and edges. In this
figure, numbers denote mappings as induced by the graph morphisms.
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Figure 3.14: Component-wise application of a composite graph rule.

Applying Rule a shown in in Fig. 3.8 to the model in Fig. 3.5, nothing
is deleted. Consequently, the composite gluing condition is obviously
fulfilled. To obtain the composite model in Fig. 3.7, variable “name“
has to be instantiated by “book“. Additional references between book,
poem, and poet entities have to be added by another editing step.

Merging a Composite Graph

Merging as exemplified in Fig. 3.9 can be formalized using a colimit
construction.

Definition 16 (Graph merge). Given a composite graph, there is a unique
graph containing its merge result: Considering a composite graph C as a di-
agram in category GRAPHSTG, its colimit consists of a simple graph G and
a family of graph mophisms from all local graphs of C to G. The colimit con-
struction is uniquely determined.
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3.5 Framework

In this section, we provide a formal framework for component en-
capsulation, following the overview shown in Fig. 3.1: We define its
two components, language- and application-level encapsulation, by spec-
ifying their input and output precisely. Language-level encapsulation
provides a certain degree of freedom with regard to its instantiation.
Application-level encapsulation, in contrast, is uniquely determined by
the provided input models and language-level encapsulation. We later
discuss our instantiation of both components. We consider the binary
case of encapsulating two related models. Three or more related mod-
els can be encapsulated by successively applying binary encapsulation.

Proposition 2 (Binary encapsulation of graphs). Given graph G and two
subgraphs G1 and G2 with inclusions g1 : G1 → G and g2 : G2 → G, their
interconnecting interfaces can be uniquely determined such that the resulting
diagram forms a valid composite graph with two components.

G1
oo i1

GI

ie

��

(1) (2)

G
��

g1

oo
g2

G2

��

i2

GE
e2oo

Figure 3.15: Binary encapsulation of a composite graph.

Proof. In Fig. 3.15, let square (1) be a pullback and (2) an epi-mono-
factorization. Then, graph GI and morphisms i1 and i2 are uniquely de-
termined, up to isomorphism. The epi-mono-factorization splits mor-
phism i2 into a surjective and an injective part. Graph GE and mor-
phisms e2 and ie are uniquely determined by this factorization. Di-
agram i1, ie, and e2 forms a valid composite graph with two compo-
nents. Its network graph is well typed over the component network
graph defined in Def. 8.

For example, consider the SwalData and SwalHypertext meta-models in
Fig. 3.2. We are free to consider additional model elements not con-
tained in SwalHypertext as part of G1: Choosing SwalHypertext includ-
ing its outgoing remote references, their target classes and the reference
between these classes as G1, SwalData as G2, and the graph yielded by
the union of all classes and references as G, we obtain export and im-
port interfaces GI and GE as shown in Fig. 3.4.
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We provide a formalization of application-level encapsulation along a
given language-level encapsulation. We show that the result of the con-
struction is uniquely determined.

Proposition 3 (Binary encapsulation of typed graphs). Given a type
graph TG with subgraphs TG1 and TG2 and their binary encapsulation as in
the upper part in Fig. 3.16. Moreover, graph G with subgraphs G1 and G2 and
typings t, t1, t2 over TG, TG1, TG2 are given so that (t1, g1) is a pullback
over (t, tg1) and (t2, g2) is a pullback over (t, tg2). There is a unique binary
encapsulation of G1 and G2 being type compatible with the resulting compos-
ite type graph. That is, all morphisms in Fig. 3.16 exist and form a commuting
diagram. The result is a composite graph typed over the encapsulation of TG1
and TG2.
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Figure 3.16: Binary encapsulation of typed composite graph.

Proof. The following steps can be performed:

1. (ti, i1) is constructed as pullback over (ti1, t1).

2. Morphism i2 is the induced morphism by pullback (t2, g2) and
morphisms g1◦ i1 and ti2 ◦ ti such that t2 ◦ i2 = ti2 ◦ ti and g1◦ i1 =
g2 ◦ i2.

3. (e2, te) is constructed as pullback over (t2, te2).

4. Morphism ie is the induced morphism by the pullback (e2, te) and
morphisms i2 and ti ◦ tie such that i2 = e2 ◦ ie and tie ◦ ti = te ◦ ie.

In the example, encapsulating the poetry application model in Fig. 3.3
over the meta-model encapsulation shown Fig. 3.4 gives us the com-
posite model illustrated in Fig. 3.5.
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3.6 Instantiation

In this section, we introduce our instantiation of component encapsula-
tion. The key idea is to establish a conservative encapsulation in which
interfaces only contain elements required to combine the models, i.e.,
elements previously targeted by remote references. To include addi-
tional elements, the interfaces may be post-processed manually.

The basic procedure, shown as Algorithm 2, works in the same way for
both components: It implements language-level encapsulation as per
Prop. 3.15 and application-level encapsulation as per Prop. 3.16. The
main difference concerns the way in which the types for certain copied
objects are determined: On the language level, this is a trivial issue
since meta-models only contain elements of the type “meta-class“ (we
formalize meta-models using simple graphs in Prop. 3.15). On the ap-
plication level, the meta-model encapsulation needs to be inspected (cf.
Prop. 3.16). The procedure assumes two input models: Remote refer-
ences running from the right to the left model are replaced by export
and import relationships. To perform this substitution in both direc-
tions, the procedure can be applied a second time, providing the input
models in swapped order. To encapsulate a set of more than two mod-
els, the procedure can be applied on each pair of models successively.

The main idea of this procedure is to consider each reference in the right
model and, in case that a remote reference targeting the left model is
detected, restructure both models accordingly. To this end, new export
and import interfaces are created in lines 2–3. In lines 4–7, elements
in the left model targeted by remote references are identified. For each
such element, corresponding export, import, and delegate objects are
determined in lines 8-10: If we consider an element for the first time,
we create these objects in the target body or interface. If we consid-
ered it at an earlier point, we just refer to these existing elements. The
methods used to create the new objects ensure that the typing of these
objects is correct. On language level, we only consider meta-classes and
-references (cf. Prop. 3.15). On application level, the types are retrieved
from the available body, export, and import metamodels (Prop. 3.16).
The target of the remote reference is updated in line 11 to refer to the
delegate object. In line 12, we add interconnecting references between
the newly created elements. In 13–15, we make sure that we do not add
empty export or import interfaces to a component.

For example, applying this procedure on the models shown in Fig. 3.2,
using the SwalData meta-model as left and the SwalHypertext meta-
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Algorithm 2 Component encapsulation.

Input: left: Left model.
Input: right: Right model.

1 procedure ENCAPSULATECOMPONENTS(left, right)
2 var export = new export(left)
3 var import = new import(right, export)
4 for each e← right.elements
5 for each r← e.references
6 if r.target ∈ left.elements then
7 var remoteElem← r.target
8 var exp← export.findOrAddCopy(remoteElem)
9 var imp← import.findOrAddCopy(remoteElem,exp)

10 var delegate← right.findOrAddCopy(imp)
11 r.target← delegate

12 addInterconnectingReferences(body, export, import)
13 if (!export.isEmpty && !import.isEmpty) then
14 left.addExport(export)
15 right.addImport(import)

16 return

model as right model, yields the model in Fig. 3.4: In lines 2–3, the
export and import interfaces are initialized. The two remote references
dataModel and entity are identified in line 4–6. Consequently, new meta-
classes corresponding to the DataModel and Entity classes are created
and added to the interfaces and body in lines 7–10. These meta-classes
are set as new targets for the remote references in line 11. The reference
between DataModel and Entity is added in line 12. Since the interfaces
are not empty, they are added to their models in lines 13-15.

Applying the procedure on the models shown in Fig. 3.3, using the po-
etry data model as left and the hypertext model as right model, yields
the model in Fig. 3.5: The interfaces are created in lines 2–3. All six
visible remote references are considered once in the loops in line 4–6.
One additional reference not visible in the concrete syntax representa-
tion is considered, running between the HypertextModel and DataModel
objects. In lines 7–10, the first time each of the four target objects – Con-
test, Poet, Poem, and DataModel – is considered, corresponding objects
are created. The sub-procedures determine the typing for these objects:
The meta-classes created during the language-level encapsulation are
used as types. The new object in the body is set as reference target in
line 11. References between the data model and its entities are added
in line 12. The interfaces are added in lines 13–15.
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3.7 Tool Support

The core processing of composite models is supported by an existing
editor environment based on the Eclipse Modeling Framework [106].
For a set of related models, wizard are provided allowing to perform
component encapsulation as proposed in this chapter. Export and
import interfaces are implemented as separate resources with special
references, supported by a delegation mechanism that replaces EMF’s
proxy concept. Furthermore, we have implemented a model transfor-
mation language and tool set allowing the specification and execution
of editing steps. Our basic implementation comprises a rule editor and
interpreter engine suite. Using this implementation, it is possible to de-
ploy transformation rules as editing steps, e.g. refactorings, within ex-
isting editors such as Papyrus. The transformation language can also be
used for model-to-model transformation, e.g., to support a cleanup step
before code generation. The tool set is open source being provided at
http://www.uni-marburg.de/fb12/swt/forschung/software

along with examples and a tutorial.

3.8 Application Scenario

In this section, we investigate the claim that component encapsulation
can facilitate the systematic development of models. We provide an
application scenario concerned with the collaborative development of
a web application using purpose-tailored DSMLs. Inspired by a similar
scenario first introduced in [8, 57], the application under development
is an administrative web application for a vehicle rental company. The
models in the scenario are based on the domain and hypertext DSMLs
introduced in Sec. 3.2.1. We assume that these languages have been
subject to encapsulation, yielding the meta-model components as pro-
vided in Fig. 3.4. We discuss the scenario in the light of the following
research questions:

• RQ1: Is component encapsulation suitable to facilitate indepen-
dent editing while ensuring consistency of model components?

• RQ2: Is the same language-level encapsulation useful when ap-
plied to different application scenarios?

First, we demonstrate the scenario in detail, considering a sequence of
six revisions during collaborative development. Second, we discuss
observations concerning the research questions.
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Figure 3.17: Overview of the application scenario, indices denoting re-
vision numbers of the individual models.

Demonstration

The scenario, shown in Fig. 3.17, features three team members, Saman-
tha, Frank, and Mike. Samantha is the team manager; she assigns the
remaining team members to viewpoints: Frank becomes the domain
modeler. Mike becomes the hypertext modeler.

The starting point of the scenario are existing data and hypertext mod-
els D and H , being connected using remote references. In the first revi-
sion, Samantha encapsulates along the given language-level encapsula-
tion, replacing the remote references with export and import interfaces.
The internal details of remote components are hidden to both develop-
ers respectively: Frank’s scope of visibility is restricted to his assigned
component being D. Mike’s scope of visibility comprises his assigned
component being H, and remote component D’s export (cf. the notion
of weak composite graphs introduced in Sec. 3.4).

Samantha, Frank, and Mike perform a series of asynchronous and syn-
chronous editing steps, reflected in increasing revision numbers. One
editing step introduces an inconsistency, being reconciled in a subse-
quent revision. We consider all six revisions in detail.

Revision 1. (Fig. 3.18) This revision comprises the initial state of the
involved models. We show the revisions in a textual notation, which
provides an alternative concrete syntax to the one shown earlier. As in-
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Figure 3.18: Revision 1: Models with remote references.

Figure 3.19: Revision 2: Models after component encapsulation.

dicated by the four occasions in the hypertext model where model ele-
ment names are prefixed with the name of the data model VehicleRental-
Data, the two models are connected using remote references.

Revision 2. (Fig. 3.19) As triggered by Samantha, component encap-
sulation of the models along the encapsulation of the DSMLs has been
performed. Each model now contains a dedicated interface: The data
model contains an export interface. The hypertext model contains an
import interface referencing this export interface. The model elements
exchanged between these interfaces are named explicitly. The remote
references have been replaced by plain references to the imported ele-
ments.
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Figure 3.20: Revision 3: Models after performing add attribute.

Figure 3.21: Revision 4: Models after performing remove entity.

Revision 3. (Fig. 3.20) Frank has introduced a new attribute for main-
taining the manufacturer of a car, an asynchronous editing step only af-
fecting one component. This step is neutral to inter-model consistency
and does not require conflict handling.

Revision 4. (Fig. 3.21) As required by a law change prohibiting the
storage of credit card information, Frank has removed the entity Credit-
Card from the data model. Since this editing step involves the deletion
of an exported model element, it is a critical editing step threatening
consistency. Frank receives a warning. His options are: to manually
establish communication to Mike clarifying the change, to let a default
message be delivered to Mike, to take back the change or to do nothing.
In the two former cases, Mike can react by performing an editing step
to retain consistency.
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Figure 3.22: Revision 5: Models after reconciling the inconsistency in-
troduced in Revision 4.

Figure 3.23: Revision 6: Models after performing add corresponding en-
tity and index page.

Revision 5. (Fig. 3.22) Frank has decided to inform Mike about the
change, so that Mike has been able to react immediately. Mike has re-
moved the page that shows the credit card information from the hyper-
text model.

Revision 6. (Fig. 3.23) To support the management of agencies, a
new requirement requested by the customer, Samantha has performed
a synchronous editing step changing both components in parallel.
Eventually, Samantha decides that the model components have accom-
plished a stable state and should be used for code generation. A global
consistency check may be performed before the code generation to en-
sure a valid result. If at some later point in time new requirements are
added, the components can be further evolved.
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Discussion

Below, we discuss the two research questions outlined in the beginning
of this section.

RQ1: Is component encapsulation suitable to facilitate independent
editing while ensuring consistency of model components?

In accordance with the original motivation, the maintenance of explicit
export and import interfaces supported a smart and relaxed conflict
avoidance in this scenario: At all times, developers were aware whether
their editing is either safe or critical to inter-model consistency. In the
case of critical steps, further intervention became necessary. An au-
tomatized conflict detection and resolution algorithm can be consid-
ered complementary and might be applied at any time throughout the
development process. Especially a conflict detection step right before
the code generation step is highly desirable.

RQ2: Is the same language-level encapsulation useful when applied
to different application scenarios?

The language encapsulation of the SwalData and SwalHypertext meta-
models, originally introduced in Fig. 3.4 together with a different ex-
ample model to illustrate the approach, was sufficient to enable consis-
tent editing most of the time while helping to reconcile an inconsistency
immediately in one occasion.

Threats to validity and limitations

In this section, we considered only one scenario for the proposed pro-
cess, a potential threat to external validity. In addition, the considered
scenario is an artificial one. A more diverse, preferably empirical vali-
dation is required to ensure the utility of our approach in realistic set-
tings.

A threat to construct validity involves our notion of “usefulness” of
the language-level encapsulation. As one caveat, we identify the sit-



68 3 Component Encapsulation for Composite Modeling

uation where the application model developers need to inspect addi-
tional model elements to understand the context of imported elements.
For instance, in order to understand the intention of a specific class,
it might be reasonable to introduce references and attributes as well.
This requirement can only be satisfied by extending the language-level
encapsulation.

3.9 Related Work

Modularization Techniques. Amálio et al. [3] proposed Fragmenta,
a theory for introducing modularity in models based on the notion
of fragments. Fragments are small models that can be combined into
larger ones by constructing clusters of fragments. Relations between
fragments are established using proxy objects. The resulting formal-
ization can be considered a formal underpinning of the proxy-based
modularization strategy provided by the Eclipse Modeling Framework
[106]. In contrast, the idea of component encapsulation is to replace this
modularization strategy by the refined one of composite models, ac-
counting for engineering principles such as information hiding.

In [131], Weisemöller et al. propose to extend meta-models by export
and import interfaces to introduce information hiding. This work can
be considered a predecessor of composite modeling, notably, since it
is also based on concepts from algebraic graph transformation such as
graphs and graph morphisms. Yet, this work does not consider con-
crete models based on the extended meta-models and does not provide
a technique to introduce modularity automatically.

Distributed Editing. As for distributed editing, an elaborated strategy
for inconsistency detection is provided by Macromodeling [97]. Macro-
modeling allows integrating multiple models of different modeling lan-
guages on type and instance layers. A major objective of macromodel-
ing is the check of global consistency conditions based on logical for-
mulas. Existing model editors such as Papyrus2 or MagicDraw3 imple-
ment a strategy for inconsistency avoidance by locking selected model
parts for modification. Property locking as proposed by Chechik at
al. [20] is a generalization of this approach. Instead of locking specific
portions of the model, locks are assigned to properties, which can be

2http://www.eclipse.org/papyrus/
3http://www.nomagic.com/products/magicdraw.html
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expressed by logical formulas over the model. These approaches as-
sume a scenario where all involved modelers in principle have access
to the complete involved model, while the developers in the scenarios
considered in this chapter have differing scopes of visibility.

Connected Data Objects (CDO)4 is a collaboration framework facilitat-
ing collaborative editing on top of EMF. As CDO does not provide sup-
port for explicit interfaces, it is orthogonal to composite modeling. An
integration of composites with CDO exists.

3.10 Conclusion

In this chapter, we propose component encapsulation, an automated tech-
nique that allows deriving export and import interfaces for a set of re-
lated models automatically, thereby turning it into a set of model com-
ponents. To demonstrate that the technique enables a disciplined devel-
opment workflow for models created using domain-specific modeling
languages (DSMLs), we embed it in the context of a systematic model-
ing process. By allowing to establish sound engineering principles such
as information hiding and a notion of visibility, the proposed technique
enables a useful improvement in the state-of-the-art of DSML develop-
ment.

4http://projects.eclipse.org/projects/modeling.emf.cdo
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Chapter 4

Rule Merging for
Variability-Based Model
Transformation

This chapter shares material with the FASE’15 paper “A Variability-Based
Approach to Reusable and Efficient Model Transformations“ [116] and the
FASE’16 paper “RuleMerger: Automatic Construction of Variability-Based
Model Transformation Rules“ [115].

In this chapter, we tackle the maintainability- and performance-related
scalability issues of model transformations by introducing variability-
based model transformation. We formally define variability-based rules
and contribute a novel match-finding algorithm for applying them. We
introduce rule merging, a three-component framework that allows cre-
ating efficient variability-based rules automatically. We prove correct-
ness of this approach by showing the equivalence of the created rules to
their classical counterparts and demonstrate its benefits in two realistic
transformation scenarios.

4.1 Introduction

Model transformation is a key enabling technology for Model-Driven
Engineering, pervasive in all of its activities, including the translation,
optimization, and synchronization of models [101]. Algebraic graph
transformation (AGT) is one of the main paradigms in model transfor-
mation. It allows the specification of rules in a high-level, declarative
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manner [27]. Recently, many complex transformations have been im-
plemented using AGT [46, 71, 35]. AGT is gaining further importance
due to its use as an analysis back-end for imperative model transfor-
mation languages [89].

Transformation systems often contain rules that are substantially simi-
lar to each other. Yet, until recently, various model transformation lan-
guages lacked constructs suited to capture these similar rule variants in
a compact manner [63]. The most frequently applied mechanism for
creating variants remains cloning: developers produce rules by copy-
ing and modifying existing ones, a process related to various draw-
backs for the maintainability and performance of the resulting rule sets.

In this chapter, we introduce variability-based model transformation, an
approach inspired by product line engineering (PLE) principles [21, 26].
A variability-based (VB) rule encodes a set of similar variants in a
single-copy representation, explicating their common and variable por-
tions. By introducing VB rules into a transformation system, the draw-
backs of cloning as outlined Sec. 1.1.3 can be addressed:

• Representing a set of mutually similar rules in a single-copy rep-
resentation is promising to improve their maintainability: It is con-
siderably easier to maintain consistency between rules if the de-
veloper is not required to perform the same change in each rule
variant individually. This approach is also less prone to subtle
errors introduced during rule creation by cloning, where errors
are copied and must be fixed in all subsequently created rules. Fi-
nally, the effort to maintain the overall rule system may be smaller
when the overall number of rules is smaller.

• To improve the performance of the transformation engine during
execution of these rules in batch mode, we introduce a novel al-
gorithm for resolving variability automatically during the rule
matching process, i.e., determination of application sites in the
input model. Our central idea is to find matches for the common
parts of all rule variants first and then to use them as starting
points for the matching of the variable parts.

Despite the apparent benefits of its outcome, creating VB rules manu-
ally is a tedious and error-prone task. This task relies on the precise
identification of (i) the set of rules that should be unified into a single
VB rules; (ii) rule portions that should be merged versus portions that
should remain isolated. The choices made during these steps have a
substantial impact on the quality of the produced rules.
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We introduce rule merging as an approach to automate this task. Rule
merging comprises a three-component framework: It applies clone de-
tection to identify overlapping fragments and clustering to assign rules
to groups of mutually similar rules. A third component called merge
construction selects the overlapping portions used as basis for creat-
ing the output VB rules. Each of these components can be instantiated
and customized in various ways, accounting for user-specified quality
goals.

We make the following contributions:

• We provide a formalization of variability-based rules, investigat-
ing their syntax and application semantics on the basis of graph
transformation. We prove equivalence to the application of the
corresponding classic rules.

• We propose a match-finding algorithm aiming to achieve a per-
formance gain when compared to matching the rules individu-
ally.

• We present a novel merge-refactoring approach for AGT-based
model transformation rules. Our instantiation of the approach
provides a novel merge construction algorithm and harnesses state-
of-the-art clone detection and clustering techniques.

• We formally prove the correctness of the approach, showing the
equivalence of the produced VB rules to their classical counter-
parts.

• We empirically show that the produced VB rules are superior to
their classical counterparts in terms of several performance- and
maintainability-related characteristics.

The remainder of this chapter is structured as follows: In Sec. 4.2, we
give an overview of the approach and demonstrate two motivating sce-
narios. In Sec. 4.3, we recall the necessary background required by the
approach. In Sec. 4.4, we define the foundations of variability-based
model transformation. We investigate variability-based transformation
formally and describe the algorithm for directly applying variability-
based transformations. In Sec. 4.5, we outline the approach and argue
for its correctness. Sec. 4.6 reports on our instantiation of rule merging.
In Sec. 4.7, we discuss our implementation in detail. Sec. 4.8 presents
our evaluation. In Sec. 4.9 and 4.10, we discuss related work and con-
clude.
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4.2 Overview

Clone
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Figure 4.1: An overview of rule merging.

In this section, we present rule merging, a novel approach for automat-
ing the merge-refactoring of model transformation rules. The approach
includes three components (see Fig. 4.1). It applies clone detection [91]
to identify overlapping portions between rules and clustering [133] to
identify disjoint groups of similar rules. During merge construction,
common portions are unified and variable ones are annotated to create
variability-based (VB) rules. Each component can be instantiated and
customized with respect to specific quality goals, e.g., to produce rules
optimized for background execution or easy editing. Since the frame-
work guarantees that all created rule sets are semantically equivalent,
we envision a system that enables users to edit rules in a convenient
representation and automatically derives a highly efficient one.

The distinguishing factors of this approach, compared to merge-
refactoring approaches in the PLE domain [92, 137, 96], are its abil-
ity to detect overlapping portions rather than pairs of similar elements
and to create multiple output VB rules rather than one single-copy rep-
resentation of all rules. These factors allow us to address the perfor-
mance and maintainability issues related to cloning.

4.2.1 Examples

Example 1: Variability-intensive refactoring rules.

Consider a set of model transformation rules aiming to improve the
structure of an existing code base based on class model refactorings.
Fig. 4.2 shows six refactoring rules expressed in an abstract syntax no-
tation [27]. The rules describe several ways of relocating a method be-
tween two classes. Each rule comprises two parts called left-hand side
(LHS) and right-hand side (RHS): if the LHS matches a place in the in-
put model, then the RHS is applied, thereby changing the model. We
present the rules in an integrated form, with the LHS and RHS of a
rule being represented in one graph. The LHS comprises all delete and
preserve objects. The RHS contains all preserve and create objects.
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Figure 4.2: Refactoring rules for class models.

Rule A takes as input two classes, one of them sub-classing the other,
and a method. Each of these input objects is specified by its name. The
rule moves the method from a sub-class to its super-class, by deleting
it from the sub-class and adding it to the super-class. Similarly, Rule

B moves a method from the super-class to one of its sub-classes. Rule

C also moves a method from the super- to a sub-class, but, in addition,
creates an abstract method with the same name in the super-class. Rules

D, E, and F move a method across an association. The latter two rules
also create a “wrapper” method of the same name in the source class.
Rule F uses an annotation to mark this method as deprecated. Such rule
sets are often created by cloning, that is, copying a rule and modifying
it to fit the new purpose.

We consider the merge-refactoring of a rule set created using cloning.
The result is a rule set with variability-based (VB) rules in which the
common portions are unified and the differences are explicated, as
shown in Fig. 4.3. Specifically, Rules B and C are merged, producing
a new VB Rule B+C. Rules D, E, and F are merged into D+E+F. Rule A

remains as is.
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Figure 4.3: Variability-based refactoring rules for class models.

Each VB rule has a set of variation points, corresponding to the names of
the input rules: Rule B+C has the variation points B and C. In addition,
each rule has a variability model specifying relations between variation
points, such as mutual exclusion: Rule B+C has the variability model
xor(B,C). VB rules are configured by binding each variation point to ei-
ther true or false. Portions of VB rules are annotated with presence con-
ditions. These portions are removed if the presence condition evaluates
to false for the given configuration. Element #32 and its incoming edge
are removed in the configuration {C=false, B=true}. For conciseness, we
omit the presence condition true, e.g., for nodes #26-#28.

In this example, the VB rules are configured individually, either manu-
ally by the user or automatically by client code, e.g., a model editor. The
result of configuration is a “flat“ rule again – a process similar to that in
product-line engineering approaches [26]. Alternatively, all rules of a
rule set may be executed in batch mode, i.e., considered simultaneously.
The following example deals with such a scenario.
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Figure 4.4: Remove Double Negation optimization rules.

Example 2: Variability-intensive optimization rules.

Consider a second example inspired by a set of real-life rules for op-
timizing and simplifying first-order logic expressions [7], aimed to
improve performance of engines that process these expressions, e.g.,
theorem provers or SAT solvers. Fig. 4.4 shows four transformation
rules that simplify first-order logic formulas by removing redundant
not symbols and thus reducing the “depth” of a formula. Again, we
present the rules in an integrated form, with the left- and right-hand
sides of the transformation being represented in a graph labeled with
the actions preserve, delete, and create.
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Rule A removes a ¬∀¬ segment of a formula and transforms it into an
∃ segment. This is done by removing nodes #2, #4 and their correspond-
ing edges, replacing the quantifier of node #3 to be “exists” (node #7)
rather than “forall” (node #8), and connecting the modified quantifier
to the enclosing and the enclosed formulas – nodes #1 and #5, respec-
tively. Similarly, Rule B removes a ¬∃¬ segment and transforms it into
a ∀ segment. Rules C and D differ from A and B in the type and adja-
cent edges of the topmost enclosing formula (nodes #1,9,17,25): basic
vs. quantified. A BasicFormula has an operator and a set of argument
formulas, whereas a QuantifiedFormula has a quantifier and nests exactly
one other formula. Note that there exists a third kind of formula, Predi-

cateFormula, that encloses no other formulas.

BasicFormula QuantifiedFormula

Formula

PredicateFormula

name: String 

Quantifier

name: String 

Operator

name: String 

operator quantifier

nestedargs

Variable

name: String 

var var

Literal

name: String 

1..* 1

1..* 1 11

Figure 4.5: Meta-model for first-order logic formulas.

Fig. 4.5 provides the meta-model for first-order logic formulas as used
by these model transformation rules. Formulas are expressed as a set
of atomic formulas – being either named predicate formulas or literals
– that are combined through universal and existential quantifiers and
Boolean operators. There are four kinds of formulas:

• Literals, being either TRUE or FALSE,

• Predicate formulas, comprising a name and a set of variables (e.g.
name F and variable X constituting predicate formula F(X)),

• Basic formulas, linking a set of argument formulas through an
operator (such as AND, OR, NOT), and

• Quantified formulas, nesting a formula while binding one of its
variables to a quantifier (EXISTS or FORALL).

Fig. 4.6 shows an example first-order logic formula φ = (¬∀x ·¬F (x))∧
true that can be simplified using one of the rules, namely, Rule A. The
formula is represented as a model created using the meta-model shown
in Fig. 4.5. The left-hand side of the figure depicts formula-specific
elements. The right-hand side presents a library of “generic” reusable
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Figure 4.6: Example first-order logic formula φ.
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Figure 4.7: Variability-based Remove Double Negation optimization rule.

first-order logic operators. Elements #1-#8 of Rule A match with the
corresponding elements #33–#37, #41, #43, #42. We call this assignment
a match mA. Finding mA triggers the application of Rule A, producing
the formula (∃x · F (x)) ∧ true. Note that mA is a valid match because
PredicateFormula (node #5 in Fig. 4.6) is a sub-type of Formula.



80 4 Rule Merging for Variability-Based Model Transformation

Fig. 4.7 shows a compact variability-based rule that represents all four in-
dividual rules in Fig. 4.4. The differences between the classic rules are
explicitly captured and represented by variation points. Rule elements
are annotated with presence conditions – Boolean formulas over the vari-
ation points. In the visual representation, annotations are appended in
square brackets to the names of their corresponding nodes and edges.
Again, for the simplicity of presentation, we omit the presence condi-
tion true, e.g., for nodes #2-#8.

In this example, there are two variation points: (1) The forall variation
point controls the direction of the quantifier inversion. When set to
true, it corresponds to the ¬∀¬ to ∃ inversion, as in rules A and C; when
set to false, it corresponds to the ¬∃¬ to ∀ inversion, as in B and D.
(2) The quantified variation point controls the enclosing formula and its
adjacent edges. When set to true, it corresponds to a formula of the type
QuantifiedFormula with outgoing nested edges, as in C and D; when set to
false, it corresponds to a formula of the type BasicFormula with outgoing
args edges, as in rules A and B. Note that this variation point cannot be
captured using node sub-typing, as it affects edges with different types.
The variability model in this example is true since all configurations
obtained by binding configuration points to true or false are valid.

A variability-based rule can be configured by setting variation point val-
ues and then selecting all elements whose presence conditions eval-
uate to true while removing those whose presence conditions eval-
uate to false. In our example, configuring the rule with {forall=true;
quantified=false} produces Rule A in Fig. 4.4 while the configuration
{forall=false; quantified=true} produces Rule D.

4.2.2 Automated Technique

In this chapter, we introduce rule merging, an automated technique
that takes as input a set of mutually set of similar rules such as the ones
shown in Fig. 4.2 or Fig. 4.4. and produces a representation using VB
rules such as illustrated in Fig. 4.3 or Fig. 4.7.

Effect on maintainability. Conceptually, a variability-based rule is
equivalent to a set of rules for all its valid configurations. Yet both
examples demonstrate several benefits of VB rules related to main-
tainability: The amount of redundancy is reduced, ensuring consis-
tency between variants during changes; subtle error produced during
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rule creation are fixed in one place. The total number of rules is smaller,
possibly allowing to navigate the transformation system with smaller
cognitive effort for the developer and decreased computational effort
for the rule editor. The latter may increase responsiveness of the editor
and thereby help the developer focus on the maintenance task at hand.

Effect on performance. The match-finding algorithm for a variability-
based rule proposed in this chapter performs matching of all its valid
configurations at once, thus positively affecting the performance of the
transformation system. The algorithm automatically detects a configu-
ration that induces a valid match using a two-step process. In the first
step, it matches the base rule – the portion of the rule annotated with true
and representing common parts of all individual rules. For the exam-
ple in Figs. 4.7 and 4.6, this results in exactly one match, mbase, assigning
elements #47-#53 to #34-37,41-43 and connecting edges accordingly. In
the second step, the algorithm enumerates the valid configurations and
tries to match them using mbase. This yields exactly one match for Rule

A: mA. The result of match-finding is mA paired with the configuration
{forall=true; quantified=false} enabling mA.

4.3 Preliminaries

As preliminaries for variability-based transformation, we briefly re-
visit the fundamental concepts of algebraic graph transformation [32]
as outlined in Section 2.4. Graphs can be used to represent the underly-
ing structure of visual models. Their conformance to a meta-model can
be formally represented by typed attributed graphs mapped to type
graphs. For simplicity, our treatment here uses basic graphs without
types and attributes. However, since the introduced notion of variabil-
ity is orthogonal to these features, our implementation and evaluation
use the full power of typed attributed graphs with inheritance [45].

A graph comprises a set of nodes and a set of edges connecting these
nodes. Structure-compatible mappings between graphs can be ex-
pressed in terms of graph morphisms which are compatible to the source
and target functions for the edges. Graph transformations are ex-
pressed using rules. For example, in the gluing approach to graph trans-
formation, graph elements occurring in the left- and right-hand sides
of a rule, i.e., in the interface graph, are used to glue new elements to
already existing ones. Rule A from Fig. 4.4 is a rule that can be applied
to the typed attributed graph of Fig. 4.6 in order to transform it.
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A rule is applied using a match, a morphism of its left-hand side to the
input graph. The application proceeds in two steps: First, all specified
deletions are performed. By checking the gluing condition, it is ensured
that no dangling edges are produced. Then, the specified modifica-
tions and creations are performed. In the example, the example match
mA comprises mappings of elements #1-#8 of Rule A to elements #33–
#37, #41, #43, #42. By the application of Rule A, nodes #34 and #36 are
deleted, together with all of their incoming and outgoing edges. The
edge between nodes #35 and #42 is deleted as well. As no dangling
edges are left behind, the gluing condition is satisfied. Edges between
#33 and #35, #35 and #37, as well as between #35 and #43 are created
yielding the graph structure for the formula φ′ = (∃x · F (x)) ∧ true.

We further consider connected rules, rules being constituted by con-
nected left-hand and right-hand side graphs.

Definition 17 (Connected rule). A rule r = L
le
←− I

ri
−→ R is connected

iff, treating all edges as undirected, ∀G ∈ {L,R} there is a path between each
pair of nodes in G.

For example, none of the rules in Fig. 4.4 is connected, since element #6
and its counterparts isolated in their R graphs.

We define an operation called flattening based on multi-pullbacks and
-pushouts [70], categorical constructions generalizing the intersection
and union of objects. The category SETS is complete and co-complete,
i.e., all limits and co-limits, specifically multi-pullbacks and -pushouts,
exist [33]. The same holds for GRAPHS, since it is a comma category of
SETS [41]. The category GRAPHSTG′ of typed graphs and total clan mor-
phisms without type refinement is co-complete since pushouts exist and
the empty typed graph is an initial object [33]. We do not need type re-
finement for variability-based rules. Moreover, we show that the multi-
pullback in GRAPHS is well-typed, i.e., it is an object in GRAPHSTG′ .
Note that this object is not necessarily a multi-pullback in GRAPHSTG′ .

Proposition 4. Let a type graph TG, a graph Gr and a set of graphs G =
(Gi|i ∈ I) with a family of morphisms g′i = Gi → Gr be given. Further, let
Gr and each G ∈ G be typed graphs over TG. For multi-pullback Gt (see Fig.
4.8), there exists a well-defined and unique type morphism typet : Gt → TG.

Proof. The type morphism typet exists and is uniquely determined: ∀i, j
with 1 ≤ i, j ≤ n, we have typei ◦ gi = typer ◦ g

′
i ◦ gi = typer ◦ g

′
j ◦ gj =

typej ◦ gj .
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Figure 4.8: Typing of the multi-pullback in GRAPHS with 1 ≤ i ≤ n.

4.4 Variability-Based Model Transformation

In this section, we introduce variability-based transformation rules and
show how to apply them.

4.4.1 Variability-Based Rules

We denote variability using variability expressions, propositional ex-
pressions over a set of variation points. We consider two kinds of vari-
ability expressions: The variability model and variability conditions.
The variability model is used to express relationships between varia-
tion points, such as mutual exclusion or implication. Variability condi-
tions are used to specify when specific variants expressed using varia-
tion points shall be active. The set of variation points and the variability
model are fixed for the set of rules and not changed by transformation
steps.

A subrule encapsulates a subset of actions on a substructure of a set of
rules. If we want to identify substructures of the same rule, we talk
about subrule embeddings. To identify common substructures of multi-
ple rules, we talk about subrule morphisms.

Definition 18 (Subrule morphism). Given a pair of rules r0 = (L0
le0←−

I0
ri0−→ R0) and r1 = (L1

le1←− I1
ri1−→ R1) (Def. 12) with injective mappings

lei, rii for i ∈ {0, 1}, a subrule morphism s : r0 → r1, s = (sL, sI , sR)
consists of injective mappings sL : L0 → L1, sI : I0 → I1, and sR : R0 →
R1 s.t. in the diagram in Fig. 4.9 (1) and (2) commute. In addition,

• the intersection of sL(L0) and le1(I1) in L1 is isomorphic to I0.

• the intersection of sR(R0) and ri1(I1) in R1 is isomorphic to I0.

• L1 − (sL(L0)− sL(le0(I0))) is a graph (Def. 1).
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L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Figure 4.9: A schematic depiction of subrule morphisms.

The conditions prefaced by “in addition“ ensure that a subrule per-
forms the same actions on related elements as the original rule and that
the larger pattern of the original rule does not prevent a subrule to be
applied.

Definition 19 (Subrule embedding). Subrule mapping s is called a subrule
embedding if all of its morphisms sL, sI , and sR are inclusions. Given two
subrule embeddings s : r0 → r1 and s′ : r′0 → r′1, we have that s ⊆ s′ if there
are subrule embeddings t0 : r0 → r′0 and t1 : r1 → r′1 with s′ ◦ t0 = t1 ◦ s.

In the example rule shown in Fig. 4.7, the rule comprising all nodes and
edges with no visible presence condition, i.e., #47–53 and their interre-
lating edges, is a subrule of the entire rule.

Definition 20 (Language of variability expressions). Given a set of vari-
ation points V , LV is the set of all propositional expressions over V , called
language of variability expressions.

In the example, forall and quantified are variation points. The language
of variability expressions includes the words forall ∧ quantified, ¬ forall,
and true.

Definition 21 (Variability model). Given a language of variability expres-
sions LV , a variability model vm is an element of LV . A total function
cfg : V → {true, false} is a variability configuration. A variability con-
figuration cfg is valid wrt. to a given variability model vm iff if vm evaluates
to true when each variable v in vm is substituted by cfg(v).

In the example, the forall and quantified variation points are orthogonal,
hence, the variability model is true and all four possible configurations
are valid. If Rule C did not exist, forall and quantified might be mutu-
ally exclusive. The variability model would then be forall xor quantified,
rendering the configuration {forall=true, quantified=true} invalid.

Definition 22 (Variability condition). Given a language of variability ex-
pressions LV and a variability model vm, a variability condition is an ele-
ment ofLV , i.e., a propositional expression over V . A variability configuration
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cfg satisfies a variability condition vc if vc evaluates to true when each vari-
able v in vc is substituted by cfg(v). A variability condition is valid if there
is a valid variability configuration satisfying it. A variability condition X is
stronger than Y iff X =⇒ Y .

In the example, V = {forall, quantified}. Valid variability conditions in-
clude true, ¬quantified, and forall ∧ quantified; forall ∧ ¬forall is not valid.

Definition 23 (Variability-based (VB) rule). Given LV , a VB rule ř =
(r, S, v, vc) consists of a rule r, a set S of subrule embeddings to r, a variability
model v and a function vc : S ∪ {r} → LV . Function vc defines variability
conditions for subrules s.t. vc(r) is true and ∀s ⊆ s′ : vc(s′) =⇒ vc(s).
The base rule is determined by the intersection of all subrule embeddings.

For example, Fig. 4.7 shows a VB rule in a compact representation: El-
ements instead of subrules are annotated. Rule r is the entire rule ig-
noring annotations, the variability model vm is true. Set S and function
vc are derived easily by creating a subrule sconj for each conjunction
conj =

∧
i∈V li of literals over V , and setting vc(sconj) = conj. Each sub-

rule sconj includes the elements whose presence condition is implicated
by conj. For instance, subrule s¬quantified∧forall comprises the elements an-
notated with ¬quantified, forall, and true, i.e., it is isomorphic to Rule A

in Fig. 4.4.

We may further include arbitrary subrules in S. Doing so will be useful
to us; it allows us to improve the performance of the application of
VB rules. In the example, we add one additional rule to S: The base
rule strue, comprising all elements annotated true. We then have S =
{squantified∧forall, s¬quantified∧forall, squantified∧¬forall, s¬quantified∧¬forall, strue}.

Application of Variability-Based Rules

We now show how to apply variability-based rules: (1) either by flatten-
ing them to a set of classic rules and matching and applying these rules
in the classic way, or (2) directly, using a suitable variability configura-
tion to identify a corresponding match. We then prove the equivalence
of these two approaches.

Variability-based transformation through flattening

We begin by showing how a variability-based rule can be flattened, i.e.,
represented by a set of classic rules.

Definition 24 (Configuration-induced rule). Let a VB rule ř =
(r, S, v, vc) over LV be given. For a valid variability configuration c, there
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exists a unique set of subrule embeddings Sc ⊆ S s.t. ∀s ∈ S : s ∈ Sc iff
c satisfies vc(s). The configuration-induced rule rc (Fig. 4.10) comprises
multi-pushouts Lc, Ic and Rc over multi-pullbacks Lt, It and Rt over Li, Ii
and Ri of each rule ri in Sc. The multi-pullback and -pushout constructions
can be performed in GRAPHS. Prop. 4 and the co-completeness of GRAPHSTG′

ensure that these objects are also contained in GRAPHSTG′ . Morphisms let
and rit exist since Lt and Rt are limits, lec and ric exist since Ic is a colimit.
rc can be embedded to r since Lc, Ic and Rc are colimits.
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Figure 4.10: Construction of configuration-induced rule rc for configu-
ration c, 1 ≤ i ≤ n with n = |Sc|.

For example, for the rule in Fig. 4.7, configuration {forall=true, quan-
tified=true} yields a configuration-induced rule being isomorphic to
Rule C in Fig. 4.4.

Definition 25 (Flattening of a VB rule). The flattening of ř is the set of all
configuration-induced rules over all valid configurations: Flat(ř) = {rc | c :
V → {true, false} ∧ c is valid}.

In the example, flattening the rule in Fig. 4.7 yields a set containing four
rules isomorphic shown to the ones in Fig. 4.4.

Definition 26 (Application of a rule set). Given a rule setR and a graph G,
the application of R to G is the set of rule applications: Trans(R, G) =
{G⇒r,m H} with r ∈ R and a match m : L→ G (Def. 13).

For example, applying the flattening of the rule in Fig. 4.7 on the graph
of formula φ in Fig. 4.6 yields a set of rule applications containing ex-
actly one element: The application of the rule isomorphic to Rule A us-
ing the match mA.

Direct application of variability-based rules.

In the following, we consider the direct application of variability-based
rules by finding a suitable variability-based match on-the-fly. The cen-
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tral task is to find variability configurations that induce a match for the
left-hand side of one variant contained in the variability-based rule. If
the resulting morphism of the left-hand side to graph G satisfies the
gluing condition for the corresponding flat rule, the rule application
can take place.

Definition 27 (Variability-based match family). Given a variability-based
rule ř over LV , a graph G, and a valid variability configuration c, yielding the
set of subrule embeddings Sc ⊆ S s.t. ∀s ∈ S : s ∈ Sc iff c satisfies vc(s).
A variability-based match family is a family of matches ms∈Sc : Ls → G

s.t. ∀mi,mj ∈ ms, 1 ≤ i, j ≤ |Sc| the following holds: ∀x ∈ dom(mi) ∩
dom(mj) : mi(x) = mj(x) (Fig. 4.11).

The condition ensures that matches within a family are compatible: An
element contained in multiple subrules is always mapped to the same
element in graph G.

L1

m1   

Li
mi

��

Ln

mn}}
G

Figure 4.11: Variability-based match family, 1 ≤ i ≤ n with n = |Sc|.

This definition entails that the identification of matches can terminate
as soon as one of the subrules cannot be matched, enabling a perfor-
mance benefit of VB rule application: We can match the base rule strue
first and only need to go on if this subrule can be matched.

To match the rule in Fig. 4.7 to the graph for formula φ in Fig. 4.6, we
choose the variability configuration {quantified=false; forall=true}, which
yields the subrule embeddings strue and s¬quantified∧forall. The left-
hand side of each of this subrule embeddings can be matched to G,
yielding a variability-based match family.

Definition 28 (Variability-based match). Given a variability-based match
family ms∈Sc for a variability-based rule ř, a configuration c and a graph G, a
variability-based match m̌ is a pair (mc, c) where m : Lc → G is obtained
by the colimit property of Lc (Fig. 4.12).

In the example, again considering the configuration {quantified=false;
forall=true}, a VB match is obtained from considering the VB match fam-
ily described after Def. 27 and gluing their mappings together. This VB
match has the same mappings as mA.
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Figure 4.12: Variability-based match, 1 ≤ i ≤ n with n = |Sc|.

Definition 29 (Application of a variability-based rule). Given a match
m̌ = (mc, c) for variability-based rule ř and graph G, the application of ř
at m̌ is the classic rule application G⇒rc,mc H of the configuration-induced
rule rc to mc. To obtain all applications of ř, we consider all variability-based
matches: DirectTrans(ř, G) = {G ⇒rc,m̌ H | c is a valid configuration,
m̌ = (mc, c) is a variability-based match}.

For example, applying the rule in Fig. 4.7 to the graph of formula φ

in Fig. 4.6 at the VB match with the same mappings as mA yields the
graph structure of formula φ′ described at the end of Sec. 4.3.

Now, we show that the set of all applications of a variability-based
rule ř to a graph G is equal to the set of classic rule applications ob-
tained from flattening ř and applying these rules to G.

Theorem 1 (Equivalence of rule applications). Given a variability-
based rule ř and a graph G, the following holds: DirectTrans(ř, G) =
Trans(Flat(ř), G).

Proof. Since DirectTrans(p̌, G) and Trans(Flat(ř), G) are both constructed
over all valid configurations, we can assume a particular valid config-
uration c : V → {true, false}without loss of generality.

From Trans(Flat(ř), G), we consider the rule application G ⇒rc,m H

of a configuration-induced rule rc ∈ Flat(ř) to a match m : Lc → G.
The colimit property of Lc ensures that ms∈Sc : Ls → G is a variability-
based match family. Thus, match m paired with configuration c is a
variability-based match m̌, being applied with rule rc.

From DirectTrans(ř, G) , we consider rule application G ⇒rc,m̌ H of a
configuration-induced rule rc to a variability-based match m̌. rc is an
element of Flat(ř). m̌ provides a match mc : Lc → G, being applied
with rule rc.
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4.4.2 Variability-Based Matching Algorithm

In this section, we describe an algorithm for implementing the concept
of variability-based match (Def. 28). Our guiding intuition is to find
matches for the base rule first and then expand these matches for the
variable parts.

The first step, matching the base rule (see Def. 25), yields matches
for the common parts that we store in a collection called baseMatches.
Function FINDMATCHES, shown in Alg. 3, extends baseMatches to find
matches for the variable parts. It enumerates all valid variability con-
figurations, derives the corresponding rules and matches them classi-
cally. FINDMATCHES receives an input model, a variability-based rule,
the baseMatches set, and two intermediate parameters: a data structure
bindings that assigns each of the variability expressions used in the rule
(i.e., the variability model and all used presence conditions) to one of
the literals true, false or unbound, and a set to accumulate variability-
based matches. The binding for the variability model is set to true,
while all presence conditions are set to unbound. The accumulative
set is initially empty. The function outputs this set of variability-based
matches.

An execution of FINDMATCHES systematically binds all presence con-
ditions, starting on Line 2 with an arbitrary one that we call pc0. To
enumerate all valid configurations, we first set pc0 to true and then to
false (Lines 3-4 and 5-6). In both calls to FINDMATCHESINNER, we first
consider those presence conditions that were previously unbound and
now are either contradicting or implied by the current bindings. On
Lines 10 and 11, we compute them using a SAT solver, calling the re-
sults bindings and bindings→ (for false elements and true elements, re-
spectively). We update the bindings accordingly on Line 12. If all pres-
ence conditions are now bound, the problem becomes classic matching.
We determine the classic rule to be matched by removing rule elements
with a false presence condition on Line 14. The classic match-finder tries
to bind the rule elements contained in the derived rule, but not in the
base rule. The computed matches are translated into variability-based
matches, being pairs of a classic match and the current variability con-
figuration, on Lines 15-16. If some presence conditions have not been
bound, we call FINDMATCHES again on Line 18. On Lines 7 and 19, we
reset temporary bindings of variables to clean up before backtracking.

To exemplify our algorithm, we continue with the scenario at the end
of Sec. 4.2.1. First, we create and match the base rule, comprising the
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Algorithm 3 Pseudocode for recursive function FINDMATCHES.

Input: model: Input model
Input: rule: Variability-annotated rule
Input: baseMatches: Classic matches of the base rule
Input: bindings: {Variability expressions used in rule}→ {true, false, un-

bound}
Input: matches: Accumulated variability-based matches
Output: matches: Accumulated variability-based matches

1 function FINDMATCHES(model, rule, baseMatches, bindings, matches)
2 pc0 = bindings.select(unbound).get(0)
3 bindings.set(pc0, true)
4 FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)
5 bindings.set(pc0, false)
6 FINDMATCHESINNER(model, rule, baseMatches, bindings, matches)
7 bindings.set(pc0, unbound)
8 return matches
9 function FINDMATCHESINNER(model, rule, baseMatches, bindings,

matches)
10 bindings = bindings.select(unbound).select(p | bindings.contradicts(p))
11 bindings→ = bindings.select(unbound).select(p | bindings.implies(p))
12 bindings.setAll(bindings → false, bindings→→ true)
13 if bindings.select(unbound).isEmpty() then
14 classicRule = rule.removeAll(x | x.pc ∈ bindings.select(false))
15 classicMatches = Matcher.find(model, classicRule, baseMatches)
16 matches.addAll(createVariabilityBasedMatches(classicMatches))
17 else
18 FINDMATCHES(model, rule, baseMatches, bindings, matches)

19 bindings.setAll(bindings → unbound, bindings→→ unbound)
20 return

elements annotated with true, by classic match-finding. The computed
baseMatches set contains exactly match mbase. We arbitrarily select a
presence condition ¬qualified and set it to true on Line 3, thus deriving
qualified to be false on Lines 10-12. To bind the rest of the presence con-
ditions, we call FINDMATCHES again on Line 18. We then select forall
and set it to true, thus setting ¬forall to false and completing the bind-
ing of presence conditions. On Line 14, we remove all rule elements
labelled ¬forall or ¬qualified to derive Rule A. Calling the classic match
finder on this rule on Line 15 yields mA. We pair this classic match with
the current bindings to create a variability-based match. The remaining
three configurations are determined analogously; however, they do not
yield any additional matches.
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Complexity of our algorithm is determined by the number of configu-
rations which grows exponentially with the number of variation points.
Of course, the configurations determine rules that in the classic ap-
proach would be matched individually. Thus, complexity of our algo-
rithm is the same as that in classic matching. Yet, since we save match-
ing effort by precomputing base matches and then extending them, we
predict our algorithm to perform better than the classic one.

4.5 Framework

Given a rule set with similar rules, rule merging, outlined in Fig. 4.13,
aims to find an efficient representation of these rules using a set of
variability-based (VB) rules. In this section, we define a formal frame-
work of three components called clone detection, clustering and merge
construction: We specify the input and output of each component and
show correctness of rule merging based on these specifications. Each
component may be instantiated in various ways, as long as its specifi-
cation is implemented.

Clone Detection

Clone detection allows identifying overlapping portions between the in-
put rules. We use clone detection as a prerequisite for both clustering
and merge construction: To cluster rules based on their similarity, we
consider rules as similar if they share a large overlap. Merging overlap-
ping portions rather than individual elements allows us to preserve the
essential structural information expressed in the rules. Moreover, the
performance of merged rules in terms of their execution time can be
considerably improved by restricting clone detection to connected por-
tions: Matching connected patterns is a problem that can be handled
much more efficiently than that of multiple independent patterns [123].

Formally, given a set of rules, a clone is a largest subrule that can be em-
bedded into a subset of this rule set. To support instantiations of clone
detection that are restricted to connected portions, we analogously de-
fine connected clones based on largest connected subrules. To establish a
well-defined merge construction, we define a compatibility relation and
a reduction operation. Compatibility ensures that two clones never as-
sign the same object contained in one rule to diverging objects con-
tained in another. Reduction allows discarding irrelevant mappings.
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Figure 4.13: Refined overview of rule merging.

Definition 30 (Clone group). Given a set R = {ri|i ∈ I} of rules, a (con-
nected) clone group CGR = (rc, C) over R consists of a (connected) rule
rc, called clone, and set C = {ci|i ∈ I} of subrule mappings ci : rc → ri iff
there is no set C′ = {c′i|i ∈ I} of subrule mappings c′i : r

′
c → ri with a subrule

mapping i : rc → r′c where r′c is a (connected) rule.
CGR is reduced to R′ ⊆ R, written Red(CGR,R

′) = (rc, C
′), by

C′ = C \ {cj |rj 6∈ R
′}. Two clone groups CGR = (rc, {ci|i ∈ I}) and

CGR′ = (r′c, {cj |j ∈ J}) with R′ ⊆ R and J ⊂ I are compatible if there is
a subrule mapping in : rc → r′c with cj = c′j ◦ in for all j ∈ J .

Table 4.1 shows the result of applying clone detection to the classic rules
in the example shown in Fig. 4.2. Each row denotes a clone group, com-
prising a set of rules and a clone (indicated by its size) present in each



4.5 Framework 93

Name Rules Size

CG1 {E, F} 10
CG2 {D, E, F} 8
CG3 {C, E, F} 7
CG4 {B, C} 6
CG5 {A, B, C, 5

D, E, F}

Table 4.1: Clone groups, as reported by clone detection.

of these rules. The rows are ordered by the size of the clone, calculated
as the number of involved objects and interrelations. CG2 in particular
represents objects #15-18, #20-23 and their interrelations. CG1 incorpo-
rates objects #19 and #25 and their incoming relationships in addition.
Clone groups CG1 and CG2 are compatible: The clone of CG2 extends
the one of CG1. CG2 can be reduced to rule set {E,F} by discarding the
subrule embedding into rule D. CG2 and CG3 are not compatible: their
rule sets are not in subset relation. All clone groups in this example are
connected.

The output of clone detection is a set of clone groups – in the example,
all rows of Table 4.1. These clone groups may be pair-wise incompati-
ble.

Clustering

As a prerequisite for merge construction, we introduce clustering, an
operation that splits a rule set into a cluster partition based on the simi-
larity between rules. Its input are a set of rules and a set of clone groups
over these rules.

Definition 31 (Cluster). A cluster Cl over a set R of rules is a set of clone
groups CGR′ over each subset R′ ⊆ R. Given a partition P of R, a cluster
partition is a set Par(Cl)P of clusters over Cl where for each P ∈ P there
is a cluster ClP ∈ Par(Cl)P comprising clone groups Red(CGR′ , P ) and
CGP ′ ⊆ CGP over subsets P ′ of P . Each cluster ClP ∈ Par(Cl)P is called
a sub-cluster of Cl.

In the example, there is a cluster partition over the rule set with sub-
clusters over {A}, {B, C}, and {D, E, F}. We consider the sub-cluster over
{D, E, F}: The clone groups over this set are obtained by reducing the
mappings of {CG2, CG5} to rules D, E and F, i.e., discarding all map-
pings not referring to either rule. To obtain the clone groups over its
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subset {E, F}, we include CG1 and CG3 as well and further reduce the
mappings of {CG1, CG2, CG3, CG5} to E and F.

The output of clustering is a clustering partition over the original set of
rules.

Merge Construction

Merge construction takes a cluster partition over the entire rule set as
input. Each sub-cluster becomes a VB rule in the output. The available
information on overlapping, given by clone groups, is considered to
merge corresponding elements. Merging requires that the clone groups
over each sub-cluster are compatible. Incompatible clone groups have
to be discarded before merging, a non-trivial task requiring a strategy to
determine what to discard. The instantiation in Sec. 4.6 provides such
a strategy. To maintain traceability between original and new rules, we
define a variation point for each original rule. The variability model
is set over the variation points, specifying that exactly one of them is
valid at a time.

Definition 32 (Cluster merge). Given a cluster partition Par(Cl)P over
a cluster Cl over R, each sub-cluster ClP ∈ Par(Cl)P is merged to a
variability-based rule r̂ = (r, S, v, vc) by merging all rules in P = {rj |j ∈ J}
over compatible clone groups in ClP . The result is a rule r. S = {si : ri → r}
consists of all resulting subrule embeddings. Variation points V are deter-
mined by the rules in P : V = {vj |j ∈ J}. Moreover, v = Xorj∈J(vj)
and vc(sj) = vj . We use the notation Merge(ClP ) to indicate r̂ and
Merge(Cl) = {Merge(ClP )|ClP ∈ Par(Cl)P}.

Rules are merged over compatible clone groups by gluing those rule
elements that are in relation via subrule mappings. This relation is ex-
tended to an equivalence relation, so in particular, the transitive closure
is considered as well. All elements not in the relation are merged in dis-
jointly.

In the example, considering all clone groups identified for the sub-
cluster over {D, E, F}, CG1–2 are compatible; since we consider the
reduction to {D, E, F} they are incompatible to CG3 and CG5. Merg-
ing the sub-cluster based on clone groups CG1–2 yields a VB rule
isomorphic to D+E+F in Fig. 4.3. The variability model v is set to
xor(cfg(vD), cfg(vE), cfg(vF )). In the compact representation of VB rules
shown in Fig. 4.3, the presence condition of an element is the disjunc-
tion of all variation points whose corresponding subrules contain the
element.
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As a proof of well-definedness, we show that merging a rule set and
then flattening it produces the original set.

Theorem 2 (Correctness of rule merging). For any cluster Cl over a setR
of flat rules, we have Flat(Merge(Cl)) = R.

Proof. Given a cluster Cl over R, for any partition of Cl we have
Merge(Cl) = {Merge(ClP )|ClP ∈ Par(Cl)P}. We show that for any sub-
cluster ClP ∈ Par(Cl)P , we have Flat(Merge(ClP )) = P and assume
P = {rj |j ∈ J}. Merge(ClP ) yields r̂ = (r, S, v, vc) as defined in Def. 32.
Next, we consider Flat(r̂). Since v = Xorj∈J(vj), all valid configurations
bind exactly one vj to true. We consider a fixed j ∈ J , yielding configu-
ration cj with cj(vj) = true and cj(vi) = false for all vi ∈ J \ {vj}. sj ∈ SP

is in S since c satisfies vc(sj) = vj . Since there is exactly one subrule
embedding sj for each cj , no further merging of subrule embeddings is
needed. The resulting subrules are the flat rules forming P .

Note that the opposite operation, first flattening a VB rule set and then
merging the resulting flat rules, may not yield the same VB rule set:
In general, there are several VB rules with the same flattening. In fact,
Thm. 2 ensures that all VB rule sets created by instantiations of rule
merging have the same flattening, i.e., they are semantically equivalent.

4.6 Instantiation

In this section, we present our instantiation of the rule merging frame-
work based on state-of-the-art clone detection and clustering tools and
a novel merge construction algorithm. We describe two input parame-
ters that enable customizations with respect to specific quality goals.

Clone Detection

We considered the applicability of three techniques for clone detection,
each of them allowing to identify connected clones as per Def. 30. First,
we applied gSpan, a general-purpose graph pattern mining tool [134].
Using this tool, we experienced heap overflows even on small rule
sets. Second, we re-implemented eScan [82], which terminated with
insufficient memory errors for larger rule sets. While our implementa-
tion could be flawed, [29] reports on a similar experience with their re-
implementation of eScan. Finally, we applied ConQAT [29], a heuristic
technique which delivers fast performance at the expense of precision.
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It was able to analyze rule sets of 5000 elements in less than 10 seconds
while reporting a large portion of relevant clones. We used ConQAT in
our experiments on realistic rule sets.

We provide a customization to increase the speed-up produced by the
constructed rules: The performance-critical task in rule application,
matching, considers just the rule left-hand sides. Consequently, perfor-
mance is optimized when rules are merged based on their overlap in
left-hand sides. To this end, a Boolean parameter restrictToLhs allows
restricting the rule portions considered by clone detection. When set to
true, it only finds and reports clones for left-hand sides.

Clustering

From a large variety of approaches to cluster a set of objects based on
their similarity [133], we chose AverageLinkage, an hierarchical agglom-
erative method, due to its convenient application to our approach. It
assumes a distance function – a measure of similarity between the clus-
tered elements. We consider the similarity of rule pairs, defining it as
the size of the rules’ largest common clone divided by their average
size. In the example, similarity of rules E and F is calculated based
on CG1, evaluating to 10

11 = 0.91. It further assumes a customizable
cutting-level threshold parameter that we describe in what follows.

Rule A

Rule B

Rule C

Rule D

Rule E

Rule F

Figure 4.14: Cluster dendrogram, as reported by clustering.

The method builds a cluster hierarchy, often visualized using a den-
drogram – a tree diagram arranging the input elements, as shown in
Fig. 4.14. Tree nodes describe proximity between rule sets. The “lower”
in the tree two nodes are connected, the more similar are their corre-
sponding rules. For example, rule D is similar to E and F, but the simi-
larity is not as strong as that between just E and F. The clustering result
is obtained by “cutting” using the cutting-level threshold, marked by a
vertical bar in Fig. 4.14, and collecting the obtained subtrees.
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Algorithm 4 Pseudocode for merge computation.

1 function COMPUTEMERGE(cl : Cluster[ ])
2 var mergeSpecification = ∅
3 for each c← cl
4 var cg = c.cloneGroups
5 while cg 6= ∅ . Create a new sub-cluster
6 var top = FINDTOPCLONEGROUP(cg)
7 var mergeRule = CREATEMERGERULE(top)
8 var considered = {top}
9 while HASCOMPATIBLE(considered, cg)

10 var comp = FINDTOPCOMPATIBLE(cg)
11 var temp = CREATEMERGERULE(comp)
12 INTEGRATE(mergeRule, temp)
13 considered.ADD(comp)

14 mergeSpecification.rules.ADD(mergeRule)
15 cg.REMOVEMAPPINGS(mergeRule.rules)
16 cg.REMOVEALLEMPTY

17 cg.REMOVEALL(considered) . Done with current sub-cluster

18 return mergeSpecification

Algorithm 4 sketches merge computation. The output Merge

Specification is created in line 2 and incrementally filled by con-
sidering each cluster. In each iteration of the loop starting in line 5, a
new sub-cluster is constructed. We apply a greedy strategy to integrate
as many compatible clone groups as possible, starting with the top – the
largest available – clone group in lines 6-8 and incrementally adding
the next largest compatible ones in 9-13. For each clone group, we tem-
porarily create a new MergeRule, integrating its contents with the re-
sult MergeRule in line 12. When no more compatible clone groups
are found, we add the MergeRule to the result and discard mappings
that concern its rules from the remaining clone groups, from which we
remove all empty and already considered clone groups, in lines 14-17.
We repeat this process until no clone groups are left to consider.

In the example, considering cluster {D, E, F} containing clone groups
CG1, CG2, CG3, and CG5, the largest one CG1 is chosen as top group
in line 6. In line 7, a MergeRule is created based on CG1, specifying
the merge of the involved rules E and F. One MergeRuleElement is
created for each pair of clone elements and for each non-clone element,
e.g., one for {#15, #20} and one for {#24}. In lines 9-13, CG2 is identified
as the next largest compatible clone. Its temporary merge rule, speci-
fying the merge of rules D, E and F, is created. The two merge rules
are integrated by establishing that each rule element finally belongs to
exactly one MergeRuleElement, which involves the deletion of re-
dundant MergeRuleElements. Then, as no compatible clone groups



4.7 Implementation 99

can be found, the MergeRule comprising the information of CG1 and
CG2 is added to the resulting MergeSpecification. In lines 15–16,
the mappings of CG3 and CG5 for D, E and F are removed, leaving
them empty and leading to their discarding.

Based on a given MergeSpecification, the merge refactoring proce-
dure is a straightforward implementation of Def. 32. The merge refac-
toring procedure is shown in Algorithm 5. The following steps are per-
formed: in line 3, each graph element not common to all rules gets a
presence condition. We merge all non-common rule elements into the
specified master rule in line 4. In lines 5 and 6, the variability model of
the master rule is set and the non-master rules are removed from the
overall rule set.

Algorithm 5 Merge refactoring.
1 procedure MERGEREF(ms:MergeSpecification)
2 for each merge rule mr in ms

3 SETPRESENCECONDITIONS(elements)
4 MERGELHSRHSGRAPHS(masterRule,rules)
5 SETVARIABILITYMODEL(masterRule)
6 REMOVENONMASTERRULES(rules)

In the example, the presence conditions shown in Fig. 4.3 are created in
line 3. As specified by MergeRuleElements, most rule elements in D,
E and F have corresponding elements in all other rules, rendering their
presence condition to be true. Exceptions are objects #37, #38, and their
connecting edges that now receive a non-true presence condition. Since
Rule F already contains all target elements required for implementing
the MergeSpecification, line 4 has no effect. Otherwise, elements
from other rules might have been added in the specified places in the
rule. Lines 5 and 6 set the variability model to mutual exclusion be-
tween variation points D, E and F and remove rules D and E.

4.7 Implementation

We implemented variability-based rules and rule merging on top of
Henshin [6], a model transformation language for the Eclipse Modeling
Framework [106]. The architecture of our rule merging implementation
follows the abstract representation given in Fig. 4.13. In what follows,
we discuss its components.
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Clone detection: We used publicly available implementations of gSpan1

and ConQat2. We re-implemented eScan since no existing implementa-
tion was available. To apply these techniques, we first normalized Hen-
shin rules to become labeled graphs so that we could translate them to
the custom graph representation expected by each technique. The label
for each element is comprised of its action and the name of its type.
To capture variability at the granularity of attributes (for instance, see
the variability-annotated name attribute in element #29 of Fig. 4.3), our
translation accounted for attributes: We represented each attribute as a
pair of a custom node and edge. Since the clone detection techniques
consider the set of input rules as one large graph, the reported clone
groups may include multiple clones within the same rule. For a well-
defined merge, we arbitrarily select one instance and discard others.
We consider additional use-cases for our implementation of clone de-
tection elsewhere [113].

Clustering: We used a publicly available implementation of Aver-
ageLinkage3. A concern about the lack of scalability of this approach
concerning large data-sets [133] did not manifest itself. We used clus-
tering solely for the grouping of rules and not of the contained objects.

Merge construction: We implemented the algorithm sketched in Sec. 4.6.
The created VB rules were amenable to the publicly available imple-
mentation of VB rule application4 that we used in our experiments.

4.8 Evaluation

In this section, we evaluate rule merging by comparing the created
rules to the corresponding classic rules and to rules that were merged
manually. We focus on two research questions:

• RQ1: How well does rule merging achieve its goal of creating
high-quality rule sets?

• RQ2: What is the impact of design decisions made by rule merg-
ing on the quality of the created rules?

To answer these questions, we applied our instantiation of rule merging
on rule sets from two real-life model transformation scenarios, called

1https://www.cs.ucsb.edu/ xyan/software/gSpan.htm
2https://www.cqse.eu/en/products/conqat/install/
3https://github.com/lbehnke/hierarchical-clustering-java
4https://github.com/dstrueber/varhenshin
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OCL2NGC and FMRECOG, and one adapted from literature, called
COMB. The main quality goal in these scenarios is performance: In our
communication with the developer of the OCL2NGD [7], the developer
pointed out that the bad performance of the rule set was an obstacle
to its usefulness. FMRECOG is an automatically derived rule set used
in the context of model differencing [18], a task that necessitates low
latency. COMB was introduced as a benchmark in [127]. Thus, we opti-
mized the two input parameters described in Sec. 4.6 for performance.

We assess the quality of the produced rules with respect to performance
and reduction in redundancy. To quantify performance, we applied the
rule sets ten times on all input models and measured cumulative exe-
cution time on all input models. To quantify redundancy reduction, we
measured the relative decrease in the number of rule elements, based
on the rationale that we produce semantically equivalent, yet syntac-
tically compacted rules (Thm. 2). As discussed in Sec. 4.2, reducing
redundancy in rules is related to benefits for their maintainability.

In what follows, we first describe each of these three scenarios in detail.
Afterwards, we explain our research methodology. Finally, we present
and discuss our results and address potential threats to validity.

Scenarios

The first scenario, OCL2NGC, is an Object Constraint Language (OCL)
to Nested Graph Constraints translator [7]. In the rule set, comprising
54 rules in total, we focused on a subset of 36 rules that are applied
non-deterministically as long as one of them is applicable. We call it a
bottleneck rule subset (BRS) as it causes a significant performance bottle-
neck during translation. For our experiments, we have refactored BRS
automatically, using the automated approach, and manually, allowing
to compare both approaches to merging. For the manual merging, we
clustered the input rules relying on naming similarities between the
rules and merged them based on symmetries that we recognized in
their diagrammatic representations, a daunting and time-consuming
task spanning over three days. To measure performance, we applied
all rule sets on ten OCL invariants from [7] designed for high cover-
age of the translation rules. The input model in each run included the
actual invariant paired with the OCL standard library, yielding 1850
graph elements on average.
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In the second scenario, we considered a rule set taken from a product-
line evolution scenario [18]. The rule set, FMRECOG, contains 53 rules
and specifies recognition rules for detecting applications of certain edit
operations on a feature model. Its rules are applied on pairs of revi-
sions of the same feature model. In order to detect edit operations af-
ter they were applied – a crucial activity in revision management – we
need to find all matches for all rules – a highly performance-intensive
task. To measure performance, we applied the rules in FMRECOG on
nine feature models with 100 to 300 features each. The feature models
were automatically generated using BeTTY [99] with parameterization
profiles rendered after real-world feature models. For details, please
see [18]. To create revisions, editing operations were applied randomly.
Moreover, we preprocessed the rules in FMRECOG to remove instances
of two advanced transformation features – rule amalgamation and neg-
ative application conditions – that are outside the scope of this work.

The third scenario is based on Varró et al.’s widely-known graph trans-
formation benchmark Comb Pattern [127]. In the original benchmark,
the task was to find occurrences of a small pattern – the comb pattern –
in a large grid. The benchmark has two parameters: the size of the grid
and the size of the comb. We extended the task to contain variability so
the new task was to find combs of variable size k, where k can represent
any integer in the range [m1,m2]. For our measurements, we consid-
ered the range [3, 8], which was small enough to create the included
rules manually, but large enough to expect an observable difference.
We created the 6 comb pattern rules required in the classic approach.
We measured performance on 10 different grids, spanning from 20x20
to 200x200 elements, which allowed us to consider a variety of input
models of different sizes. We considered both sub-tasks described in
the original paper: COMBNOMATCH and COMBALLMATCHES. In the
former, the grid is constructed to contain no occurrences of the comb
pattern. In the latter, the grid is constructed to contain many such oc-
currences.

Methods and Set-Up

To address RQ1, we investigated three subquestions: RQ1.1: How do
VB rules created by rule merging compare to the equivalent classical rules?
RQ1.2: How do VB rules created by rule merging compare to those created
manually? RQ1.3: How do the VB rules created by rule merging scale to
large input models? For RQ1.1, we considered all three rule sets. For
RQ1.2, we considered the scenario where a manually created rule set
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Size Execution time (sec.)

Scenario Rule Set #Rules #Elements Total Sd Median Sd

OCL2NGC Classic 36 3045 916.6 96.3 46.0 7.1
Manual Merge 10 1018 181.8 27.1 10.8 2.4
Automatic Merge 12 2147 5.8 0.4 0.4 0.1

FMRECOG Classic 53 4626 799.9 41.4 63.2 3.5
Automatic Merge 12 2790 211.4 46.0 15.9 0.3

COMB Classic 6 252 1.39 0.09 0.12 0.01
NOMATCH Automatic Merge 1 62 0.24 0.09 0.02 0.01

COMB Classic 6 252 10.4 0.18 0.83 0.02
SEVERALMATCHES Automatic Merge 1 62 14.2 0.26 1.07 0.05

Table 4.2: Results for RQ1.1 and RQ1.2: Quality characteristics of the
rule sets.

was available: OCL2NGC [116]. For RQ1.3, we considered the COMB

scenario, as it features a procedure to increase the input model auto-
matically (increasing the size of the input grid [127]); we measured the
impact of model size on execution time until we ran out of memory.

To address RQ2, we investigated two questions: RQ2.1 What is the im-
pact of clone detection? RQ2.2 What is the impact of clustering? For RQ2.1,
we randomly discarded 25%–100% of the reported clone groups. For
RQ2.2, we replaced the default clustering strategy by one that assigns
rules to clusters randomly. We measured the execution time of the rules
created using the modified input.

As clone detection techniques, we applied ConQat [29] on OCL2NGC

and FMRECOG, as it was the only tool scaling to these scenarios. We
applied gSpan [134] on the COMB rule set as it allowed us to consider
all clones instead of an approximation. The input parameters were op-
timized independently for each scenario by applying the technique re-
peatedly until the execution time was minimized. Moreover, the Hen-
shin transformation engine features an optimization concerning the or-
der of nodes considered during matching. To avoid biasing the perfor-
mance of the FMRECOG rule set by that optimization, we deactivated
it. We ran all experiments on a Windows 7 workstation (3.40 GHz pro-
cessor; 8 GB of RAM).
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Results and Discussion

RQ1: How well does rule merging achieve its goal of creating high-
quality rule sets?

Table 4.2 shows the size and performance characteristics for all in-
volved rule sets. Execution time is provided in terms of the total and
median amount of time required to apply the whole rule set on each
test model, each of them paired with the standard deviation (SD). The
number of elements refers to edges and nodes, including both left-hand
and right-hand side of the involved rules.

RQ1.1 The execution time observed for OCL2NGC after the rule merg-
ing treatment showed a decrease by the factor of 158. This substantial
speed-up can be partly explained by the merging component of rule
merging that eliminates the anti-pattern Left-hand side not connected (Lh-
sNC) [123]: In the automatically constructed VB rules, connected rules
are used as base rules, while in the classic rules, we found multiple
instances of LhsNC. In the FMRECOG and COMB rule sets, the speed-
up was less drastic, amounting to the factors of 4.5 and 5.8, respec-
tively. When applying the COMB rule set on the SEVERALMATCHES

scenario, which involves an artificial input model with many possible
matches [127], execution time increased by the factor 1.36, showing a
limitation of VB rules: If the number of base matches is very high, the
initialization overhead for extending the base matches outweighs the
initial savings. This overhead may be reduced by extending the trans-
formation engine implementation. The amount of redundancy was re-
duced by 29% in OCL2NGC, 40% in FMRECOG, and 75% in COMB.

RQ1.2 In OCL2NGC, we found a speed-up by the factor of 36. To study
this observation further, we inspected the manually created rules, again
finding several instances of the LhsNC antipattern. This observation
gives rise to an interesting interpretation of the manual merging pro-
cess: While the designer’s explicit goal was to optimize the rule set for
performance, they implicitly performed the more intuitive task of op-
timizing for compactness. Indeed, the amount of reduced redundancy
in the manually created rules (67%) was significantly greater than in
those created by rule merging (29%), highlighting an inherent trade-
off between performance- and compactness-oriented merging: Not in-
cluding overlap elements into the base rule leads to duplications in the
variable portions.

RQ1.3 As shown in Fig. 4.16, the last supported input model was a
480x480 grid for both rule sets. We observed that the ratio between the
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Figure 4.16: Results for RQ1.3: Execution time in sec. (y) related to
length of grid (x).

execution time of applying the classic (left-hand bars) and the VB rules
(right-hand bars) stayed the same in each iteration, independent of the
size of the input grid: The VB rules were always faster by the factor of
6. In terms of the total execution time, the speed-up provided by the
VB rules became more important as the size of input models increased.

RQ2: What is the impact of design decisions made by rule merging
on the quality of the created rules?

RQ2.1 As presented in Table 4.3, the execution time for the FMRECOG

rule set increased monotonically when we increased the amount of dis-
carded overlap, denoted as d. OCL2NGC behaved almost monotoni-
cally as well. The slightly decreased execution time reported for d=0.25
can be explained by the heuristic merge construction strategy. While
the merge of rules based on their largest clones might be adequate in
general, in some cases it may be preferable to discard a large clone in
favor of a more homogeneous distribution of rules. The reported exe-
cution time for d=0.75 was higher than that for the set of classic rules.
In this particular case, small clones were used during merging, lead-
ing to small base rules, which resulted in many detectable matches and
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thus in a high initialization overhead for extending these matches. To
mitigate this issue, one could define a lower threshold for clone size.

Discarded portion (d)

Scenario 0.0 0.25 0.5 0.75 1.0

OCL2NGC 5.8 5.6 251 981 917
FMRECOG 211 252 604 690 800

Table 4.3: Results for RQ2.1: Impact of considered overlap on execution
time (sec.).

RQ2.2 As indicated in Table 4.4, the employed clustering strategy had
a significant impact on performance, amounting to factors of 13.7 for
the OCL2NGC and 3.7 for the FMREGOC rule set. Interestingly, in
OCL2NGC, random clustering still yielded better execution times than
manual clustering did (see Table 4.2) – this is related to the fact that
rule merging removed the LhsNC antipattern. In FMRECOG, randomly
clustered rules were comparable to the classic ones.

Threats to validity and limitations

Factors affecting external validity include our choice of rule sets, test
models and matching strategy, and the capability to optimize the two
input parameters. While the considered rule sets represent three het-
erogeneous use cases, more examples are required to confirm that our
approach works sufficiently well in diverse, potentially larger scenar-
ios. To ensure that our test models were realistic, we employed the
models used by their developers or described in the original bench-
mark. The performance of rule application depends on the chosen
matching strategy, in our case, mapping this task to a constraint satis-

Clustering strategy

Scenario AvLinkage Random

OCL2NGC 5.8 80
FMRECOG 211 788

Table 4.4: Results for RQ2.2: Impact of clustering strategy on execution
time (sec.).



4.9 Related Work 107

faction problem [95]. We aim to consider the effect of alternative strate-
gies in the future. Parameter tuning requires the existence of realistic
test input models – still, given a rule set designed for productive use, it
is reasonable to assume that such models exist.

With regard to construct validity, we focus on one aspect of maintain-
ability, the amount of reduced redundancy. Giving a definitive answer
on how to unify rules for optimal maintainability is outside the scope
of this work. Specifically, our approach increases the size of individual
rules, a potential impediment to readability [110]. We believe that this
limitation can be mitigated by tool support. In the future, we aim to
investigate providing editable views to developers, representing por-
tions of a VB rule that correspond to configurations as selected by the
user. Kästner proposes a related approach to address the readability
issues associated with preprocessors, an annotative variability manage-
ment mechanism [54].

4.9 Related Work

Merge-refactoring in product line engineering. Rule merging is re-
lated to a number of approaches in software product line engineering,
specifically approaches that create feature-annotated representations
from individual products. Nejati et al. [75] introduced the matching of
Statechart models based on commonalities in their structure and behav-
ior and applied it to merge models of telecommunication features. Rys-
sel et al. [96] proposed an approach for re-organizing product variants
given in Matlab into annotative representations while identifying varia-
tion points. Rubin et al. [92, 94] defined a formal merge framework and
instantiated it to class models and state machines, defining a number of
desired qualities of the resulting model and studying how these can be
best obtained. Ziadi et al. [137] proposed a language-independent ap-
proach for the reverse-engineering of product lines. These approaches
operate on the basis of an element-wise comparison using names and
as well as structural and behavioral similarities. In model transforma-
tion rules, the essential information lies in structural patterns. To our
knowledge, our approach is the first that utilizes structural clone detec-
tion to identify such patterns.

Optimization of model transformation rule application. Our work
can be considered a performance optimization for the NP-complete
problem of transformation rule matching [9]. Earlier approaches in this
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area are mostly complementary to ours as they focus on the matching of
single rules [126, 47, 62, 1]. Mészáros et al. [73] first explored the idea
of considering overlapping portions in multiple rules. Their custom
technique for detecting these sub-patterns, however, did not scale up
to complete rule sets. Instead, they considered just two rules at a time,
which enabled a moderate performance improvement of 11%. In our
approach, applying clone detection and clustering techniques gives rise
to an increased speed-up. The incremental graph pattern matching ap-
proach in [125] succeeds in mitigating the memory concern of Rete net-
works by considering shared sub-patterns. Yet, the authors report on
deteriorated execution times: The index tables that map sub-patterns
to partial matches grow so large that performance is impaired. Multi-
query optimization has also been investigated for relational databases
[100]. In the more related domain of graph databases, all optimization
approaches we are aware of focus on single-query optimization [135].

Clone refactoring. Circumstances under which clones can and should
be eliminated are the subject of an ongoing discussion [92]. Based on
empirical observations, Kim et al. [59] identified three types of clones:
short-lived clones vanishing over the course of few revisions, “unfac-
torable“ clones related to language limitations, and repeatedly changing
clones where a refactoring is recommended. We second the idea that
an aggressive refactoring style directed at short-lived clones should be
avoided. Instead, targeting clones of the two latter categories, we pro-
pose to apply our approach on stable revisions of the rule set. Specifi-
cally, clones of the second category that were previously “unfactorable“
due to the lack of suitable reuse concepts may benefit from the intro-
duction of VB rules. An approach complementary to clone refactoring
is clone management, based on a tool that detects and updates clones
automatically [76]. This approach has a low initial cost, but requires
constant monitoring.

Refactoring of model transformation rules. Multiple refactoring tech-
niques have been proposed to refactoring transformation rules towards
best practices. Taentzer et al. present an approach to specify refactor-
ings for graph transformation systems based on pre-defined patterns
[122]. Syriani et al. devise a plan to create a design patterns catalog
for model transformations [121]. Rentschler proposes a modulariza-
tion technique tailored at textual model transformation languages such
as ATL [87]. In [88], Rentschler et al. employ a clustering-based strat-
egy to identify interface elements during the introduction of interfaces
into legacy transformation rules. Cuadrado et al. present a reuse con-
cept based on abstract transformation rules that can be instantiated for



4.10 Conclusion 109

variants of similar meta-models [24]. The abstract transformation rules
are reverse engineered from existing transformation rules. All of these
refactoring approaches are complementary to ours, since none of them
considers clones.

Variability in model transformations. The variability-based rules in-
troduced in this chapter are inspired by annotative representations of
product lines [26, 55, 92] and augment annotative representations pro-
posed in earlier works, e.g., [56, 103, 124]. While these earlier ap-
proaches allowed specifying a product line of transformation rules,
they did not provide an automated refactoring technique to create such
representations. Furthermore, they did not provide any benefits for
their performance. Finally, the achieved level of expressiveness was
either lower than that of the proposed approach or so high that an ef-
ficient handling is prohibited. As for performance, [103, 56] report on
a trade-off between better variability management and a performance
overhead, the latter caused by the derivation of rules. In contrast,
variability-based rules and matching improve both the compactness
and the performance of a transformation system. As for expressiveness,
[103] and [124] are based on creating refinement rules for the variable
parts and assigning them to one feature (or variation point). In turn,
we support propositional presence conditions over variation points. In
this respect, [56] goes even further by allowing users to annotate a rule
element with embedded C++ code, which, however, would produce an
extremely large search space for variability-based matching.

Rule refinement. Several model transformation languages implement
rule refinement [63] – an important mechanism for reuse inside the same
transformation system. In such languages, a base rule is refined by a
set of sub-rules modifying it. Then, some approaches [4, 49] flatten the
rules for application, i.e., compile them into simpler rules. The trans-
lational semantics in the approach proposed in RubyTL [25] is closest
to ours – it applies the base rules first and then applies the refinement
rules on the target model of the transformation. In contrast, our ap-
proach aims to efficiently find matches in the source model.

4.10 Conclusion

In this chapter, we proposed variability-based (VB) model transforma-
tion, a novel approach to improve maintainability and performance in
model transformation systems. Moreover, we introduced rule merg-
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ing, an approach for constructing VB rules automatically. Our experi-
ments showed that the approach is effective: The created rules always
had preferable quality characteristics when compared to classical rules,
unless the number of expected matches was very high. Notably, the
created rules were more effective when applied to transforming large
input models. It is apparent that using the approach, the performance
of model transformation systems as well as redundancy-related main-
tainability concerns can be considerably improved, making the benefits
of VB rules available while imposing little manual effort.
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Chapter 5

Conclusions and Outlook

In this chapter, we summarize the key conclusions of this thesis and
outline a selection of directions for future research based on these con-
clusions.

5.1 Conclusions

Refactoring is a cornerstone of software quality assurance. It aims to
improve the quality of a software system by reorganizing its struc-
ture without affecting its behavior. In this thesis, we considered a set
of refactorings in the context of large-scale Model-Driven Engineering
(MDE) that are typically performed by hand, thereby imposing a sig-
nificant effort on developers. We provide a set of techniques that allow
automatizing these tasks.

We provided model splitting as a refactoring technique that allows split-
ting a monolithic model into a set of sub-models. This technique is use-
ful to support collaborative model-driven scenarios: By assigning each
collaborator a set of sub-models under their responsibility, the likeli-
hood of editing conflicts is considerably decreased. The technique can
also be applied to split a large diagram into multiple diagram views, re-
ducing the effort required to navigate and comprehend large diagrams.

In our evaluation of model splitting, we found that our technique can
achieve an average accuracy of 80% when compared to manual split-
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ting. We provide elaborated tool support that enables the user of the
technique to post-process the results, so that false assignments become
easy to reconcile by hand. Furthermore, we contributed a supporting
process that allows discovering the desired sub-models in an incremen-
tal manner. Together, these contributions give rise to a considerable
improvement in collaborative modeling scenarios.

We introduced component encapsulation as a refactoring technique to
turn a set of related models into a set of model components by deriv-
ing export and import interfaces for these components. This technique
enables the systematic development of models in a context where het-
erogeneous domain-specific modeling languages are used to develop a
large-scale systems in a model-driven fashion.

We demonstrated the usefulness of component encapsulation by em-
bedding it into the context of a systematic modeling process based on
heterogeneous domain-specific modeling languages (DSMLs). In this
modeling process, the derived interfaces are highly valuable: They al-
low to distinguish between safe editing steps that can be performed
without coordination, and critical editing steps demanding a further
course of action. Precisely defined basic operations on composite mod-
els, formalized using category theory, provide a solid basis for a princi-
pled combination of heterogeneous DSMLs.

We proposed rule merging as a refactoring technique to eliminate redun-
dancy in transformation rule systems. This redundancy was often an
undesired consequence of the lack of adequate reuse concepts, giving
rise to maintainability and performance drawbacks in the concerned
rule sets. To satisfy the need for an adequate reuse concept, we intro-
duced variability-based (VB) model transformation rules allowing to cap-
ture commonalities and differences in multiple rule variants explicitly.
Rule merging then employs state-of-the-art clone detection and cluster-
ing techniques to create VB rules automatically.

In our evaluation of rule merging, the speed-up we observed compared
to the redundancy-intensive classic rules was considerable, ranging be-
tween a factor of 4.5 and 158. We also compared the rules created by our
technique against hand-created VB rules in one scenario. In this sce-
nario, we observed a speed-up by the factor of 36. From inspection of
the rule set, we concluded that the technique works specifically well in
sets of rules that exhibit an anti-pattern called disconnected left-hand side.
We also considered the effect of rule merging on the contained amount
of redundancy, which has considerable implications for maintainabil-
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ity. In the scenario where a comparison against hand-created rules was
available, we observed that the automatically created rules were not as
compact as the hand-crafted rules: Hand-crafting the rules achieved a
reduction of redundancy by 67%, while the automatic creation reduced
the redundancy by 30%. The reduced amount of redundancy can be
further increased by devising more refined clone detection techniques.

5.2 Outlook

Based on the outlined conclusions, it is apparent that this work repre-
sents a step forward towards the vision of MDE in the large. Still, a va-
riety of research directions remains to be explored. Together with the
open challenges as touched on in Sec. 1.1, addressing these directions
will help to fully implement the guiding vision of this thesis.

The discussion of the future research directions is driven by three prin-
ciples:

• Extension: The scope of the contributions of this thesis may be
widened by taking into account a larger variety of modeling lan-
guages, languages concepts, and tool components.

• Combination: When applied to suitable scenarios, the combina-
tion of individual contributions may give rise to additional ad-
vantages, but also to new challenges.

• Actualization: The usefulness of the contributions may be fur-
ther demonstrated and enhanced by applying complementary re-
search methods, specifically, such methods that allow to gather
and account for systematic empirical evidence on how the contri-
butions are used by developers.

In Sec. 5.2.1–5.2.3, we discuss extensions for each of the three main
contributions of this thesis. In Sec. 5.2.4, we discuss an opportunity for
combining two of these contributions. In Sec. 5.2.5, we discuss actual-
ization in terms of an empirical study in the context of rule merging.

5.2.1 Model Splitting for Various Languages

We exemplified and evaluated the model splitting technique intro-
duced in Chapter 2 on class models. Class models are a particular
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relevant kind of model: First, they are a default means to specify the
structure of a system. Second, they are also used in the context of meta-
modeling to specify various modeling languages. Yet, in the context of
UML and even more so in the context of domain-specific languages, a
great variety of modeling (sub-)languages exists. Many of these lan-
guages are used to create large models. For the reasons outlined in Sec.
1.1.1, the use of these large models in collaborative scenarios creates a
need for adequate splitting techniques.

Devising a generic, language-independent strategy for model splitting
is a challenging task: Each model language has its own idiosyncrasies
that should be taken into account to allow for a splitting that closely
reflects the user intention. As a first step in this direction, the technique
proposed in this thesis allows assigning different weights to different
relationship kinds contained in the language. In the case of class mod-
els, this sub-contribution alone allowed to increase the average accu-
racy from 62% to 80% in terms of F-measure (see Table 2.4).

Yet, the proposed technique has a set of assumptions that do not hold
for arbitrary modeling languages.

First, the information retrieval (IR) component of the technique as-
sumes that model elements are named. In some modeling languages,
elements do not carry names by default: One example are model trans-
formation languages (for an example, see Sec. 4.2.1). Instead, the IR
component may be replaced by a manual seed identification step, as
proposed in the approach by Streekmann [111].

Second, the graph analysis in the model crawling component assumes a
notion of relatedness between neighboring elements in the input model.
Different kinds of languages might require a different kind of graph
analysis. For instance, behavioral modeling languages often exhibit a
sequential semantics that might benefit from analysis techniques such
as program slicing.

Third, the technique assumes a property called splittability: Constraints
satisfied by the input model must not be broken in sub-models. In sev-
eral languages, this property can be implemented by means of a trivial
reconciliation step. For instance, the constraint “every activity diagram
must have a start and end activity“ may be established by inserting these
activities in each sub-model. To support languages where trivial rec-
onciliation is not available, the technique might be extended to find an
optimal splitting satisfying all constraints.
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Fourth, the technique assumes that the input model is expressed us-
ing a formal modeling language. Yet, as splitting may be required in
the beginning of a software project to determine a suitable system de-
composition, it may be the case that the models are not expressed in
a conventional modeling language yet. In flexible modeling, models are
expressed using general-purpose graphical drawing tools [139] or text-
based visual notations [114]. To be useful for such settings, model split-
ting may be combined with an upfront type inference [138] step.

5.2.2 Distributed Code Generation for Composite Models

In the state of the art as outlined in Sec. 3.3, a composite model can be
used for code generation by merging all model components to become
one large model. This model can then be used as input for a classical
centralized code generator. Unfortunately, this approach to code gener-
ation defeats the purpose of composite modeling to a certain extent: A
key motivation for composite models are situations where transmitting
a full model is prohibited, e.g., for business, legal, or security reasons.

Consequently, when a software system is developed using composite
models, a desirable approach is distributed code generation. A distributed
code generation framework comprises a set of specialized code gener-
ators. Each generator is responsible for the code generation for one of
the components included in the composite model. The code generation
for a model component can be triggered as soon as the component has
settled for a stable revision, allowing a flexible component-based code
generation.

Such a framework needs to deal with several challenges: Usually, the
interrelations between model components are to be reflected in inter-
relations between the generated code artifacts. To ensure that the code
generated for a component yields syntactically correct code, the frame-
work needs to enforce that these interrelations are intact: One approach
is to forbid the code generation in case that the component depends on
other components for that no up-to-date code generation result exists.
A second approach is to generate stubs as replacements for missing arti-
facts. Both approaches require determining which artifacts are created
by other components, a highly nontrivial task: It requires a semantic
inspection of the involved generator templates. In particular, such an
inspection involves parsing these templates, a feature not implemented
in state-of-the-art code generator frameworks [11].
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5.2.3 Extensions of variability-based model transformation

In Chapter 4, we have provided evidence that variability-based
(VB) model transformation is a promising approach to improve sev-
eral maintainability and performance characteristics of redundancy-
intensive rule sets. We predict two further milestones that will render
VB transformation fully applicable to real-world transformation sys-
tems: First, developers need to be furnished with adequate tooling to
deal with the complexity introduced by variability annotations. Sec-
ond, VB model transformation needs to account for all main features of
state-of-the-art transformation languages.

VB rules increase the amount of information per rule, potentially pro-
ducing visual clutter that may impair developer performance. We be-
lieve this limitation can be mitigated by tool support: In our recent
work [118], we investigate providing editable views to developers, rep-
resenting parts of a VB rule that correspond to a specific configuration
selected by the user. Changes performed in an editable view are prop-
agated back to the VB rule. Kästner proposes a related approach to
address the readability problem associated with preprocessors, an anno-
tative mechanism to manage source code variability [54].

Furthermore, we plan to enhance the expressiveness of VB rules. The
current formalization and implementation of VB rules is tailored to sim-
ple typed and attributes rules. Covering several other important trans-
formation features, such as negative application conditions [43] and
rule amalgamation [33], will make our approach applicable to other
rule-based model transformation languages such as [10, 39, 2].

5.2.4 Combining Variability-Based Transformation and Com-
posite Modeling

Two of the techniques considered in this work aim to introduce new
paradigms in existing artifacts: Component encapsulation turns a set
of related models into a composite model, a set of model components.
Rule merging turns a rule system into a variability-based (VB) rule sys-
tem. If the claim holds that both of these paradigms are beneficial to the
maintainability and overall quality of the involved models and trans-
formation systems, the question arises of how these paradigms can be
combined to improve these qualities even more.
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VB model transformation can be used to capture the variability in-
volved in the editing rules for the collaborative development of a com-
posite model. Consider the rule delete entity from data model in Fig. 3.8
(Sec. 3.3). While we originally introduced this rule as a single isolated
one, it can be considered an instance of a family of rules in the context
of synchronous and asynchronous editing. All of these rules have the
same local effect: The entity of the specified name is removed from the
data model. Yet, the global effect of the involved rules differs: In case
that the class to be deleted was part of an export interface, it should be
removed from that interface. In case it was part of an import relation-
ship, it should be removed from the import interface. Otherwise, there
should be no effect on interfaces. All of these variants can be specified
using a variability-based composite graph rule: The network base rule in-
volves just the body. There is one object base rule which specifies the
deletion of the class from the body object graph. Export and import in-
terfaces are modeled as variant-specific nodes in the network rule. The
corresponding object rules are variant-specific as well.

5.2.5 Rule Merging in the Wild

The rule merging technique provided in Chapter 4 is based on a greedy
strategy: To provide a very compact representation of the involved rule
variants, it aims to reduce the amount of clones to the largest extent
possible. Still, while we provided evidence that the technique achieves
its goal of reducing the amount of clones and also provides a consider-
able performance improvement, we did not provide empirical evidence
that the design decisions are comprehensible to the human developers
who will have to maintain the created rule sets.

The question of how rules are merged in the wild – in real-world set-
tings, by developers with specific intentions – is one that deserves fur-
ther attention and can only be addressed by accounting for empirical
evidence. An experimental set-up to investigate this research ques-
tion might look as follows: Developers of a specific expertise level (e.g.
model transformation novices or experts) are provided a set of equiv-
alent VB rule sets that only differ in their compactness and amount of
contained redundancy. To determine which VB rule set provides the
most “natural“ representation, the subjects are asked to participate in
comprehension tasks and questionnaires where they rate the compre-
hension effort for each VB rule set. A methodological framework for
preparing and reporting such an experiment is described e.g. in [48].



118 5 Conclusions and Outlook

The results can be used to create a refined revision of rule merging in-
formed by empirical evidence.
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