
A Generic Architecture Supporting Context-Aware Data
and Transaction Management for Mobile Applications

Steffen Vaupel
Philipps-Universität Marburg

Hans Meerwein Straße 1
35032 Marburg, Germany
svaupel@mathematik

.uni-marburg.de

Damian Wlochowitz
Philipps-Universität Marburg

Hans Meerwein Straße 1
35032 Marburg, Germany
wolochow@students

.uni-marburg.de

Gabriele Taentzer
Philipps-Universität Marburg

Hans Meerwein Straße 1
35032 Marburg, Germany
taentzer@mathematik

.uni-marburg.de

ABSTRACT
Mobile applications claim to operate reliably during spatial
movement, however, developers have to deal with the effects
of changing environmental contexts. One of the most im-
portant contexts is the connectivity of mobile devices. Since
mobile applications are increasingly used as front-ends of
transaction systems, they have to be designed for being able
to deal with intentional or accidental loss of connection. In
fact, we find a lot of mobile applications being not more than
portable because they cannot operate without connections.

In order to support higher mobility – in the sense that
operations may execute across the boundaries of changing
network states – we discuss the problem and requirements
for context-aware architectures of mobile applications. We
present a generic architecture supporting users to effectively
use applications on-line as well as off-line. This approach en-
ables the concurrent execution of off-line transactions as well
as their durability after synchronization. Starting from ex-
ample applications, we analyze the design of existing context-
aware architectures and corresponding mobile transaction
models and present our approach to a generic architecture.
Furthermore, we frame various conditions for advantageously
using mobile transaction models.

CCS Concepts
•Information systems → Distributed database transac-
tions; Mobile information processing systems; •Software
and its engineering → Software architectures;

Keywords
Mobile data management, Mobile applications, Replication,
Synchronization, Mobile transaction models

1. INTRODUCTION
Mobility and reliability during spatial movement are cru-

cial factors for business and industry nowadays. Therefore,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobileSoft’16, May 16-17 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4178-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897073.2897091

the question arises how architectures can support this re-
quirement [53] [27]. App developers can choose from a va-
riety of architectures (e.g., native, hybrid, web-based, etc.)
to develop mobile apps. Sometimes, they are unaware of
the impact a chosen architecture has on the mobility of an
app. Web-based architectures require permanent connec-
tion to the server and therefore, are not suited to realize
apps operating in an off-line mode. In contrast, native and
interpretive technologies enable architectures that may be
used for working temporarily without a network connection.

Changing network conditions and transaction-oriented apps
can cause problems wrt. data and transactions which have
to be managed in an appropriate way: (1) An app being the
front-end of a multi-user transaction system has to replicate
and synchronize data in order to process transactions off-
line. (2) When being disconnected, the coordination of con-
current transactions is disrupted since the app is unaware of
transactions performed by other users in the network. Con-
flicts may arise when modified replicated data is synchro-
nized with the back-end which implies that off-line transac-
tions can be finished at synchronization time at earliest.

The main contribution of this work is a generic architec-
ture which uses various existing mobile transactions models
to provide context-aware data and transaction management.
This generic architecture uses either an off-line capable mo-
bile transaction model in a disconnected state or an on-line
transaction model in an on-line state. It supports operations
like replication and synchronization being part of context-
aware data management. Context-aware transaction man-
agement is carried out by a local transaction manager that
may use different mobile transaction models. Since all these
transaction models need replication and synchronization, we
design a general replication and synchronization mechanism
to support various mobile transaction models in a single ar-
chitecture at the same time. As a result, developers can ap-
ply an appropriate mobile transaction model in the generic
architecture to meet the requirements of context-aware apps.
Moreover, we lift the context of used mobile transaction
models from relational to object-oriented structures.

The presented generic architecture is evaluated wrt. vary-
ing connectivity conditions. Within a simulation, we identify
connectivity conditions where mobile transaction models are
preferable to standard transaction models that presume per-
manent connection.

This paper is structured as follows: Two example apps are
presented in Section 2; they are used as running examples.
We discuss the state of the art of context-aware architectures

and mobile transaction models in Section 3. In Section 4, we
present our main contribution being a generic architecture
that allows more powerful off-line usage. Section 5 contains
a summary of our prototype implementation. In Section 6,
the presented architecture is evaluated regarding to various
conditions. In Section 7, we sum up the results and point to
limitations and future work.

2. APPLICATION DOMAINS AND
EXAMPLE APPLICATIONS

To illustrate our work, we present example domains where
mobile applications with a context-aware architecture can be
profitably used, followed by two application scenarios.

The three biggest retailers [59] in Germany in 2014, Ama-
zon [6], Otto [14] and Zalando [17] provide mobile applica-
tions for different platforms. None of them supports trans-
actions such as viewing and ordering products and mobile
payment, in a disconnected mode. Using a replicated digi-
tal product catalog, users may view products while they are
off-line. They could also order off-line and send the order
later to the back-end when the connection is re-established.
An inherent problem within this setting is the limitation of
mobile transaction methods for off-line payments [58]. Since
an order often requires payment in advance, secure payment
is a crucial component of most e-commerce applications (e.g.
80% of the popular on-line shops provide PayPal [15] as a
payment service [59]). Payment transactions usually contain
an on-line clearing not allowing these transactions to be per-
formed off-line. Thus, mobile e-commerce applications for
off-line usage also require off-line payment methods.

In industrial settings, the problems are slightly different:
Mobile apps often support or substitute manual tasks (as,
e.g., inventory, order picking, and maintenance logging).
The involved data objects are more individual and tailored
to the surrounding business processes or real-world objects.
Likewise, operations on these data objects are often more
complex than in e-commerce and payment scenarios.

To sump up, context-aware architectures, and in particu-
lar, mobile transaction models are required whenever mobile
apps modify either aggregated values (i.e. account balance,
warehouse stock, etc.) with a set of repeatable operations
(e.g., increment, decrement, etc.) or more individual ob-
jects (as they occur in e.g. a car rental) with a set of com-
plex operations (e.g., pick-up, refuel, event of damage, etc.).
An object containing only an aggregated value attribute is
named summable object. If the set of operations contains at
least one altering operation there is a conflict potential, i.e.,
the data objects are accessed in a competitive manner.

In the following, we will take a closer look at two specific
applications – a payment app (covering an example for an
aggregated value with repeatable operations) and a course
booking app for fitness studio members (dealing with indi-
vidual objects and more complex operations) – to demon-
strate the different ways of data access. We start the dis-
cussion of each app with the assumption that there is no
replication for off-line usage. This correspondents to an ar-
chitecture that is not context-aware. Later in Section 4, we
show implications of data replication.

2.1 Payment app
First, we consider applications for making mobile pay-

ments, like Apple Pay [7], Google Wallet [10], or PayPal

[15]. Traditionally, a banking account is administered on
a server at the banking site. The dataset is mainly a sin-
gle value (aggregate), the account balance. This singleton
is a so-called hot spot because every transaction changes or
accesses this value. The set of transactions on a banking
account is very limited (i.e., cash withdraw, cash deposit,
debit, credit and get account balance). For each banking
account, the number of users is also quite limited. Users of
a banking account are the bank itself and at least one bank
client. The bank itself arranges debit and credit payments
from or to internal or external accounts. Banking clients
may perform cash withdrawals or deposits. We assume that
the account is a credit account, i.e. that it is never in the
debit state (which would give raise to a conflict situation).

Example (Money transfer). We consider the following use
case: A banking client wants to transfer money to another
banking client from her/his mobile phone using near field
communication (NFC). Most payment applications support
this use case if both banking clients are on-line. The trans-
action is carried out as follows: The creditor delivers his/her
account information to the debtor via NFC. The debtor
sends a corresponding payment order to the back-end server
as on-line transaction. The bank checks the cover of the
payment order and executes the transaction. Finally, the
creditor updates the account balance (again as on-line trans-
action) and confirms the transaction. If one mobile client is
off-line, the payment cannot be conducted.

2.2 Course booking app
As second example, we consider a course booking app for

fitness studio members. Examples of such applications are
GymSync [12], GymJam [11] and BookFit [8]. Registered
fitness studio members can select course spots to practice
particular exercises (e.g., Yoga, Pilates, etc.) within certain
time slots. The set of operations is very limited (e.g., mak-
ing or canceling a reservation or checking if a course spot
is available). Conflicts are very likely because each mem-
ber may select every course spot. Studio members may set
course preferences to indicate which courses they will select
in the future. We assume that the course booking app never
allows the overbooking of a course spot (conflict situation).

Example (Reservation of a course). If a fitness studio
member is on-line and a selected course spot is available,
a reservation transaction can be processed. If the mobile
client is off-line, no transaction can be conducted.

3. CONTEXT-AWARE
ARCHITECTURE DESIGN

Context-awareness of architectures is a very generally used
term to describe that an architecture is aware of the context
of its use [55]. We discuss the existing work, however, with
the focus on transaction and data management in different
connection states. In the following, we recall recommenda-
tions to the design of a connection-aware architecture and
its working model including the required components. These
recommendations form a kind of reference architecture. Sev-
eral conceptual implementations of this reference architec-
ture use individual mobile transaction models. Although
there are plenty of different mobile transaction models, the
number of available products is still limited [22]. We discuss
the applicability of these products in accordance with the
requirements stated above and identify shortcomings.

3.1 Connection-aware architecture design
The loss of connection caused by the terminal mobility

[48] is not unusual [31] and should be handled by the ar-
chitecture of mobile apps. In case of intentional or acci-
dental loss of connection, it is necessary to delegate the
server-located functions (called back-end) to the mobile de-
vice (called front-end) to be able to work in an off-line mode.
This is sometimes called blurring the roles. Satyanarayanan
[54] describes the resulting architecture as an extended client
server model where the client takes over the role of the un-
reachable server. Pitoura and Samaras propose a similar
architecture [52]. Book et al. [25] has stated that the mo-
bility of apps is influenced by their architecture. In reverse,
this means that apps have to follow a particular architecture
to be connection-aware and thus off-line capable.

DBMS

Server (S)

DB

Transaction
manager (TM)

Client (C)

Application GUI

Application logic

Transaction
manager (TM)

Replica manager

on-line

 DBMS

Synchronization/
Reintegration m.

Log

DB

off-line

Figure 1: Extended client server model

Figure 1 shows the extended client server model which we
use later as a blueprint of our generic architecture. The ap-
plication logic of the client is extended by a local transaction
manager (TM) which delegates all transactions either to the
local database management system (DBMS) or to the cen-
tral one on the server, dependent on its connection state.
Furthermore, the transaction manager comprises a replica
manager. The replica manager is responsible for the repli-
cation of data to be used while mobile clients are off-line.
Off-line processed transactions are logged by the synchro-
nization/reintegration manager. Later, this log is used to
reprocess the transactions performed off-line.

A transaction manager implements a particular mobile
transaction model by specifying the behavior of replication,
off-line operations, and synchronization. These components
(shown as hatched areas in Figure 1) are individually tai-
lored according to the properties of the used mobile transac-
tion model. (For example, they are asked to be conflict-free.)
On-line transactions are just passed to the server and not
handled by the local transaction manager. In Section 3.1.4,
we will give an overview about the different mobile transac-
tion models that have been proposed in the literature. Nev-
ertheless, every proposed mobile transaction model results
in an individual implementation of the extended client server
model. To support a more flexible exchange of transaction
models, we are heading towards a generic architecture.

3.1.1 Working model of the local trans. manager
In Figure 2, a working model is shown which distinguishes

the different context states and operation steps of the lo-
cal transaction manager. A mobile client starts in an on-
line context (On-line transaction processing) after an op-
tional initial setup of the system. In this mode, an on-
line transaction model (often named standard transaction
model) is used. Mobile clients replicate the data while they
are on-line (Replication). The client may stay on-line af-
ter the replication or may go off-line. If so, it operates
off-line (Off-line transaction processing) using a particular
mobile transaction model. When the mobile client is back
on-line, it must publish the modified copies (Synchroniza-
tion/Reintegration). Hatched areas in Figure 2 denotes steps
that are specific to the used mobile transaction model.

Off-line

Initial setup

On-line
transaction
processing

Replication

Synchronization
and

Reintegration

On-line

Off-line
transaction
processing

Figure 2: Working model of a local trans. manager

3.1.2 Anomalies
While working off-line, concurrent isolated accesses to the

clients’ replicas may lead to the following kinds of conflicts
when synchronizing the modified data. These conflicts are
called anomalies [34]:

Deletion anomaly: If a mobile client deletes a replicated
record while working off-line and another client reads or
changes the primary copy of this record meanwhile, a dele-
tion anomaly occurs.

Insertion anomaly: An insertion anomaly occurs when a
new record is inserted into the server DBMS and an identical
record does already exist. This anomaly can occur if two
mobile clients independently create a record and at least
one mobile client is off-line.

Modification anomaly: The modification anomaly is the
most common one. Every time when a mobile client changes
a replicated record while working off-line, another client may
also change it. Such a conflict may be solved by synchroniz-
ing one replica and discarding the other one. The question
arises which modification is prior over the other.

Trivially, concurrent isolated read-only access of all mo-
bile clients cannot lead to anomalies. Thus, if mobile apps
use static data (e.g., encyclopedias, dictionaries, etc.) in a
unidirectional way, mobility can be easily guaranteed by just
replicating the used data. However, the amount of data to
be replicated may be a limiting factor.

3.1.3 Replication and synchronization
Within the working model, a step for replication is needed

to guarantee availability of data when being disconnected
[33]. Moreover, we are heading towards applications that
may change and reintegrate the replicated data into the
back-end. Thus, the working model requires a step for syn-
chronizing and reintegrating modified data after working off-
line as well. Both detailed mechanisms of replication and
synchronization heavily depend on the mobile transaction

model used. In Section 4, we will present a generic replica-
tion strategy which is suitable for several mobile transaction
models. In any way, replication strategies can be classified
into eager and lazy [35] ones. Eager replication strategies
try to update all copies in a single step to complete the
transaction. This is inappropriate within our application
area of mobile applications since mobile clients cannot be
updated when being disconnected. Lazy replication asyn-
chronously propagates replica updates to other clients after
off-line transaction commitments. For doing so, the trans-
action is executed locally and then reprocessed later on a
primary copy and other replicas. This is called transaction-
based synchronization. Sometimes, it is sufficient to replace
the primary copy with the changed replica. This kind of
synchronization is called image-based synchronization. The
synchronization approaches of concurrent accesses can be
classified – similar to traditional database management sys-
tems [43] – into pessimistic and optimistic approaches. Pes-
simistic approaches include strategies for conflict avoidance
while optimistic approaches provide at least conflict detec-
tion and often also conflict-solving strategies.

3.1.4 Mobile transaction models
In the following, we recall mobile transaction models that

support lazy replication and pessimistic synchronization since
they prevent the occurrence of anomalies and fit to the re-
quirements outlined in the introduction very well.

In order to find mobile transaction models with these char-
acteristics, we recall the following work: Hirsch et al. [36]
survey several mobile transaction models and compare them
on the basis of typical requirements for this application do-
main ([60], [30], [40]). Serrano et al. [57] [56] and Panda et
al. [47] analyze the existing approaches in accordance to the
well-known ACID (Atomicity, Consistency, Isolation, Dura-
bility) paradigm in a similar way. Mutschler and Specht [44]
divide the mobile transaction models either into first-class
transaction models (which processes transactions off-line but
need to be on-line to commit the transaction) or second-class
transaction models (which processes transactions off-line).

Based on these reviews, we discard all approaches that
are not able to prevent conflicts and to work off-line like the
Kangaroo transaction model [30], the Preserialization Trans-
action Management Technique (PSTMT) [29], the Prewrite
Transaction model [42], the Two-tier transaction model [35],
the Clustering transaction model [50] [51] [49], the Report-
ing and co-transactional model [26], and the Isolation-only
transaction model [41].

The remaining conflict-free transaction models can be sub-
sumed under semantical approaches. Semantical approaches
use the structure of the data or semantical properties of
transactions performed on replicas [32]. We have selected
the Keypool transaction model and the Escrow transaction
model for use in our generic architecture.

The number of products is still limited, outdated, and
very homogeneous in terms of used mobile transaction mod-
els. OracleLite [5], IBM DB2 Everyplace [1], Microsoft SQL
Server CE [13], and Sybase Adaptive Server Anywhere [3]
are some commercial mobile database systems (mDBMS).
Their architecture correspond in general to the extended
client server model. All products use an image-based syn-
chronization and do not support conflict prevention. Thus,
durable off-line transactions cannot be carried out.

With regard to the available products, we assume that

the replication is possible within our scenarios but does not
yet include a conflict-avoiding mechanism while processing
transactions off-line. This behavior is illustrated at the fol-
lowing examples.

Example (Payment app): A debit transaction decreases
the replicated account value of the debtor and increases the
replicated account value of the creditor. The app checks the
coverage of the replicated account value locally. The trans-
action can happen off-line via NFC. At a later date, the
banking client reprocesses the debit or credit transaction on
the primary copy in order to synchronize the account bal-
ance (on-line transaction). However, if the debtor withdraws
money and changes the primary copy before executing the
synchronization, the coverage of the account cannot be en-
sured. The bank is unaware that the customer has already
transfered money from the replicated account. Since the ac-
count may be in debit state, a conflict may arise.

Example (Course booking app): The fitness studio mem-
ber uses a copy of the entire data set, i.e., of all course
spots. A reservation transaction checks whether a course
spot is unselected by other members and selects it. At a later
date, the fitness studio member(s) synchronize the changed
course spots with the primary copies. If another fitness stu-
dio member selected the same course spot, the transaction
of one member gets lost during synchronization. Neverthe-
less both members get a local commit of their transaction.
Since a course spot may be overbooked, a conflict may arise.

3.2 Problem statement
Although we have conflict-preventing mobile transaction

models, the available products do not use them. As stated
by Gollmick [34], barriers are the demarcation of the mobile
database management systems (mDBMS) and the seman-
tics of transactions located at the mobile client or at the
server. Either the mobile application realizes a mobile trans-
action concept on the level of application logic, or the mobile
database management system supports a seamless interface
to use the semantical information of transactions being de-
fined by application logic. With the focus on mobile devel-
opment, the following question arises: How does a generic
architecture for connection-aware mobile applications looks
like that allows various mobile transaction models (RQ1)?

The existing work of mobile transactions models focuses
on relational data models. Following object-oriented design,
data models of mobile applications are object-oriented ones
(i.e. class models). Thus, the existing concepts must be
rethought and adapted to the context of object-oriented data
modeling. App developers are often familiar with the object-
relational mapping (ORM) to serialize objects into relations
but unsettled in applying this concept in the context of mo-
bile transactions involving replication and synchronization.
Therefore, the next question is: Can mobile transaction
models be applied in the context of object-oriented appli-
cation development and what are the effects (RQ2)?

Finally, given mobile transaction models have not been
evaluated well. From the perspective of an app developer,
the conditions (e.g., connectivity, number of users and data,
etc.) under which mobile transaction models should be used
are unclear. Mobile transaction models may bring profit
to disconnected clients but may also cause additional costs
(wrt. replication and synchronization). They may cause
reduced performance for highly connected users (clients).
These considerations lead us to the third question: Which

kinds of context conditions are assumed for an app to profit
from using mobile transaction models (RQ3)?

4. A GENERIC ARCHITECTURE FOR
CONNECTION-AWARE APPS

Based on the extended client server model and the work-
ing model presented in Section 3, we present a generic archi-
tecture for connection-aware apps that can be instantiated
with various transaction models. In this section, we focus
on the instantiation with conflict-free models, namely Key-
pool and Escrow. They seem to be especially promising
for context-aware transaction processing. Knowing the dif-
ferences between these mobile transaction models in terms
of their individual replication and synchronization, we can
modify the working model in order to use both mobile trans-
action models in a single generic architecture. Finally, we
present the developed design along the steps of a modified
working model.

4.1 Conflict-free mobile transaction models
We focus on conflict-free mobile transaction models ac-

cording to the requirements of our example apps. The se-
lected models use different strategies to prevent conflicts:

4.1.1 Keypool transaction model
The Keypool transaction model [2, 4] uses the structure of

the given dataset. The basic idea of the Keypool method is
to split the entire dataset into subsets that are distributed
among the participating mobile clients. Figure 3 illustrates
a data split to three mobile clients within the replication
step. Every client gets an amount of data that is exclusively
replicated. When a client is off-line, he/she can operate on
the replicated data without limitations. Within the syn-
chronization step, the partial data is reintegrated into the
primary copy using image-based synchronization. Indepen-
dent of the operation to be performed while being off-line,
the result can be adopted by substituting the value of the
primary copy for the value of the changed replica (i.e, the
image). The Keypool approach avoids deletion and modifi-
cation anomalies by design. Without additional provision,
insertion anomalies may occur. During the course of this
work, we ensured that insertion anomalies cannot occur by
the use of an object-relational mapping framework.

Key …

1 …

2 …

3 …

1 …

On-line dataset Off-line datasets On-line dataset

Key …

1 …

2 …

3 …

2 …

3 …

Mobile client 1:

Mobile client 2:

Mobile client 3:
replication synchron.

Figure 3: Keypool replication and synchronization

4.1.2 Escrow transaction model
The Escrow transaction model [45, 39] is well suited to

access and modify aggregate data. The basic idea of the Es-
crow method is to restrict the set of transactions and/or the
domains of their arguments when being performed off-line.

While the Keypool transaction model splits the dataset and
thereby, may risk to provide an undersized or empty dataset,
the Escrow approach always provides the full dataset. Fig-
ure 4 shows the replication scheme of the data to two mobile
clients. Every client gets a full copy of the dataset. Assum-
ing that the semantic of provided transactions is known, ev-
ery record is transformed at the step of replication such that
conflicts cannot occur at the synchronization step. Consider-
ing mobile payment, for example, the debit transaction may
cause conflicts. Therefore, the domain of its argument is
restricted such that just small amount may be withdrawn.
One possible strategy is to equally distribute the amount
among all participating clients as shown for the example
aggregate values in Figure 4. Since several mobile clients
may change the same value, this strategy always guarantees
conflict-free synchronization afterwards.

An image-based integration does not work here since ei-
ther one or another image can be written back to the primary
copy but not both. The other values would be lost (called
Lost-update [21, 19]). Thus, the reintegration of changed
values has to be based on a transaction-based approach. It
collects all transactions performed off-line and replays them
on the primary copy. The repeated transactions must have
the same effects as being performed on-line but usually do
not achieve the same value on the primary copy as on the
replicated copies. This property is called semantical serial-
izability [46]. To ensure it, all operations must be repeat-
able (such as decrement and increment) and their semantics
on restricted values has to correspond to the one on non-
restricted ones. The Escrow approach avoids insertion, dele-
tion, and modification anomalies by design. A generalization
beyond aggregated values is the PRO-MOTION transaction
model [61]. Within that approach, so-called compacts form
local constraints and guarantee semantical serializability.

Key …

1 90

2 30

1 45

2 15

On-line dataset Off-line datasets On-line dataset

Key …

1 90

2 30
1 45

2 15

Mobile client 1:

Mobile client 2:

Figure 4: Escrow replication and synchronization

4.2 Modification of the working model
As presented in Section 3.1.1, replication and synchro-

nization are the major steps of the working model. The
mobile transaction models Keypool and Escrow use their
own approaches to replicate and synchronize data. Keypool
replicates data sets by splitting, while keeping their values
unchanged; Escrow, however, does not split the dataset but
replicates it by changing every value of the dataset in ac-
cordance with the number of mobile clients. Synchroniza-
tion is performed image-based by the Keypool method and
transaction-based by the Escrow method. Hence, the repli-
cation and synchronization steps of these mobile transaction
models cannot be mixed for providing more than one mo-
bile transaction model in a single architecture. Each mobile
transaction model needs an individual implementation.

In order to circumvent this problem, we modify the work-
ing model by adding the following conditions: (1) The repli-
cation step is not allowed to limit the dataset or to transform
its values. If a mobile transaction model requires a limited
or modified set of data, the dataset must be preprocessed ac-
cordingly within the off-line transaction processing step. (2)
If a synchronization method is more powerful than another
one (i.e., transaction-based covers image-based synchroniza-
tion), the weaker method can be substituted by the stronger
one. A set of mobile transaction models that satisfies these
two conditions can be applied in our architecture, like the
Keypool and Escrow method. Furthermore, most of the con-
flicting mobile transaction models satisfy these conditions.

Off-line

Initial setup

On-line
transaction
processing

Replication

Off-line
transaction
processing

Synchronization
and

Reintegration

On-line

Pre-processing

Mobile
transaction model

Figure 5: Modified working model

Figure 5 shows the working model of local transaction
managers being used in our architecture. Replication, Syn-
chronization and Reintegration are independent generic steps,
while the off-line transaction processing implements the mo-
bile transaction model including some pre-processing (shaded
area). Different mobile transaction models like Keypool and
Escrow, may be plugged in and work independently to the
steps performed on-line.

4.2.1 Data modeling and initial setup
Mobile applications are usually designed in an object-

oriented way. Hence, the data model does not define re-
lations but object classes. If a database is used underneath,
a class model can be translated into a relational data model
by object-relational mappers (ORM). ORM frameworks can
create empty database schemes from class models, and con-
vert objects into table rows. Vice versa, database records
may be translated back to object structures. In our pre-
sented data models, classes and attributes may be anno-
tated by an asterisk to indicate that objects of a certain
class should be split (Keypool) or that an attribute is an
aggregate (Escrow). (See Figures 6 and 7 below.)

According to Figure 1, the server-sided architecture is
lightweight (i.e., no server facilities to set up the database),
but it needs at least a database management system or a
similar service to persist data. In our prototype implementa-
tion (described below), we use a relational database MySQL
5.6 at the server side. The initial setup is triggered and per-
formed remotely by a mobile client. It can only be performed
once by the first appearing mobile client.

Example (Payment app): Figure 6 shows the data model
of the payment app. It consists of the class Account only.
A valid instance of this data model may have only one Ac-
count object; the asterisk at the attribute amount indicates
that this object may be split and allocated to mobile clients.
Thus, mobile clients may share this account object, partic-
ularly the attribute amount.

Repeatable operations

Summable object

Figure 6: Data model of the payment app

Example (Course booking app): Figure 7 shows the data
model of the course booking app. It contains course spots
and persons. Course spots are not summable since each
course spot is an individual object. This kind of modeling
allows using the Keypool approach. However, it may lead to
a large set of objects being difficult to handle. A reservation
of a course spot is made by setting the participant pointer
to a person. The asterisk at class CourseSpot denotes that
its objects may be distributed among mobile clients.

Individual objects Complex operations

Figure 7: Data model of the course booking app

4.2.2 On-line Transaction Processing
The on-line transaction processing step of our generic ar-

chitecture is not affected by the changes made to the working
model. It operates as stated in Section 3.1.1.

4.2.3 Replication
Due to working model modifications, the replication step

of our generic architecture copies the entire set of data to
the mobile clients (full replication). The replication step is
– similar to the initial setup of the server-located database –
triggered by the clients. This is called pull-based replication
in opposite to the push-based replication [37].

4.2.4 Off-line Transaction Processing
The off-line transaction processing is the crucial part of

our generic architecture. Replication is required to operate
off-line but also involves the risk of synchronization con-
flicts. The selected mobile transaction models should en-
sure conflict-free synchronization and commit transactions
immediate without having to wait for reconnection.

Synchronization conflicts may occur every time when a
schedule (i.e. a sequence of off-line transactions on replicas)
cannot be serialized on the primary copy. Such a sched-
ule is serializable if it is equal to a serial schedule on the
primary copy. The most-commonly used definitions of this
equivalence concern the order of reading and writing opera-
tions (conflict equivalence) or the view relation (view equiv-
alence) on relational variables. This is hardly applicable
to replicated isolated objects because mobile clients cannot

communicate while they execute the transaction and there-
fore they cannot detect conflicts with other isolated mobile
clients [24]. The mobile clients only know how many con-
current mobile clients are registered and which operations
they may perform. Based on that fact, a conflict matrix can
be set up in advance. Tables 1 and 2 show which conflicts
may occur between the transactions involved in our example
apps. We consider only transactions finished successfully.

Table 1: Conflicts in the payment app1

t1/t2 debit credit getAmount

debit Yes No Yes (No)2

credit No No Yes (No)2

getAmount Yes (No)2 Yes (No)2 No

Table 2: Conflicts in the course booking app
t1/t2 makeRes. cancelRes. isCourseAv.

makeRes. Yes Yes Yes (No)2

cancelRes. Yes Yes Yes (No)2

isCourseAv. Yes (No)2 Yes (No)2 No

A conflict is given, if at least two transactions t1 and t2 are
performed successfully off-line and cannot be re-processed
later on the primary copy in an arbitrarily chosen order (no
state commutativity) or the transactions return values de-
pendent on the re-processing order (no return value commu-
tativity [62]).

Requiring state commutativity and return value commu-
tativity implies strict read and write operations. Dependent
on the app, it might be appropriate to relax the conflict
definition and tolerate weak read but strict write operations
[50]. For the course booking app, for example, the operation
isCourseAvailable may use inconsistent copies, but the oper-
ation makeReservation is allowed only on consistent copies.

Using the Escrow method, the aggregate that is processed
by conflicting off-line transactions is divided among the set
of mobile clients beforehand. Besides a full allocation of the
aggregate to the mobile clients, it can also be limited by
a factor so that a part of the aggregate may remain unallo-
cated. In case of the payment app, the amount is distributed
among the set of mobile clients. All clients can access the
summable account object. But the conflicting off-line trans-
actions accept just a limited domain of argument values (e.g.
a limited debit amount) compared to the on-line processing.

The replication strategy for the Keypool method filters
the whole set of objects. The filter function maps objects
uniquely to mobile clients but can also keep objects unallo-
cated. Round-Robin is a example filter function that assigns
data objects to one after the other mobile client and starts
again at the first client as long as objects are available. To
allocate preferred objects, mobile clients may indicate their
intention with so-called preference sets. In that case, the
filter function maps objects according to the users’ prefer-
ences if possible. However, filtered-out objects cannot be ac-
cessed in a disconnected state, and consequently, cannot be
involved in synchronization conflicts. For the course book-
ing app, every course spot is mapped to one mobile client
at most. Every mobile client can work on a disjoint subset
of objects. All the transactions processed off-line are logged

1The transactions cash debit and cash credit are discharged
for the mobile client.
2Relaxed conflict definition (tolerate weak read).

for both mobile transaction models to allow the subsequent
synchronization after re-connection (as explained below).

Example (Money transfer): In this scenario a couple shares
a banking account. Before accessing the account object off-
line, the amount value (aggregate) will be divided into equal
amounts. For example, an amount of 100$ will be divided
into 50$ located at one person (client 1) and 50$ at the other
person (client 2). Both can transfer 50$ off-line. In doing
so, the account is always on the credit side. The downside
of this strategy is that they cannot transfer 100$ (on-line or
off-line) although if they have the amount of money.

Example (Reserving a course spot): Given a set of course
spots being replicated to a set of mobile clients, the filtering
functions maps the course spots according to the preferences
of fitness studio members. That way, the subset of course
spots assigned to a mobile client may contain a preferred
spot off-line (to make a reservation). Thus, an off-line trans-
action can take place. Hence, a fitness studio member can
make his/her reservation off-line without causing a conflict
during synchronization. A disadvantage of this strategy is
that a fitness studio member cannot reserve a course spot
which is not mapped to his/her identification, even if the
spot is not selected by any other member. The simulation
will show how often these reservations remains unused.

4.2.5 Synchronization and reintegration
Modified replica must be synchronized with the primary

copy and the replicas of the other mobile clients finally.
Synchronization scheme: The proposed generic architecture
use a hub-oriented synchronization scheme. Every mobile
client synchronizes modified replicas with the primary copy
on the server (hub). Since the server does not push the
announced changes to the mobile clients, the mobile clients
are asked to pull all the changes from the server.
Image-based synchronization: As mentioned before, all com-
mercial products use an image-based synchronization which
changes the primary copy with the image (or value) of the
modified replica. The semantics of the performed trans-
action is not necessary to know for this synchronization
method. Unfortunately, the image-based synchronization
requires an (n−1) consistency of the replicas which requires
that at most one replica is modified. A consistency less than
(n−1) produces more than one modified image which cannot
all be synchronized with the primary copy (i.e., lost updates
would occur). Image-based synchronization is sufficient for
the Keypool method because an object is accessed by at
most one mobile client.
Transaction-based synchronization: A rarely used synchro-
nization method is the transaction-based method which syn-
chronizes the primary copy by reprocessing all the trans-
actions performed on the replicas. This is possible if ev-
ery transaction performed off-line preserves the precondi-
tion of every other transaction performed off-line. Thus
the synchronization method requires that the semantical
effects of all the performed transactions are known. The
transaction-based synchronization does not require any con-
sistency level and may integrate fully inconsistent sets of
replicas. Transaction-based synchronization is adequate for
the Escrow method because the distribution of the aggre-
gate preserves the preconditions of the involved conflicting
transactions. Since the transaction-based synchronization
method covers the image-based synchronization method, the
transaction-based synchronization is used for both transac-

tion models within our architectural design assuming that
the semantics of all transactions is known.

5. PROTOTYPE ARCHITECTURE
The prototype implementation provides a proof-of-concept

of how a generic architecture for mobile apps can look like
and how several mobile transaction models can be provided
in a single architecture (RQ1). Moreover, the prototype uses
object-oriented data modeling. We thus demonstrate that
mobile transaction models can be applied in the context of
object-oriented application development (RQ2). Overall, we
carried out a working prototype for Android that realizes the
generic architecture described in the previous section.

We use the Eclipse Modeling Framework (EMF) [9] as
object-oriented data modeling language. EMF allows us to
generate code for object-oriented data management from a
domain model. The object-relational mapping framework
Hibernate [20], in combination with the model-relational
mapping framework Teneo [16], allows setting up a data
base scheme and persisting object structures in a server-
located database. These object structures can be modeled
as instances of the given domain model. Full data replica-
tion can be realized by loading the model instances from the
relational database (server) and storing them locally on the
mobile devices in a file in XML/XMI format. Since Hiber-
nate is a certified JPA-Provider [38] [28], it includes a trans-
action session management that can be reused to handle the
on-line transaction processing of the mobile clients. The
transaction-based synchronization is also handled as on-line
transaction. According to the selected transaction model,
single objects are transformed (Escrow) or multiple object
sets are filtered (Keypool) in a preprocessing step of the
off-line transaction processing.

6. EVALUATION
In the following, we evaluate the design of our generic ar-

chitecture to show its applicability and usefulness. To check
under which connectivity conditions the proposed generic ar-
chitecture works best, we designed several experiments. We
built up a separate simulation system and investigate cor-
relations between key parameters such as number of clients,
their activity, the connectivity, and number of objects. The
results answer under which conditions the proposed generic
architecture is used best (RQ3).

6.1 Simulation design
The shown examples are limited to only a few mobile

users due to the limitation of parallel Android emulation in-
stances. Thus, such a test can only demonstrate the applica-
bility and soundness rather than the usefulness of the generic
architecture. For a broader evaluation in terms of scalabil-
ity and correlations between key parameters (i.e. numbers
of objects and users and levels of activity and connectivity)
we use an external simulation system. It behaves equally to
the prototype implementation from a functional perspective.
The evaluation results are available at [18].

6.1.1 Method
The simulator monitors the throughput, i.e., the number

of transactions, using a standard on-line transaction archi-
tecture (as used in web-apps) on the one hand and the pro-
posed generic architecture on the other hand. Table 3 shows

the independent simulation variables as simulation input.

Table 3: Independent simulation variables
Name Description Domain
#Subjects The number of mobile

clients.
1 .. 7560

#Objects The number of objects or
aggregate size.

1 .. 3780

#AllocObjects The number of allocated
objects or elements of an
aggregate.

0 .. #Ob-
jects

Activity The activity level of a
subject.

0..100

Connectivity The connectivity level of
a subject.

0..100

#Preferred The number of objects
or elements preferred by
the subject.

0 .. #Ob-
jects

The number of mobile clients (#Subjects), number of ob-
jects or aggregate size (#Objects) and the number of allo-
cated objects or allocated elements from an aggregate (#Al-
locObjects) are global subject-independent variables. The
variables Activity and Connectivity are subject-specific, and
therefore, called local variables. This means that different
subjects may have different activity and connectivity levels.
The connectivity determines the duration of on- / off-line pe-
riods in an abstract way. Basically, subjects may access ob-
jects or elements of an aggregate randomly. The access may
also be limited by another subject-specific variable called
#Preferred. If #Preferred:=1, a mobile client always se-
lects the same object; random access from the entire set of
objects is expressed by #Preferred:=0 and from a limited
set of objects by #Preferred > 0. #Preferred determines
the degree of interference among different mobile clients.

The reader may notice that the processed operations are
not further specified. Simulating the Keypool method, we
use abstract simulation objects with write and read opera-
tions. Conflicting transactions are considered as write op-
eration while non-conflicting ones form as read operation.
Simulating the Escrow method, we use an abstract aggre-
gate object with increment and decrement as operations.
Inside one simulation step, mobile clients access the aggre-
gate or a set of objects according to their local settings (i.e.,
Activity, Connectivity, and #Preferred). They either act on
their locally stored replicated objects (off-line transaction)
or on the primary copy (on-line transaction).

Table 4: Dependent simulation variables
Name Description
#On-lineProcessed Number of transactions pro-

cessed in connected mode.

#On-lineRejected
(Unused)

Number of transactions rejected
in connected mode because the
object was locked and not used
by the corresponding client in a
disconnected mode.

#Off-lineProcessed Number of transactions pro-
cessed in disconnected mode.

After transaction processing, dependent variables are de-
termined as simulation output (see Table 4).

The goodput (number of successfully finished transactions)
of the standard architectures working only on-line is defined
as:

Goodput(On-line):= #On-lineProcessed (1)

The goodput of our generic architecture working on-line
and off-line is defined as:

Goodput(On-/Off-line):=#On-lineProcessed +

#Off-lineProcessed -

#On-lineRejected (Unused)

(2)

We can see that the number of off-line processed trans-
actions (#Off-lineProcessed) may increase the overall good-
put. By assigning data to mobile clients exclusively, how-
ever, on-line transactions may be rejected which may reduce
the overall goodput. Therefore, it is very important to un-
derstand under which conditions the combined on-line/off-
line processing yields an overall benefit. Our simulation ex-
periments described below answer this question.

6.1.2 Internal and external validity
To ensure the internal validity of the simulation, all effects

on the set of dependent variables must depend on modifica-
tions of only one independent variable in order to exclude
a cause-effect conclusion [23]. Each of our simulation ex-
periments fulfills this requirement. Moreover, we repeated
our simulation 10.000 times per experiment. The results are
reproducible and corrected wrt. statistical outliers.

Since we use abstract objects for the simulation, the sim-
ulation is generalizable. While simulations of the Keypool
method do not introduce any restrictions wrt. objects and
transactions, the Escrow model simulations cover increment
and decrement operations on aggregates only. Another threat
to external validity is the use of randomized activity and con-
nectivity of the mobile clients. In order to increase external
validity it would be helpful to have empirical, i.e. real world,
data sets of mobile clients’ connectivity and activity.

6.2 Simulation experiments and observations
In the following, we mainly report on simulations of the

Escrow method since Keypool-based simulations show sim-
ilar results as pointed below.

6.2.1 Escrow
Experiment 1 – Payment app. First, we simulate the pay-
ment app with an aggregate value of 100$ and an equal
split of the aggregate (50$ at the server and 50 $ at the
client). The client prefers debit and credit amounts from
1 to 100 $. Figure 8 shows the results of this experiment.
The goodput of the standard architecture raises from 0%
(disconnected) to 100% (fully connected). The goodput of
the proposed generic architecture starts at 63.26% (discon-
nected) and reaches also 100% (fully connected). Hence,
this experiment shows that the proposed generic architec-
ture improves the number of processed transactions in weak
connection states up to 62.26%.
Experiment 2 – Homogeneous multi-subjects. In contrast to
the prior experiment, we split the aggregate now equally
to 25 clients (subjects). Figure 9 shows the results for a
multi-user payment app. We find similar results as for Ex-
periment 1, however, the goodput is slightly smaller since
the increased number of mobile clients causes more conflicts.

Figure 8: Goodput for the payment app

The goodput of the proposed generic architecture is up to
51.17 % higher than for the standard architecture.

Figure 9: Goodput for a multi-user payment app

Experiment 3 – Homogeneous multi-subjects’ scalability. Given
the settings of Experiment 2, we check scalability and change
either the amount of subjects or the amount of objects.

Table 5: Homogeneous multi-subject scalability
#Subjects #Objects Gain
1 100 74.85%
2 100 62.29%
50 100 50.74%
100 100 50.29%
200 100 50.26%
500 100 50.12%

100 1 66.72%
100 2 60.02%
100 50 50.44%
100 100 50.26%
100 200 50.40%
100 500 50.34%

Table 5 shows these scalability measurements; the column
gain reports the benefit of the proposed generic architec-
ture. It scales up with the numbers of users and objects.
In a disconnected mode, the effort of the proposed generic
architecture converges to 50%, since 50% of the processed
transactions (i.e. all credit transactions) are conflict-free.
We conjecture that the convergence point is determined by
the ratio of conflicting and non-conflicting transactions.

Experiment 4 – Homogeneous multi-subjects’ activity and
connectivity. Given the settings of Experiment 2, we test
the relation of connectivity levels with activity levels now.
Figure 10 shows that the goodput of the proposed generic
architecture covers the goodput of the standard architecture
even if the activity level is reduced. (Note that it was 100
% in Experiment 2.) In general, the goodputs of both archi-
tectures decrease correspondingly with reduced activity.

Figure 10: Decrease of goodputs according to de-
crease of activity

Experiment 5 – Heterogeneous multi-subjects. The prior ex-
periments used homogeneous subjects which leads to nearly
identical plots for every subject. Since mobile clients usu-
ally differ in their network connectivity, their activities and
their preferences of choice, we designed an experiment with
heterogeneous sets of subjects controlled by subject-specific
independent variables (see Table 3).

Figure 11: Individial goodputs of subjects according
to their subject-specific independent variables

As shown in Figure 11, the overall goodput as the sum of
the subjects goodput (system bar) of the proposed generic
architecture is better than the goodput of the standard ar-
chitecture. However, the results differ considerably wrt. ac-
tivity and connectivity levels as well as size of the preferred
set. Figure 11 shows the corresponding simulation results.
Our findings are these: The proposed generic architecture
is most profitable for mobile clients with high activity, poor
connection and a small set of preferred objects to be ac-
cessed. The proposed generic architecture is not profitable
for mobile clients with high activity and strong connection.

6.2.2 Keypool
For the simulation of the Keypool transaction model very

similar experiments have been carried out yielding similar
findings as well. Therefore, we present just one experiment:
Experiment 1 – Course booking app. Within this simulation,
we assume a fitness studio with 18 hours of opening (7 days)
and 3 parallel courses with 10 participants on average yield-
ing 3780 course spots. We assume that the fitness studio
has 7560 members. Members may select three courses as
favorites. The goodput of the proposed generic architecture
is up to 57.61% higher than for the standard architecture
(shown in Figure 12). As mentioned earlier, the generic
architecture can also handle optimistic mobile transaction
models. Thus, we can estimate the goodput of an optimistic
mobile transaction model for the given scenario, which is
much higher than the goodput of the pessimistic approach.

Figure 12: Goodput for the course booking app

7. RELATED WORK AND CONCLUSION
To our knowledge, there is no approach that supports

conflict-free and context-aware data and transaction man-
agement in a generic architecture. The PRO-MOTION trans-
action model [61] is the most similar approach. This model
uses user-defined constraints evaluated by the local transac-
tion manager. However, conflicts and anomalies may arise
due to insufficiently-defined constraints.

We presented a generic architecture that supports conflict-
free and context-aware data and transaction management.
This architecture can integrate different conflict-free mobile
transactions models. Transactional anomalies arising in ex-
isting mobile database systems by accidentally using the
same identities are avoided in our approach since the archi-
tectural design is object-oriented and the mobile transaction
models used are adapted to this design. The applicability
was shown with a prototypical implementation for Android.
Furthermore, we demonstrated the usefulness of the pro-
posed generic architecture by conducting several simulation
experiments. We identified clear context conditions for the
advantageous use of the proposed generic architecture. The
proposed generic architecture is most profitable for mobile
clients with high activity, poor connection conditions and a
small set of preferred objects to be accessed. However, the
maximum number of expected clients in a life-cycle must
be known beforehand in order to allocate the data, i.e.,
it does not currently support the dynamic entry of addi-
tional clients. Furthermore, conflicts between transactions
are identified manually. Tool support for automatic con-
flict detection would be helpful. In future work, our generic
architecture shall be used in practical mobile software de-
velopment to confirm our findings in practice.

8. REFERENCES
[1] IBM DB2 Everyplace Installation and User’s Guide,

October 2003.

[2] Adaptive Server R© Anywhere 9.0.2 – Adaptive Server
Anywhere SQL User’s Guide, October 2004.

[3] Adaptive Server R© Anywhere 9.0.2 – Introducing SQL
Anywhere R© Studio, October 2004.

[4] Adaptive Server R© Anywhere 9.0.2 – SQL Remote TM

User’s Guide, October 2004.

[5] Oracle R© Database Lite Getting Started Guide,
February 2010.

[6] Amazon Europe Core S.à r.l., 2015.
http://www.amazon.de.

[7] Apple Pay, 2015. http://www.apple.com/apple-pay.

[8] BookFit, 2015. http://www.bookfitapp.co.uk/.

[9] Eclipse Modeling Framework (EMF), December 2015.
https://www.eclipse.org/modeling/emf – Version 2.12.

[10] Google Wallet – Google Payment Corp. (GPC), 2015.
https://www.google.com/wallet/.

[11] GymJam, 2015. http://www.thegymjam.com/.

[12] GymSync, 2015. http://www.gymsync.co.uk/.

[13] Microsoft – Beginner’s Guide to SQL Server Compact,
December 2015.

[14] Otto (GmbH & Co KG), 2015. https://www.otto.de.

[15] PayPal (Europe) S.à r.l. et Cie, S.C.A., 2015.
https://www.paypal.com/de.

[16] Teneo, 2015. https://wiki.eclipse.org/Teneo – Version
2.0.0.

[17] Zalando SE, 2015. https://www.zalando.de.

[18] Experimental results of mobile transaction model
simulations, January 2016. http://www.uni-marburg.
de/fb12/swt/forschung/mobilesoft16/evaluation/.

[19] A. Adya, B. Liskov, and P. O. Neil. Generalized
isolation level definitions. In D. B. Lomet and
G. Weikum, editors, Proceedings of the 16th
International Conference on Data Engineering, San
Diego, California, USA, pages 67–78. Institute of
Electrical and Electronics Engineers (IEEE), March
2000.

[20] R. F. Beeger, A. Haase, S. Roock, and S. Sanitz.
Hibernate - Persistenz in Java-Systemen mit
Hibernate 3. dpunkt.verlag, 2006.

[21] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ANSI SQL
isolation levels. In M. Carey and D. Schneider, editors,
Proceedings of the 1995 ACM SIGMOD international
conference on Management of data, San Jose, CA,
USA, May 22 - 25, 1995, volume 24, pages 1–10.
Association for Computing Machinery (ACM), May
1995.

[22] G. Bernard, J. Ben-Othman, L. Bouganim, G. Canals,
S. Chabridon, B. Defude, J. Ferrié, S. Gançarski,
R. Guerraoui, P. Molli, et al. Mobile databases: a
selection of open issues and research directions. ACM
Sigmod Record, 33(2):78–83, June 2004.

[23] B. Bernard Nicolau de França and
G. Horta Travassos. Simulation based studies in
software engineering: A matter of validity. CLEI
Electronic Journal, 18(1):5–5, April 2015.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

[25] M. Book, V. Gruhn, M. Hülder, and C. Schäfer. Der
Einfluss verschiedener Mobilitätsgrade auf die
Architektur von Informationssystemen. In J. F.
Hampe, F. Lehner, K. Pousttchi, K. Ranneberg, and
K. Turowski, editors, Mobile Business- Processes,
Platforms, Payments, Proceedings zur 5. Konferenz
Mobile Commerce Technologien und Anwendungen
(MCTA 2005) in Augsburg, volume 59 of LNI, pages
117–130. Gesellschaft für Informatik (GI), 2005.

[26] P. K. Chrysanthis. Transaction processing in mobile
computing environment. In B. Bhargava, editor,
Proceedings of the IEEE Workshop on Advances in
Parallel and Distributed Systems, volume 82, pages 77
– 82. Institute of Electrical and Electronics Engineers
(IEEE), October 1993.

[27] R. De Lemos, H. Giese, H. A. Müller, M. Shaw,
J. Andersson, M. Litoiu, B. Schmerl, G. Tamura,
N. M. Villegas, T. Vogel, et al. Software engineering
for self-adaptive systems: A second research roadmap.
In R. de Lemos, H. Giese, H. A. Müller, and M. Shaw,
editors, Software Engineering for Self-Adaptive
Systems II, LNCS 7475, pages 1–32. Springer, 2013.

[28] L. DeMichiel. Java persistence 2.0 specification,
November 2009.

[29] R. A. Dirckze and L. Gruenwald. A pre-serialization
transaction management technique for mobile
multidatabases. Mobile Networks and Applications,
5(4):311–321, 2000.

[30] M. H. Dunham, A. Helal, and S. Balakrishnan. A
mobile transaction model that captures both the data
and movement behavior. Mobile Networks and
Applications, 2(2):149–162, 1997.

[31] T. Fuchß. Mobile Computing: Grundlagen und
Konzepte für mobile Anwendungen. Hanser, Carl,
2009.

[32] H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems (TODS),
8(2):186–213, 1983.

[33] C. Gollmick. Replication in mobile database
environments: A client-oriented approach. In
Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA
’03), page 980. Institute of Electrical and Electronics
Engineers (IEEE), 2003.

[34] C. Gollmick. Konzept, Realisierung und Anwendung
nutzerdefinierter Replikation in mobilen
Datenbanksystemen. PhD thesis, Friedrich Schiller
University of Jena, 2006.

[35] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In J. Widom,
editor, Proceedings of the 1996 ACM SIGMOD
international conference on Management of data
(SIGMOD ’96), volume 25, pages 173–182. Association
for Computing Machinery (ACM), June 1996.

[36] R. Hirsch, A. Coratella, M. Felder, and E. Rodriguez.
A framework for analyzing mobile transaction models.
Journal of Database Management, 12(3):36, 2001.

[37] Z. Itani, H. Diab, and H. Artail. Efficient pull based
replication and synchronization for mobile databases.
In International Conference on Pervasive Services

2005, pages 401–404. Institute of Electrical and
Electronics Engineers (IEEE), 2005.

[38] M. Keith and M. Schincariol. Pro JPA 2. Books for
professionals by professionals. Apress, 2013.

[39] F. Laux and T. Lessner. Escrow serializability and
reconciliation in mobile computing using semantic
properties. International Journal On Advances in
Telecommunications, 2(2):72–87, 2009.

[40] J. Lee and K. Simpson. A high performance
transaction processing algorithm for mobile
computing. In H. Adeli, editor, Proceedings Intelligent
Information Systems. IIS’97, pages 486–491. Institute
of Electrical and Electronics Engineers (IEEE), 1997.

[41] Q. Lu and M. Satyanaranyanan. Isolation-only
transactions for mobile computing. ACM SIGOPS
Operating Systems Review, 28(2):81–87, April 1994.

[42] S. K. Madria and B. Bhargava. A transaction model
to improve data availability in mobile computing.
Distributed and Parallel Databases, 10(2):127–160,
2001.

[43] D. A. Menascé and T. Nakanishi. Optimistic versus
pessimistic concurrency control mechanisms in
database management systems. Information systems,
7(1):13–27, 1982.

[44] B. Mutschler and G. Specht. Mobile
Datenbanksysteme: Architektur, Implementierung,
Konzepte. Xpert.press. Springer Berlin Heidelberg,
2013.

[45] P. E. O’Neil. The escrow transactional method. ACM
Transactions on Database Systems (TODS),
11(4):405–430, December 1986.

[46] M. Ouzzani, B. Medjahed, and A. K. Elmagarmid.
Correctness criteria beyond serializability. In L. Liu
and M. T. Özsu, editors, Encyclopedia of Database
Systems, pages 501–506. Springer, 2009.

[47] P. K. Panda, S. Swain, and P. Pattnaik. Review of
some transaction models used in mobile databases.
International Journal of Instrumentation, Control &
Automation (IJICA), 1(1):99–104, 2011.

[48] R. Pandya. Mobile and Personal Communication
Systems and Services. IEEE Series on Digital &
Mobile Communication. Wiley, 2004.

[49] E. Pitoura. A replication schema to support weak
connectivity in mobile information systems. In
R. Wagner and H. Thoma, editors, Proceedings of the
7th International Conference on Database and Expert
Systems Applications (DEXA ’96), pages 510–520.
Springer London, 1996.

[50] E. Pitoura and B. Bhargava. Maintaining consistency
of data in mobile distributed environments. In
Proceedings of the 15th International Conference on
Distributed Computing Systems, pages 404–413.
Institute of Electrical and Electronics Engineers
(IEEE), 1995.

[51] E. Pitoura and B. Bhargava. Data consistency in
intermittently connected distributed systems. IEEE
Transactions on Knowledge and Data Engineering,
11(6):896–915, November 1999.

[52] E. Pitoura and G. Samaras. Data management for
mobile computing, volume 10. Springer Science &
Business Media, 2012.

[53] G.-C. Roman, G. P. Picco, and A. L. Murphy.
Software engineering for mobility: A roadmap. In
A. Finkelstein, editor, Proceedings of the Conference
on The Future of Software Engineering (ICSE ’00),
pages 241–258. Association for Computing Machinery
(ACM), 2000.

[54] M. Satyanarayanan. Fundamental challenges in mobile
computing. In J. E. Burns and Y. Moses, editors,
Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, Philadelphia,
Pennsylvania, USA, May 23-26, 1996, pages 1–7.
Association for Computing Machinery (ACM), 1996.

[55] W. N. Schilit. A system architecture for context-aware
mobile computing. PhD thesis, Columbia University,
1995.

[56] P. Serrano-Alvarado, C. Roncancio, and M. Adiba. A
survey of mobile transactions. Distributed and Parallel
Databases, 16(2):193–230, 2004.

[57] P. Serrano-Alvarado, C. L. Roncancio, and M. Adiba.
Analyzing mobile transactions support for dbms. In
A. M. Tjoa and R. R. Wagner, editors, Proceedings
12th International Workshop on Database and Expert
Systems Applications, 2001., pages 595–600. Institute
of Electrical and Electronics Engineers (IEEE), 2001.

[58] A. Sharma and V. Kansal. An analysis of mobile
transaction methods and limitations in execution of
m-commerce transaction. International Journal of
Computer Applications, 43(21), 2012.

[59] Statista GmbH and EHI Retail Institute GmbH.
Study ’Der deutsche E-Commerce-Markt 2014’, 2014.

[60] R. Tewari and P. Grillo. Data management for mobile
computing on the internet. In R. Brice, C. J. Hwang,
and B. W. Hwang, editors, Proceedings of the 1995
ACM 23rd Annual Conference on Computer Science
(CSC ’95), pages 246–252. Association for Computing
Machinery (ACM), 1995.

[61] G. D. Walborn and P. K. Chrysanthis. Pro-motion:
Management of mobile transactions. In B. Bryant,
J. Carroll, D. Oppenheim, J. Hightower, and K. M.
George, editors, Proceedings of the 1997 ACM
symposium on Applied computing (SAC ’97), pages
101–108. Association for Computing Machinery
(ACM), 1997.

[62] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Series in Data
Management Systems. Morgan Kaufmann, 2002.

