
Granularity of Con�icts and Dependencies in

Graph Transformation Systems: Extended

Version

Kristopher Born1, Leen Lambers2, Daniel Strüber3, Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany,
{born, taentzer}@informatik.uni-marburg.de
2 Hasso-Plattner-Institut, Potsdam, Germany,

leen.lambers@hpi.de
3 Universität Koblenz-Landau, Germany,

strueber@uni-koblenz.de

Abstract. Con�ict and dependency analysis (CDA) is a static analy-
sis for the detection of con�icting and dependent rule applications in a
graph transformation system. The state-of-the-art CDA technique, crit-
ical pair analysis, provides its users the bene�ts of completeness, i.e., its
output contains a precise representation of each potential con�ict and
dependency in a minimal context, called critical pair. Yet, user feedback
has shown that critical pairs can be hard to understand; users are in-
terested in core information about con�icts and dependencies occurring
in various combinations. In this paper, we investigate the granularity of
con�icts and dependencies in graph transformation systems. We intro-
duce a variety of new concepts on di�erent granularity levels: We start
with con�ict atoms, representing individual graph elements as smallest
building bricks that may cause a con�ict. We show that each con�ict
atom can be extended to at least one con�ict reason and, conversely,
each con�ict reason is covered by atoms. Moreover, we relate con�ict
atoms to minimal con�ict reasons, representing smallest element sets to
be overlapped in order to obtain a pair of con�icting transformations. We
show how con�ict reasons are related to critical pairs. Finally, we intro-
duce dual concepts for dependency analysis. As we discuss in a running
example, our concepts pave the way for an improved CDA technique.

1 Introduction

Graph transformation systems (GTSs) are a fundamental modeling concept with
applications in a wide range of domains, including software engineering, mechan-
ical engineering, and chemistry. A GTS comprises a set of transformation rules
that are applied in coordination to achieve a higher-level goal. The order of
rule applications can either be speci�ed explicitly using a control �ow mech-
anism, or it is given implicitly by causal dependencies of rule applications. In
the latter case, con�icts and dependencies a�ect the control �ow. For instance,
a rule may delete an element whose existence is required by another rule to
modify the graph.

Fig. 1. Inter-relations of new and existing con�ict notions

To better understand the implicit control �ow of a GTS, one needs to analyze
the potential con�icts and dependencies of its rule applications. Con�ict and de-
pendency analysis (CDA) is a static analysis for the detection of such con�icts
and dependencies. An important CDA technique is critical pair analysis [1, 2],
which has been used in the literature to detect con�icting functional require-
ments [3], feature interactions [4], con�icting and dependent change operations
for process models [5], causal dependencies of aspects in aspect modeling [6],
potential con�icts and dependencies between refactorings [7, 8], and to validate
service-oriented architectures [9].

In these applications, there are generally two possible usage scenarios for CDA:
First, the user may start with a list of expected con�icts and dependencies that
are supposed to occur. CDA is then used to determine if the expected con-
�icts and dependencies in fact arise, and/or if there are any unexpected con�icts
and dependencies. Violations of expectations signify potential errors in the rule
speci�cations, and can be used for debugging [10]. Second, the user may want
to improve their transformation system to reduce con�icts and dependencies, so
that rules can be applied independently, e.g., to enable a collaborative modeling
process based on edit operation rules [11]. In this case, con�icts and dependencies
reported by CDA can be used to identify required modi�cations. In both cases,
users need to inspect con�icts or dependencies to pinpoint their root causes.

To support users during this task, in this work, we lay the basis for a re�ned
CDA technique, distinguishing a variety of new concepts to describe con�icts
and dependencies between rules. Our investigation is guided by the notion of
granularity, and, building on the existing theory for algebraic graph transfor-
mation, focuses on delete-use-con�icts. We introduce a variety of new concepts
and their relations as summarized in Fig. 1. First, we introduce con�ict atoms,
i.e., single graph elements causing con�icts, to represent smallest entities of con-

�icts. Each con�ict atom can be embedded into the con�ict reason of a pair
of con�icting rules, while each such con�ict reason is fully covered by con�ict
atoms. A con�ict reason comprises all elements being deleted by the �rst (or
being boundary nodes) and required by the second rule of the considered rule
pair. Con�ict reasons correspond to essential critical pairs as introduced in pre-
vious work [12]. A special type of con�ict reasons are minimal con�ict reasons,
representing con�icting graphs and embeddings that are minimal in the sense
that they comprise smallest sets of elements required to yield a valid pair of con-
�icting transformations. Fourth and �nally, con�ict reasons can be augmented to
con�ict reason extensions, which have a one-to-one relationship with the notion
of critical pairs [1]. Con�ict atoms and minimal con�ict reasons are more coarse-
grained in the sense that they generally represent a larger number of potential
con�icts while abstracting away many details of these con�icts, whereas con�ict
reasons and con�ict reason extensions are more �ne-grained since they describe
con�icts more precisely.

For the relationships between con�ict atoms, regular con�ict reasons, con�ict
reason extensions, and the existing notions of critical pairs, we provide full formal
characterizations. In the case of minimal con�ict reasons and their relationships,
we restrict ourselves to a special case, in which the second rule in the considered
rule pair is non-deleting. In other words, we only consider delete-read -con�icts,
while abstracting from delete-delete-con�icts. To still use the concept of minimal
con�ict reasons in situations where the second rule actually performs deletions,
one can consider a non-deleting variant of the second rule, which allows an over-
approximation of minimal con�ict reasons.

With this contribution, we aim to improve on the state-of-the-art CDA tech-
nique, critical pair analysis (CPA) [1, 2], by o�ering improved support for cases
where the CPA results did not match the user expectations. In CPA, all potential
con�icts and dependencies that can occur when applying two rules are displayed
in a minimal context. Con�dence in CPA is established by positive fundamen-
tal results: via the Completeness Theorem, there exists a critical pair for each
con�ict, representing this con�ict in a minimal context. However, experiences
with the CPA indicate two drawbacks: (i) understanding the identi�ed critical
pairs can be a challenging task since they display too much information (i.e.,
they are too �ne-grained), (ii) calculating the results can be computationally
expensive. Our investigation provides the basis for a solution to compute and
report potential con�icts on a level of detail being suitable for the task at hand.

This paper is an extended version of [13], in which we �rst investigated the
granularity of con�ict and dependencies in GTSs. In the present paper, we pro-
vide proofs of all formal results from [13]. In addition, we provide an exact
characterization of minimal con�ict reasons based on a certain overapproxima-
tion: we consider a non-deleting variant of the second rule in the considered rule
pair. Speci�cally, we make three contributions.
� We present a conceptual consideration of con�icts in GTSs, based on the
notion of granularity, and focusing on delete-use-con�icts.

� We introduce a variety of formal results for interrelating the new concepts
with each other and with the existing concepts. In particular, we relate the

new concepts to the well-known con�ict concepts of essential and regular
critical pairs and characterize minimal con�ict reasons for delete-read con-
�icts.

� We discuss how these concepts and results can be transferred to dependencies
in a straight-forward manner. In particular, we introduce dependency atoms
and reasons, the dual concepts to those introduced for con�ict analysis.

The rest of this paper is structured as follows: In Sect. 2, we recall graph trans-
formation concepts and con�ict notions from the literature. In Sect. 3, we present
the new concepts and formal results. We compare with related work and con-
clude in Section 4. In addition, we present all proofs of new results in the ap-
pendix.

2 Preliminaries

As a prerequisite for our new analysis of con�icts and dependencies, we re-
call the double-pushout approach to graph transformation as presented in [2].
Furthermore, we reconsider two notions of con�icting transformation and their
equivalence as shown in [12].

2.1 Graph Transformation: Double-Pushout Approach

Throughout this paper we consider graphs and graph morphisms as presented in
[2]; since most of the de�nitions and results are given in a category-theoretical
way, the extension to e.g. typed, attributed graphs [2] is prepared, but up to
future work.1

Graph transformation is the rule-based modi�cation of graphs. A rule mainly
consists of two graphs: L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. After the rule application, a
pattern equal to R, the right-hand side (RHS), has been created. The intersection
K = L ∩ R is the graph part that is not changed, the graph part that is to be
deleted is de�ned by L \ (L∩R), while R \ (L∩R) de�nes the graph part to be
created. Throughout this paper we consider a graph transformation system just
as a set of rules.

A graph transformation step G
m,r
=⇒ H between two graphs G and H is

de�ned by �rst �nding a graph morphism2 m of the LHS L of rule r into G
such that m is injective, and second by constructing H in two passes: (1) build
D := G \ m(L \ K)), i.e., erase all graph elements that are to be deleted; (2)
construct H := D∪m′(R\K) such that a new copy of all graph elements that are

1 As for the notion of essential critical pairs [12] in categorical terms we would need
pullbacks and pushouts over general morphisms (in case of non-injective matching)
as well as initial pushouts over rule morphisms.

2 A morphism between two graphs consists of two mappings between their nodes and
edges being both structure-preserving w.r.t. source and target functions. Note that
we denote inclusions by ↪→ and all other morphisms by →.

to be created is added. It has been shown for graphs and graph transformations
that r is applicable at m i� m ful�lls the gluing condition [2]. In that case, m is
called amatch. For injective morphisms as we use them here, the gluing condition
reduces to the dangling condition. It is satis�ed if all adjacent graph edges of
a graph node to be deleted are deleted as well, such that D becomes a graph.
Injective matches are usually su�cient in applications and w.r.t. our work here,
they allow to explain constructions much easier than for general matches.

De�nition 1 (Rule and transformation). A rule r is de�ned by r = (L ←↩
K ↪→ R) with L,K, and R being graphs connected by two graph inclusions. A

(direct) transformation G
m,r
=⇒ H which applies rule r to a graph G consists of

two pushouts as depicted below. Morphism m : L → G is injective and is called
match. Rule r is non-deleting if L = K. Rule r is applicable at match m if
there exists a graph D such that (PO1) is a pushout.

L K R

G D H

(PO1) (PO2)m m′

Example 1. Refactoring is a generally acknowledged technique to improve the
design of an object-oriented system [14]. To achieve a larger improvement there
is typically a sequence of refactorings required. Due to implicit con�icts and
dependencies that may occur between refactorings, it is not always easy for
developers to determine which refactorings to use and in which order to apply
them. To this aim, CDA can support the developer in �nding out if there are
con�icts or dependencies at all and, if this is the case, in understanding them.

Fig. 2. Refactoring rules decapsulateAttribute and pullUpEncapsulatedAttribute.

Assuming graphs that model the class design of software systems, we consider
Fig. 2 for two class model refactorings being speci�ed as graph-based transfor-
mation rules. Rules are depicted in an integrated form where annotations specify

which graph elements are deleted, preserved, and created. While the preserved
and deleted elements form the LHS of a rule, the preserved and created ele-
ments form its RHS. Moreover, negative application conditions specify graph
elements that are forbidden when applying a rule. Rule decapsulateAttribute
removes getter and setter methods for a given attribute, thus inverting the well-
known encapsulate attribute refactoring. Rule pullUpEncapsulatedAttribute takes
an attribute with its getter and setter methods and moves them to a superclass
if there are not already equally named elements.

2.2 Con�icting Transformations

In this subsection, we recall the essence of con�icting transformations. We con-
centrate on delete-use con�icts which means that the �rst rule application deletes
graph items that are used by the second rule application. In the literature, there
are two di�erent de�nitions for delete-use con�icts. We recall these de�nitions
and a theorem which shows the equivalence between these two.

The �rst de�nition [2] of a delete-use con�ict states that the match for the
second transformation cannot be found anymore after applying the �rst trans-
formation. Note that we do not consider delete-use con�icts of the second trans-
formation on the �rst one explicitly. To get also those ones, we simply consider
the inverse pair of transformations. Note furthermore that delete-use con�icts
degenerate to delete-read con�icts if rule r2 is non-deleting.

De�nition 2 (Delete-use con�ict). Given a pair of direct transformations

(t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) applying rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2 as depicted below. Transformation t1 causes a delete-use

con�ict on transformation t2 if there does not exist a morphism x : L2 → D1

such that g1 ◦ x = m2.

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

L1K1R1

D1H1

x

le1ri1

g1h1

m1d1m′1

In the following, we consider an alternative characterization for a transfor-
mation to cause a delete-use con�ict on another one (as introduced in [12]).
It states that at least one deleted element of the �rst transformation is over-
lapped with some used element of the second transformation. This overlap is
formally expressed by a span of graph morphisms between the minimal graph
C1, containing all elements to be deleted by the �rst rule, and the LHS of the
second rule (Fig. 3). In particular, we use an initial pushout construction [2]
over the left-hand side morphism of the rule to compute the boundary graph B1

consisting of all nodes needed to make L1 \ K1 a graph and the context graph
C1 := L1 \ (K1 \ B1). We say that the nodes in B1 are boundary nodes. Graph

fragment C1 \B1 is the deletion part of rule r1. It may consist of several disjoint
fragments, called deletion fragments. Completing a deletion fragment to a graph
by adding all incident nodes (i.e. boundary nodes) it becomes a deletion compo-
nent in C1. Each two deletion components overlap in boundary nodes only; the
union of all deletion components is C1. If two transformations overlap such that
there is at least one element of a deletion fragment included, they are also con-
�icting. The equivalence of these two con�ict notions is recalled in the following
theorem.

Theorem 1 (Delete-use con�ict characterization). Given a pair of trans-

formations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2, the initial pushout (1) for K1

le1
↪→ L1, and the pullback (2)

of (m1 ◦ c1,m2) in Fig. 2 yielding the span s1 : C1
o1←↩ S1

q12→ L2, then the follow-
ing equivalence holds: t1 causes a delete-use con�ict on t2 according to Def. 2 i�

s1 : C1
o1←↩ S1

q12→ L2 satis�es the con�ict condition i.e. there does not exist any
morphism x : S1 → B1 such that b1 ◦ x = o1.

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

(1)

(2)

S1

C1B1

L1K1R1

D1H1

x
o1 q12

b1

c1

le1ri1

g1h1

m1d1m′1

Fig. 3. Delete-use con�ict characterization for transformations

In the rest of the paper we merely consider delete-use con�icts such that in
the following we abbreviate delete-use con�ict with con�ict.

3 The Granularity of Con�icts and Dependencies

So far, a con�ict between two transformations has always been considered as
a whole. In the following, we investigate new notions of con�icting rules pre-
senting them on di�erent levels of granularity. Our intention is the possibility
to gradually introduce users to con�icts. Starting with a coarse-grained con�ict
description in the form of con�ict atoms, more information is gradually added
until we arrive at the �ne-grained representation of con�icts by critical pairs (as
e.g. presented in [2]), representing each pair of con�icting transformations in a

minimal context. Following this path we introduce several new concepts for con-
�icting rules and show their interrelations as well as their relations to (essential)
critical pairs. Finally, we sketch dual concepts for dependencies.

3.1 Con�icting Rules: Considering Di�erent Granularity Levels

Now, we lift our con�ict considerations from transformations to the rule level,
i.e., we consider con�icting rules. Two rules are in con�ict if there is a pair of
con�icting transformations applying these rules. According to Theorem 1 there
is a span between these rules specifying the con�ict reasons or at least parts of
it. In the following, we will concentrate on these spans and distinguish several
forms of spans showing con�ict reasons in di�erent granularity.

We start focusing on minimal building bricks, called con�ict atoms. In par-
ticular, we consider a con�ict atom to be a minimal sub-graph of C1 which
can be embedded into L2 but not into B1 (con�ict and minimality conditions).
Moreover, a pair of direct transformations needs to exist for which the match
morphisms overlap on the con�ict atom (transformation condition). Note that,
in general, the matches of this pair of transformations may overlap also in graph
elements not contained in the con�ict atom. Hence, such a a pair of transforma-
tions may be chosen �exibly, it need not show a con�ict in a minimal context
as critical pairs do. While con�ict atoms describe the smallest con�ict parts, a
con�ict reason is a complete con�ict part in the sense that all in the reported
con�ict involved atoms are subsumed by it (completeness condition). While con-
�ict reasons overlap in con�icting graph elements and boundary nodes only,
con�ict reason extensions may overlap in non-con�icting elements of the LHSs
of participating rules as well (extended completeness condition).

De�nition 3 (Basic con�ict conditions). Given rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with the initial pushout (1) for K1

le1
↪→ L1 as well as a

span s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, basic con�ict conditions for the
span s1 of (r1, r2) are de�ned as follows:

1. Con�ict condition: Span s1 satis�es the con�ict condition if there does not
exist any injective morphism x : S1 → B1 such that b1 ◦ x = o1.

2. Transformation condition: Span s1 satis�es the transformation condition if

there is a pair of transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via (r1, r2)

with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in Fig. 3).
3. Completeness condition: Span s1 satis�es the completeness condition if there

is a pair of transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via (r1, r2) such

that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 3.

4. Minimality condition: A span s′1 : C1
o′1←↩ S′

1
q′12→ L2 can be embedded into

span s1 if there is an injective morphism e : S′
1 → S1, called embedding

morphism, such that o1 ◦ e = o′1 and q12 ◦ e = q′12. If e is an isomorphism,
then we say that the spans s1 and s′1 are isomorphic. (See (3) and (4) in
Fig. 4.) Span s1 satis�es the minimality condition w.r.t. a set SP of spans
if any s′1 ∈ SP that can be embedded into s1 is isomorphic to s1.

Finally, span s : L1
a1←↩ S b2→ L2 ful�lls the

extended completeness condition if there is a

pair of transformations (t1, t2) = (H1
m1,r1⇐=

G
m2,r2
=⇒ H2) via (r1, r2) such that s arises

from the pullback of (m1,m2) in the �gure
on the right.

S

L2L1

G

a1 b2

m1 m2

(PB)

L2 K2 R2
le2 ri2

(1)

(3) (4)

S′
1

S1

SC1B1

L1K1R1

o1

q12

o′1

q′12

e

c1

le1ri1

a1 b2

e′

(5) (6)

Fig. 4. Illustrating span embeddings

In the following, we de�ne the building bricks of con�icts. The most basic
notion to describe a con�ict between two rules is that of a con�ict part. Con�ict
parts may not describe the whole con�ict between two rules. The smallest con�ict
parts are con�ict atoms. If a con�ict part describes a complete con�ict, it is called
con�ict reason.

De�nition 4 (Con�ict notions for rules). Let the rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with initial pushout (1) for K1

le1
↪→ L1 and a span

s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, be given.

1. Span s1 is called con�ict part candidate for the pair of rules (r1, r2) if it
satis�es the con�ict condition. Graph S1 is called the con�ict graph of s1.

2. A con�ict part candidate s1 for (r1, r2) is a con�ict part for (r1, r2) if s1
ful�lls the transformation condition.

3. A con�ict part candidate s1 for (r1, r2) is a con�ict atom candidate for
(r1, r2) if it ful�lls the minimality condition w.r.t. the set of all con�ict part
candidates for (r1, r2).

4. A con�ict atom candidate s1 for (r1, r2) is a con�ict atom for (r1, r2) if s1
ful�lls the transformation condition.

5. A con�ict part s1 for (r1, r2) is a con�ict reason for (r1, r2) if s1 ful�lls the
completeness condition.

6. A con�ict reason s1 for (r1, r2) is minimal if it ful�lls the minimality con-
dition w.r.t. the set of all con�ict reasons for (r1, r2).

7. Span s : L1
a1←↩ S b2→ L2 is a con�ict reason extension for (r1, r2) if it ful�lls

the extended completeness condition and if there exists a con�ict reason s1

for (r1, r2) with e′ : S1 → S a so-called embedding morphism being injective
such that (5) and (6) in Fig. 4 commute. If the latter is the case, we say that
s1 can be embedded via e′ into s.

Note that a con�ict part ful�lling the minimality condition is a con�ict atom.

Example 2 (Con�ict atoms and minimal con�ict reasons). Our two example
rules in Fig. 2 lead to four pairs of rule combinations to analyze regarding poten-
tial con�icts: (decapsulateAttribute, decapsulateAttribute), (decapsulateAttribute,
pullUpEncapsulatedAttribute), (pullUpEncapsulatedAttribute, decapsulateAttribute),
and (pullUpEncapsulatedAttribute, pullUpEncapsulatedAttribute). Each pair can
be analyzed regarding con�icts that may arise by applying the �rst rule and
in consequence making the second rule inapplicable. To discuss the afore intro-
duced building bricks of con�icts we focus on con�icts that may arise by the rule
pair (decapsulateAttribute, pullUpEncapsulatedAttribute), that means by apply-
ing the rule decapsulateAttribute and making rule pullUpEncapsulatedAttribute
inapplicable. Since we do not consider attributes and NACs explicitly in this
paper, we neglect them within our con�ict analysis. Since these features may
restrict rule applications, this decision might lead to an over-approximation of
potential con�icts.

1,11 : Class 2,13 : Method
methods

1,11 : Class 3,14 : Method
methods parameters

5,15 : Parameter 6,16 : Class
type

6,16 : Class
type

2,13 : Method

3,14 : Method

5,15 : Parameter

Fig. 5. Con�ict atoms (left) and minimal con�ict reasons (right) of rule pair (decapsu-
lateAttribute, pullUpEncapsulatedAttribute)

The root cause of potential con�icts are the three nodes 2:Method, 3:Method
and 5:Parameter to be deleted by rule decapsulateAttribute. Nodes of the same
type are to be used in rule pullUpEncapsulatedAttribute. Method -nodes are to
be deleted twice by rule decapsulateAttribute as well as to be used twice in
rule pullUpEncapsulatedAttribute. Building all combinations this leads to four
di�erent con�ict atom candidates. Due to the transformation condition, only
two of them are con�ict atoms: 2,13:Method and 3,14:Method, as depicted in
Fig. 5 on the left. A further con�ict atom is 5,15:Parameter which is deleted
by decapsulateAttribute and used by pullUpEncapsulatedAttribute. Note that the
span notation is rather compact here: Identifying node numbers of rules are
used to indicate the mappings of the atom graph into rule graphs. The three
con�ict atoms are embedded into two minimal con�ict reasons. Con�ict atom
2,13:Method and the nodes 1,11:Class and 6,16:Class are involved within the
�rstminimal con�ict reason. The remaining two con�ict atoms, 3,14:Method and
5,15:Parameter can only be covered by a common minimal con�ict reason due
to the completeness condition. This second minimal con�ict reason also involves
nodes 1,11:Class and 6,16:Class. These results provide a concise overview on

the root causes of the potential con�icts. The three con�ict atoms outline the
elements responsible for con�icts and the minimal con�ict reasons put them into
context to their adjacent nodes.

Remark 1 (con�ict reasons for rules). In [12], a con�ict reason is de�ned for a
given pair of direct transformations (t1, t2). Here, we lift the notion of con�ict
reason to a given pair of rules and relate it with the notion of con�ict part. In
fact, the above de�nition of con�ict reason for rules requires that at least one pair
of transformations exists with exactly this con�ict part as con�ict reason. While
a pair of con�icting transformations has a unique con�ict reason, two rules may
be related by multiple con�ict reasons. Note, moreover, that our con�ict reason
notion for rules is not completely analogous to the notion of con�ict reason for
transformations in [12]. It would be analogous if we considered con�ict reasons
where both rules are responsible together for delete-use-con�icts. Since such
con�ict reasons would be constructed from the other ones, and since we aim
for compact representations of con�icts, we opted for not including this case
separately.

Table 1 provides a con�ict notion overview and basic conditions.

basic condition / con�ict transf. compl. minimality
con�ict concept condition condition condition condition

con�ict part candidate x
con�ict part x x

con�ict atom candidate x x
con�ict atom x x x

con�ict reason x x x
min. con�ict reason x x x x

Table 1. Overview of con�ict concepts

3.2 Relations between Con�ict Notions of Di�erent Granularities

The subsequent results clarify the main interrelations between the new descrip-
tion forms for con�icting rules. All proofs of new results can be found in the
appendix.

In the following extension theorem we state that each con�ict part can be
extended to a con�ict reason. As a special case, it follows automatically that
each con�ict atom (being a special con�ict part) can be extended to a con�ict
reason.

Theorem 2 (Extension of con�ict part to reason). Given a con�ict part

s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→ R2),

there is a con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) such that the con�ict

part s1 can be embedded into it.

The following lemma gives a more constructive characterization of con�ict
atom candidates compared to their introduction in Def. 4. This result helps us

to characterize con�ict atom candidates for a given pair of rules. Candidates are
either nodes deleted by rule r1 and used by rule r2 or edges deleted by r1 and
used by r2 if their incident nodes are preserved by r1. Edges with at least one
incident deleted node are not considered as atom candidates since their deletion
is caused by node deletions.

Lemma 1 (Con�ict atom candidate characterization). A con�ict atom

candidate s1 : C1
o1←↩ S1

q12→ L2 for rules (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→

R2) has a con�ict graph S1 either consisting of a node v s.t. o1(v) ∈ C1 \B1 or
consisting of an edge e with its incident nodes v1 and v2 s.t. o1(e) ∈ C1 \B1 and
o1(v1), o1(v2) ∈ B1.

Note that, for attributed graphs, the edge in a con�ict atom may also be an
attribute edge. In this case, the con�ict atom would describe an attribute change
which is in con�ict with an attribute use.

The following corollary allows us to decide that, if there does not exist any
con�ict atom, there will not be any con�icts at all. This is because, in each
con�icting pair of transformations, at least one con�ict atom can be embedded.

Corollary 1 (Atoms necessary for con�icts). Given a con�ict reason s1 :

C1
o1←↩ S1

q12→ L2 for rules (r1, r2) then there exists at least one con�ict atom for
rules (r1, r2) that can be embedded into s1.

The following theorem states that each con�ict reason is covered by a unique
set of atoms, i.e. all atoms that can be embedded into that con�ict reason. With
atoms we mean con�ict atoms as well as boundary atoms, where a latter one
consists merely of a single boundary node. This means that by investigating the
set of con�ict atoms one gets a complete overview of graph elements that can
cause con�icts in a given con�ict reason. Moreover, the set of boundary atoms
indicates how this con�ict reason might be still enlarged with other con�ict-
inducing edges. Of course, this result also holds for the special case that the
con�ict reason is minimal.

De�nition 5 ((Isolated) Boundary atom). A span sb1 : C1

ob1←↩ Sb
1

qb12→ L2

is a boundary part for rules (r1, r2) with initial pushout (1) as in Fig. 3 if
there is a morphism sB : Sb

1 → B1 such that b1 ◦ sB = ob1 and sb1 ful�lls the
transformation condition. A non-empty boundary part sb1 is a boundary atom if
it ful�lls the minimality condition w.r.t. the set of boundary parts for (r1, r2).

Given some con�ict reason s1 : C1
o1←↩ S1

q12→ L2 and a boundary atom sb1 with an
embedding eb : Sb

1 → S1 into this con�ict reason, then sb1 is called isolated w.r.t.

its embedding eb if there is no con�ict atom a1 : C1

oa1←↩ A1
qa12→ L2 being embedded

into s1 via embedding morphism ea : A1 → S1 such that sb1 can be embedded into
that con�ict atom via x : Sb → A1 with ea ◦ x = eb.

It is straightforward to show that graph Sb
1 of a boundary atom consists of

exactly one boundary node being the source or target node of an edge that is
potentially con�ict-inducing.

Theorem 3 (Covering of con�ict reasons by atoms). Given a con�ict

reason s1 : C1
o1←↩ S1

q12→ L2 for rules (r1, r2), then the set A of all con�ict atoms
together with the set AB of all boundary atoms that can be embedded into s1

covers s1, i.e. for each con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) that can

be embedded into s1 it holds that, if each atom in A ∪AB can be embedded into
s′1, then s′1 is isomorphic to s1.

Con�ict reason extensions contain all graph elements that overlap in a pair
of con�icting transformations, even elements that are not deleted and at the
same time used by any of the two participating rules. Hence, a con�ict reason
extension might show too much information. By de�nition, for each con�ict
reason extension, there is a con�ict reason which can be embedded into this
extension. Hence, an extension can always be restricted to a con�ict reason.
Vice versa, the following theorem shows that each con�ict reason (being de�ned
over C1 and L2) can be extended to at least one con�ict reason extension (being
de�ned over L1 and L2).

Theorem 4 (Extension of con�ict reason to con�ict reason extension).

Given a con�ict reason s1 : C1
o1←↩ S′

1
q12→ L2 for rules (r1, r2), there exists at

least one con�ict reason extension s : L1
a1←↩ S b2→ L2 for rules (r1, r2) such that

s1 can be embedded into s.

3.3 Relations of Con�icting Rule Concepts to Critical Pairs

As illustrated in Fig. 1, for each critical pair, there exists an essential critical pair
that can be embedded into it (see Completeness Theorem 4.1 in [12]). Match
pairs of each (essential) critical pair are jointly surjective (according to the min-
imal context idea). Thus a critical pair might overlap in elements that are just
read by both rules and are not boundary nodes, and exactly these overlaps are
unfolded again in the essential critical pair. This is because the latter overlaps
do not contribute to a new kind of con�ict. The set of essential critical pairs
is thus smaller than the set of critical pairs and, in particular, each essential
critical pair is a critical pair (see Fact 3.2 in [12]).

The following two theorems formalize, on the one hand, the relations between
con�ict reasons for rule pairs as introduced in this paper and essential critical
pairs, and on the other hand, the relations between con�ict reason extensions and
critical pairs. Note that, as explained in Remark 1, there is no 1-1 correspondence
of con�ict reasons for rules and essential critical pairs, since we abstract from
building symmetrical con�ict reasons on the rule level for compactness reasons.

Theorem 5 (Essential critical pair and con�ict reason). Restriction. Given

an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a

delete-use con�ict on t2 then the span s1 : C1
o1←↩ S1

q12→ L2 arising from taking
the pullback of (m1 ◦ c1,m2) is a con�ict reason for (r1, r2).

Extension. Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2)

then there exists an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such

that t1 causes a delete-use con�ict on t2 with the pullback of (m1 ◦ c1,m2) being
isomorphic to s1.

Theorem 6 (Critical pair and con�ict reason extension). Restriction.

Given a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a delete-

use con�ict on t2 then the span arising from taking the pullback of (m1,m2) is
a con�ict reason extension for (r1, r2).

Extension. Given a con�ict reason extension s : L1
a1←↩ S

b2→ L2 for (r1, r2)
then the cospan arising from building the pushout of (a1, b2) de�nes the matches

(m1,m2) of a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a

delete-use con�ict on t2.
Bijective correspondence. The restriction and extension constructions are in-
verse to each other up to isomorphism.

Example 3 (Con�ict reason extension). Fig. 5 focuses on the con�ict atoms and
minimal con�ict reasons of the rule pair (decapsulateAttribute, pullUpEncapsu-
latedAttribute). Fig. 6 relates these new con�ict notions with six (out of 15)
critical pairs of the considered rule pair. The two minimal con�ict reasons suf-
�ciently characterize the overlap in the results 3 and 5. Result 1 presents the
combination of both minimal con�ict reasons. Since these results make no use
of further overlapping of non-deleting elements they are also con�ict reason ex-
tensions. Moreover, they correspond to the results of the essential critical pair
analysis. 1,11:Class and 6,16:Class are two boundary atoms. Additional overlap-
ping of the Attribute-nodes of both rules in 4,12:Attribute leads to larger con�ict
reason extensions and to the remaining three results 2,4, and 6. Adding the re-
maining elements of the LHS of both rules, we obtain a compact representation
of all considered critical pairs.

3.4 Characterization of minimal con�ict reasons for delete-read
con�icts

If rule r2 is non-deleting, con�icts are merely delete-read con�icts. We show in
the following that, in this case, minimal con�ict reasons can be characterized by
subgraphs of deletion components of rule r1. In addition, we are able to show
a clear hierarchy of con�ict notions in the following sense: Con�ict atoms cover
minimal con�ict reasons which cover together with isolated boundary atoms
con�ict reasons. Since this kind of analysis is simpler and faster, we consider the
following overapproximation of con�icting transformation.

If we do not compute an exact overview of all possible delete-use con�icts (as
given by regular critical pairs) that a rule may cause on an other rule, but merely
compute an over-approximation by concentrating on delete-read con�icts as they
occur if we take the non-deleting variant of the original rule r2, we conjecture
a good trade-o� between e�ciency and precision. First practical tests we have
performed are promising.

LEGEND Minimal conflict reason Minimal conflict reasonConflict atom Conflict reason extension

2
,9 : Class

2,13 : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

4,12 : Attribute

type

6,16 : Class

type

,10 : Generalization

type

attributes

 generalized

by1,9 : Class

2,13 : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,12 : Attribute type

6,16 : Class

type

,10 : Generalization

type

 attributes

 generalized

by

4, : Attribute
type

attributes

3
,9 : Class

2, : Method
methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,13 : Method

type

6,16 : Class

type

,10 : Generalization

type

methods

 generalized

by

4, : Attribute
type

attributes
,12 : Attribute

attributes

type

4
,9 : Class

2, : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,13 : Method type

6,16 : Class

type

,10 : Generalization

type

methods

 generalized

by

4,12 : Attribute type

attributes

5
,9 : Class

3, : Method
methods

1,11 : Class

,14 : Method

methods
parameters

,15 : Parameter

2,13 : Method type

6,16 : Class

,10 : Generalization

type

methods

 generalized

by

4, : Attribute
type

attributes
,12 : Attribute

attributes

type

5, : Parameter

parameters

type

6
,9 : Class

3, : Method

methods1,11 : Class

,14 : Method
methods

parameters

,15 : Parameter

2,13 : Method type

6,16 : Class

,10 : Generalization

type

methods

 generalized

by

4,12 : Attribute

attributes

type

5, : Parameter

parameters

type

Fig. 6. Representation of six critical pairs arising from the application of rule decapsu-
lateAttribute so that rule pullUpEncapsulatedAttribute becomes inapplicable; examples
of newly introduced con�ict notions are indicated.

De�nition 6 (Non-deleting rule variant). Given a graph transformation

rule r : L
le←↩ K ri

↪→ R, then r′ : L
idL←↩ L ri′

↪→ R′ is the non-deleting variant of r
with ri′ : L ↪→ R′ being de�ned by the pushout of (le, ri).

L K R

L L R′

(=) (PO2)

le ri

idL ri′

idL le

Theorem 7 (Over-approximating delete-use by delete-read con�icts).
Given a pair of rules (r1, r2) together with the non-deleting variant r′2 of r2,
then the following holds: If transformation t1 via r1 causes a delete-use con�ict

on transformation t2 via r2 and match m2, then t1 causes a delete-read con�ict
on t′2 via r′2 and match m2.

Proof. This follows directly from Def. 2 since r′2 the non-deleting variant of r2
has the same LHS as r2 and match m2 of t2 is identical to the match for t′2.

This theorem shows that, instead of investigating further all delete-use con-
�icts that may arise for rules r1 and r2, we can also investigate all the delete-read
con�icts arising from rules r1 and r′2, the non-deleting variant of r2, without miss-
ing any con�icts. However, it may happen that some false positives are computed
as the following example illustrates. This is because the opposite direction of the
theorem does not hold, i.e. if transformation t1 causes a delete-read con�ict on
transformation t′2 via r′2, then there does not necessarily exist a transformation
t2 via r2 and match m2 because the gluing condition might be violated.

Example 4 (False positive con�ict). In the following �gure, we see the left-hand
parts of rule r1 that deletes an edge and of rule r2 that deletes a complete handle.
We choose matches such that the handles of both rules overlap completely. While
r1 is applicable, r2 is not since its match does not ful�ll the dangling condition.
If we take the non-deleting variant r′2 of r2, all its matches ful�ll the dangling
condition. Using the same matches as before, we get two transformations. They
have a delete-read-con�ict since the application of r1 deletes an edge that is used
by the application of r2.

L2K1

C1B1

L1

G

K2

S1

m1 m2

l1

b1

c1

o1
x

l2

q12

Fig. 7. Example for a false positive con�ict

In general, false positives occur if rule r1 contains some context edge at an
overlap node that is deleted by r2. In addition, r1 deletes some other item in
its overlap with r2. The application of r2 would lead to a dangling edge due to
the context edge. Hence, there cannot be a transformation t2 applying r2 in the
described way. The non-deleting variant of r2, however, would not delete overlap
nodes and hence, would ful�ll the dangling condition. Therefore, there would be
a pair (t1, t

′
2) applying r1 and r′2 in the corresponding way and this pair would

be con�icting.
In the following, we exploit the fact that rule r2 is non-deleting.

Lemma 2 (Minimal con�ict reason and deletion components). If a con-
�ict reason s1 : C1 ←↩ S1 → L2 for rule r1 : L1 ←↩ K1 ↪→ R1 and non-deleting
rule r2 : L2 ←↩ K2 ↪→ R2 is minimal then the con�ict graph S1 is a subgraph of
a deletion component of C1.

Due to Lemma 2 and Theorem 3 each minimal con�ict reason is covered
by con�ict atoms only (i.e., no isolated boundary atoms). This is because, if
isolated boundary atoms would exist, then the minimal con�ict reason would be
bigger than a deletion component. The minimal con�ict reason cannot consist of
just one single isolated boundary atom since the con�ict condition would not be
ful�lled then. Therefore, there has to be another deletion component and this is
a contradiction.

The next result states that each con�ict atom can be embedded into a min-
imal con�ict reason. This result is closely related with the following one, which
shows that each con�ict reason can be covered by minimal con�ict reasons and
isolated boundary atoms. Hence, we have a hierarchical structure of con�ict no-
tions: Atoms cover minimal con�ict reasons (special case of Theorem 3), which
cover together with isolated boundary atoms con�ict reasons (Theorem 9).

Theorem 8 (Con�ict atom & minimal con�ict reason). Each con�ict

atom a1 : C1
o1←↩ A1

q12→ L2 for rule r1 : L1 ←↩ K1 ↪→ R1 and non-deleting rule
r2 : L2 ←↩ K2 ↪→ R2 can be embedded into a minimal con�ict reason for (r1, r2).

Theorem 9 (Covering of con�ict reasons by minimal con�ict reasons).

Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule r1 and non-deleting rule
r2, then set M ∪ B = {smi | i ∈ I} ∪ {sbj | j ∈ J} of all minimal con�ict reasons
and all isolated boundary atoms for (r1, r2) that can be embedded into s1 via a
corresponding set of embedding morphisms EM = {ei| i ∈ I} and EB = {ebj | j ∈
J} covers s1, i.e. set E = EM ∪ EB is jointly surjective.

Note that, given a graph G, a set of morphisms E = {ei : Gi → G|i ∈ I} is
jointly surjective if each node and edge in G is in the image of some ei ∈ E.

Theorem 10 (Essential delete-read critical pair and con�ict reason).

Restriction. Given an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) for

rule r1 and non-deleting rule r2 such that t1 causes a delete-read con�ict on t2
then the span s1 : C1

o1←↩ S1
q12→ L2 arising from taking the pullback of (m1◦c1,m2)

is a con�ict reason for (r1, r2).

Extension. Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2) with

r2 non-deleting then there exists an essential critical pair (t1, t2) = (P1
m1,r1⇐=

K
m2,r2
=⇒ P2) such that t1 causes a delete-read con�ict on t2 with the pullback of

(m1 ◦ c1,m2) being isomorphic to s1.

Bijective correspondence. The extraction and extension constructions are inverse
to each other up to isomorphism.

3.5 Dual Notions for Dependencies

To reason about dependencies of rules and transformations, we consider the
dual concepts and results that we get when inverting the left transformation of

a con�icting pair. This means that we check if H1
p−1
1 ,m′1⇐= G

p2,m2
=⇒ H2 is paral-

lel dependent, which is equivalent to the sequence G
p1,m1
=⇒ H1

p2,m2
=⇒ H2 being

sequentially dependent. This is possible since a transformation is symmetrically
de�ned by two pushouts. They ensure in particular that morphisms m : L→ G
as well as m′ : R→ H ful�ll the gluing condition.

Dependency parts, atoms, reasons, and reason extensions can be de�ned anal-
ogously to Def. 4. They characterize graph elements being produced by the �rst
rule application and used by the second one. Results presented for con�icts above
can be formulated and proven for dependencies in an analogous way.

4 Related Work and Conclusion

The critical pair analysis (CPA) has developed into the standard technique for
detecting con�icts and dependencies in graph transformation systems [1] at de-
sign time. Originally being developed for term and term graph rewriting [15], it
extends the theory of graph transformation and, more generally, ofM-adhesive
transformation systems [16, 2]. The CPA is not only available for plain rules but
also for rules with application conditions [17].

In this paper, we lay the basis for a re�ned analysis of con�icts and depen-
dencies by presenting con�ict and dependency notions of di�erent granularity.
Furthermore, we investigate their interrelations. The formal consideration shall
be used in a new CDA technique where con�ict and dependency analysis can
go from coarse-grained information about the potential existence of con�icts or
dependencies and their main reasons, to �ne-grained considerations of con�ict
and dependency reasons in di�erent settings.

The CPA is o�ered by the graph transformation tools AGG [18] and Veri-
graph [19] and the graph-based model transformation tool Henshin [20]. All of
them provide the user with a set of (essential) critical pairs for each pair of rules
as analysis result. The computation of con�icts and dependencies using the con-
cepted introduced in the present work has been prototypically implemented in
Henshin. First tests indicate that our analysis is very fast and yields concise
results that are promising to facilitate understandability. However, it is up to
future work to further investigate this aspect in a user study.

Currently, we restrict our formal considerations to graphs and graph trans-
formations. Since all main concepts are based on concepts from category the-
ory, our work is prepared to adapt to more sophisticated forms of graphs or
graph transformation. Furthermore, it is interesting to adapt the new notions
to transformation rules with negative [21] or more complex nested application
conditions [17]. Analogously, to handle attributes within con�icts appropriately
it is promising to adapt our approach to lazy graph transformations [22] and to
come up with a light-weight con�ict analysis complementing the work of Deck-
werth et al. [23] on con�ict detection of edit operations on feature models. They

combine CPA with an SMT solver for an improved handling of con�icts based
on attribute changes. Performance is still a limiting factor for applying the CPA
to large rule sets. A family-based analysis based on the uni�cation of multiple
similar rules [24] is a promising idea to save redundant computation e�ort.
Acknowledgements. We wish to thank Jens Kosiol and the anonymous re-
viewers for their constructive comments. This work was partially funded by the
German Research Foundation, Priority Program SPP 1593 "Design for Future �
Managed Software Evolution". This research was partially supported by the re-
search project Visual Privacy Management in User Centric Open Environments
(supported by the EU's Horizon 2020 programme, Proposal number: 653642).

References

1. R. Heckel, J. M. Küster, and G. Taentzer, �Con�uence of Typed Attributed Graph
Transformation Systems,� in First Int. Conf. on Graph Transformation (ICGT),
ser. LNCS, vol. 2505. Springer, 2002, pp. 161�176.

2. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformation, ser. Monographs in Theoretical Computer Science. Springer,
2006.

3. J. H. Hausmann, R. Heckel, and G. Taentzer, �Detection of Con�icting Functional
Requirements in a Use Case-Driven Approach: A Static Analysis Technique Based
on Graph Transformation,� in 22rd Int. Conf. on Software Engineering (ICSE).
ACM, 2002, pp. 105�115.

4. P. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa, �Model composition
in product lines and feature interaction detection using critical pair analysis,� in
Int. Conf. on Model Driven Engineering Languages and Systems. Springer, 2007,
pp. 151�165.

5. J. M. Küster, C. Gerth, and G. Engels, �Dependent and con�icting change op-
erations of process models,� in European Conf. on Model Driven Architecture -
Foundations and Applications, vol. 5562. Springer, pp. 158�173.

6. K. Mehner-Heindl, M. Monga, and G. Taentzer, �Analysis of Aspect-Oriented Mod-
els Using Graph Transformation Systems,� in Aspect-Oriented Requirements En-
gineering, A. Moreira, R. Chitchyan, J. Araújo, and A. Rashid, Eds. Springer,
2013, pp. 243�270.

7. T. Mens, R. Van Der Straeten, and M. D'Hondt, �Detecting and resolving model
inconsistencies using transformation dependency analysis,� in 9th Int. Conf. on
Model Driven Engineering Languages and Systems, ser. MoDELS'06. Springer,
2006, pp. 200�214.

8. T. Mens, G. Taentzer, and O. Runge, �Analysing refactoring dependencies using
graph transformation,� Software and System Modeling, vol. 6, no. 3, pp. 269�285,
2007.

9. L. Baresi, R. Heckel, S. Thöne, and D. Varró, �Modeling and validation of service-
oriented architectures: application vs. style,� in ACM SIGSOFT Symposium on
Foundations of Software Engineering held jointly with 9th European Software En-
gineering Conference. ACM, 2003, pp. 68�77.

10. C. Ermel, J. Gall, L. Lambers, and G. Taentzer, �Modeling with plausibility check-
ing: Inspecting favorable and critical signs for consistency between control �ow
and functional behavior,� in Int. Conf. on Fundamental Approaches to Software
Engineering. Springer, 2011, pp. 156�170.

11. D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer, �Towards a distributed model-
ing process based on composite models,� in Int. Conf. on Fundamental Approaches
to Software Engineering. Springer, 2013, pp. 6�20.

12. L. Lambers, H. Ehrig, and F. Orejas, �E�cient con�ict detection in graph trans-
formation systems by essential critical pairs,� Electr. Notes Theor. Comput. Sci.,
vol. 211, pp. 17�26, 2008.

13. K. Born, L. Lambers, D. Strüber, and G. Taentzer, �Granularity of con�icts and
dependencies in graph transformation systems,� in International Conference on
Graph Transformation (ICGT), 2017, pp. 125�141.

14. M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley, 1999.

15. D. Plump, �Critical Pairs in Term Graph Rewriting,� inMathematical Foundations
of Computer Science, vol. 841, 1994, pp. 556�566.

16. H. Ehrig, J. Padberg, U. Prange, and A. Habel, �Adhesive high-level replacement
systems: A new categorical framework for graph transformation,� Fundam. Inform.,
vol. 74, no. 1, pp. 1�29, 2006.

17. H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas, �M-adhesive
transformation systems with nested application conditions. part 2: Embedding,
critical pairs and local con�uence,� Fundam. Inform., vol. 118, no. 1-2, pp. 35�63,
2012. [Online]. Available: http://dx.doi.org/10.3233/FI-2012-705

18. G. Taentzer, �AGG: A graph transformation environment for modeling and vali-
dation of software,� in Int. Workshop on Applications of Graph Transformations
with Industrial Relevance. Springer, 2003, pp. 446�453.

19. Verigraph, �Verigraph,� https://github.com/Verites/verigraph.
20. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, �Henshin: Ad-

vanced Concepts and Tools for In-Place EMF Model Transformations,� in Model
Driven Engineering Languages and Systems, ser. LNCS, vol. 6394, pp. 121�135,
http://www.eclipse .org/henshin/.

21. L. Lambers, �Certifying rule-based models using graph transformation,� Ph.D. dis-
sertation, Berlin Institute of Technology, 2010.

22. F. Orejas and L. Lambers, �Lazy graph transformation,� Fundam. Inform., vol.
118, no. 1-2, pp. 65�96, 2012.

23. F. Deckwerth, G. Kulcsár, M. Lochau, G. Varró, and A. Schürr, �Con�ict detection
for edits on extended feature models using symbolic graph transformation,� in Int.
Workshop on Formal Methods and Analysis in Software Product Line Engineering,
ser. EPTCS, vol. 206, 2016, pp. 17�31.

24. D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger, �Rule-
merger: Automatic construction of variability-based model transformation rules,�
in Int. Conf. on Fundamental Approaches to Software Engineering. Springer,
2016, pp. 122�140.

A Appendix

A.1 Proofs

In the following, the proofs of all the results in Section 3.2 and 3.3 are given.

Theorem 2 (Extension of con�ict part to reason). Given a con�ict part

s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1 : L1 ←↩ K1 ↪→ R1, r2 : L2 ←↩ K2 ↪→ R2),

there is a con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) such that the con�ict

part s1 can be embedded into it.

Proof. Due to Def. 4, a con�ict part ful�lls the transformation condition. Hence,
there exist match morphisms m1 : L1 → G for r1 and m2 : L2 → G for r2
such that m1(c1(o1(S1))) = m2(q12(S1)). Hence, there exists a pair of direct

transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2). Consider the pullback ofm1◦c1

and m2 and the corresponding span s′1 : C1
o′1←↩ S′

1
q′12→ L2. The span s′1 is a

con�ict reason for rules (r1, r2) according to Def. 4, since it ful�lls the con�ict
condition because of Theorem 1 as well as the transformation and completeness
condition (by construction). Because of the pullback property and the fact that
m1(c1(o1(S1))) = m2(q12(S1)) there exists a unique morphism e : S1 → S′

1 such
that o′1 ◦ e = o1 and q′12 ◦ e = q12. Furthermore, e is injective, since o1 and o′1
are injective. Therefore, e is the embedding morphism that embeds the con�ict
part s1 into s′1.

Lemma 1 (Con�ict atom candidate characterization). A con�ict atom

candidate s1 : C1
o1←↩ S1

q12→ L2 for rules (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→

R2) has a con�ict graph S1 either consisting of a node v s.t. o1(v) ∈ C1 \B1 or
consisting of an edge e with its incident nodes v1 and v2 s.t. o1(e) ∈ C1 \B1 and
o1(v1), o1(v2) ∈ B1.

Proof. From the con�ict condition it follows: (1) Each edge of graph S1 is deleted.
(2) If some node of S1 is preserved then this node is incident to a deleted edge
in S1. (3) S1 consists of at least one graph element that is deleted.

Because of the minimality condition it follows in addition: For each graph
S1 consisting of more than one graph element being deleted, we can �nd an
embedding of a graph S′

1 deleting exactly one graph element. In particular, for
an edge e in S1 with one of its incident nodes n or m being deleted, we have a
span with a graph S′

1 consisting merely of one of the nodes n or m being deleted
representing an embedding.

Corollary 1 (Atoms necessary for con�icts). Given a con�ict reason s1 :

C1
o1←↩ S1

q12→ L2 for rules (r1, r2) then there exists at least one con�ict atom for
rules (r1, r2) that can be embedded into s1.

Proof. A con�ict reason ful�lls the con�ict condition, hence there is at least one
graph element x in S1 that is deleted. Then we have three cases: (1) x is a node,
then we consider A1 to be the graph consisting of this node (2) x is an edge not
incident to a deleted node, then we consider A1 to be the graph consisting of
this edge with incident nodes (3) x is an edge incident to a deleted node, then we
consider A1 to be the graph consisting of one of such an incident deleted node.

In all three cases e : A1 → S1 is the obvious inclusion. According to Lemma 1

we then have a con�ict atom candidate a1 : C1
o′1←↩ A1

q′12→ L2 with o′1 = o1 ◦ e
and q′12 = q12 ◦ e. Obviously, a1 is embedded into s1. We still have to show for
a1 that the transformation condition is ful�lled. Since, for the con�ict reason s1,
two transformations exist which overlap in at least this con�ict reason, and since
a1 is embedded into s1, the transformation condition for a1 is ful�lled indeed.
Therefore it is a con�ict atom.

Theorem 3 (Covering of con�ict reasons by atoms). Given a con�ict

reason s1 : C1
o1←↩ S1

q12→ L2 for rules (r1, r2), then the set A of all con�ict atoms
together with the set AB of all boundary atoms that can be embedded into s1

covers s1, i.e. for each con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) that can

be embedded into s1 it holds that, if each atom in A ∪AB can be embedded into
s′1, then s′1 is isomorphic to s1.

Proof. We assume that s′1 is not isomorphic to s1: This is possible only if at
least one graph element of S1 is missing in S′

1. This element cannot be a deleted
node, a deleted edge with incident nodes being preserved, or a single boundary
node, since there are atoms for these cases. Hence, the missing element must be
an edge e incident with a deleted node. Since e occurs in S1, there has to be
a corresponding edge e2 in L2. Since s′1 is a con�ict reason for (r1, r2) as well
there exists a pair of con�icting transformations (t′1, t

′
2). The matches of such a

pair (t′1, t
′
2) do not identify e with e2 (because of the completeness condition),

but then since t′1 deletes e, but not e2 although they have a common incident
deleted node, t′1 cannot be a transformation since e2 would dangle. Hence, s′1
cannot be a con�ict reason which contradicts our assumption.

Theorem 4 (Extension of con�ict reason to con�ict reason extension).

Given a con�ict reason s1 : C1
o1←↩ S′

1
q12→ L2 for rules (r1, r2), there exists at

least one con�ict reason extension s : L1
a1←↩ S b2→ L2 for rules (r1, r2) such that

s1 can be embedded into s.

Proof. For the con�ict reason s1 there exists a pair of direct transformations

(t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) with s1 being the pullback of (m1 ◦ c1,m2).

Now we can also build the pullback (PB) of (m1,m2) such that we get a con�ict
reason extension s. In particular, the con�ict reason s1 can be embedded into s
because of the pullback property of (PB) and the fact that m1◦c1◦o1 = m2◦q12.

Theorem 5 (Essential critical pair and con�ict reason).

Restriction. Given an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such

that t1 causes a delete-use con�ict on t2 then the span s1 : C1
o1←↩ S1

q12→ L2

arising from taking the pullback of (m1 ◦ c1,m2) is a con�ict reason for (r1, r2).

Extension. Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2)

then there exists an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such

that t1 causes a delete-use con�ict on t2 with the pullback of (m1 ◦ c1,m2) being
isomorphic to s1.

Proof. For the restriction case: Since an essential critical pair (t1, t2) = (P1
m1,r1⇐=

K
m2,r2
=⇒ P2) is a pair of direct transformations in con�ict it follows from Theo-

rem 1 that the con�ict condition must be ful�lled for s1. The completeness con-
dition must be ful�lled because of the de�nition of an essential critical pair [12].

For the extension case: Since s1 ful�lls the completeness condition there exists

a pair of con�icting transformations (t′1, t
′
2) = (H1

m′1,r1⇐= G
m′2,r2=⇒ H2) with s1

arising from a pullback (1) of (m′
1 ◦ c1,m′

2). Because of completeness of critical
pairs [2] and completeness of essential critical pairs [12] an essential critical pair

(t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) can be embedded into this pair of con�icting

transformations via some embedding morphism m : K → G s.t. m ◦m1 = m′
1

and m ◦m2 = m′
2. Now we show that s1 is also a pullback of (m1 ◦ c1,m2). This

follows from the pullback property of the outer pullback (1). Assume a graph
X and morphisms x1 : X → C1 and x2 : X → L2 s.t. m1 ◦ c1 ◦ x1 = m2 ◦ x2.
Then because of the pullback property of the outer pullback (1) and the fact
that m′

1 ◦ c1 ◦ x1 = m ◦m1 ◦ c1 ◦ x1 = m ◦m2 ◦ x2 = m′
2 ◦ x2 it holds that there

exists a unique morphism x : x → S1 s.t. o1 ◦ x = x1 and q12 ◦ x = x2. Finally,
because of Theorem 1 t1 in the essential critical pair causes a delete-use con�ict
on t2.

Theorem 6 (Critical pair and con�ict reason extension). Restriction.

Given a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a delete-

use con�ict on t2 then the span arising from taking the pullback of (m1,m2) is
a con�ict reason extension for (r1, r2).

Extension. Given a con�ict reason extension s : L1
a1←↩ S

b2→ L2 for (r1, r2)
then the cospan arising from building the pushout of (a1, b2) de�nes the matches

(m1,m2) of a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a

delete-use con�ict on t2.
Bijective correspondence. The restriction and extension constructions are in-
verse to each other up to isomorphism.

Proof. For the restriction case it is obvious that by taking the pullback (1) of
(m1,m2) the extended completeness condition is ful�lled. Moreover, by taking
the pullback of (m1 ◦ o1,m2) we obtain a con�ict reason for rules (r1, r2) that,
because of the pullback property of pullback (1), can be embedded into the
con�ict reason extension.

For the extension case we get by de�nition of con�ict reason extension two

transformations (t′1, t
′
2) = (H1

m′1,r1⇐= G
m′2,r2=⇒ H2) s.t. s is the span arising from

building the pullback (2) of (m′
1,m

′
2). By de�nition of con�ict reason extension

a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 can be embedded via some embedding
morphism e′ : S1 → S into the con�ict reason extension s s.t. a1◦e′ = c1◦o1 and
b2 ◦e′ = q12. Now we can build the pullback (3) of (m′

1 ◦c1,m′
2) obtaining a span

s′1 : C1

o′1←↩ S′
1

q′12→ L2. We show that this new span s′1 ful�lls the con�ict condition
by contradiction. Assume that s′1 would not ful�ll the con�ict condition. Then
there exists some injective morphism x′ : S′

1 → B1 s.t. le1 ◦ x′ = o′1. Because of
the pullback property of (3) and the fact that m′

1 ◦c1 ◦o′1 = m′
2 ◦q′12 there exists

a unique morphism e1 : S1 → S′
1 s.t. o

′
1 ◦e1 = o1 and q′12 ◦e1 = q12. Furthermore,

since o′1 and o1 are injective also e1 is injective. Therefore we can follow that
le1 ◦x′ ◦ e1 = o1 s.t. the con�ict condition of s1 would not be ful�lled, which is a

contradiction. We know then because of Theorem 1 that t′1 causes a delete-use
con�ict on t′2. By building now the pushout of (a1, b2) we get a pair of jointly
surjective morphisms (m1 : L1 → K,m2 : L2 → K) de�ning the matches of a
corresponding critical pair that can be embedded into (t1, t2) (see Completeness
proof for critical pairs in [2]). Because of the pullback property of (3) the span s′1
is also a pullback for (m1◦c1,m2) s.t. the critical pair is indeed also in delete-use
con�ict.

The constructions have a bijective correspondence since in the category of
typed graphs (or also in a weak adhesive HLR category) a PO over at least one
injective morphism (morphism inM, resp.) [2] is also a PB. Moreover, because of
Remark 2.25 in [2] the PB in the restriction construction built from two injective,
jointly surjective morphisms is also a PO. Moreover, POs and PBs are unique
up to isomorphism.

Lemma 2 (Minimal con�ict reason and deletion components). If a con-

�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule r1 : L1 ←↩ K1 ↪→ R1 and non-deleting
rule r2 : L2 ←↩ K2 ↪→ R2 is minimal then the con�ict graph S1 is a subgraph of
a deletion component of C1.

Proof. Assuming that the con�ict graph S1 is not a subgraph of one deletion
component of C1, we argue by contradiction and will show that in this case s1
is not minimal. Since s1 satis�es the con�ict condition, there exists at least one
node or edge x in S1 that is deleted. Now consider a span s′1 embedded into s1
such that its con�ict graph S′

1 consists of all elements belonging to S1 that are
mapped to the deletion component in C1 surrounding x. It is obvious that s

′
1 is a

con�ict part candidate. In particular, the con�ict condition is trivially ful�lled.
We can, moreover, show that s′1 ful�lls the transformation and completeness
conditions. This is the case since for s1 there exists a pair of transformations
with valid matches m1 and m2 overlapping the deleted elements of r1 and read
elements of r2 exactly as speci�ed by s1.

Now there exist also two transformations by restricting the matches m1 and
m2 to overlap merely in the one deletion component speci�ed by s′1. We show
this by contradiction and by assuming that the accordingly restricted match m′

1
of m1 would violate the dangling edge condition. This is the case if a node is
deleted by r1 that is matched by m′

1 to a node incident with an edge that is
not deleted by r1. If this node does not belong to the deletion component C1,
then m′

1 matches it to a node that can merely be incident with edges from the
LHS of rule r1, since no overlap on this deletion component takes place. If rule
r1 would not delete one of these incident edges, then it would not be a valid
graph rule and this is a contradiction. If on the other hand this node belongs
to the deletion component in C1, then, if m

′
1 maps it to a node with dangling

edge, then also m1 would violate the dangling edge condition since m′
1 and m′

2
are equal to m1 and m2 on this deletion component and this is a contradiction.
Since r2 is non-deleting, the dangling edge condition for the restricted match of
m2 is obviously ful�lled. Hence, s′1 is a con�ict reason that can be embedded
into s1, and is de�nitely non-isomorphic to s1. This is a contradiction to our
assumption that s1 is minimal.

Theorem 8 (Con�ict atom & minimal con�ict reason). Each con�ict

atom a1 : C1
o1←↩ A1

q12→ L2 for rule r1 : L1 ←↩ K1 ↪→ R1 and non-deleting rule
r2 : L2 ←↩ K2 ↪→ R2 can be embedded into a minimal con�ict reason for (r1, r2).

Proof. Since a1 is a con�ict atom, there is a pair of con�icting transformations
(t1, t2) with matches m1 : L1 → G for r1 and m2 : L2 → G for r2 such that
m1(c1(a11(S1))) = m2(a12(S1)), i.e, the transformation condition in Def. 4 holds.
Hence, by building the pullback of (m1 ◦ c1,m2) we get a con�ict reason s1 :

C1
o1←↩ S1

q12→ L2 for (r1, r2). The con�ict condition is ful�lled due to atom
a1; the completeness and transformation condition are ful�lled by construction.
Moreover, because of the pullback property a1 can be embedded into s1.

We assume that a1 itself is not isomorphic to s1 and therefore not a minimal
con�ict reason yet. Then, starting with the element in A1, we can enlarge A1 by
successively adding elements of S1 belonging to the same deletion component of
C1. We stop this addition of elements as soon as the matches arising from m1

and m2 by restricting them to overlap merely in the elements in A1 and added
to A1 ful�ll the dangling edge condition. This addition terminates at latest when
we have reached all elements present in S1 surrounding A1 belonging to the same
deletion component of C1. As argued in the proof of Lemma 2, we can follow that
the dangling condition is ful�lled if a complete deletion component is reached as
overlap.

The span that arises by this construction ful�lls the con�ict and completeness
condition by construction and it is minimal because we stop adding elements as
soon as the transformation condition is ful�lled in addition.

Theorem 9 (Covering of con�ict reasons by minimal con�ict reasons).

Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule r1 and non-deleting rule
r2, then set M ∪ B = {smi | i ∈ I} ∪ {sbj | j ∈ J} of all minimal con�ict reasons

and all isolated boundary atoms for (r1, r2) that can be embedded into s1 via a
corresponding set of embedding morphisms EM = {ei| i ∈ I} and EB = {ebj | j ∈
J} covers s1, i.e. set E = EM ∪ EB is jointly surjective.

Proof. Assume that E is not jointly surjective. Then there exists at least one
graph element x in S1 that is not in the codomain of one of the morphisms in
E.

First assume that x is mapped via o1 to an edge or a node that is deleted by
rule r1, then x leads to a con�ict atom candidate (either with its incident nodes
or the node itself) that can be embedded into s1 (see Lemma 1).

Assume otherwise that x is mapped via o1 to a node that is not deleted by r1.
Then, either x does not have incident edges to be deleted, i.e., x would represent
an isolated boundary node, which would be a contradiction since then x would
belong to the codomain of one of the morphisms in EB , or there is an incident
edge y in S1 that is deleted. Now either both incident nodes of y are preserved
such that y with its incident nodes represents a con�ict atom candidate, or one
of the incident nodes is deleted such that this deleted node represents a con�ict
atom candidate. So, in all cases, we have found a con�ict atom candidate that
is embedded into s1. Therefore, it is a con�ict atom in particular.

Because of Theorem 8 we can complete this con�ict atom to a minimal con-
�ict reason for (r1, r2). In particular, we can add a minimal number of elements
of the surrounding deletion component of the atom that are also present in the
con�ict reason s1 such that the transformation condition is ful�lled and it can
be embedded into s1. This is a contradiction since now we have that x is in
the codomain of one of the morphisms in EM . Therefore, E is indeed jointly
surjective.

Theorem 10 (Essential delete-read critical pair and con�ict reason).

Restriction. Given an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) for

rule r1 and non-deleting rule r2 such that t1 causes a delete-read con�ict on t2
then the span s1 : C1

o1←↩ S1
q12→ L2 arising from taking the pullback of (m1◦c1,m2)

is a con�ict reason for (r1, r2).

Extension. Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2) with

r2 non-deleting then there exists an essential critical pair (t1, t2) = (P1
m1,r1⇐=

K
m2,r2
=⇒ P2) such that t1 causes a delete-read con�ict on t2 with the pullback of

(m1 ◦ c1,m2) being isomorphic to s1.
Bijective correspondence. The extraction and extension constructions are inverse
to each other up to isomorphism.

Proof. The restriction and extension case follow as a special case from Theo-
rem 5.

Because of Theorem 4.2 in [12] each essential critical pair is unique w.r.t. its
con�ict reason. A con�ict reason for a pair of transformations as introduced in
[12] is in particular a con�ict reason for a pair of rules if one of the rules is non-
deleting (see Remark 1), since we can then safely abstract from the symmetrical

case. Therefore each essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such

that t1 causes a delete-read con�ict on t2 is unique w.r.t. the corresponding
con�ict reason for the rule pair (r1, r2).

