
Granularity of Con�icts and Dependencies in

Graph Transformation Systems

Kristopher Born1, Leen Lambers2, Daniel Strüber3, Gabriele Taentzer1

1 Philipps-Universität Marburg, Germany,
{born, taentzer}@informatik.uni-marburg.de
2 Hasso-Plattner-Institut, Potsdam, Germany,

leen.lambers@hpi.de
3 Universität Koblenz-Landau, Germany,

strueber@uni-koblenz.de

Abstract. Con�ict and dependency analysis (CDA) is a static analy-
sis for the detection of con�icting and dependent rule applications in a
graph transformation system. The state-of-the-art CDA technique, crit-
ical pair analysis, provides its users the bene�ts of completeness, i.e., its
output contains a precise representation of each potential con�ict and
dependency in a minimal context, called critical pair. Yet, user feedback
has shown that critical pairs can be hard to understand; users are in-
terested in core information about con�icts and dependencies occurring
in various combinations. In this paper, we investigate the granularity of
con�icts and dependencies in graph transformation systems. We intro-
duce a variety of new concepts on di�erent granularity levels: We start
with con�ict atoms, representing individual graph elements as smallest
building bricks that may cause a con�ict. We show that each con�ict
atom can be extended to at least one con�ict reason and, conversely,
each con�ict reason is covered by atoms. Moreover, we relate con�ict
atoms to minimal con�ict reasons, representing smallest element sets to
be overlapped in order to obtain a pair of con�icting transformations. We
show how con�ict reasons are related to critical pairs. Finally, we intro-
duce dual concepts for dependency analysis. As we discuss in a running
example, our concepts pave the way for an improved CDA technique.

1 Introduction

Graph transformation systems (GTSs) are a fundamental modeling concept with
applications in a wide range of domains, including software engineering, mechan-
ical engineering, and chemistry. A GTS comprises a set of transformation rules
that are applied in coordination to achieve a higher-level goal. The order of
rule applications can either be speci�ed explicitly using a control �ow mech-
anism, or it is given implicitly by causal dependencies of rule applications. In
the latter case, con�icts and dependencies a�ect the control �ow. For instance,
a rule may delete an element whose existence is required by another rule to
modify the graph.

Fig. 1. Inter-relations of new and existing con�ict notions

To better understand the implicit control �ow of a GTS, one needs to analyze
the potential con�icts and dependencies of its rule applications. Con�ict and de-
pendency analysis (CDA) is a static analysis for the detection of such con�icts
and dependencies. An important CDA technique is critical pair analysis [1, 2],
which has been used in the literature to detect con�icting functional require-
ments [3], feature interactions [4], con�icting and dependent change operations
for process models [5], causal dependencies of aspects in aspect modeling [6],
potential con�icts and dependencies between refactorings [7, 8], and to validate
service-oriented architectures [9].

In these applications, there are generally two possible usage scenarios for CDA:
First, the user may start with a list of expected con�icts and dependencies that
are supposed to occur. CDA is then used to determine if the expected con-
�icts and dependencies in fact arise, and/or if there are any unexpected con�icts
and dependencies. Violations of expectations signify potential errors in the rule
speci�cations, and can be used for debugging [10]. Second, the user may want
to improve their transformation system to reduce con�icts and dependencies, so
that rules can be applied independently, e.g., to enable a collaborative modeling
process based on edit operation rules [11]. In this case, con�icts and dependencies
reported by CDA can be used to identify required modi�cations. In both cases,
users need to inspect con�icts or dependencies to pinpoint their root causes.

To support users during this task, in this work, we lay the basis for a re�ned
CDA technique, distinguishing a variety of new concepts to describe con�icts
and dependencies between rules. Our investigation is guided by the notion of
granularity, and, building on the existing theory for algebraic graph transforma-
tion, focuses on delete-use-con�icts. We introduce a variety of new concepts and
their relations as summarized in Fig. 1. First, we introduce con�ict atoms, i.e.,
single graph elements causing con�icts, to represent smallest entities of con�icts.
Each con�ict atom can be embedded into the con�ict reason of a pair of con-
�icting rules, while each such con�ict reason is fully covered by con�ict atoms. A

con�ict reason comprises all elements being deleted by the �rst and required by
the second rule of the considered rule pair. Con�ict reasons correspond to essen-
tial critical pairs as introduced in previous work [12]. A special type of con�ict
reasons are minimal con�ict reasons, representing con�icting graphs and embed-
dings that are minimal in the sense that they comprise smallest sets of elements
required to yield a valid pair of con�icting transformations. Fourth and �nally,
con�ict reasons can be augmented to con�ict reason extensions, which have a
one-to-one relationship with the notion of critical pairs [1]. Con�ict atoms and
minimal con�ict reasons are more coarse-grained in the sense that they generally
represent a larger number of potential con�icts while abstracting away many de-
tails of these con�icts, whereas con�ict reasons and con�ict reason extensions
are more �ne-grained since they describe con�icts more precisely.

With this contribution, we aim to improve on the state-of-the-art CDA tech-
nique, critical pair analysis (CPA) [1, 2], by o�ering improved support for cases
where the CPA results did not match the user expectations. In CPA, all potential
con�icts and dependencies that can occur when applying two rules are displayed
in a minimal context. Con�dence in CPA is established by positive fundamen-
tal results: via the Completeness Theorem, there exists a critical pair for each
con�ict, representing this con�ict in a minimal context. However, experiences
with the CPA indicate two drawbacks: (i) understanding the identi�ed critical
pairs can be a challenging task since they display too much information (i.e.,
they are too �ne-grained), (ii) calculating the results can be computationally
expensive. Our investigation provides the basis for a solution to compute and
report potential con�icts on a level of detail being suitable for the task at hand.

In this paper, we investigate the granularity of con�ict and dependencies in
GTSs. Speci�cally, we make three contributions.
� We present a conceptual consideration of con�icts in GTSs, based on the
notion of granularity, and focusing on delete-use-con�icts.

� We introduce a variety of formal results for interrelating the new concepts
with each other and with the existing concepts. In particular, we relate the
new concepts to the well-known con�ict concepts of essential and regular
critical pairs.

� We discuss how these concepts and results can be transferred to dependencies
in a straight-forward manner. In particular, we introduce dependency atoms
and reasons, the dual concepts to those introduced for con�ict analysis.

The rest of this paper is structured as follows: In Sect. 2, we recall graph trans-
formation concepts and con�ict notions from the literature. In Sect. 3, we present
the new concepts and formal results. Finally, we compare with related work and
conclude in Section 4.

2 Preliminaries

As a prerequisite for our new analysis of con�icts and dependencies, we re-
call the double-pushout approach to graph transformation as presented in [2].
Furthermore, we reconsider two notions of con�icting transformation and their
equivalence as shown in [12].

2.1 Graph Transformation: Double-Pushout Approach

Throughout this paper we consider graphs and graph morphisms as presented in
[2]; since most of the de�nitions and results are given in a category-theoretical
way, the extension to e.g. typed, attributed graphs [2] is prepared, but up to
future work.

Graph transformation is the rule-based modi�cation of graphs. A rule mainly
consists of two graphs: L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. After the rule application, a
pattern equal to R, the right-hand side (RHS), has been created. The intersection
K = L ∩ R is the graph part that is not changed, the graph part that is to be
deleted is de�ned by L \ (L∩R), while R \ (L∩R) de�nes the graph part to be
created. Throughout this paper we consider a graph transformation system just
as a set of rules.

A graph transformation step G
m,r
=⇒ H between two graphs G and H is

de�ned by �rst �nding a graph morphism1 m of the LHS L of rule r into G
such that m is injective, and second by constructing H in two passes: (1) build
D := G \ m(L \ K)), i.e., erase all graph elements that are to be deleted; (2)
construct H := D∪m′(R\K) such that a new copy of all graph elements that are
to be created is added. It has been shown for graphs and graph transformations
that r is applicable at m i� m ful�lls the gluing condition [2]. In that case, m is
called amatch. For injective morphisms as we use them here, the gluing condition
reduces to the dangling condition. It is satis�ed if all adjacent graph edges of
a graph node to be deleted are deleted as well, such that D becomes a graph.
Injective matches are usually su�cient in applications and w.r.t. our work here,
they allow to explain constructions much easier than for general matches.

De�nition 1 (Rule and transformation). A rule r is de�ned by r = (L ←↩
K ↪→ R) with L,K, and R being graphs connected by two graph inclusions. A

(direct) transformation G
m,r
=⇒ H which applies rule r to a graph G consists of

two pushouts as depicted below. Morphism m : L → G is injective and is called
match. Rule r is applicable at match m if there exists a graph D such that
(PO1) is a pushout.

L K R

G D H

(PO1) (PO2)m m′

Example 1. Refactoring is a generally acknowledged technique to improve the
design of an object-oriented system [13]. To achieve a larger improvement there
is typically a sequence of refactorings required. Due to implicit con�icts and

1 A morphism between two graphs consists of two mappings between their nodes and
edges being both structure-preserving w.r.t. source and target functions. Note that
we denote inclusions by ↪→ and all other morphisms by →.

dependencies that may occur between refactorings, it is not always easy for
developers to determine which refactorings to use and in which order to apply
them. To this aim, CDA can support the developer in �nding out if there are
con�icts or dependencies at all and, if this is the case, in understanding them.

Fig. 2. Refactoring rules decapsulateAttribute and pullUpEncapsulatedAttribute.

Assuming graphs that model the class design of software systems, we consider
Fig. 2 for two class model refactorings being speci�ed as graph-based transfor-
mation rules. Rules are depicted in an integrated form where annotations specify
which graph elements are deleted, preserved, and created. While the preserved
and deleted elements form the LHS of a rule, the preserved and created ele-
ments form its RHS. Moreover, negative application conditions specify graph
elements that are forbidden when applying a rule. Rule decapsulateAttribute
removes getter and setter methods for a given attribute, thus inverting the well-
known encapsulate attribute refactoring. Rule pullUpEncapsulatedAttribute takes
an attribute with its getter and setter methods and moves them to a superclass
if there are not already equally named elements.

2.2 Con�icting Transformations

In this subsection, we recall the essence of con�icting transformations. We con-
centrate on delete-use con�icts which means that the �rst rule application deletes
graph items that are used by the second rule application. In the literature, there
are two di�erent de�nitions for delete-use con�icts. We recall these de�nitions
and a theorem which shows the equivalence between these two.

The �rst de�nition [2] of a delete-use con�ict states that the match for the
second transformation cannot be found anymore after applying the �rst trans-
formation. Note that we do not consider delete-use con�icts of the second trans-
formation on the �rst one explicitly. To get also those ones, we simply consider
the inverse pair of transformations.

De�nition 2 (Delete-use con�ict). Given a pair of direct transformations

(t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) applying rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2 as depicted below. Transformation t1 causes a delete-use

con�ict on transformation t2 if there does not exist a morphism x : L2 → D1

such that g1 ◦ x = m2.

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

L1K1R1

D1H1

x

le1ri1

g1h1

m1d1m′1

In the following, we consider an alternative characterization for a transfor-
mation to cause a delete-use con�ict on another one (as introduced in [12]).
It states that at least one deleted element of the �rst transformation is over-
lapped with some used element of the second transformation. This overlap is
formally expressed by a span of graph morphisms between the minimal graph
C1, containing all elements to be deleted by the �rst rule, and the LHS of the
second rule (Fig. 3). In particular, we use an initial pushout construction [2]
over the left-hand side morphism of the rule to compute the boundary graph B1

consisting of all nodes needed to make L1 \ K1 a graph and the context graph
C1 := L1 \ (K1 \ B1). We say that the nodes in B1 are boundary nodes. The
equivalence of these two con�ict notions is recalled in the following theorem.

Theorem 1 (Delete-use con�ict characterization). Given a pair of trans-

formations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2, the initial pushout (1) for K1

le1
↪→ L1, and the pullback (2)

of (m1 ◦ c1,m2) in Fig. 2 yielding the span s1 : C1
o1←↩ S1

q12→ L2, then the follow-
ing equivalence holds: t1 causes a delete-use con�ict on t2 according to Def. 2 i�

s1 : C1
o1←↩ S1

q12→ L2 satis�es the con�ict condition i.e. there does not exist any
morphism x : S1 → B1 such that b1 ◦ x = o1.

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

(1)

(2)

S1

C1B1

L1K1R1

D1H1

x
o1 q12

b1

c1

le1ri1

g1h1

m1d1m′1

Fig. 3. Delete-use con�ict characterization for transformations

In the rest of the paper we merely consider delete-use con�icts such that in
the following we abbreviate delete-use con�ict with con�ict.

3 The Granularity of Con�icts and Dependencies

So far, a con�ict between two transformations has always been considered as
a whole. In the following, we investigate new notions of con�icting rules pre-
senting them on di�erent levels of granularity. Our intention is the possibility
to gradually introduce users to con�icts. Starting with a coarse-grained con�ict
description in the form of con�ict atoms, more information is gradually added
until we arrive at the �ne-grained representation of con�icts by critical pairs (as
e.g. presented in [2]), representing each pair of con�icting transformations in a
minimal context. Following this path we introduce several new concepts for con-
�icting rules and show their interrelations as well as their relations to (essential)
critical pairs. Finally, we sketch dual concepts for dependencies.

3.1 Con�icting Rules: Considering Di�erent Granularity Levels

Now, we lift our con�ict considerations from transformations to the rule level,
i.e., we consider con�icting rules. Two rules are in con�ict if there is a pair of
con�icting transformations applying these rules. According to Theorem 1 there
is a span between these rules specifying the con�ict reasons or at least parts of
it. In the following, we will concentrate on these spans and distinguish several
forms of spans showing con�ict reasons in di�erent granularity.

We start focusing on minimal building bricks, called con�ict atoms. In par-
ticular, we consider a con�ict atom to be a minimal sub-graph of C1 which
can be embedded into L2 but not into B1 (con�ict and minimality conditions).
Moreover, a pair of direct transformations needs to exist for which the match
morphisms overlap on the con�ict atom (transformation condition). Note that,
in general, the matches of this pair of transformations may overlap also in graph
elements not contained in the con�ict atom. Hence, such a pair of transforma-
tions may be chosen �exibly, it need not show a con�ict in a minimal context
as critical pairs do. While con�ict atoms describe the smallest con�ict parts, a
con�ict reason is a complete con�ict part in the sense that all in the reported
con�ict involved atoms are subsumed by it (completeness condition). While con-
�ict reasons overlap in con�icting graph elements and boundary nodes only,
con�ict reason extensions may overlap in non-con�icting elements of the LHSs
of participating rules as well (extended completeness condition).

De�nition 3 (Basic con�ict conditions). Given rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with the initial pushout (1) for K1

le1
↪→ L1 as well as a

span s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, basic con�ict conditions for the
span s1 of (r1, r2) are de�ned as follows:

1. Con�ict condition: Span s1 satis�es the con�ict condition if there does not
exist any injective morphism x : S1 → B1 such that b1 ◦ x = o1.

2. Transformation condition: Span s1 satis�es the transformation condition if

there is a pair of transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via (r1, r2)

with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in Fig. 3).

3. Completeness condition: Span s1 satis�es the completeness condition if there

is a pair of transformations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2) via (r1, r2) such

that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 3.

4. Minimality condition: A span s′1 : C1
o′1←↩ S′

1
q′12→ L2 can be embedded into

span s1 if there is an injective morphism e : S′
1 → S1, called embedding

morphism, such that o1 ◦ e = o′1 and q12 ◦ e = q′12. If e is an isomorphism,
then we say that the spans s1 and s′1 are isomorphic. (See (3) and (4) in
Fig. 4.) Span s1 satis�es the minimality condition w.r.t. a set SP of spans
if any s′1 ∈ SP that can be embedded into s1 is isomorphic to s1.

Finally, span s : L1
a1←↩ S b2→ L2 ful�lls the

extended completeness condition if there is a

pair of transformations (t1, t2) = (H1
m1,r1⇐=

G
m2,r2
=⇒ H2) via (r1, r2) such that s arises

from the pullback of (m1,m2) in the �gure
on the right.

S

L2L1

G

a1 b2

m1 m2

(PB)

L2 K2 R2
le2 ri2

(1)

(3) (4)

S′
1

S1

SC1B1

L1K1R1

o1

q12

o′1

q′12

e

c1

le1ri1

a1 b2

e′

(5) (6)

Fig. 4. Illustrating span embeddings

In the following, we de�ne the building bricks of con�icts. The most basic
notion to describe a con�ict between two rules is that of a con�ict part. Con�ict
parts may not describe the whole con�ict between two rules. The smallest con�ict
parts are con�ict atoms. If a con�ict part describes a complete con�ict, it is called
con�ict reason.

De�nition 4 (Con�ict notions for rules). Let the rules r1 : L1
le1←↩ K1

ri1
↪→ R1

and r2 : L2
le2←↩ K2

ri2
↪→ R2 with initial pushout (1) for K1

le1
↪→ L1 and a span

s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 3, be given.

1. Span s1 is called con�ict part candidate for the pair of rules (r1, r2) if it
satis�es the con�ict condition. Graph S1 is called the con�ict graph of s1.

2. A con�ict part candidate s1 for (r1, r2) is a con�ict part for (r1, r2) if s1
ful�lls the transformation condition.

3. A con�ict part candidate s1 for (r1, r2) is a con�ict atom candidate for
(r1, r2) if it ful�lls the minimality condition w.r.t. the set of all con�ict part
candidates for (r1, r2).

4. A con�ict atom candidate s1 for (r1, r2) is a con�ict atom for (r1, r2) if s1
ful�lls the transformation condition.

5. A con�ict part s1 for (r1, r2) is a con�ict reason for (r1, r2) if s1 ful�lls the
completeness condition.

6. A con�ict reason s1 for (r1, r2) is minimal if it ful�lls the minimality con-
dition w.r.t. the set of all con�ict reasons for (r1, r2).

7. Span s : L1
a1←↩ S b2→ L2 is a con�ict reason extension for (r1, r2) if it ful�lls

the extended completeness condition and if there exists a con�ict reason s1
for (r1, r2) with e′ : S1 → S a so-called embedding morphism being injective
such that (5) and (6) in Fig. 4 commute. If the latter is the case, we say that
s1 can be embedded via e′ into s.

Note that a con�ict part ful�lling the minimality condition is a con�ict atom.

Example 2 (Con�ict atoms and minimal con�ict reasons). Our two example
rules in Fig. 2 lead to four pairs of rule combinations to analyze regarding po-
tential con�icts. To discuss the afore introduced building bricks of con�icts we
focus on con�icts that may arise by the rule pair (decapsulateAttribute, pullUp-
EncapsulatedAttribute), that means by applying the rule decapsulateAttribute
and making rule pullUpEncapsulatedAttribute inapplicable. Since we do not con-
sider attributes and NACs explicitly in this paper, we neglect them within our
con�ict analysis. Since these features may restrict rule applications, this decision
might lead to an over-approximation of potential con�icts.

1,11 : Class 2,13 : Method
methods

1,11 : Class 3,14 : Method
methods parameters

5,15 : Parameter 6,16 : Class
type

6,16 : Class
type

2,13 : Method

3,14 : Method

5,15 : Parameter

Fig. 5. Con�ict atoms (left) and minimal con�ict reasons (right) of rule pair (decapsu-
lateAttribute, pullUpEncapsulatedAttribute)

The root cause of potential con�icts are the three nodes 2:Method, 3:Method
and 5:Parameter to be deleted by rule decapsulateAttribute. Nodes of the same
type are to be used in rule pullUpEncapsulatedAttribute. Method -nodes are to
be deleted twice by rule decapsulateAttribute as well as to be used twice in
rule pullUpEncapsulatedAttribute. Building all combinations this leads to four
di�erent con�ict atom candidates. Due to the transformation condition, only
two of them are con�ict atoms: 2,13:Method and 3,14:Method, as depicted in
Fig. 5 on the left. A further con�ict atom is 5,15:Parameter which is deleted
by decapsulateAttribute and used by pullUpEncapsulatedAttribute. Note that the
span notation is rather compact here: Identifying node numbers of rules are
used to indicate the mappings of the atom graph into rule graphs. The three

con�ict atoms are embedded into two minimal con�ict reasons. Con�ict atom
2,13:Method and the nodes 1,11:Class and 6,16:Class are involved within the
�rstminimal con�ict reason. The remaining two con�ict atoms, 3,14:Method and
5,15:Parameter can only be covered by a common minimal con�ict reason due
to the completeness condition. This second minimal con�ict reason also involves
nodes 1,11:Class and 6,16:Class. These results provide a concise overview on
the root causes of the potential con�icts. The three con�ict atoms outline the
elements responsible for con�icts and the minimal con�ict reasons put them into
context to their adjacent nodes.

Remark 1 (con�ict reasons for rules). In [12], a con�ict reason is de�ned for a
given pair of direct transformations (t1, t2). Here, we lift the notion of con�ict
reason to a given pair of rules and relate it with the notion of con�ict part. In
fact, the above de�nition of con�ict reason for rules requires that at least one pair
of transformations exists with exactly this con�ict part as con�ict reason. While
a pair of con�icting transformations has a unique con�ict reason, two rules may
be related by multiple con�ict reasons. Note, moreover, that our con�ict reason
notion for rules is not completely analogous to the notion of con�ict reason for
transformations in [12]. It would be analogous if we considered con�ict reasons
where both rules are responsible together for delete-use-con�icts. Since such
con�ict reasons would be constructed from the other ones, and since we aim
for compact representations of con�icts, we opted for not including this case
separately.

Table 1 provides a con�ict notion overview and basic conditions.

basic condition / con�ict transf. compl. minimality
con�ict concept condition condition condition condition

con�ict part candidate x
con�ict part x x

con�ict atom candidate x x
con�ict atom x x x

con�ict reason x x x
min. con�ict reason x x x x

Table 1. Overview of con�ict concepts

3.2 Relations between Con�ict Notions of Di�erent Granularities

The subsequent results clarify the main interrelations between the new descrip-
tion forms for con�icting rules. All proofs of new results can be found in [14].

In the following extension theorem we state that each con�ict part can be
extended to a con�ict reason. As a special case, it follows automatically that
each con�ict atom (being a special con�ict part) can be extended to a con�ict
reason.

Theorem 2 (Extension of con�ict part to reason). Given a con�ict part

s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→ R2),

there is a con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) such that the con�ict

part s1 can be embedded into it.

The following lemma gives a more constructive characterization of con�ict
atom candidates compared to their introduction in Def. 4. This result helps us
to characterize con�ict atom candidates for a given pair of rules. Candidates are
either nodes deleted by rule r1 and used by rule r2 or edges deleted by r1 and
used by r2 if their incident nodes are preserved by r1. Edges with at least one
incident deleted node are not considered as atom candidates since their deletion
is caused by node deletions.

Lemma 1 (Con�ict atom candidate characterization). A con�ict atom

candidate s1 : C1
o1←↩ S1

q12→ L2 for rules (r1 : L1
le1←↩ K1

ri1
↪→ R1, r2 : L2

le2←↩ K2
ri2
↪→

R2) has a con�ict graph S1 either consisting of a node v s.t. o1(v) ∈ C1 \B1 or
consisting of an edge e with its incident nodes v1 and v2 s.t. o1(e) ∈ C1 \B1 and
o1(v1), o1(v2) ∈ B1.

Note that, for attributed graphs, the edge in a con�ict atom may also be an
attribute edge. In this case, the con�ict atom would describe an attribute change
which is in con�ict with an attribute use.

The following theorem states that each con�ict reason is covered by a unique
set of atoms, i.e. all atoms that can be embedded into that con�ict reason. With
atoms we mean con�ict atoms as well as boundary atoms, where a latter one
consists merely of a single boundary node. This means that by investigating the
set of con�ict atoms one gets a complete overview of graph elements that can
cause con�icts in a given con�ict reason. Moreover, the set of boundary atoms
indicates how this con�ict reason might be still enlarged with other con�ict-
inducing edges. Of course, this result also holds for the special case that the
con�ict reason is minimal.

De�nition 5 (Boundary atom). A span sb1 : C1

ob1←↩ Sb
1

qb12→ L2 is a boundary
part for rules (r1, r2) with initial pushout (1) as in Fig. 3 if there is a morphism
sB : Sb

1 → B1 such that b1 ◦ sB = ob1 and sb1 ful�lls the transformation condition.
A non-empty boundary part sb1 is a boundary atom if it ful�lls the minimality
condition w.r.t. the set of boundary parts for (r1, r2).

It is straightforward to show that graph Sb
1 of a boundary atom consists of

exactly one boundary node being the source or target node of an edge that is
potentially con�ict-inducing.

Theorem 3 (Covering of con�ict reasons by atoms). Given a con�ict

reason s1 : C1
o1←↩ S1

q12→ L2 for rules (r1, r2), then the set A of all con�ict atoms
together with the set AB of all boundary atoms that can be embedded into s1

covers s1, i.e. for each con�ict reason s′1 : C1
o′1←↩ S′

1
q′12→ L2 for (r1, r2) that can

be embedded into s1 it holds that, if each atom in A ∪AB can be embedded into
s′1, then s′1 is isomorphic to s1.

Con�ict reason extensions contain all graph elements that overlap in a pair
of con�icting transformations, even elements that are not deleted and at the
same time used by any of the two participating rules. Hence, a con�ict reason
extension might show too much information. By de�nition, for each con�ict
reason extension, there is a con�ict reason which can be embedded into this
extension. Hence, an extension can always be restricted to a con�ict reason.
Vice versa, the following theorem shows that each con�ict reason (being de�ned
over C1 and L2) can be extended to at least one con�ict reason extension (being
de�ned over L1 and L2).

Theorem 4 (Extension of con�ict reason to con�ict reason extension).

Given a con�ict reason s1 : C1
o1←↩ S′

1
q12→ L2 for rules (r1, r2), there exists at

least one con�ict reason extension s : L1
a1←↩ S b2→ L2 for rules (r1, r2) such that

s1 can be embedded into s.

3.3 Relations of Con�icting Rule Concepts to Critical Pairs

As illustrated in Fig. 1, for each critical pair, there exists an essential critical pair
that can be embedded into it (see Completeness Theorem 4.1 in [12]). Match
pairs of each (essential) critical pair are jointly surjective (according to the min-
imal context idea). Thus a critical pair might overlap in elements that are just
read by both rules and are not boundary nodes, and exactly these overlaps are
unfolded again in the essential critical pair. This is because the latter overlaps
do not contribute to a new kind of con�ict. The set of essential critical pairs
is thus smaller than the set of critical pairs and, in particular, each essential
critical pair is a critical pair (see Fact 3.2 in [12]).

The following two theorems formalize, on the one hand, the relations between
con�ict reasons for rule pairs as introduced in this paper and essential critical
pairs, and on the other hand, the relations between con�ict reason extensions and
critical pairs. Note that, as explained in Remark 1, there is no 1-1 correspondence
of con�ict reasons for rules and essential critical pairs, since we abstract from
building symmetrical con�ict reasons on the rule level for compactness reasons.

Theorem 5 (Essential critical pair and con�ict reason). Restriction. Given

an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a

delete-use con�ict on t2 then the span s1 : C1
o1←↩ S1

q12→ L2 arising from taking
the pullback of (m1 ◦ c1,m2) is a con�ict reason for (r1, r2).

Extension. Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2)

then there exists an essential critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such

that t1 causes a delete-use con�ict on t2 with the pullback of (m1 ◦ c1,m2) being
isomorphic to s1.

Theorem 6 (Critical pair and con�ict reason extension). Restriction.

Given a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a delete-

use con�ict on t2 then the span arising from taking the pullback of (m1,m2) is
a con�ict reason extension for (r1, r2).

Extension. Given a con�ict reason extension s : L1
a1←↩ S

b2→ L2 for (r1, r2)
then the cospan arising from building the pushout of (a1, b2) de�nes the matches

(m1,m2) of a critical pair (t1, t2) = (P1
m1,r1⇐= K

m2,r2
=⇒ P2) such that t1 causes a

delete-use con�ict on t2.
Bijective correspondence. The restriction and extension constructions are in-
verse to each other up to isomorphism.

LEGEND Minimal conflict reason Minimal conflict reasonConflict atom Conflict reason extension

2
,9 : Class

2,13 : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

4,12 : Attribute

type

6,16 : Class

type

,10 : Generalization

type

attributes

 generalized

by1,9 : Class

2,13 : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,12 : Attribute type

6,16 : Class

type

,10 : Generalization

type

 attributes

 generalized

by

4, : Attribute
type

attributes

3
,9 : Class

2, : Method
methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,13 : Method

type

6,16 : Class

type

,10 : Generalization

type

methods

 generalized

by

4, : Attribute
type

attributes
,12 : Attribute

attributes

type

4
,9 : Class

2, : Method

methods

1,11 : Class 3,14 : Method
methods

parameters

5,15 : Parameter

,13 : Method type

6,16 : Class

type

,10 : Generalization

type

methods

 generalized

by

4,12 : Attribute type

attributes

5
,9 : Class

3, : Method
methods

1,11 : Class

,14 : Method

methods
parameters

,15 : Parameter

2,13 : Method type

6,16 : Class

,10 : Generalization

type

methods

 generalized

by

4, : Attribute
type

attributes
,12 : Attribute

attributes

type

5, : Parameter

parameters

type

6
,9 : Class

3, : Method

methods1,11 : Class

,14 : Method
methods

parameters

,15 : Parameter

2,13 : Method type

6,16 : Class

,10 : Generalization

type

methods

 generalized

by

4,12 : Attribute

attributes

type

5, : Parameter

parameters

type

Fig. 6. Representation of six critical pairs arising from the application of rule decapsu-
lateAttribute so that rule pullUpEncapsulatedAttribute becomes inapplicable; examples
of newly introduced con�ict notions are indicated.

Example 3 (Con�ict reason extension). Fig. 5 focuses on the con�ict atoms and
minimal con�ict reasons of the rule pair (decapsulateAttribute, pullUpEncapsu-
latedAttribute). Fig. 6 relates these new con�ict notions with the six critical
pairs of the considered rule pair. The two minimal con�ict reasons su�ciently

characterize the overlap in the results 3 and 5. Result 1 presents the combina-
tion of both minimal con�ict reasons. Since these results make no use of further
overlapping of non-deleting elements they are also con�ict reason extensions.
Moreover, they correspond to the results of the essential critical pair analysis.
1,11:Class and 6,16:Class are two boundary atoms. Additional overlapping of
the Attribute-nodes of both rules in 4,12:Attribute leads to larger con�ict reason
extensions and to the remaining three results 2,4, and 6. Adding the remaining
elements of the LHS of both rules, we obtain a compact representation of all six
critical pairs.

3.4 Dual Notions for Dependencies

To reason about dependencies of rules and transformations, we consider the
dual concepts and results that we get when inverting the left transformation of
a con�icting pair. This means that, instead of considering con�icting transfor-

mations (t1, t2) = (H1
m1,r1⇐= G

m2,r2
=⇒ H2), we consider dependent transformations

(t1; t2) = (H1
m−1

1 ,r−1
1⇐= G

m2,r2
=⇒ H2) = (G

m1,r1
=⇒ H1

m2,r2
=⇒ H2). This is possible

since a transformation is symmetrically de�ned by two pushouts. They ensure
in particular that morphisms m : L→ G as well as m′ : R→ H ful�ll the gluing
condition.

Dependency parts, atoms, reasons, and reason extensions can be de�ned anal-
ogously to Def. 4. They characterize graph elements being produced by the �rst
rule application and used by the second one. Results presented for con�icts above
can be formulated and proven for dependencies in an analogous way.

4 Related Work and Conclusion

The critical pair analysis (CPA) has developed into the standard technique for
detecting con�icts and dependencies in graph transformation systems [1] at de-
sign time. Originally being developed for term and term graph rewriting [15], it
extends the theory of graph transformation and, more generally, ofM-adhesive
transformation systems [16, 2]. The CPA is not only available for plain rules but
also for rules with application conditions [17].

In this paper, we lay the basis for a re�ned analysis of con�icts and depen-
dencies by presenting con�ict and dependency notions of di�erent granularity.
Furthermore, we investigate their interrelations. The formal consideration shall
be used in a new CDA technique where con�ict and dependency analysis can
go from coarse-grained information about the potential existence of con�icts or
dependencies and their main reasons, to �ne-grained considerations of con�ict
and dependency reasons in di�erent settings.

The CPA is o�ered by the graph transformation tools AGG [18] and Veri-
graph [19] and the graph-based model transformation tool Henshin [20]. All of
them provide the user with a set of (essential) critical pairs for each pair of rules
as analysis result. The computation of con�icts and dependencies using the con-
cepted introduced in the present work has been prototypically implemented in

Henshin. First tests indicate that our analysis is very fast and yields concise
results that are promising to facilitate understandability. However, it is up to
future work to further investigate this aspect in a user study.

Currently, we restrict our formal considerations to graphs and graph trans-
formations. Since all main concepts are based on concepts from category the-
ory, our work is prepared to adapt to more sophisticated forms of graphs or
graph transformation. Furthermore, it is interesting to adapt the new notions
to transformation rules with negative [21] or more complex nested application
conditions [17]. Analogously, to handle attributes within con�icts appropriately
it is promising to adapt our approach to lazy graph transformations [22] and to
come up with a light-weight con�ict analysis complementing the work of Deck-
werth et al. [23] on con�ict detection of edit operations on feature models. They
combine CPA with an SMT solver for an improved handling of con�icts based
on attribute changes. Performance is still a limiting factor for applying the CPA
to large rule sets. A family-based analysis based on the uni�cation of multiple
similar rules [24] is a promising idea to save redundant computation e�ort.
Acknowledgements. We wish to thank Jens Kosiol and the anonymous re-
viewers for their constructive comments. This work was partially funded by the
German Research Foundation, Priority Program SPP 1593 "Design for Future �
Managed Software Evolution". This research was partially supported by the re-
search project Visual Privacy Management in User Centric Open Environments
(supported by the EU's Horizon 2020 programme, Proposal number: 653642).

References

1. R. Heckel, J. M. Küster, and G. Taentzer, �Con�uence of Typed Attributed Graph
Transformation Systems,� in First Int. Conf. on Graph Transformation (ICGT),
ser. LNCS, vol. 2505. Springer, 2002, pp. 161�176.

2. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformation, ser. Monographs in Theoretical Computer Science. Springer,
2006.

3. J. H. Hausmann, R. Heckel, and G. Taentzer, �Detection of Con�icting Functional
Requirements in a Use Case-Driven Approach: A Static Analysis Technique Based
on Graph Transformation,� in 22rd Int. Conf. on Software Engineering (ICSE).
ACM, 2002, pp. 105�115.

4. P. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa, �Model composition
in product lines and feature interaction detection using critical pair analysis,� in
Int. Conf. on Model Driven Engineering Languages and Systems. Springer, 2007,
pp. 151�165.

5. J. M. Küster, C. Gerth, and G. Engels, �Dependent and con�icting change op-
erations of process models,� in European Conf. on Model Driven Architecture -
Foundations and Applications, vol. 5562. Springer, pp. 158�173.

6. K. Mehner-Heindl, M. Monga, and G. Taentzer, �Analysis of Aspect-Oriented Mod-
els Using Graph Transformation Systems,� in Aspect-Oriented Requirements En-
gineering, A. Moreira, R. Chitchyan, J. Araújo, and A. Rashid, Eds. Springer,
2013, pp. 243�270.

7. T. Mens, R. Van Der Straeten, and M. D'Hondt, �Detecting and resolving model
inconsistencies using transformation dependency analysis,� in 9th Int. Conf. on
Model Driven Engineering Languages and Systems, ser. MoDELS'06. Springer,
2006, pp. 200�214.

8. T. Mens, G. Taentzer, and O. Runge, �Analysing refactoring dependencies using
graph transformation,� Software and System Modeling, vol. 6, no. 3, pp. 269�285,
2007.

9. L. Baresi, R. Heckel, S. Thöne, and D. Varró, �Modeling and validation of service-
oriented architectures: application vs. style,� in ACM SIGSOFT Symposium on
Foundations of Software Engineering held jointly with 9th European Software En-
gineering Conference. ACM, 2003, pp. 68�77.

10. C. Ermel, J. Gall, L. Lambers, and G. Taentzer, �Modeling with plausibility check-
ing: Inspecting favorable and critical signs for consistency between control �ow
and functional behavior,� in Int. Conf. on Fundamental Approaches to Software
Engineering. Springer, 2011, pp. 156�170.

11. D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer, �Towards a distributed model-
ing process based on composite models,� in Int. Conf. on Fundamental Approaches
to Software Engineering. Springer, 2013, pp. 6�20.

12. L. Lambers, H. Ehrig, and F. Orejas, �E�cient con�ict detection in graph trans-
formation systems by essential critical pairs,� Electr. Notes Theor. Comput. Sci.,
vol. 211, pp. 17�26, 2008.

13. M. Fowler, Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley, 1999.

14. K. Born, L. Lambers, D. Strüber, and G. Taentzer, �Granularity of
con�icts and dependencies in graph transformation systems: Extended version,�
Philipps-Universität Marburg, Tech. Rep., 2017. [Online]. Available: www.uni-
marburg.de/fb12/swt/research/publications

15. D. Plump, �Critical Pairs in Term Graph Rewriting,� inMathematical Foundations
of Computer Science, vol. 841, 1994, pp. 556�566.

16. H. Ehrig, J. Padberg, U. Prange, and A. Habel, �Adhesive high-level replacement
systems: A new categorical framework for graph transformation,� Fundam. Inform.,
vol. 74, no. 1, pp. 1�29, 2006.

17. H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas, �M-adhesive
transformation systems with nested application conditions. part 2: Embedding,
critical pairs and local con�uence,� Fundam. Inform., vol. 118, no. 1-2, pp. 35�63,
2012. [Online]. Available: http://dx.doi.org/10.3233/FI-2012-705

18. G. Taentzer, �AGG: A graph transformation environment for modeling and vali-
dation of software,� in Int. Workshop on Applications of Graph Transformations
with Industrial Relevance. Springer, 2003, pp. 446�453.

19. Verigraph, �Verigraph,� https://github.com/Verites/verigraph.
20. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, �Henshin: Ad-

vanced Concepts and Tools for In-Place EMF Model Transformations,� in Model
Driven Engineering Languages and Systems, ser. LNCS, vol. 6394, pp. 121�135,
http://www.eclipse .org/henshin/.

21. L. Lambers, �Certifying rule-based models using graph transformation,� Ph.D. dis-
sertation, Berlin Institute of Technology, 2010.

22. F. Orejas and L. Lambers, �Lazy graph transformation,� Fundam. Inform., vol.
118, no. 1-2, pp. 65�96, 2012.

23. F. Deckwerth, G. Kulcsár, M. Lochau, G. Varró, and A. Schürr, �Con�ict detection
for edits on extended feature models using symbolic graph transformation,� in Int.
Workshop on Formal Methods and Analysis in Software Product Line Engineering,
ser. EPTCS, vol. 206, 2016, pp. 17�31.

24. D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger, �Rule-
merger: Automatic construction of variability-based model transformation rules,�
in Int. Conf. on Fundamental Approaches to Software Engineering. Springer,
2016, pp. 122�140.

