
Rule-based Repair of EMF Models:
An Automated Interactive Approach

Nebras Nassar1(�), Hendrik Radke2, Thorsten Arendt3

1 Philipps-Universität Marburg, Germany,
nassarn@informatik.uni-marburg.de

2 Universität Oldenburg, Germany,
Hendrik.Radke@informatik.uni-oldenburg.de

3 GFFT Innovationsförderung GmbH, Bad Vilbel, Germany,
thorsten.arendt@gfft-ev.de

Abstract. Managing and resolving inconsistencies in models is crucial
in model-driven engineering (MDE). In this paper we consider models
that are based on the Eclipse Modeling Framework (EMF). We propose
a rule-based approach to support the modeler in automatically trimming
and completing EMF models and thereby resolving their cardinality vi-
olations. Although being under repair, the model may be viewed and
changed interactively during this repair process. The approach and the
developed tool support are based on EMF and the model transformation
language Henshin.

Keywords: Model driven engineering · Eclipse Modeling Framework
(EMF) · Model transformation · Model repair

1 Introduction

Model-driven engineering has become increasingly popular in various engineer-
ing disciplines. Although model editors are mostly adapted to their underlying
domain-specific modeling language, they usually allow to edit inconsistent mod-
els. While upper bounds of multiplicities are mostly obeyed, the violation of lower
bounds and further constraints requiring the existence of model patterns is usu-
ally tolerated during editing. This means that model editors often use a relaxed
meta-model with less constraints than the original language meta-model [7].

The result of an editing process may be an invalid model that has to be
repaired. There are a number of model repair approaches in the literature which,
however, are either purely interactive such as [4,5,11,12] or fully automated such
as [1,6,8,17]. Our approach intends to integrate automatic model repair into the
editing process allowing user interaction during repair. It does not leave the
resolution strategy completely to the modeler as in pure rule-based approaches.
Instead, it is semi-automatic and guides the modeler to repair the whole model.

In our approach, we consider modeling languages being defined by meta-
models based on the Eclipse Modeling Framework (EMF) [18]. We present an
algorithm to model repair that consists of two tasks: (1) The meta-model of a

2 Nebras Nassar et al.

given language is translated to a rule-based model transformation system con-
taining repair actions. (2) A potentially invalid model is fully repaired using the
generated transformation system which configures the model repair tool accord-
ing to the given language. An ordered list of used rule applications is reported as
a second output. In summary, the contributions of this paper are: (1) an auto-
matic derivation of repair rules (actions) from a given meta-model that is rooted
and fully instantiable, (2) a rule-based algorithm for model repair, and (3) an
Eclipse-based tool to automate the rule derivation and the model repair. Note,
the correctness proof of the algorithm can be found at [10].

The paper is structured as follows: In Section 2, we introduce our running
example. In Section 3, we present our repair algorithm, apply it at an example
and sketch how a meta-model is translated to a rule-based transformation sys-
tem. The developed Eclipse-based tools are presented in Section 4. An overview
on related work is given in Section 5 while Section 6 concludes the paper.

2 Running example

The running example is a simple Webpage modeling language for specifying a
specific kind of web pages.

WebPage
name : EString = page

Header
title : EString
color : EString = white

NavBar
color : EString = pink

Body
color : EString = white

DisplayElement

Anchor
label : EString = moreInfo

TextBox
text : EString = Description
border : EInt = 1

Image
name : EString
size : EInt = 10
src : EString = homepath

Section
location : Layout = FULL

Layout
TOP
BUTTOM
LEFT
RIGHT
FULL

Footer
label : EString
color : EString = gray

HyperLabel
text : EString = label

URL
name : EString
url : EString

[1..1] header

[1..1] body
[0..*] sections

[0..*] subSections

[1..*] navbars [1..*] anchors

[2..*] elements

[0..1] eanchor[1..1] target
[0..*] linked

[0..2] footers

[0..*] labels
[0..1] url

[0..1] active

Fig. 1: Webpage meta-model

Our Webpage modeling language is defined by the meta-model shown in Fig-
ure 1. Shortly, each web page has a name which requires a value (being page
by default). A web page contains a Header, up to two Footers, and a Body. A
header includes at least one navigator bar NavBar which contains at least one
Anchor. A body includes an arbitrary number of Sections. A section may contain
subsections. A section is designed to contain at least two arbitrary DisplayEle-
ments of type Image or TextBox. Each display element may contain an Anchor.
An anchor has a label which requires a value (being moreInfo by default) and
must be connected to one display element. A web page must not contain more
than two Footers. A footer may include an arbitrary number of HyperLabels. A
hyper label may contain one URL. A url node has a url which requires a value.
A hyper label may be connected to one url node.

Figure 2 presents the abstract syntax representation of an invalid Webpage
model repaired to a valid one. The solid-line elements represent the invalid web
page model. It consists of a blue header containing a pink navigator bar and three
footers: footer Appointment contains a hyper label with text calendar including

Rule-based Repair of EMF Models: An Automated Interactive Approach 3

a url node with name calurl and a url attribute with empty value; the label
calendar is activated. Footer Address contains a hyper label with text floor 2, and
footer Location contains a hyper label with text label3 including a url node with
name url3 and a url attribute with empty value. The label label3 is activated.

I.1

:WebPage

name=pageX

:Header

title=Profile
color=blue

:Body

color=white

:NavBar

color=pink

:Anchor

label=moreInfo:Section

location=FULL

:TextBox

text=Description
border=1

:Image

name=img
size=10

src=homepath

:header :navbars

:target

:linked

I.1

I.4.2

II.1

II.1 II.2

:Footer

label=Address
color=gray

:Footer

label=Appointment
color=gray

:HyperLabel

text=floor 2

:footers

:labels

:footers

:labels

:HyperLabel

text=calendar

@:Footer

label=Location
color=gray

@:HyperLabel

text=label3

@:URL

name=url3
url=““

:body

:sections

:elements

:elements
:anchors

@:footers

@:labels

@:url

A valid web page model

:URL

name=calurl
url=““->myurl

:url activeactive

II.6

Fig. 2: The abstract syntax of the invalid Webpage being repaired

To repair this invalid Webpage model, it is first trimmed and then com-
pleted: Since there are too many footers, one Footer -node and its children have
to be deleted. The selection of the footer can be done automatically in a non-
deterministic way or determined by the user. We select the footer annotated with
@. Then, the trimmed web page still contains all solid-line elements shown in
Figure 2 without those annotated with @. To complete this Webpage model, at
least the following missing elements (represented as dashed elements in Figure 2)
have to be created: A Body-node and an Anchor -node are needed to fulfill the
lower bounds of containment types body and anchors, respectively. An edge of
type target-linked is needed to fulfill the lower bound of non-containment type
target. Therefore, a Section-node containing two nodes of type DisplayElement
(e.g., an image and a text box) are demanded to fulfill the lower bounds of
containment type elements and non-containment type target. The url -attribute
value of the URL-node calurl has to be set (to, e.g., myurl).

3 Rule-based model repair

Our approach to model repair consists of two activities: (1) Configuration: The
meta-model of a given language is translated to a rule-based model transfor-
mation system (repair rules). (2) Model repair: A potentially invalid model is
repaired yielding a valid model. The repair algorithm uses the generated trans-
formation system and is presented first.

3.1 A rule-based algorithm for model repair

As pre-requisite, our approach requires an instantiable meta-model without OCL
constraints. Given an invalid model, i.e., a model that does not fulfill all its

4 Nebras Nassar et al.

multiplicities, our algorithm is able to produce a valid one. The repair process
is automatic but may be interrupted and interactively guided by the modeler.

The activity diagram in Figure 3 illustrates the overall control flow of our
algorithm which consists of two main parts: The left part performs model trim-
ming eliminating supernumerous model elements. The right part performs model
completion adding required model elements.

Model Trimming

Remove all supernumerous edges

Delete content and incoming
edges of the supernumerous

node in a bottom-up way

a

Input: Model

Delete the supernumerous node

Find a supernumerous node

c1

Create all missing required nodes
by fulfilling the lower bound of each containment

Insert as many missing required edges as possible
by connecting the correlated nodes using non-containments

to fulfill the lower bound of each non-containment

no missing missing

Set values to
required attributes

Valid model

1

2

3

6

7

Output: Valid Model

Try to create the missing
correlated node directly

Create one contanier node of
the missing correlated node

Not created

One container node of
the missing node is created

4.1

4.2

b

c2

C. Delete the supernumerous node

4. Create one missing correlated node

5

Model Completion

Model Completion

d

Model Trimming

e

Check relation validity

The missing node
is created

There is no

 supernumerous element

A supernumerous node

is found

Fig. 3: Model trimming and completion algorithm

Model trimming: Step (a) in Figure 3 removes all supernumerous edges, i.e.
edges that exceed the upper-bound invariants of each non-containment edge type.
Step (b) checks if there is a supernumerous node, i.e., a node which exceeds the
upper-bound invariants of a containment edge type. If there is none, the model is
ready to be completed (Step (e)). Otherwise, this node and its content have to be
deleted; this is done in Step (c). It deletes all the incoming and outgoing edges of
this node and its content nodes, and then deletes the content nodes in a bottom-
up way (Step (c1)); thereafter, it deletes the node itself (Step (c2)). This bottom-
up deletion process starts at all the leaves and continues with their containers.
Step (d) calls again Step (b) to check if there is another supernumerous node.

Model completion: Once there is no further supernumerous element in the
input model, the model can be completed: Step (1) creates all missing required

Rule-based Repair of EMF Models: An Automated Interactive Approach 5

nodes, i.e., nodes that are needed to fulfill the lower-bound of each containment
edge type. Thereafter, we have a skeleton model which contains at least all
the required nodes. At this stage, the model may contain nodes which are not
correlated by required edges. Two node types being linked by a non-containment
type are called correlated. Step (2) tries to insert all missing required edges by
connecting the existing correlated nodes in the model. These edges are needed
to fulfill the lower-bound of each non-containment edge type. This step may stop
without having inserted all required edges due to potentially missing correlated
nodes, i.e., it may happen that there is no further free node to correlate with.

Step (3) checks the validity of all required non-containment edge types. If
all the required edges are already inserted, then we have a valid model w.r.t.
all multiplicities of edge types. This also means that all the required nodes have
been created. Otherwise, there is still at least one required edge missing. In this
situation, Step (4) tries to add one missing node to fulfill the lower bound of a
non-containment edge type. Although the number of missing nodes may be more
than one, only one missing node is added in Step (4). If a missing node cannot
be created directly, a (transitive) container node of a missing one is created. The
added node may function as, e.g., target node for missing required edges. Hence,
it may help to solve other inconsistencies in the model. The design decision of
adding just one node in Step (4) helps to find a small completion.

Note that the type of a missing node may have several subtypes. In this
case, there may be several possibilities to create a missing node choosing one of
these subtypes. A further variation point are node types with several containers.
This non-determinism may be solved by user interaction or automatically by
randomly picking one. Thereafter, the next iteration of model completion starts
with Step (5). Adding a node to the model may require adding further required
nodes and edges. Starting a new iteration ensures that all those model elements
are generated and that all missing nodes and edges will be created in the end.
Once the instance model is valid w.r.t. edge type multiplicities, the values of all
the empty required attributes are set (Step (6)). In Step (7) the algorithm stops.

3.2 An example repair process

We illustrate our algorithm by applying it to the invalid Webpage model in
Figure 2. The invalid model is first trimmed and then completed. This process
is described below and illustrated in Figure 2. The annotations at the model
elements refer to the corresponding iteration and step numbers.

Model trimming: Since the model does not have supernumerous edges, we
go directly to Step (b). Here, a supernumerous Footer -node is found. Assuming
that the Footer -node location is selected for deletion. In Step (c1), the edge
active is removed between the nodes label3 and url3. Then, node url3 itself is
deleted. Thereafter, node label3 can be deleted. Finally, Step (c2) deletes the
selected Footer -node Location. Step (d) calls again Step (b) but there is no
further supernumerous node. Hence, the process of model trimming is finished
and the output model is ready to be completed (Step (e)).

6 Nebras Nassar et al.

Model completion is done in two iterations. Iteration I: In Step (1), an An-
chor -node and a Body-node are created to fulfill the lower-bound invariants
of containment types anchors and body. In Step (2), a target-edge from the
created Anchor -node is required but cannot be inserted. (3) The required non-
containment edge type target has not been fulfilled yet. I.e., the node of type
Anchor has to be connected to a node of type DisplayElement but there is none.
Step (4.1) tries to create the missing correlated node directly: The creation of a
DisplayElement-node fails since there is no available Section-node (used as con-
tainer node). Consequently, Step (4.2) is required which creates a Section-node
inside of the existing Body-node. In Step (5), the completion is continued. I.e, a
second iteration is required. Iteration II: In Step (1), two DisplayElement-nodes
are created inside of the Section-node to fulfill the lower-bound invariant of the
containment type elements. As an example, a node of type TextBox and a node
of type Image are created. In Step (2), a non-containment edge of type target
is inserted between the existing Anchor -node and one of the existing nodes of
type DisplayElement, e.g., the TextBox -node. Step (3) finds out that all the re-
quired non-containment edge types are available now. In Step (6) all remaining
values for the all required attributes are set. Here, the url -attribute value of the
URL-node calurl is set to myurl. A valid instance model is produced (Step (7)).

3.3 Deriving a model transformation system from a meta-model

A pre-requisite of our repair algorithm is the existence of a model transformation
system. It can be automatically generated from a given meta-model. In this
section, we concentrate on the derivation of transformation rules and present a
selection of rule kinds used for model repair. All rule schemes with examples
can be found at [10]. They are generated from different kinds of meta-model
patterns. The rule schemes are carefully designed to consider the EMF model
constraints defined in [3]. They are generic and effective in the sense that the
derived rule sets can be used to manage (fulfill) any lower or upper bound.

Set of required-node-creation rules: For each containment type with
lower bound > 0, a rule is derived which creates a node with its containment
edge if the lower-bound invariant of the corresponding containment type is not
yet reached. The container is determined by the input parameter p. The user gets
the possibility to select the right container, otherwise it is selected randomly by
the algorithm. Figure 4 illustrates the rule scheme used to derive this kind of
rules. Note that for each non-abstract class B’ in the family of class B such a
rule is derived. Figure 5 presents an example rule; it creates a required Body-
node being contained in a WebPage-node if there is not already a Body-node
contained. This set configures Step (1) of the algorithm.

Set of required-edge-insertion rules: For each non-containment type
with lower bound > 0, a rule is derived which inserts a non-containment edge
between two existing nodes if the lower-bound invariant of the corresponding
non-containment type is not yet reached. This set configures Step (2).

Set of additional-node-creation rules: For each containment type of the
given meta-model, a rule is generated which creates one node if the upper-bound

Rule-based Repair of EMF Models: An Automated Interactive Approach 7

of its containment type is not exceeded. These rules are used to add nodes without
violating upper-bound invariants. This set configures Step (4) of the algorithm.

Set of exceeding-edge-removing rules: For each non-containment type
with a limited upper bound of the given meta-model, a rule is generated which
removes one edge if the upper-bound of its non-containment type is exceeded.
This set configures Step (a) of the algorithm.

con

p:AA

B

p:A

:B' :B :B

con

p:A

con con m
m..n

opr 1 opr opr opr

Meta Pattern Negative Application ConditionRule

CreatingRequiredNode(p)with m>0 NACm

Fig. 4: Rule schema for creating
a required B -node

Fig. 5: An example rule for cre-
ating a required Body-node

4 Tool support

We have developed two Eclipse plug-ins based on EMF: The first Eclipse plug-in
automates the derivation of a model transformation system from a given meta-
model. The input of this tool is an Ecore meta-model that is rooted and fully
instantiable, and the output is an Eclipse plug-in containing the corresponding
model transformation system. The generated model transformation system is
formulated in Henshin. If the meta-model contains OCL constraints, they are
not taken into account yet. The second Eclipse plug-in implements the repair
algorithm presented in Section 3. This plug-in has two main inputs: The model
transformation system being derived from the given meta-model and an instance
model of it containing one node of root type. The main output is the repaired
model fulfilling all the EMF model constraints. Thus, the EMF editor can open
the resulting model. Note, the tool reports the user if a new node of root type is
needed to complete a given model. More information is at [10]. The algorithm
can be automatically executed in two modes: (1) randomly or (2) interactively.

Rule-based implementation of automatic random or interactive mode: The
algorithm is configured with the rule sets in a way that at any point of the
algorithm where choices have to be made, they can be random, or interactive.
This applies to choices of rules (repair actions), matches (model locations or
targets) and attribute values. The suggested choices of each step aim at repairing
the whole model. Each algorithm step uses proper rule sets, e.g., Step (1) uses the
set of required-node-creation rules. Step (1) is ended once there is no applicable
rule of the set on the model. I.e., all the required nodes with all their required
child nodes are created. Since the rule sets are designed to consider the EMF
model constraints, identifying the applicable rules and their matches aim at
finding the proper repair actions and matches w.r.t the algorithm step and the
given model state. To set attribute values of primitive types, the user can let this

8 Nebras Nassar et al.

be done automatically by the tool or has to provide a set of values. Note, the
user can not only select each suggested choice but also can randomly perform
the current algorithm step or the whole algorithm at any time.

Since model trimming may lead to information loss, the tool is developed
to manage that in two ways: (a) The repair process is able to be interrupted
(stopped) anytime so that the user can manage the needed data. Thereafter,
the algorithm can be restarted. (b) Suggesting moving actions (if possible). For
example, in Step (b) the types of exceeding nodes and their proper matches are
provided as choices. At this end, the tool may provide two actions: (1) deleting an
exceeding node and (2) moving an exceeding node to another container node (if
exists) without violating the upper-bound of the target container node. However,
if there is no available target container node, an additional container node can
be automatically added (if possible) to hold the exceeding node.

An interesting test case that motivates us to carry out a scalability study in
the future is that we have applied the tool to randomly resolve more than 150
inconsistencies of 3 different kinds in a model with 10,000 elements. The tool just
took about 58 milliseconds to complete such a large model. The used meta-model
composes 8 constrained element types and the test model is designed so that its
structure is increased fairly w.r.t the model size: The test model is composed of
copies of an initial model part containing elements of all given meta-model types.
The initial model is first designed to be valid and then is randomly changed to
have 8 inconsistencies of three different types, namely missing nodes, missing
edges, and missing nodes with their edges. The test has been executed 3 times
and the average is calculated, thereafter. More information can be found at [10].

5 Related work

In the following, we consider related work w.r.t. model repair and rule generation.
We first relate our approach to existing model repair techniques that can be
mainly categorized into syntactic and rule-based approaches on the one hand,
and search-based approaches on the other hand.

Syntactic and rule-based approaches. In [11,12], the authors provide a syntac-
tic approach for generating interactive repairs from full first-order logic formulas
that constrain UML documents. The user can choose from automatically gen-
erated repair actions when an inconsistency occurs. Similarly, Egyed et al. [4,5]
describe a rule-based technique for automatically generating a set of concrete
changes for fixing inconsistencies at different locations in UML models and pro-
viding information about the impact of each change on all consistency rules.
The designer is not required to introduce new model elements, i.e., the approach
ignores the creation of new model elements as choices for fixing inconsistencies.
In [14], Rabbi et al. propose a formal approach (with prototype tooling) to sup-
port software designers in completing partial models. Their approach is based on
rule-based model rewriting which supports both, addition and deletion of model
elements. In all these approaches, inconsistencies can be considered by the user
one after the other; possible negative side effects are not taken into considera-

Rule-based Repair of EMF Models: An Automated Interactive Approach 9

tion. It is up to the user to find a way to get a valid model (if any). Moreover,
they are not shown to be fully consistent.

Search-based approach. A search-based repair engine starts with an incon-
sistent model state and tries to find a sequence of change actions which leads
to a valid model. Another approach is model finding, using a constraint solver
to calculate a valid model. Many approaches such as [1,6,8,17] provide sup-
port for automatic inconsistency resolution from a logical perspective. All these
approaches provide automatic model completion; however, may easily run into
scalability problems (as stated in [9]). Since the input model is always translated
to a logical model, the performance depends on the model size. Badger [13] is
a search-based tool which uses a regression planning algorithm to find a valid
model. It can take a variety of parameters to let the search process be guided
by the user to a certain extent. The authors argue that their generation of res-
olution plans is reasonably fast showing that the execution time is linear to the
model size and quadratic to the number of inconsistencies. They do not show
the time needed to apply a repair plan on a model. This approach may support
some configuration before model repair but do not allow user interaction during
model repair. Although being rule-based, the refinement approach in [16] basi-
cally translates a set of rules with complex application conditions to a logical
model and thereby completes models. This completion is performed automati-
cally by rule applications; user interaction is not considered in this process.

Our approach is designed for integrating the best of both worlds: It is a
rule-based approach; therefore, it is easy to allow user interaction in the repair
process, in contrast to search-based approaches. But it does not leave the res-
olution strategy completely to the modeler as in pure rule-based approaches.
Instead, it guides the modeler in an automatic interactive way to repair the
whole model. Our approach yields valid EMF models which can be opened by
the EMF editor. How all the EMF constraints are specified and how valid EMF
models are constructed are not clearly shown by most existing approaches. On
the downside, our approach cannot yet handle OCL constraints being covered
by most of the approaches mentioned above. It is promising to translate OCL
constraints to graph patterns [2,15] functioning as application conditions of rules
and thereby extending the automated interactive model repair approach.

Rule generation. In [7], model transformation rules are generated from a
given meta-model as well. The main difference to our work is that consistency-
preserving rules are generated there while we generate repair rules allowing tem-
porarily inconsistent models w.r.t the multiplicities. Hence, rules are generated
for different purposes: There, consistency-preserving rules are generated to rec-
ognize consistent edit steps, while we generate repair rules here to configure our
model repair algorithm yielding consistent EMF models as results.

6 Conclusion

In this paper, we present a rule-based approach to guide the modeler in repairing
models in an automated interactive way and thereby resolving all their inconsis-

10 Nebras Nassar et al.

tencies. Different sets of model transformation rules (repair actions) are derived
from a meta-model considering it pattern-wise. A rule-based algorithm of model
trimming and completion is presented yielding consistent EMF models. Two
Eclipse plug-ins have been developed to automatically translate meta-models
to model transformation systems and to repair corresponding instance models.
First test cases show that our algorithm is fast and motivate us to carry out a
scalability study. We plan to extend this approach to support OCL constraints
as well. Translating OCL constraints to graph patterns [2,15] and further to
application conditions of rules is promising to achieve an automated interactive
model repair approach for meta-models with OCL constraints.

References

1. Apt, K.R., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge
Univ. Press, Leiden (2006)

2. Bergmann, G.: Translating OCL to Graph Patterns. In: MoDELS, pp. 670–686.
Springer (2014)

3. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. (SoSyM) pp. 227–250 (2012)

4. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: ICSE (2007)
5. Egyed, A., Letier, E., Finkelstein, A.: Generating and Evaluating Choices for Fixing

Inconsistencies in UML Design Models. In: IEEE/ACM. pp. 99–108 (2008)
6. Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M.C., Varró, D.: Quick fix generation

for DSMLs. In: VL/HCC. pp. 17–24. IEEE (2011)
7. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically Deriving the Specifi-

cation of Model Editing Operations from Meta-Models. In: ICMT. Springer (2016)
8. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with

Echo. In: ASE. pp. 694–697. IEEE (2013)
9. Macedo, N., Tiago, J., Cunha, A.: A Feature-based Classification of Model Repair

Approaches. CoRR abs/1504.03947 (2015)
10. EMF Model Repair. http://uni-marburg.de/Kkwsr
11. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: A Consistency

Checking and Smart Link Generation Service. ACM 2(2), 151–185 (2002)
12. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair

actions. In: Software Engineering. pp. 455–464. IEEE (2003)
13. Puissant, J.P., Straeten, R.V.D., Mens, T.: Resolving model inconsistencies using

automated regression planning. SoSyM pp. 461–481 (2015)
14. Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M., Michael, L.: A Diagrammatic

Approach to Model Completion. In: (AMT)@ MODELS (2015)
15. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essential

OCL Invariants to Nested Graph Constraints Focusing on Set Operations. In:
Graph Transformation, pp. 155–170. Springer (2015)

16. Salay, R., Chechik, M., Famelis, M., Gorzny, J.: A Methodology for Verifying Re-
finements of Partial Models. Journal of Object Technology pp. 3:1–31 (2015)

17. Sen, S., Baudry, B., Precup, D.: Partial Model Completion in Model Driven Engi-
neering using Constraint Logic Programming. In: In Proc. INAP’07 (2007)

18. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

	Rule-based Repair of EMF Models: An Automated Interactive Approach

