
Henshin: A Usability-Focused Framework for
EMF Model Transformation Development

Daniel Strüber1, Kristopher Born2, Kanwal Daud Gill1,
Raffaela Groner3, Timo Kehrer4, Manuel Ohrndorf5, Matthias Tichy3

{strueber,daud}@uni-koblenz.de, born@mathematik.uni-marburg.de,
{raffaela.groner,matthias.tichy}@uni-ulm.de,

timo.kehrer@informatik.hu-berlin.de, mohrndorf@informatik.uni-siegen.de,
1 Universität Koblenz-Landau, Germany,

2 Philipps-Universität Marburg, Germany, 3 Universität Ulm, Germany,
4 Humboldt-Universität zu Berlin, Germany, 5 Universität Siegen, Germany

Abstract. Improved usability of tools is a fundamental prerequisite for
a more widespread industrial adoption of Model-Driven Engineering. We
present the current state of Henshin, a model transformation language
and framework based on algebraic graph transformations. Our demon-
stration focuses on Henshin’s novel usability-oriented features, specifi-
cally: (i) a textual syntax, complementing the existing graphical one by
improved support for rapid transformation development, (ii) extended
static validation, including checks for correct integration with general-
purpose-language code, (iii) advanced refactoring support, in particular,
for splitting large transformation programs, (iv) editing utilities for facil-
itating recurring tasks in model transformation development. We demon-
strate the usefulness of these features using a running example.

1 Introduction

Model-Driven Engineering (MDE) aims to improve the productivity of software
engineers by emphasizing model transformation as a central activity during soft-
ware development [1]. Still, a major roadblock to a more widespread adoption of
MDE is the insufficient maturity of MDE tools [2,3]. Specifically, to make MDE
tools appealing to a broader user base, it is key to increase their level of usability.

Henshin [4] is a model transformation framework for the Eclipse Modeling
Framework, comprising a transformation language with a graph-transformation-
based visual syntax, and a tool environment with an execution engine and anal-
ysis features, including model checking and conflict analysis support. Originally
designed to offer the benefits of a solid formal foundation and efficient transfor-
mation execution, Henshin was not built with usability as an explicit goal.

In fact, based on user feedback, we identify a number of critical usability lim-
itations: First, while its visual syntax is beneficial when reading a transformation
program, writing a transformation program can be complicated due to layout-
ing issues. Second, programs can contain subtle errors that are not caught by
adequate static checks. In particular, this applies when transformations are not

specified in isolation, but embedded into a richer software infrastructure. Third,
when working with large transformation programs, scalability issues occur; the
performance of Henshin’s visual editor may suffer to the point that it becomes
unusable [5]. Fourth, users are required to perform intricate and error-prone
tasks, such as creating large rules that reflect the complexity of the involved
meta-models.

Therefore, in Section 2 of this paper, we present the current state of Henshin,
focusing on its novel features for addressing these issues. Specifically,
– we introduce a textual syntax for the rapid development of transforma-

tions (Section 2.1). This syntax is not intended as a replacement for the
graphical one, but as a complementary means to facilitate the initial cre-
ation of a transformation program. To support long-term maintenance, we
provide a higher-order transformation that can be used to derive a graphical
concrete-syntax representation of the transformation program. The design
of our textual syntax was informed by a qualitative interview study.

– we provide extended static checks for validating the well-definedness of a
transformation and its use (Section 2.2). Using this checks, one can validate
if a Henshin transformation program is used correctly in general-purpose-
language code, e.g., if all referred rules actually exist and their parameters
are assigned correctly. Furthermore, we provide checks to see if parameters
are specified and used correctly within and across particular units and rules.

– we present advanced refactoring support, in particular, for splitting a large
transformation program into multiple sub-programs (Section 2.3). Using a
wizard, the user can specify target sub-programs and assign particular units
and rules to them. This splitting of programs (i.e. the abstract syntax) can
also be propagated to their diagram files (i.e., the concrete syntax).

– we demonstrate a selection of editing utilities for complicated tasks dur-
ing the development of transformations (Section 2.4), including utilities to
create, simplify, generalize, or clean up Henshin rules.

Fig. 1. Sparse grid

Running Example. We use the following transfor-
mation program as a running example throughout
this paper. The program solves one of the tasks in
the classical Comb benchmark by Varró et al. [6]: It
constructs a sparse grid in the shape of Fig. 1 for
a given pair of dimensions, width and height. Note
that the grid has two kinds of edges: vertical and hor-
izontal ones (dashed and bold arrows, respectively).

In Henshin, programs are specified in the form of modules. A module contains
a set of rules, specifying in-place transformations, and a set of composite units,
managing the control flow. Specifically, composite units coordinate the execution
of their sub-units, which can be either rules or other composite units.

The example module shown in Fig. 2 includes three rules and four units. The
entry point is the sequential unit buildGrid which has two input parameters,
width and heigth, and one output parameter, grid. This unit calls two sub-units
in sequential order: rule initGrid creates an initially empty grid to be delivered as

Fig. 2. Henshin module (program) for building a sparse grid.

output of the overall transformation. Iterated unit buildColumns has an iteration
condition, specifying that its sub-unit createColumn is executed width/2 times.
Sequential unit createColumn uses parameter next as a pointer to build a column
of a particular height; next is initialized in rule startColumn, where the first two
rows of a column are created. Note the syntactic sugar @Grid, which specifies
the presence of a grid to be used as a container for all newly created nodes.
Parameters next and height are passed to iterated unit expandColumn, which
executes rule extendColumn height-2 times. Each execution of extendColumn
uses the next pointer to add another column at this node, changing the pointer
to one of the newly created nodes afterwards. The program terminates after all
columns have been constructed by unit buildColumns, yielding the sparse grid.

This graphical syntax uses a compact representation of rules, where left- and
right-hand sides (LHS, RHS) are combined to one graph with annotations such as
«create» for RHS nodes without a LHS counterpart. The abstract syntax main-
tained in the background of the visual editor captures LHS and RHS explicitly.

2 Novel Usability-oriented Features
In this section, we walk through the novel usability-oriented features.

2.1 Textual Syntax for Henshin

While much of research and practice in modeling has focused on graphical mod-
eling languages, there has been a trend in recent years to use textual concrete
syntaxes for modeling languages. The reason for that is the increasing feedback
from industrial practice that graphical editors (1) require a high effort to create
something usable in practice (which has been shown as a huge issue in modeling

in practice [3]), (2) require syntax correctness, resulting in cumbersome user ac-
tions to avoid intermediate incorrect models during complex editing steps, and
(3) lack acceptance by many end-users, particularly, software developers.

The resurgence of modeling languages with a textual syntax is fueled by easy-
to-use and feature-rich frameworks like Xtext and recent advances in projection-
based modeling frameworks [7]. Finally, there is a trend to seamlessly combine
graphical and textual editors to reap benefits of both worlds [8].

1 rule initGridWithTwoNodes (OUT
grid:Grid){

2 graph{
3 create node one:Node
4 create node two:Node
5 create node grid:Grid
6 edges [(create one ->two:ver),
7 (create grid ->one:nodes),
8 (create grid ->two:nodes)
9]

10 }
11 }

Fig. 3. Simple rule in the textual syntax

Henshin currently supports
both a graphical editor as well as
a tree-based editor. The graphi-
cal editor supports some syntac-
tic sugar in both syntax and vi-
sualization, e.g., combined nota-
tion for LHS and RHS, NACs,
container syntax. However, one
needs to use the tree-based editor
for more complex rules, e.g., rules
with complex nesting of condi-
tion graphs. Furthermore, the us-
ability in terms of efficiency is
quite low as both the graphical editor and the tree-based editor require many
steps to perform changes and high amount of focus change when moving between
the graphical editor pane and the property editor.

Methodology Last year, we performed a qualitative study to explore different
alternatives of a potential textual syntax for Henshin. Particularly, we focused
on the following variation points:

combined syntax vs. explicit LHS and RHS Shall a combined syntax us-
ing mark-ups for created and deleted elements and positive and negative
applications conditions be used as in the graphical editor, or a specific LHS
and RHS as in the tree-based editor?

complex application conditions How shall complex application conditions
with multiple condition graphs be specified?

control flow specification Shall the control flow specification follow the cur-
rent Henshin style of different units for different control flow constructs, e.g.,
sequences, conditions, loops, priorities or should the textual syntax resemble
typical programming languages?

Furthermore, we explored other syntax variation points such as syntax for
the specification of nodes, edges, and attribute assignments.

We built multiple prototypes covering the different variation points and dis-
cussed them in an interview study with 6 current and former Henshin key de-
velopers covering a diverse set of expertise in language design and experience
using and developing Henshin. The interviews were based on a semi-structured
questionnaire, covering demographics on the interviewees, general questions on

1 rule startNextColumn (){
2 graph{
3 node root:Grid
4 node unnamed :Node
5 create node newNode :Node
6 edges [(root -> unnamed :nodes),
7 (create root -> newNode :nodes),
8 (create unnamed -> newNode :hor)]
9 matchingFormula {

10 formula ! graph1 AND ! graph2
11 conditionGraph graph1 {
12 node forbidNode :Node
13 edges [(root -> forbidNode :nodes),
14 (forbidNode -> unnamed :ver)]
15 }
16 conditionGraph graph2 {
17 node forbidNode :Node
18 edges [(root -> forbidNode :nodes),
19 (unnamed -> forbidNode :hor),
20 (root -> unnamed :nodes)]
21 }
22 }
23 }
24 }

Fig. 4. Rule with complex conditions

textual vs. graphical editors and the mentioned variation points of the proto-
types. They took between 1 and 1.5 hours and were executed by two of the
authors of this paper. The interviews were transcribed and analyzed using the-
matic analysis.

Threats to Validity The external validity of our methodology is threatened
by the fact that we only interviewed advanced users. Arguably, advanced users
can particularly benefit from a textual syntax since they write more complicated
programs, in which the limitations of graphical syntax are more obvious. Still,
it yet needs to be studied if our design decisions are also useful for novice users.

Language Design The general conclusion with respect to the first variation
point was that a combined syntax using markups as in the graphical editor
and in various other graph transformation tools is preferable. Fig. 3 shows a
transformation rule from “Full Grid”, a slightly modified version of our running
example.

Fig. 4 shows a transformation rule with complex condition graphs. The ex-
ample describes the creation of a new initial node in a new column connected
to the top node of an existing column, i.e., it neither has a horizontal incoming
node nor a vertical outgoing node. Complex conditions are defined with mul-
tiple conditionGraphs and the formula keyword which contains the complex

boolean condition. Furthermore, the example contains the implicit reuse of nodes
of the LHS in the conditionGraphs on the example of the node unnamed. This
is similarly possible for multi rules.

1 unit addColumns
2 (IN width:EInt , IN height :EInt){
3 for(width - 1){
4 startNextColumn ()
5 expandNextColumn (height)
6 }
7 }

Fig. 5. Units

Finally, Fig. 5 shows the
addColumns transformation unit.
In contrast to standard Henshin
where for each type of control
flow (sequence, if, loop) cover-
ing multiple rules an individual
unit has to be declared, the tex-
tual syntax provides syntax con-
structs which are similar to imperative programming languages.

Realization We realized the textual syntax editor using Xtext with custom ex-
tensions like scoping and syntax validation. Since the language differs in syntax
significantly from the Henshin meta-model, we used the Xtext generated meta-
model. Instances of that meta-model are transformed by model transformations
to instances of the standard Henshin meta-model. Doing so, we can reuse Hen-
shin’s visual syntax, and its interpretation and analysis plug-ins. The realized
plug-ins contain automated test for the generated parser as well as automated
tests for the transformation.

2.2 Static Checks

Identification and fixing of errors in the development process of a transformation
program as early as possible is crucial for user satisfaction. Static checks provide
an important feedback to identify such errors. Henshin supports three groups of
static checks: (1) basic checks regarding the well-formedness of units and rules,
(2) semantic checks regarding consistency preservation and potential mismatches
between intended and specified meaning, and (3) checks for the validity of code
for loading and executing units and rules. Identified violations are reported to
the user using Eclipse’s warning and errors markers in the respective editors.

Well-definedness checks. Violations to well-definedness constraints are de-
tected and highlighted with an error marker. First, this applies to obvious issues
such as rules and units with duplicate signatures, i.e., identical name and pa-
rameter lists. Second, parameter handling inside and between rules is checked.
Parameters have a name, type, and kind, where the kinds in, out, inout, var spec-
ify the usage context: in and inout parameters have to be set externally; var and
out parameters are set during the rule application. The value of var parameters
is hidden to the outside world, whereas in, out, and inout parameters can be used
to pass values between rules and units. Checks ensure that parameters are used
consistently to their kind (e.g., a var parameter must be used in the LHS of a
rule) and that parameters are passed consistently. For example, inout parameter
next of rule extendColumn requires all units invoking the rule to specify a value,
which is the case since unit expandColumn passes its own next parameter value.

Semantic checks. With semantic checks, we catch some mistakes that are fre-
quently made by novice users. For example, if a node is to be deleted, double-
pushout semantics requires that the deletion of all adjacent edges—in the case of
EMF, at least the containment edge—is specified as well. Users unaware of this
fact might be puzzled when an affected rule cannot be applied. Thus, for delete
nodes specified without a containment edge, we show a warning (rather than an
error, to support corner cases where a single root node is deleted). Moreover, we
provide checks to identify rules that threaten model consistency (see [9]). For
example, the application of a rule may not create containment cycles.

Fig. 6. Error markers in the programmatic use.

Integration with Java Code.
Transformation programs are of-
ten used in the context of larger
programs, such as Eclipse plug-
ins. Henshin’s Java API pro-
vides an interface for loading
transformation programs, apply-
ing them, and saving the results.
The API requires that certain inputs, such as unit and rule names and parameter
values, are provided using method parameters. Errors such as mismatches be-
tween specified and allowed values can occur that are only discovered at runtime
– a drawback resulting from Henshin’s interpreter semantics. To mitigate this
drawback while keeping the benefits of interpreted languages, such as flexibility
w.r.t. higher-order transformations, we introduce custom checks. In Fig. 6, ty-
pos init grid and WIDTH are detected since no suitable elements of these names
exist in the input module; "two" yields a type error as an int was expected.

2.3 Advanced Refactoring

Refactorings aim to improve the non-functional properties of a program, with-
out changing its behavior. We distinguish advanced refactorings for achieving a
higher-level goal from fine-grained micro-refactorings. In Henshin, typical micro-
refactorings such as rename rule and move rule are supported by design: Hen-
shin inherits EMF’s features for changing models consistently in the sense that
references to renamed or moved elements within the same model remain valid
automatically. Therefore, in this section, we focus on advanced refactorings.

Transformation programs are typically developed iteratively. The user starts
with a small module that easily fits into one screen, such as the one in Fig. 2, and
end up with a large module with dozens of rules. Maintaining such a large mod-
ule is difficult: Navigating the resulting diagram becomes tedious quickly; the
performance of the editor may suffer to the point that it is not usable anymore.

Splitting of modules. To overcome these limitations, we provide a split refac-
toring that takes a module, and partitions the contained rules and units into
sets that are saved into distinct modules. The splitting works in two steps: First,
using the wizard shown in Fig. 7, a splitting specification is created. Users can

edit the specification by adding and removing target modules, and by reassigning
rules and units using drag and drop functionality. In this example, two separate
target modules are specified, one including all rules, the other including all units.

Fig. 7. Splitting wizard.

As an aid to reduce the man-
ual specification effort, the but-
ton ”Groups” produces a de-
fault suggestion based on an
connected-component analysis of
the call graph of units, so that
each component of units and
rules becomes a module. Second,
the modules are created and pop-
ulated with the specified rules
and units. The splitting of the
concrete syntax models is prop-
agated to the diagram files, i.e.,
for each target module, a corre-
sponding pair of model and diagram files is created.

Merging of rules. A special type of complexity in transformations arises
when many similar rules are required to achieve a common task. In earlier work,
we extended Henshin with mechanism detecting rule clones [10] and merging
them into an integrated representation that users can interact with [11,12].

2.4 Advanced Editing Support

In this section, we introduce advanced editing utilities for the development of
model transformations. First, we present a basic utility that enables users to
infer an initial version of a transformation rule from existing models instead of
creating the rule from scratch. Second, we give a set of complex editing operations
for simplifying, generalizing and cleaning up transformation programs.

Generation of Transformation Rules. We provide a facility to generate a
transformation rule from a pair of models demonstrating the effect of the rule,
following the principle of model transformation by-example [13]. Technically, the
models serving as input of our rule generation procedure are compared with each
other using EMF Compare in order to identify the corresponding elements in
the original and the changed model, i.e. those elements which are considered
to be the same in both models. Thereupon, a transformation rule is basically
generated as follows: The original model is converted to a Henshin graph and
used as the LHS of the resulting rule, while the Henshin graph obtained from
the changed model is used as the RHS. Finally, LHS-RHS mappings are created
for all nodes obtained from a pair of corresponding elements.

For instance, an initial version of the rule startColumn shown in Figure 2
can be obtained from an example where the original model contains a container
element of type Grid and the changed model includes a Grid element including

the four elements of type Node and their respective connections. Thereupon, a
Henshin module including the necessary meta-model imports and the generated
transformation rule is obtained. To finally obtain the rule startColumn, we may
first add the node identifier next to the lower left node, and subsequently use
the advanced editing operation “Deduce Parameters” creating the out parameter
next and adding it to the rule’s signature.

Despite the simplicity of this example, this mechanism can reduce the devel-
opment effort largely, particularly in the presence of accidental complexity in the
sense that rules simply reflect the complexity of the involved meta-model. For
instance, the UML meta-model is infamous for its size and complexity that leads
to complicated rules even when expressing transformations that are simple on a
conceptual level [14]. Here, examples can be provided in a much more compact
form using a graphical UML editor [14]. Moreover, when transformation devel-
opers are no experts for the meta-model(s) over which the transformation rules
to be developed are typed, their development from scratch is likely to be error-
prone, e.g. because developers forget to specify certain edges which may lead to
unexpected violations of dangling reference constraints in case of deletions.

Complex Editing Operations. In the sequel, we present a set of complex edit-
ing operations, each of them taking a structural element of an existing transfor-
mation (Module, Unit or Rule) as input and performing the update of the given
element in an in-place fashion. All operations are made available through the
“Advanced Editing” menu of the Henshin editor, their visibility depends on the
selected context element. Each of these operations formalizes a recurring task
during transformation development.
reduceToMinimalRule(Rule) takes a transformation rule as input and reduces

it to the minimal rule yielding the same effect. Essentially, it (i) deletes all
application conditions and (ii) cuts all context not needed to achieve the
specified change, i.e. elements to be preserved by the rule which are not
serving as boundary element of a change action are being deleted.

generalizeNodeTypes(Rule) takes a transformation rule as input and converts
the types of all LHS nodes to the most general yet still valid supertype. Given
a LHS node n of type T , then a supertype Tsup of T is a valid supertype in
this context if all edges incident to n may be also incident to nodes of type
Tsup without violating the conformace to the underlying meta-model.

cleanUp(Rule) has been introduced in an earlier Henshin release, e.g. to remove
invalid LHS-RHS mappings as well as invalid multi-mappings from the given
input rule. We extend this editing operation by also deleting unused rule
parameters, i.e., all rule parameters which are neither mapped to a node
identifier nor to an attribute variable.

3 Related Work

Usability in model transformations. Most works on addressing usability
during model transformations focus on the usability in the resulting system.

Panach et al. [15] propose to map reusable usability patterns, such as cancel,
undo, and warnings, to system models and their transformations, so that the
generated systems can benefit from these features. Ammar et al. [16] investigate
parametrized model transformations, where usability requirements can be used
to select the most suitable among different alternatives. The paradigm of end-
user model transformation [14] enables users to specify model transformations
using regular model editors. This approach is orthogonal to ours, as it aims to
replace specialized transformation editors, rather than to improve them.

Textual syntax. Interestingly, most model transformation languages based
on the graph transformation formalism provide a graphical concrete syntax, e.g.,
Fujaba, VMTS, ModGraph, whereas other model transformation languages like
QVT, ATL, provide a textual concrete syntax. Viatra2 [17] and GrGen [18]
are the exceptions as they are based on graph transformations but provide a
textual syntax. PROGRES [19] uses an hybrid syntax, whereas eMoflon [20]
offers a textual syntax with a generated read-only visualisation, an interesting
compromise for supporting both textual and visual notations. Arguably, in our
case, having an editable graphical syntax is beneficial since users may use custom
layout to give cues beyond the formal language semantics. To the best of our
knowledge our work is the first empirical work on designing a textual syntax for
model transformations.

Static checks. Existing works on verifying or testing model transformations
focus on correctness w.r.t. a behaviour specification [21,22]. In contrast, our
semantic checks can be applied when no specification is available: they represent
an heuristics based on accrued experiences with users who were unfamiliar with
Henshin’s double-pushout semantics. Moreover, to the best of our knowledge, the
validation of code that uses a transformation has not been considered before. It is
worth pointing out that such validation only make sense for interpreted languages
such as Henshin. Compiled ones such as PROGRES avoid the encountered issues
via the type system of the target language. However, compilation has certain
trade-offs, such as less flexible usage workflows. PROGRES also allows defining
precisely how external code is to be integrated with the system.

Advanced refactoring. Our split module refactoring is inspired by an ear-
lier tool-supported aproach to meta-model splitting [23]. While this earlier work
used clustering algorithms to identify groups of related classes, our default split-
ting suggestion is based on a component analysis of the call graph of units and
rules. Another related work allows remodularizing ATL transformations using
clustering [24], where the focus was on the identification of explicit interfaces.

Editing utilities. Our most advanced editing utility is the generation of
rules from existing examples. Learning model transformations from examples is
highly desirable and has motivated a plethora of work, as surveyed in [13,25].
However, most approaches are not usable for our purposes since they (i) rely on
the logging of editing commands demonstrating the transformation, or (ii) target
model-to-model transformations. For state-based approaches targeting in-place
transformations, tool support is scarcely available and, to the best of our knowl-
edge, none of the existing tools generates Henshin rules. Our current solution is

leightweight in the sense that it abstains from using sophisticated inference al-
gorithms, machine learning techniques or other third-party software, which was
a major design decision to keep the deployment of Henshin easy to handle.

4 Conclusion and Future Work

Compared to purely textual languages, where developers have to piece together
graph structures in their minds while reading a model transformation program, it
is tempting to view graph-based ones as inherently user-friendly. Still, experience
has shown that the devil is often in the details: while particular usability issues
might not be obvious in smaller examples, the development of larger transforma-
tion program can be a tedious task. With the present work, we make a number
of contributions to resolve the issues encountered during such tasks.

In the future, we are interested to study the impact of our usability-oriented
features. An empirical user study would be an appropriate basis to determine
the usefulness of our contributions. A key challenge for advanced features such
as those introduced here is to make users aware of usage opportunities [26]. Fur-
thermore, we plan to extend Henshin with additional features. Inferring trans-
formation rules from a set of examples instead of a single one is an interesting
goal, in which we may benefit from the existing literature on transformation-
by-example. Finally, in our ongoing work, we aim to support the debugging of
Henshin rules via an integration into the Eclipse Debugging infrastructure.
Acknowledgement. We thank the reviewers for their valuable and construc-
tive suggestions. This research was partially supported by the research project
Visual Privacy Management in User Centric Open Environments (supported by
the EU’s Horizon 2020 programme, Proposal number: 653642). This work was
partially supported by the DFG (German Research Foundation) (grant numbers
TI 803/2-2 and TI 803/4-1).

References

1. S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of
model-driven software development,” IEEE Software, vol. 20, no. 5, pp. 42–45,
2003.

2. J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal, “Indus-
trial adoption of model-driven engineering: Are the tools really the problem?” in
International Conference on Model Driven Engineering Languages and Systems
(MoDELS). Springer, 2013, pp. 1–17.

3. G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assessing the state-
of-practice of model-based engineering in the embedded systems domain,” in Inter-
national Conference on Model-Driven Engineering Languages and Systems (MoD-
ELS), 2014, pp. 166–182.

4. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: ad-
vanced concepts and tools for in-place emf model transformations,” in Interna-
tional Conference on Model Driven Engineering Languages and Systems (MoD-
ELS). Springer, 2010, pp. 121–135.

5. D. Strüber, T. Kehrer, T. Arendt, C. Pietsch, and D. Reuling, “Scalability of
model transformations: Position paper and benchmark set,” in Workshop on Scal-
able Model Driven Engineering (BigMDE), 2016, pp. 21–30.

6. G. Varró, A. Schurr, and D. Varró, “Benchmarking for graph transformation,” in
Symposion on Visual Languages and Human-Centric Computing. IEEE, 2005, pp.
79–88.

7. M. Voelter, T. Szabó, S. Lisson, B. Kolb, S. Erdweg, and T. Berger, “Efficient de-
velopment of consistent projectional editors using grammar cells,” in International
Conference on Software Language Engineering (SLE), 2016, pp. 28–40.

8. S. Maro, J. Steghöfer, A. Anjorin, M. Tichy, and L. Gelin, “On integrating graphical
and textual editors for a UML profile based domain specific language: an industrial
experience,” in International Conference on Software Language Engineering (SLE),
2015, pp. 1–12.

9. E. Biermann, C. Ermel, and G. Taentzer, “Formal foundation of consistent emf
model transformations by algebraic graph transformation,” Software & Systems
Modeling, vol. 11, no. 2, pp. 227–250, 2012.

10. D. Strüber, J. Plöger, and V. Acretoaie, “Clone Detection for Graph-Based Model
Transformation Languages,” in International Conference on Model Transforma-
tions (ICMT). Springer, 2016, pp. 191–206.

11. D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and J. Plöger, “Rule-
merger: Automatic construction of variability-based model transformation rules,”
in International Conference on Fundamental Approaches to Software Engineering
(FASE), 2016, pp. 122–140.

12. D. Strüber and S. Schulz, “A tool environment for managing families of model
transformation rules,” in International Conference on Graph Transformation
(ICGT). Springer, 2016, pp. 89–101.

13. G. Gerti Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Model transformation by-example: a survey of the first wave,” in Conceptual Mod-
elling and Its Theoretical Foundations. Springer, 2012, pp. 197–215.

14. V. Acreţoaie, H. Störrle, and D. Strüber, “VMTL: a language for end-user model
transformation,” Software & Systems Modeling, pp. 1–29, 2016.

15. J. I. Panach, S. España, A. M. Moreno, and Ó. Pastor, “Dealing with usability
in model transformation technologies,” in International Conference on Conceptual
Modeling. Springer, 2008, pp. 498–511.

16. L. B. Ammar, A. Trabelsi, and A. Mahfoudhi, “Incorporating usability require-
ments into model transformation technologies,” Requirements Engineering, vol. 20,
no. 4, pp. 465–479, 2015.

17. D. Varró and A. Balogh, “The model transformation language of the VIATRA2
framework,” Sci. Comput. Program., vol. 68, no. 3, pp. 214–234, 2007.

18. R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski, “GrGen: A fast SPO-
based graph rewriting tool,” in International Conference on Graph Transformation
(ICGT). Springer, 2006, pp. 383–397.

19. A. Schürr, A. J. Winter, and A. Zündorf, “The PROGRES approach: Language
and environment,” in Handbook of graph grammars and computing by graph trans-
formation. World Scientific Publishing Co., Inc., 1999, pp. 487–550.

20. E. Leblebici, A. Anjorin, and A. Schürr, “Developing eMoflon with eMoflon,” in In-
ternational Conference on Theory and Practice of Model Transformations (ICMT).
Springer, 2014, pp. 138–145.

21. A. Rensink, Á. Schmidt, and D. Varró, “Model checking graph transformations: A
comparison of two approaches,” in International Conference on Graph Transfor-
mation (ICGT). Springer, 2004, pp. 226–241.

22. J. Cabot, R. Clarisó, E. Guerra, and J. De Lara, “Verification and validation of
declarative model-to-model transformations through invariants,” Journal of Sys-
tems and Software, vol. 83, no. 2, pp. 283–302, 2010.

23. D. Strüber, M. Selter, and G. Taentzer, “Tool support for clustering large meta-
models,” in Workshop on Scalability in Model Driven Engineering (BigMDE), 2013,
pp. 7:1–4.

24. A. Rentschler, D. Werle, Q. Noorshams, L. Happe, and R. H. Reussner, “Remod-
ularizing legacy model transformations with automatic clustering techniques,” in
Workshop on Analysis of Model Transformations (AMT), 2014, pp. 4–13.

25. I. Baki and H. Sahraoui, “Multi-step learning and adaptive search for learning com-
plex model transformations from examples,” ACM Trans. Softw. Eng. Methodol.,
vol. 25, no. 3, pp. 20:1–20:37, 2016.

26. T. Buchmann, B. Westfechtel, and S. Winetzhammer, “The Added Value of Pro-
grammed Graph Transformations - A Case Study from Software Configuration
Management,” in Applications of Graph Transformations with Industrial Relevance
(AGTIVE). Springer, 2011, pp. 198–209.

	Henshin: A Usability-Focused Framework for EMF Model Transformation Development

