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Abstract. During modeling activities, inconsistencies can easily occur
due to misunderstandings, lack of information or simply mistakes. In this
paper, we focus on model inconsistencies that occur due to model editing
and cause violation of the meta-model conformance. Although temporar-
ily accepting inconsistencies helps to keep progress, inconsistencies have
to be resolved finally. One form of resolution is model repair. Assuming
that model changes are state-based, (potentially) performed edit opera-
tions can be automatically identified from state differences and further
analyzed. As a result, inconsistent changes may be identified causing
a need to repair the model. There may exist an overwhelming number
of possible repair actions that restore consistency. The edit history may
help to identify the relevant repairs. Model inconsistencies are repaired by
computing and applying complement edit operations that are needed to
re-establish the overall model consistency. In this paper, we clarify under
which conditions this kind of model repair can be applied. The sound-
ness of this approach is shown by formalizing it based on the theory of
graph transformation. A prototype tool based on the Eclipse Modeling
Framework and Henshin is used to conduct an initial evaluation.
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1 Introduction

Model-based engineering has gained increasing popularity in various disciplines,
especially in software development. This means that modeling plays a primary
role throughout the engineering process and thus, it has to be well supported.
While models are edited, they may get inconsistent for various reasons as, e.g.,
misunderstandings, lack of information, incomplete modeling actions or simply
mistakes. Another source of inconsistency may be different interpretations of
requirements especially where models are developed collaboratively [1]. In this
paper, we focus on model inconsistencies related to the violation of conformance
to the underlying meta-model, especially as they occur during editing processes.



Prior to model repair, model inconsistencies have to be detected. Currently
many approaches are available that detect inconsistencies fast and correctly, e.g.
[2–4]. This may be performed in a check-only mode or integrated with model
repair as done in various rule-based approaches such as [5–9].

While it is important to allow inconsistencies during modeling processes [10],
they must be resolved eventually. One way of inconsistency resolution is model
repair. There are various approaches to repair models which capture this problem
in different ways. An overview is given in [11], also stating a common problem
in model repair: “One of the main challenges of model repair is that for any
given set of inconsistencies, there (possibly) exists an overwhelming number
of repair updates that restore the consistency. Yet, since the selection of the
most suitable repair is ultimately a choice of the developer, approaches to model
repair must balance the automation level of the technique and the need for user
guidance in the generation of the repairs.” Roughly, we distinguish between the
following approaches to model repair: Given an inconsistent model, search-based
approaches return a repaired model which is consistent, such as [12–15]. Syntactic
and rule-based approaches return a (partially ordered) set of possible repair
actions instead (see e.g. repair plans in [8]). Badger [16] is the only model repair
approach so far that uses the change history: It uses the date of model revisions
to select repair plans but does not consider the performed edit operations to
select repair actions.

So far, model repair approaches have not taken the history of user actions into
account, hence they miss an important information source for repair generation.
By the performed edit operations, users state how they want to evolve the model.
Guiding the repair process by the change history can help to identify promising
repair possibilities from the overwhelming number of possible ones.

Model changes are either recorded in a state-based manner where just pre-
and post-states are stored, or in a delta-based manner where information about
the performed user actions is stored. Delta-based approaches have the advantage
of keeping the history of the model evolution. If model changes are given state-
based, all interesting information about a possible sequence of user actions is
not immediately available but can be automatically determined assuming that
all the possible user actions have been specified before [17]. Specifications of
edit operations can be computed to a large extent as shown in [18]. Hence,
independent of the approach that is applied to record changes, we will assume
that the delta information can be automatically computed when needed.

Fig. 1. Change-preserving model repair

Our approach is rule-based in the
sense that an edit operation (EO) is
specified by one or more rules depend-
ing on its complexity. We assume that
a repair action is also specified by a
rule, called repair operation (RO), such
that the composition of an edit oper-
ation with a suitable repair operation
leads to a consistency-preserving operation (CPO), i.e., a rule that – being ap-



plied to a consistent model – yields a consistent model again (see Figure 1).
Hence, ROs are complementing preceding EOs and therefore, preserve already
performed model changes. In general, there may be several possible ROs for one
EO.

This repair approach is interactive since the user may select among several
applicable repair actions to repair a model step-by-step. Moreover, it is consis-
tency improving with each application of a repair action. We will show as a main
result that, if all the repair operations are causally independent from the subse-
quent edit operations, all inconsistencies can be resolved without side-effects in
the sense that no new inconsistencies are introduced while repairing the model,
i.e., the repair is fully consistent in that case. In addition, if an edit operation
does not cause any inconsistency, there is not any repair action to be performed,
hence, our approach is stable. Our model repairs are not necessarily least change,
i.e., repaired models are not necessarily as close as possible to the original model,
since this is dependent on the specified CPOs.

Typical application scenarios are the following ones: If a model consists of
several viewpoints as, e.g., UML models which consist of several diagrams, edit
operations in one viewpoint may have to be complemented by actions in other
diagrams. If one or several of these complements are forgotten in the original
editing process, they may be easily repaired by our approach. Although this
complementation might sound a bit mechanical, it cannot be automated in gen-
eral since often necessary information is lacking. When, e.g., a new method call
is inserted in a sequence diagram, it has to be complemented with the definition
of a corresponding method in the class model. While the method name may
already be fixed by the call, its return type as well as its parameters (with name
and type) still have to be specified.

Considering a scenario with just one viewpoint, our approach may also be
useful to easily complete more complex edit activities that are not available as
separate edit operations. For example, changes of interfaces have to be repeated
on implementing classes or attribute changes have to be repeated on their getter
and setter methods. Another motivation may be fast editing where just key
information is given which can be automatically completed to a bigger extent.

The main contributions of this paper are:

1. A new process for repairing model inconsistencies taking the history of edit
operations into account.

2. A formalization of this process using algebraic graph transformation (see e.g.
[19]), i.e., a precise formulation of each of its tasks. The main theorem shows
that all repair processes of our approach are consistency-improving.

3. A prototypical implementation in Henshin [20], a model transformation lan-
guage based on the Eclipse Modeling Framework and graph transformation
concepts. The prototype is used to conduct a case study where edit processes
in the bCMS (Barbados Crash Management System) [21] are considered.

The rest of this paper is organized as follows: The running example is pre-
sented in Section 2. Section 3 introduces our model repair process. The formaliza-
tion of our approach follows in Section 4. Tool support and an initial evaluation



ae presented in Section 5. Finally, we compare with related work and conclude
in Sections 6 and 7.

2 Running Example

Let us consider an example: A simple class model of an online shop focusing on
the customer’s viewpoint covers (at least) orders and a shopping cart collecting
these orders (see Figure 2).

Fig. 2. Class model of an online shop - Versions 0 and 1

Fig. 3. Class model of an online shop - Incon-
sistency repaired, Version V1-R

The model declares ExpressOrders
as a special kind of orders. This
class shall implement the interface
class CreditCardPayment. The in-
terface is extended by a method
called setCardNumber() as shown
in Figure 2. The modeler has in-
troduced an inconsistency here
since the class ExpressOrder does
not implement this method; the
model has to be repaired. A suitable model repair that takes the performed
model change into account is to execute the indicated completion, i.e., to add
the method also to the class ExpressOrder as shown in Figure 3.

Fig. 4. A sequence diagram for ordering a product - Versions 1 and 2

Building on our example, we will now specify the behavior related to the
main use case which is ordering of a product. It is modeled by a simple sequence
diagram as shown on the left of Figure 4 which – together with the class model
in Figure 3 – constitutes a consistent view on the system model in the sense
that all object types and messages used are defined in the class model. (Note
that attribute values and links are not visible in sequence diagrams.) On the



right of Figure 4 the sequence diagram has been further developed by inserting
a new method call of setProduct on the object of type Order. This method is
not defined in the current class model; hence, this view of the system model is
inconsistent and has to be repaired.

In principle, there are many different repair actions possible, e.g., adding
a method setProduct to class Order, removing the message from the sequence
diagram while keeping the lifeline of type Order, or removing also this structure.

Fig. 5. A class model of an online shop -
Inconsistency repaired, version V2-R

Since the modeler added the mes-
sage, its removal is a possible repair
action. If the modeler selects it, our
approach is not specifically helpful for
this repair but could be used to iden-
tify repairs that are still missing there-
after. But if the modeler wants to
keep the added message, our repair ap-
proach would immediately propose the
missing complement operation which
is the addition of the method to the
class model; this is shown in Figure 5.

3 Model repair approach

In the following, we informally present our approach to change-preserving model
repair. The approach relies on edit operations (EOs), consistency-preserving op-
erations (CPOs) and repair operations (ROs); EOs and CPOs have to be defined
first by the language designer. Thereafter, modelers can repair their inconsistent
models.

3.1 Preparing change-preserving model repair

Before being able to perform change-preserving model repair, the necessary op-
erations for the modeling language and its model editor have to be specified. An
overview on the preparation tasks is given in Figure 6.

Fig. 6. Preparation for change-
preserving model repair

For a given modeling language which is spec-
ified by a meta-model MM , a set of CPOs w.r.t.
the MM has to be defined. These CPOs are usu-
ally defined by language designers in coopera-
tion with domain experts. For identifying rea-
sonable edit operations (EOs), we do not con-
sider the original language meta-model but an
effective meta-model being the original one in a
relaxed form, i.e., without (most of the) OCL
constraints and with relaxed multiplicities. The
effective meta-model defines the language of all possible inputs to a model edi-
tor (which may cause inconsistencies w.r.t. the original meta-model). In [18], an



automated approach for deriving EOs from effective meta-models is presented
and evalutated at several modelling languages and editors.

For each CPO, one need to identify sub-operations that are reasonable edit
operations in the modeling language, e.g. EOs for inserting, deleting, and moving
model parts as well as for changing their attributes [22, 18]. An EO is completed
to a CPO by a repair operation (RO); i.e., applying an EO followed by an RO to
a model, yields the same result as applying the corresponding CPO. In this way,
an EO can be seen as a sub-operation of a CPO. It may also happen that an EO
is not a sub-operation of any CPO or of several CPOs; in the former case the
application of an EO may lead to irreparable inconsistencies while in the latter
case, the complement ROs w.r.t. each containing CPO are computed. We stick to
the case where each EO is complemented by at most one RO to each of its CPOs.
A more general case would be EOs being complemented by sequences of ROs,
e.g. adding an interface operation is complemented with adding an operation in
each realizing class. In the special case that an EO is already a CPO, model
repair is obviously not needed.

3.2 Change-preserving model repair

A change-preserving model repair takes the preceding applications of EOs, i.e.,
edit steps, into account; edit steps that may cause inconsistencies are followed
by applications of ROs, called repair steps, that re-establish consistency (see
Figure 1). To find out which ROs shall be applied, the edit steps since the last
consistent model version are needed. If edit steps are not already provided by
the model editor, they can be automatically computed as follows: Given two
model versions M1 and M2 and a set of EOs, we are looking for a sequence
of edit steps from M1 to M2. The algorithm presented in [17] yields an edit
script, i.e., a set of EOs with actual arguments being partially ordered along
their sequential dependencies. This algorithm is fast in the sense that it does
not need backtracking. It has been implemented for EMF models and applied in
several case studies.

Next, the reported edit steps can be analyzed w.r.t. inconsistencies. Each
edit step which causes inconsistencies will lead to one of the following two cases:

1. There exists one or more CPOs that have the applied EO as a sub-operation.
The modeler chooses one of them and thereby determines the complement
RO that has to be performed to re-establish consistency w.r.t. the considered
edit step. In Section 2 we presented two inconsistent edit steps which are
repaired by complements.

2. The edit step introduces a model for which there does not exist any CPO
that has the applied EO as a sub-operation. In this case the model change
cannot be preserved. It has to be rolled back, at least partly. An example for
such an EO (in the context of class models) is the insertion of a generalization
relation between two classes such that the overall generalization structure
becomes cyclic. The model editor usually allows such an EO.



If all edit steps can be repaired (if needed) and each of the repair steps is
causally independent of all the edit steps following the edit step it repairs, we can
guarantee the overall consistency of the final model after all repairs (see Theorem
1 below). The independence of steps can be checked automatically based on the
critical pair analysis implemented in Henshin (for more details see Section 4.4
below).

4 Formalization

The formalization of the described model repair approach is a means to clarify
the assumptions and outcomes of each involved task. Since models can be basi-
cally considered as graphs, we rely on the theory of algebraic graph transforma-
tion as presented in [19]. In the following, we first recall all basic concepts needed
to precisely define models, model changes and modeling languages. We define
CPOs as graph transformation rules whose applications preserve the model con-
sistency. Thereafter, change-preserving model repair is formally defined.

4.1 Defining modeling languages

When formalizing meta-modeling, graphs occur at two levels: the type level
(representing meta-models) and the instance level (given by all valid instance
models). This idea is described by the concept of typed graphs, where a fixed type
graph TG together with a set C of constraints serves as an abstract representa-
tion of the meta-model. Types are usually structured by an inheritance relation.
Multiplicities and other annotations are expressed by additional constraints as
well as additional well-formedness rules. The constraints could be defined by
means of graph constraints, OCL, first order logic, etc., however the proposed
approach is not limited to any particular constraint language. Instances of the
type graph are typed graphs being equipped with a structure-preserving mapping
to the type graph, i.e., a mapping that preserves the source and target functions
for edges.

Definition 1 (Meta-model and modeling language). A meta-model MM =
(TG,C) consists of a type graph TG and a set C of constraints typed over TG.
All well-typed graphs w.r.t. TG form the set L(TG). All graphs in L(TG) satis-
fying all the constraints in C form the set L(MM), i.e., the modeling language
specified by MM .

Example 1 (UML meta-model excerpt). Looking behind the scenes of our initial
example, the example meta-model presented in Figure 7 is a small and simplified
excerpt of the UML meta-model.

It focuses on classifiers with their properties and operations being core in-
gredients of class models on the one hand and lifelines sending messages as core
concepts of sequence diagrams on the other hand.



Fig. 7. Small and simplified excerpt of the UML
meta-model

To make the Realization
relationship between inter-
faces and classes more precise,
we require the following con-
straint: Each class has to pro-
vide all operations which are
defined by implemented in-
terfaces. Another constraint
which is used in the running
example is this: Each message
has to refer to an operation
with the same signature be-
longing to a class the receiving lifeline is typed over.

4.2 Model changes and their consistency

Model changes may be formalized by graph transformation, i.e. the rule-based
modification of graphs. A rule r is defined by two graphs (L,R) and a left
application condition AC. L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. In addition, this pattern has
to fulfill the condition AC before rule application. After the rule application,
a pattern equal to R, the right-hand side (RHS), has to occur in the resulting
graph. The intersection L ∩ R, i.e. the graph part that is not changed, and the
union L ∪R have to form a graph each. The graph part that is to be deleted is
defined by L \ (L ∩R), and R \ (L ∩R) defines the graph part to be created.

A graph transformation step G
r,m
=⇒ H between two instance graphs G and H

is defined by first finding a match m of the left-hand side L of rule r in the current
instance graph G such that m is structure-preserving and type-compatible (i.e.,
m is a typed graph morphism) and second by constructing H in two passes: (1)
building D := G \m(L \ (L∩R)), i.e., erasing all the graph items that are to be
deleted, and (2) constructing H := D ∪ (R \ (L ∩R)), i.e., adding all the graph
items that are to be created. Note that m has to fulfill the dangling condition,
i.e., all adjacent graph edges of a graph node to be deleted have to be deleted
as well, such that D becomes a graph.

Example 1 (Transformation rules). To specify the consistency-preserving oper-
ations (CPOs) in our running example, we rely on two rules that preserve the
consistency of the simplified UML meta-model. On the left of Figure 8 the rule
for synchronously adding a new operation to an interface and a realizing class
is shown. The rule is denoted in a compact form where all elements denoted
with preserve are in the LHS, all elements denoted with preserve or create are
in the RHS, and all elements denoted with preserve and forbid form a negative
application condition. All forbidden elements must not occur in the graph. Note
that this rule would have to be extended if there are more than one realizing
class for the same interface. Actually a new operation has to be inserted in all
the realizing classes. It could also be accomplished with the complement rule



Fig. 8. Rules for adding an operation to an interface class (left) and for sending a new
message (right)

in Figure 10 on the right. The rule on the right of Figure 8 specifies the syn-
chronous insertion of a message call between two lifelines and its operation into
the corresponding class.

Fig. 9. Example object diagram showing an excerpt
of the class model in Figure 2 and the sequence di-
agram in Figure 2 in abstract syntax evolving over
time, different versions are indicated by colors and
object names

Given a UML model in ab-
stract syntax, edit and model
repair actions can be ex-
pressed by graph transforma-
tion steps. Consider, e.g., the
graph in Figure 9 which shows
an excerpt of the abstract
syntax of the class model on
the right of Figure 2 and the
sequence diagram on the left
of Figure 4. Rule addOper-
ationToInterface can be ap-
plied to the subgraph indi-
cated by V0 and V1 and adds
the object marked with V1-R.
Applying rule sendNewMes-
sage thereafter adds all ele-
ments marked with V2 and
V2-R as well.

For a given meta-model, all available CPOs can be specified by a graph
transformation system.

Definition 2 (Graph transformation system). Given a set R of rules, a

graph transformation (sequence) G
R

=⇒ H consists of zero or more graph trans-
formation steps applying rules of R. A set R of graph rules, together with a
type graph TG, are called a graph transformation system GTS = (TG,R). A
GTS = (TG,R) is consistency-preserving w.r.t. MM if, for every graph G in

L(MM), all transformations G
R

=⇒ H yield a consistent graph, i.e., H is in
L(MM).



A modeling language may also be formally defined by a graph grammar GG
being a GTS = (TG,R) together with a start graph G0. It defines a modeling
language by all graphs G resulting from transformation sequences starting at

G0, that is, L(GG) = {G ∈ L(TG)|G0
R∗

=⇒ G}. A graph grammar conforms to
meta-model MM if L(GG) ⊆ L(MM).

4.3 Complement construction

Our model repair approach is mainly based on the complement construction.
Given an edit operation (EO), its complement w.r.t. some CPO can be computed.
This complement forms the RO to be performed. If an edit operation is already
consistency-preserving, it is also a CPO leading to an empty complement rule.

EOs are specified as sub-rules of corresponding CPOs. An EO has to be large
enough in the sense that it does not delete nodes that are used as source or target
for edges in the super-rule, i.e., it has to fulfill the dangling condition w.r.t. its
rule embedding. Otherwise, a complete complement rule cannot be constructed.

Definition 3 (Sub-rule). A rule rs = ((Ls, Rs), ACs) is a sub-rule of rule
r = ((L,R), AC) if Ls ⊆ L, Rs ⊆ R, the inclusion of rs in r fulfills the dangling
condition, and AC can be decomposed into ACs and a (possibly empty) rest
application condition.

Example 2 (Complement rules). A simple EO that just inserts a new operation
into an interface has to be complemented by doing so in all realizing classes. This
means that the computed RO has to be applied as often as possible to repair all
the affected classes. The left rule in Figure 10 shows the edit rule while the right
one shows the corresponding repair rule computed as its complement w.r.t. the
left rule in Figure 8.

Fig. 10. Adding an operation to an interface: sub-rule (left) and complement rule
(right)

The left rule in Figure 11 inserts a new message between two lifelines and
ignores the existence of the corresponding operation in the class model. Since
it does not delete anything, it trivially fulfills the dangling condition. The right
rule in Figure 11 shows its complement rule w.r.t. to the overall rule shown on
the right of Figure 8. It inserts the missing operation and its relation to the
message call.



Fig. 11. Sending a message: sub-rule (left) and complement rule (right)

Theorem 4.4 in [23] shows that, given a rule r with a sub-rule rs, there
is a canonical way to construct a rule r̄s with an overlap graph E such that
the sequential composition rs ∗E r̄s = r. Such a constructed rule r̄s is called
complement rule of rs w.r.t. r. Furthermore, Fact 4.8 in [23] states that any

transformation step G
r,m
=⇒ H can be decomposed into two steps G

rs,ms
=⇒ Ḡ and

Ḡ
r̄s,m̄s
=⇒ H of edit step and complement step such that m is an extension of ms

and r̄s is the complement rule of rs w.r.t. r.
To apply this result to model repair we have to do the following check: Given

G
rs,ms
=⇒ Ḡ we compute the difference of pre-conditions w.r.t. some G

r,m
=⇒ H.

This means that the match m has to complete the match ms for L \ Ls and all
AC \ACs have to be fulfilled.

If an edit rule is already consistency-preserving, it is a CPO as well. In this
case, the complement transformation would apply the empty rule, i.e., Ḡ = H.
Hence, our approach is stable in the sense of [11].

4.4 Sequential independence and confluence of transformations

Since the application of complement rules is meant to repair previous edit steps,
they usually depend on their edit operations and cannot be applied before the
edit step is performed. For example, a graph node has to be created first to
further connect it with other model parts. However, the application of a comple-
ment rule may be independent of all subsequent edit steps. In that case, a model
repair step is called side effect-free, and may be exchanged with subsequent edit
steps. This means that repairing steps may be performed flexibly throughout
the editing process, i.e., immediately after an inconsistent edit step or later –
allowing temporary inconsistencies.

Definition 4 (Sequential independence). Given two transformation steps

t1 : G1
r1,m1
=⇒ Ḡ2 and t2 : Ḡ2

r̄2,m̄2
=⇒ G3, the execution of t1; t2 is sequentially

independent if match m2 does not need any element of Ḡ2 newly created by
applying r1 and does not use any attribute changed in t1, i.e., t2 does not need
the preceding application of r1. Furthermore, match m1 is not destroyed by t2.
The rules r1 and r2 are sequentially independent if all sequences t1; t2 applying
first rule r1 and then r2 are sequentially independent.

Example 3 (Independent steps). Considering the edit steps applying first the left
rule in Figure 10 and then the left one in Figure 11, these two steps are sequen-



tially independent of each other since they do not overlap. Actually, any two
applications of these rules are sequentially independent of each other since they
act on different viewpoints, i.e, they can never overlap. An execution consisting
of an edit step and its repair step by applying the complement rule is usually
sequentially dependent. Consider e.g. the rules in Figures 11 where the message
is first inserted and then used to add a corresponding operation.

Checking the sequential independence of rules by hand is tedious. Fortunately
this is not necessary since the critical pair analysis (CPA) is a well-known tech-
nique to analyze potential conflicts and dependencies of transformation systems.
The CPA was originally introduced for term rewriting and later generalized to
graph transformation [24]. Henshin contains tool support for the CPA. If there
does not exist any critical pair for two given rules r1 and r2, all transforma-

tion pairs t1 : G
r1,m1
=⇒ H1 and t2 : G

r2,m2
=⇒ H2 applying these two rules are

independent of each other. In this case, the Local-Church-Rosser Property [19]
holds ensuring that two independent transformation steps may be executed in
any order yielding the same result, i.e., they are also sequentially independent
and confluent.

4.5 Change-preserving model repair

The main result in this paper is the following: Given a model change history by
a sequence of transformation steps where each rule has at least one complement,
each step can be complemented such that a consistent graph can be reached
finally. The following result ensures that our approach is fully consistent. To
show it we have to ensure that the repair steps are sequentially independent
from all edit steps following the edit step it repairs. In that case, repair steps
can be arbitrarily interleaved with these edit steps. Several repair steps, however,
may dependent on each other such as, for a method call in an interface class,
creating first the corresponding interface method and then all corresponding
methods in implementing classes.

Theorem 1 (Change-preserving model repair). Let be given a meta-model
MM , a graph transformation system GTS = (TG,R) with a set Rs ⊆ R of
subrules and Rs of all complement rules of Rs, a graph G in L(MM), and a

transformation sequence G
Rs=⇒ G0n. If all rule pairs (rsi , r̄sj ) in Rs × Rs for

i > j are sequentially independent then there exists a repairing transformation

sequence, i.e., a transformation sequence G0n
Rs=⇒ H such that graph H is in

L(MM).

This theorem tells us that a repair is easier if not too many edit steps have to
be considered. Its proof can be found in the appendix. The main proof idea is to
split each CPO into an EO and an RO which can be shifted after all EOs due
to the local Church-Rosser property.

Example 4 (Change-preserving model repair). The two subsequent edit steps in
our initial example lead both to inconsistencies (of different kinds). Each edit



rule is sequentially independent of its opposite repair rule (i.e., the repair rule
of the other edit rule) since it just inserts elements that are not needed by the
opposite repair rule.

5 Tool support and initial evaluation

Tool support. A first prototype implementation of change-preserving model re-
pair is available at [25]. It is based on the Eclipse Modeling Framework (EMF),
Papyrus, and Henshin and supports the following activities: (1) comparison of
model versions, (2) recognition of performed edit operations, and (3) provision
of concrete repair steps.

Initially the historic version V1 and the potentially inconsistent version V2 of
a model have to be compared. The modeler can choose between different compar-
ison algorithms, e.g. ID-based, signature-based, or similarity-based [26]. Having
the set of common model elements available, the tool derives the elementary
changes of versions V1 and V2, on the level of model elements, references and
attributes. We call this kind of change description the technical difference of V1

and V2.
For recognizing performed edit operations, the algorithm requires a rule set

containing all available EOs for a given model editor. Each edit operation pro-
duces a pattern of changes in the technical difference. There is an algorithm pre-
sented in [27] which describes how to transform a graph transformation-based
rule into a graph pattern which recognizes the corresponding set of changes in
the technical difference. In this way, we can recognize all performed EOs. By
hiding all those EOs that are already CPOs, only true sub-operations remain in
the technical difference showing some inconsistencies. Now the remaining EOs
are recognized on the remaining changes using the same algorithm. This even
works with incomplete sets of EOs, i.e. elementary changes which cannot be
recognized as EOs are ignored.

For each recognized EO we have to calculate all possible embeddings into
corresponding CPOs (Section 4.3). For each pair of CPO and EO rules, a corre-
sponding complement rule RO can be created, by removing all already executed
changes of the EO from the CPO.

Next, the available repair steps are determined, i.e. the complement rules still
have to be provided with parameters for the remaining changes. This means that
we have to find all complete matches of the LHS of an RO in the actual model
V2. Usually, a part of the match is already determined by the corresponding EO.
Each completed match is reported as a repair to the user. The tool can visualize
a selected repair by highlighting the parts in the model diagrams that will be
changed. The user can also test a repair by applying and, if necessary, revert-
ing it. The underlying graph transformation logic of the presented approach is
transparent to the tool user.

Initial evaluation. For an initial performance estimation, we applied our proto-
type to the class, sequence and state machine diagrams of the bCMS (Barbados



Crash Management System) [21] case study. The UML model V1 contains ap-
prox. 2600 model elements and 22.000 references. The difference to a model V2

has been computed in ≈ 2s and contains approx. 600 model elements and 1900
reference changes. 12 inconsistencies were introduced in this edit sequence. In-
cluding the EOs of our running example, there are 15 CPOs and 12 EOs. The
additional operations consider changes in state machines, e.g. dangling transi-
tions after deleting a state. The EO detection took ≈ 500ms and filters already
500 consistent changes of 50 steps. (Approx. 2000 changes are ignored since they
are not covered by the EOs provided.) The subsequent EO recognition took
≈ 100ms; it detects 60 changes performed by 12 steps. After the calculation of
the EO × CPO embeddings in ≈ 500ms, a total of 33 concrete repairs were
found. The initial performance estimation already allows some conclusions to be
made. The performance of the model difference calculation depends on the size
of models. The time for the repair calculation, however, mainly depends on the
size of the calculated difference and the number of inconsistencies.

To support larger rule sets efficiently, we intend to store rule embeddings in a
database. Furthermore, an incremental difference calculation and CPO detection
would be interesting for an online editing scenario, i.e. suggesting repairs during
the user edits the model.

6 Related work

Most of the existing model repair techniques can be categorized into syntactic,
rule- and search-based approaches [11]. In this section, we will compare our
approach to existing techniques of those categories.

Syntactic and rule-based approaches. A syntactic repair generator derives re-
pair plans by analyzing the consistency rules at specification time. In rule-based
approaches a repair tool is configured with a set of repair rules for frequently
occurring inconsistencies. Repair rules or plans are suggested and instantiated
at modeling time when inconsistencies occur.

Our approach is closely related to triple graph grammars (TGGs) [28] in the
sense that the consistency between two kinds of graphs is specified by rules, called
triple rules. Those rules can be used to evolve both related graphs simultaneously
in a consistent manner. If the source graph is changed independently by source
rules, the corresponding forward rules can be used to synchronize the target
graph. A corresponding result is shown in [29]. In this paper, we consider a more
general setting where graphs do not have to be sub-structured, edit operations
may contain add and delete actions, an edit rule may have several (or no) repair
rules (and CPOs), and complex application conditions may be used.

In a wider context, syntactic and rule-based approaches as presented in e.g.
[5–9, 30] are interactive and incremental since each inconsistency is repaired sep-
arately. While providing full control over the repair process, it may happen,
however, that the repair of existing inconsistencies leads to new ones. Criteria



for side-effect-free repair are usually not considered. Moreover, the change his-
tory is not taken into account to restrict the usually overwhelming number of
possible repair rules.

Search-based approaches. Search-based approaches such as [14–16] take the in-
consistent model as input and search for a consistent one which is usually related
to the original one by least changes. This problem is mostly solved by using a con-
straint solver. Supporting tools may be parameterizable through the definition
of valid edit operations giving the user the possibility to find favored solutions.
Current approaches, however, are somewhat restricted to handle small mod-
els only; otherwise the search space has to be restricted to user-defined upper
bounds w.r.t. instance size, back-tracking or time.

A search-based tool which considers the model history is Badger [16]. The
regression planning algorithm can take a variety of parameters to guide the
search process. One of them is to prioritize model elements by their version in the
model history, e.g., repairs should change preferably newer model elements and
keep the older ones. Therefore, the algorithm respects the temporal dimension
of the history but does not necessarily preserve the edit operations that have
taken place.

7 Conclusion

To handle model inconsistencies, there are often many possible repair actions to
consider. In this paper, we have proposed a change-preserving model repair ap-
proach to tackle this challenge. Based on the edit operations already performed,
model repairs are proposed building on the assumption that the latest change of
the model is the most significant. To use this approach, we have to do the fol-
lowing: For a given modeling language we specify a set of consistency-preserving
operations. For a given model editor we identify the set of allowed edit opera-
tions. The basic idea is to identify the history of performed edit operations since
the last consistent model state, and to analyze these operations for identifying
those causing inconsistencies. If an inconsistent edit operation turns out to be
a sub-rule of a consistency-preserving operation, the complement operation is
constructed which is able to repair this inconsistency. The soundness of our ap-
proach is shown based on the theory of graph transformation. A prototypical
implementation illustrates its practical applicability.

Our approach may be combined with other rule-based approaches: Since
rule-based approaches usually allow to choose among a large number of repair
operations, their selection needs more guidance. Preserving already performed
changes seems to be a reasonable criterion. Our approach supports to find out
if a repair operation is a complement of an edit operation such that their se-
quential combination leads to a consistency-preserving operation. Furthermore,
a change-preserving model repair process is side-effect-free if each edit operation
is independent of all repair operations of later applied edit operations. It is up



to future work to further investigate relations between existing rule-based ap-
proaches in different editing scenarios and thereby, integrate change-preservation
with other important aspects of model repair.
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Appendix

7.1 Proof

In the following, the proof of Theorem 1 is presented.

Proof. This result can be proven as follows: Given a transformation sequence

G0 = G00

rs1=⇒ G01

rs2=⇒ . . .
rsn=⇒ G0n, we are looking for a sequence G0n

¯rs1=⇒
G1n

¯rs2=⇒ . . .
¯rsn=⇒ Gn = H applying corresponding complement rules to each of

the source rules in the same order. Starting with the transformation

step t01 : G00

rs1=⇒ G01, we choose a com-
plement rule and apply it leading to the

transformation step t̄11 : G01

r̄s1=⇒ G1.

Now, the original step t02 : G01

rs2=⇒
G02 has to be shifted over the step t̄11.
This is possible since ts2 and t̄11 are
sequentially independent by assumption
and the Local-Church-Rosser Property

holds. Hence, there is a step t11 : G1

rs2=⇒
G12 which may be complemented by

step t̄22 : G12

r̄s2=⇒ G2. This procedure

G0

rs1 +3

r1
�'

G01

rs2 +3

r̄s1��

G02 . . .
rsn +3

r̄s1��

G0n

r̄s1��
G1

rs2 +3

r2
!)

G12 . . .
rsn +3

r̄s2��

G1n

r̄s2

��G2 . . .

rn
!)

. . .

r̄sn��
Gn

may be iterated for all further transformation steps t0i : G0(i−1)

rsi=⇒ G0i for
1 ≤ i ≤ n. First t0i is shifted over transformation t̄1(i−1); . . . ; t̄(i−1)(i−1). This
is possible since t0i (as well as its shifted equivalents, resp.) are sequentially in-
dependent of t̄1(i−1), . . . , and t̄(i−1)(i−1) by assumption. Hence, there is a step

tii : Gi−1

rsi=⇒ G(i−1)i which may be complemented by step t̄ii : G(i−1)i

r̄si=⇒
Gi. If the complement rule r̄si is sequentially independent of all original rules
rsk+1

, for k < n, its application may be shifted over theirs yielding transfor-

mation t̄in : G(i−1)n

r̄si=⇒ Gin. Composing all these transformations we obtain
t̄1n; ...; t̄nn : G0n =⇒ Gn = H.

7.2 Impression of the tool support

The screenshots in Figures 12 and 13 give an impression of the user interface of
our tool support. Let’s consider Figure 12 first: In the middle view, two different
model versions are shown. They show exactly the class diagrams depicted in
Figure 2. The upper view shows the inconsistent model as it arises after editing
and before repair. We see a graphical view on the left and a tree-based view
on the right. The model elements which are involved in the currently selected
repair and which cause inconsistencies are highlighted by red frames or just in red
(in case of a textual representation). The lower part depicts the historic model
version highlighting the original model elements that correspond to inconsistent
ones. On the right of the screenshot, the model repair view is shown for this
example. One repair activity is presented: It divides a list of all historic actions



from the list of three complementing actions. All these actions are given with
actual parameters. If the user selects this list, all these actions are performed.
In the lower part of the model repair view the CPOs and EOs that can be
recognized are listed.

The screenshot in Figure 13 shows the second part of our running example.
In the middle view, details of a sequence diagram and a class diagram are shown
highlighting the inconsistent addition of a send message without corresponding
operation. In this case, 4 complementing operations are needed.



Fig. 12. Screenshot of model repair tool support - Add operation



Fig. 13. Screenshot of model repair tool support - Send Message


