
Short-Cut Rules

Sequential Composition of Rules

Avoiding Unnecessary Deletions

Lars Fritsche1, Jens Kosiol2, Andy Schürr1, and Gabriele Taentzer2

1 TU Darmstadt
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de

2 Philipps-Universität Marburg
{kosiolje,taentzer}@mathematik.uni-marburg.de

Abstract. Sequences of rule applications in high-level replacement sys-
tems are difficult to adapt. Often, replacing a rule application at the
beginning of a sequence, i. e., reverting a rule and applying another one
instead, is prevented by structure created via rule applications later on
in the sequence. A trivial solution would be to roll back all applications
and reapply them in a proper way. This, however, has the disadvantage
of being computationally expensive and, furthermore, may cause the
loss of information in the process. Moreover, using existing constructions
to compose the reversion of a rule with the application of another one,
in particular the concurrent and amalgamated rule constructions, does
not prevent the loss of information in case that the first rule deletes
elements being recreated by the second one. To cope with both problems,
we introduce a new kind of rule composition through ‘short-cut rules’.
We present our new kind of rule composition for monotonic rules in
adhesive HLR systems, as they provide a well-established generalization
of graph-based transformation systems, and motivate it on the example
of Triple Graph Grammars, a declarative and rule-based bidirectional
transformation approach.

Keywords: Rule Composition · Amalgamated Rule · E-Concurrent Rule
· Triple Graph Grammars

1 Introduction

High-level replacement (HLR) systems [2, 3] are a useful generalization for
transforming various kinds of high-level structures, such as graphs, in a rule-
based manner. Transformation processes consist of sequences of rule applications.
These sequences effectively de-/construct and modify structures, yet, they also
implicitly create dependency relationships: an earlier rule application may be the
precondition for a later one. Often, these relationships prevent rule applications
at the beginning of a sequence to be replaced by another one, as reverting
the former would destruct preconditions used for transformations later in the
sequence. A trivial solution would be to roll back all applications that depend



2 L. Fritsche et al.

on each other, until reaching the one that is to be replaced, and reapply them
in a proper way. However, rolling back and recreating these sequences has the
disadvantage of being computationally expensive and, furthermore, may cause
the loss of information in the process. Thus, it would be highly beneficial to
replace rule applications in a – preferably also rule-based – way that preserves
the remaining sequence. Existing approaches to rule composition, namely the
parallel, concurrent, and amalgamated rule constructions [1–3], are not apt to
deal with that kind of dependency.

Hence, we introduce a novel kind of rule composition through ‘short-cut rules’
whose applications serve as an alternative to possibly long chains of replacement
actions. A short-cut rule composes the reversion of a monotonic rule, i. e., of
a rule which only creates structure, with the application of a second one. Yet,
doing this, the short-cut rule identifies elements, deleted by reverting the first
rule, with elements, created by the second one, hereby preserving them. This
preservation allows for applications of short-cut rules even in situations where the
reversion of the first rule itself is impossible. We accomplish this by pair-wisely
comparing the rules of a given HLR system searching for common substructures.
Consequently, we exploit this information for creating short-cut rules that preserve
those common substructures. While the approach is formalized for monotonic
rules in HLR systems in general, we use Triple Graph Grammars (TGGs) [9] as
example for demonstration purposes.

TGGs are an established formalism for the declarative description of complex
consistency relationships between two modelling languages with graph-like repre-
sentations. They are especially useful for efficiently checking and restoring the
consistency of a given pair of models [8] or for generating possible combinations
of consistent pairs of models; unfortunately, they do not offer adequate means for
the specification of arbitrarily complex editing operations that directly transform
one consistent pair of models into another consistent pair of models. With our
contribution we are able to solve a common problem of TGGs by using our novel
rule composition scheme to take a set of TGG rules as input and produce a set
of short-cut rules as output. The rule composition scheme guarantees that any
combination of inverse and normal applications of TGG rules can be replaced
by short-cut rules and may even be executed in several situations where the
inverse application is impossible. They, furthermore, have the additional advan-
tage of preserving some graph elements which otherwise would be deleted by
the corresponding inverse application of a TGG rule and be recreated by the
corresponding normal application of a TGG rule.

The main contributions of this paper are as follows: We illustrate the use of
short-cut rules in the context of TGGs (Sect. 2). We formalize the construction
of short-cut rules and prove the Short-Cut Theorem (Theorem 7), settling the
synthesizability of applications of monotonic rules into an application of a short-
cut rule and the analysability of applications of a short-cut rule into applications of
monotonic rules (Sect. 4). We formally compare our new kind of rule composition
with existing ones (Sect. 5). Furthermore, in Sect. 3 we recall transformation
rules and HLR systems. Section 6 concludes the paper and points to some future



Short-Cut Rules 3

work. Most of the proofs are presented in Appendices B to D. Appendix A shows
the construction of a short-cut rule at a detailed example.

2 Introductory Example

The construction and use of short-cut rules is motivated at the example of
consistency between a simplified class diagram and a custom documentation
structure. It is an excerpt of, and based on the example provided by Leblebici et
al. [7], yet, in a simplistic form to show the basic idea of our approach. Thus, it
contains no (propagation of) attributes, which will be covered in future work. Our
example is an excerpt from a consistency specification between a class diagram
and a documentation structure using Triple Graph Grammars (TGGs).

TGGs [9] are a declarative, rule-based bidirectional transformation approach
proposed by Schürr. Given two input meta-models, a TGG specification defines
consistency between instances of both. To this end, it consists of a finite set of
graph grammar rules that define how consistent pairs of both models co-evolve.
In order to relate elements from both sides, TGGs introduce a third meta-model,
which is referred to as the correspondence meta-model. It is used to connect
elements of both sides such that they become correlated and thus traceable.

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

f :
Folder

p :
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

c : 
Class

doc : 
Doc-File

L R

CreateRoot-Rule:

CreateSub-Rule:

CreateLeaf-Rule:

Fig. 1. Example: TGG Rules

Figure 1 shows the rule set for our example consisting of three TGG rules. The
first rule depicts the base TGG rule of the given rule set. Since its left-hand side
(LHS) L is empty, and thus no precondition exists, it can always and arbitrarily
often create a root Package together with a root Folder and a correspondence link
between both. Given the context from the LHS, the second rule creates a Package

and Folder hierarchy where every sub-folder has a Doc-File that may contain the
documentation of the corresponding Package. Finally, the third rule creates a
Class together with a corresponding Doc-File analogously to the Package and
Folder of the previous rule.

Given these rules, one can create consistent graph triples, such as those
shown in Fig. 2. The exemplary triple on the left consists of a hierarchy of three
Packages on the left side which are correlated to a similar hierarchy of Folders via



4 L. Fritsche et al.

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

pDoc : 
Doc-File

subF : 
Folder

subP : 
Package

subPDoc : 
Doc-File

cDoc : 
Doc-File

c : 
Class

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

subF : 
Folder

subP : 
Package

subPDoc : 
Doc-File

cDoc : 
Doc-File

c : 
Class

Fig. 2. Example: Consistent Triples

correspondence links. However, the Folders f and subF additionally contain their
own Doc-File. Thus, the triple was created via four consecutive applications of
TGG rules by applying first CreateRoot-Rule, followed by CreateSub-Rule twice
and finally CreateLeaf-Rule.

An important point about this transformation sequence is that it creates
entities for both the class diagram and the documentation structure simulta-
neously, but the resulting model does not contain any information about the
contents of the created elements. This means that, in practical applications,
the user may add data manually which is not correlated to the other side, like
layout information for the class diagram or textual descriptions as the contents of
Doc-Files. Due to this lack of correlation, one has to be careful on how to change
models in order to avoid unnecessary data loss. Given the model on the left side
of Fig. 2, a reasonable example for such a change would be the separation of
the first two hierarchy levels making the former sub-elements p and f to be root
elements by effectively deleting the connection to their former root elements (and
the superfluous Doc-File) as is depicted on the right side of Fig. 2. However, no
rule of the current grammar is able to perform such a change and to modify the
triple by hand is a tedious and error-prone task that can create triples which do
not longer comply with the TGG language. To solve this issue and to create a
triple graph which contains Package p and Folder f as additional roots (and is
unmodified otherwise) we have to proceed as follows: We have to roll back all
rule applications except the first one (CreateRoot-Rule) and recreate the deleted
parts of the graph triple from scratch again – despite the fact that the intended
modification affects only a small portion of the graph triple. Executing this
strategy with large hierarchies has two major disadvantages. First, it is tedious
and might be computationally expensive for complex models. Second, one may
loose a large amount of manually added data.

However, when studying the TGG rules of Fig. 1 in detail, one sees that
CreateRoot-Rule and CreateSub-Rule have common substructures, i. e., one can
find nodes and edges of the same type arranged in the same way in left- and
right-hand sides of both rules. In our example, such a common substructure of
their right-hand sides (RHS) R stems from the fact that both rules create a
Package and a Folder together with a correspondence link between those two
elements. It consists of the Folders f and Packages p but does not include the
Doc-File only contained by CreateSub-Rule.



Short-Cut Rules 5
L R

oldP :
Package

f : 
Folder

p: 
Package

oldF :
Folder

d : 
Doc

oldP :
Package

f : 
Folder

p: 
Package

oldF :
Folder

f : 
Folder

p: 
Package

newP :
Package

newF :
Folder

d : 
Doc

↔ 
Root-To-Sub-

SC-Rule:

Sub-To-Root-
SC-Rule: ↔ 

f : 
Folder

p: 
Package

newP :
Package

newF :
Folder

Fig. 3. Example: Short-Cut Rules (Interface K of Rules only Given Implicitly)

Taking a closer look at our example in Fig. 2, one can see how this insight
propagates to the model level and that the only difference between a root-Folder
and a sub-Folder is that the latter one possesses an additional Doc-File and has
an incoming hierarchy edge. Hence, one might want to exploit this knowledge by
replacing a TGG rule application somewhere in a sequence of rule applications
by another similar rule application such that formerly created elements are
possibly preserved and the need to roll back sub-sequences does not arise. In
the current case this would mean to preserve all elements that are contained
in the root elements by changing the CreateSub-Rule-application to become a
CreateRoot-Rule-application. Therefore, we have to use the common parts of both
rules to create a new rule which directly transforms the left to the right graph
triple depicted in Fig. 2, which again is an element of the language of the TGG of
Fig. 1. Thus, the result of the application of such a ‘short-cut rule’ looks like the
composition of the effects of the reverse application of CreateSub-Rule followed
by the application of CreateRoot-Rule. Implicitly, the application of the short-cut
rule operates as a kind of meta-rule on sequences of TGG rule applications as
it replaces an occurrence of a rule with the occurrence of another rule in an
arbitrarily long sequence of rule applications. Figure 3 depicts two short-cut
rules that enable to replace CreateRoot-Rule with CreateSub-Rule and vice versa.
In our example, Sub-To-Root-SC-Rule replaces an occurrence of CreateSub-Rule
with an occurrence of CreateRoot-Rule as shown in Fig. 4.

Root-Rule 
Application

Root-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Sub-Rule 
Application

Sub-Rule 
Application

Leaf-Rule 
Application

Root-Rule 
Application

Sub-To-Root-SC-
Rule Application

Fig. 4. Example: Application of Short-Cut Rule

It, thus, preserves the consistency of the graph triple of Fig. 2 by selecting
the elements p and f as new root elements and by deleting the now superfluous



6 L. Fritsche et al.

pDoc element associated with f as well as the edges connecting oldP and oldF
to p and f, respectively. This singular application of one short-cut rule stands in
contrast to the deletion and recreation of the affected triple graph from scratch.

3 Preliminaries

Since adhesive categories [5] provide a suitable formal framework generalizing
many instances of rule-based rewriting of graph-like structures (including triple
graphs), we present our work in that setting. This section shortly recalls the
definition of rule-based transformation systems. Adhesive categories and their
properties are recalled in Appendix B before the presentation of most of the
proofs in Appendices C and D.

Rules are a declarative way to define transformations of objects. They consist
of a left-hand side (LHS) L, a right-hand side (RHS) R, and a common subobject
K, the interface of the rule. In case of (typed) triple graphs, application of a
rule p to a graph G amounts to choosing an image of the rule’s LHS L in G,
deleting L \K at that image and adding a copy of R \K. This procedure can
be formalized, also in the more general setting of adhesive categories, by two
pushouts. Rules and their application semantics are defined as follows.

Definition 1 (Rules and adhesive HLR systems). Given an adhesive

category C, a rule (or production) p consists of three objects L, K, and R,

called left-hand side, interface (or gluing object), and right-hand side, and two

monomorphisms l : K ↪→ L, r : K ↪→ R. Given a rule p = (L l←−↩ K
r

↪−→ R), the
inverse rule p−1 is defined as p−1 = (R r←−↩ K

l
↪−→ L). A rule p = (L l←−↩ K

r
↪−→ R)

is called monotonic (or non-deleting) if l : K ↪→ L is an isomorphism. In that

case we just write r : L ↪→ R.

A subrule p′ of a rule p = (L l←−↩ K
r

↪−→ R) is a

rule p′ = (L′ l′←−↩ K ′
r′

↪−→ R′) with monomorphisms

u : L′ ↪→ L, w : K ′ ↪→ K, v : R′ ↪→ R such that

both squares in the diagram to the right are pullbacks

and a pushout complement for u ◦ l′ exists.

L′ K ′ R′

L K R

l′ r′

wu v

l r

A common kernel rule p for rules p1 and p2 is a common subrule of both.

An adhesive high-level replacement system (or HLR system for short) consists

of an adhesive category C and a set of rules P in that category.

Figures 1 and 3 depict rules in the category of triple graphs, the first ones are
monotonic, the second ones general rules. Together they form an HLR system.

In the following, we mainly interested in common kernel rules of monotonic
rules, which we will denote by k : L∩ ↪→ R∩. Note that, in adhesive categories
with initial object ∅, the trivial common kernel rule id∅ : ∅ ↪→ ∅ is a common
kernel rule for any two monotonic rules r1 and r2.

The next definition determines the semantics of the application of a rule.



Short-Cut Rules 7

Definition 2 (Transformation).

In an adhesive category C, given a rule p = (L l←−↩

K
r

↪−→ R), an object G, and a monomorphism m :
L ↪→ G, called match, a (direct) transformation
G⇒p,m H from G to H via p at match m is given

by the diagram to the right where both squares are

pushouts.

L K R

G D H

l r

m n

A rule p is called applicable at match m if the first pushout square above

exists, i. e., if m ◦ l has a pushout complement. When applying a rule p to an

object G, the arising object D is called the context object of the transformation.

We will often drop the subscripts m and/or p when specifying a direct transfor-
mation G⇒ H.

4 Construction Process

In this section, we formalize the construction of short-cut rules. As explained in
Sect. 2, a short-cut rule is a composition of a monotonic rule r2 with the inverse
rule r−1

1 of a monotonic rule r1. The composition is done in such a way that
the short-cut rule may preserve certain elements which an inverse application
of r1 would delete and an application of r2 would recreate. The extent to which
preservation of elements takes place is flexible, depending on a chosen common
kernel rule of the two rules. In the following, we first present the construction of a
short-cut rule given a common kernel rule. Afterwards, we prove the correctness
of the construction and discuss its merits.

We use common kernel rules to construct short-cut rules. Given a common
kernel rule k of monotonic rules r1 and r2, their short-cut rule r−1

1 nk r2 arises
by gluing r−1

1 and r2 along k. The LHS of k contains the information how to
glue r−1

1 and r2 to receive the LHS L and the RHS R of the short-cut rule
r−1

1 nk r2. I. e., r−1
1 nk r2 is constructed in such a way, that a match for it

consists of matches for r−1
1 and r2 which intersect in the LHS of k. The RHS

of k contains the information how to construct the interface K of the short-cut
rule r−1

1 nk r2. In case of (triple) graphs, elements of R∩ \ L∩ are included in
K, i. e., R∩ \ L∩ specifies exactly those elements that would have been deleted
by r−1

1 and recreated by r2. Hence, they are to be preserved when applying the
short-cut rule.

Definition 3 (Short-cut rule). In an adhesive category C, given two mono-

tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the short-cut rule r−1
1 nk r2 := (L l←−↩ K

r
↪−→ R) is computed by executing

the following steps:

1. The union L∪ of L1 and L2 along L∩ is computed as pushout (2) in Fig. 5.

2. The LHS L of r−1
1 nk r2 is constructed as pushout (2) + (3a) or equivalently

just as pushout (3a) in Fig. 5.



8 L. Fritsche et al.

3. The RHS R of r−1
1 nk r2 is constructed as pushout (2) + (3b) or equivalently

just as pushout (3b) in Fig. 5.

4. The interface K of r−1
1 nk r2 is constructed as pushout (4) in Fig. 6.

5. Morphisms l, r : K → L, R are obtained by the universal property of K.

R∩

(1a) L∩ (1b)

R1 L1 (2) L2 R2

(3a) (3b)

L L∪ R

vR2vR1

k

uL2uL1

jR1 jR2

r1

jL1

r2

jL2

r′1 r′2

Fig. 5. Construction of LHS and RHS of short-cut
rule r−1

1 nk r2

L1

L∩ (2) L∪

L2

(4)

R∩ K

uL1

uL2

k

zR∩

zL∪

jL1

jL2

Fig. 6. Construction of inter-
face K of r−1

1 nk r2

The following Lemma ensures that short-cut rules are rules in the sense of
Definition 1.

Lemma 4 (Monomorphisms). In an adhesive category C, given two mono-

tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the induced morphisms l, r : K → L, R in the short-cut rule r−1
1 nk r2 are

monomorphisms.

Example 5. First, CreateRoot-Rule is a (non-trivial) common kernel rule for
CreateSub-Rule and itself. CreateRoot-Rule is embedded into itself via the identity
morphisms and its RHS may be mapped to nodes p of type Package and f of
type Folder in the RHS of CreateSub-Rule.

Executing the above construction with CreateRoot-Rule and CreateSub-Rule

with CreateRoot-Rule as common kernel rule results in Root-To-Sub-SC-Rule

as displayed in Fig. 3. Details of the underlying calculations are presented in
Appendix A.

The next definition relates common kernel rules for rules r1, r2 with sequences
of applications of r−1

1 and r2.

Definition 6 (Compatibility).



Short-Cut Rules 9

Given a sequence G1 ⇒r−1
1

G ⇒r2 G2
of rule applications with matches m1
and m2, where rules r1 and r2 are

monotonic, and a common kernel rule

k : L∩ ↪→ R∩ for these rules, then k is

called compatible with the application

sequence if the resulting square (5) in

the diagram to the right is a pullback.

L∩

R1 L1 (5) L2 R2

G1 G G2

uL2uL1

r1

n1

r2

m2m1 n2

Compatibility as defined above ensures the existence of a unique morphism
h : L∪ ↪→ G such that n1 = h ◦ jL1 and m2 = h ◦ jL2 (compare pushout square
(2) in Fig. 5). Moreover, in adhesive categories h is a monomorphism. Note
that, given a sequence of rule applications, a compatible common kernel rule can
always be obtained by computing L∩ and the corresponding embeddings into
L1, L2 as pullback and setting R∩ = L∩ (with the embedding being the identity).

The following Short-cut Theorem is our main result. Its synthesis part states
that an inverse application of a monotonic rule followed by an application of a
monotonic rule may indeed be replaced by an application of a short-cut rule. Its
analysis part states that the application of a short-cut rule may be split into the
reverse application of a monotonic rule followed by the application of a second
one if the reverse application of the first rule is possible at all. Its proof makes use
of a technical lemma, stating the equivalence of the existence of certain pushout
complements, whose statement we postpone towards the end of this section. If
analysis is possible then synthesis and analysis are inverse to each other.

Theorem 7 (Short-cut Theorem). In an adhesive category C, let ri : Li ↪→
Ri, i = 1, 2, be two monotonic rules, k : L∩ ↪→ R∩ a common kernel rule for

them, and r−1
1 nk r2 the corresponding short-cut rule. Then the following holds:

1. Synthesis: For each transformation sequence G1 ⇒r−1
1 ,m1

G ⇒r2,m2 G2
compatible with k there exists a direct transformation G1 ⇒r−1

1 nkr2,m′1
G2

with context object G′ and a monomorphism g : G ↪→ G′, s. t. m′1 ◦ jR1 = m1.
2. Analysis: Given a direct transformation G1 ⇒r−1

1 nkr2,m′1
G2 with context

object G′ such that a pushout complement for m1 ◦r1 : L1 ↪→ G1 exists, where

m1 = m′1 ◦ jR1 , then there exists a transformation sequence G1 ⇒r−1
1 ,m1

G⇒r2,m2 G2 compatible with k and a monomorphism g : G ↪→ G′.
3. Correspondence: In those cases, where the pushout complement necessary

for the analysis construction exists, the synthesis and analysis constructions

are inverse to each other (up to isomorphism).

Proof. 1. Let a transformation G1 ⇒r−1
1 ,m1

G⇒r2,m2 G2 be given. The outer
square in Fig. 7 is the pushout given by the application of r−1

1 with match m1
and (3a) is the pushout used to define L. Since the transformation sequence
is compatible with k, a unique monomorphism h : L∪ ↪→ G with n1 = h ◦ jL1

exists. Since (3a) is a pushout, m′1 : L ↪→ G1 exists. It is a monomorphism
since G ↪→ G1 and m1 : R1 ↪→ G1 are monomorphisms (Fact 17, Item 4). By



10 L. Fritsche et al.

pushout decomposition, the resulting square (6) + (7a) is a pushout. Define
(6) again by taking the pushout. Like above, the resulting map G′ ↪→ G1 is a
monomorphism and square (7a) is a pushout by pushout decomposition. Thus,
rule r−1

1 nk r2 is applicable at G1 with match m′1 and G′ is the context object
of the resulting transformation. Moreover, G embeds into G′ by g : G ↪→ G′.
Comparing Fig. 8, an analogous argument shows that G2 is the pushout
of r : K ↪→ R and n′1 : K ↪→ G′. Altogether, the resulting transformation,
applying r−1

1 nk r2 at match m′1, consists of (7a) and (7b).
2. Let a direct transformation G1 ⇒r−1

1 nkr2,m′1
G2 with context object G′ be

given. Defining m1 = m′1 ◦ jR1 gives a match for r−1
1 in G1. By assumption,

the rule r−1
1 is applicable at that match, i. e., a pushout complement for

m1 ◦ r1 : L1 ↪→ G1 exists (compare again Fig. 7). Lemma 9 states that the
existence of such a pushout complement is equivalent to the existence of
a pushout complement for n′1 ◦ zL∪ : L∪ ↪→ G′ (with arising objects being
isomorphic). Therefore, application of r−1

1 at match m1 results in an object
G with morphism g : G → G′ to the context object of the transformation
G1 ⇒r−1

1 nkr2,m′1
G2. The morphism g is a monomorphism, since pushout (6)

is a pushout along the monomorphism zL∪ .
Define m2 := h ◦ jL2 : L2 ↪→ G as match for r2 in G (compare again Fig. 8).
Then, since (3b), (6), and (7b) are pushouts, the outer square is also a pushout,
and hence G2 is the result of applying r2 with match m2 at G. Moreover, by
definition of m2, the resulting transformation sequence is compatible to k.

3. If the analysis construction is possible, the synthesis and analysis constructions
are inverse to each other because pushouts and pushout complements are
unique (up to isomorphism) in adhesive categories. ut

L1 L∪ G

(6)

(3a) K G′

(7a)

R1 L G1

jL1

r1

n1

jR1

m1

h

zL∪

n′1

l

m′1

g

Fig. 7. Synthesis and Analysis: formation
of context object G′

L2 L∪ G

(6)

(3b) K G′

(7b)

R2 R G2

jL2

r2

m2

jR2

n2

h

zL∪

n′1

r

n′2

g

Fig. 8. Synthesis and Analysis: result of
rule application

The following Lemma states that, generally, the monomorphism g : G ↪→
G′, arising in both the synthesis and the analysis construction above, is no



Short-Cut Rules 11

isomorphism. Thus, in case of (triple) graphs, applying a short-cut rule instead
of the original rules actually preserves elements, namely the elements of G′ \G.

Lemma 8 (Preservation). In an adhesive category C, let ri : Li ↪→ Ri, i =
1, 2, be two monotonic rules and k : L∩ ↪→ R∩ a common kernel rule for them. Let

g : G ↪→ G′ be a monomorphism arising by synthesis of a transformation sequence

G1 ⇒r−1
1 ,m1

G⇒r2,m2 G2 or by analysis of a transformation G1 ⇒r−1
1 nkr2,m′1

G2

(compare Theorem 7). Then g is an isomorphism iff k is.

Before concluding this section with a discussion of the value of short-cut rules,
we state the Lemma used in the proof of Theorem 7. A proof for it is given in
Appendix D where additionally the notion of initial pushouts [2], on which the
proof depends, is recalled.

Lemma 9 (Equivalence of PO-complements). In any adhesive category with

initial pushouts, given a commutative diagram like Fig. 7 where (3a) and (7a) are

pushouts, a pushout complement G for m1◦r1 : L1 ↪→ G1 is a pushout complement

for n′1 ◦ zL∪ : L∪ ↪→ G′ and vice versa. Particularly, a pushout complement for

m1 ◦ r1 : L1 ↪→ G1 exists iff a pushout complement for n′1 ◦ zL∪ : L∪ ↪→ G′ exists.

Benefits and Limitations of Short-Cut Rules. We motivated the use of short-cut
rules twofold. That the application of short-cut rules generally preserves elements
instead of deleting and recreating them, was stated in Lemma 8. That the
application of a short-cut rule may actually amount to a ‘short-cut’ is due to the
asymmetry of synthesis and analysis in the Short-Cut Theorem. Application of the
short-cut rules Sub-To-Root-SC and Root-To-Sub-SC (Fig. 3) with the obvious
matches transforms between the two consistent triples depicted in Fig. 2. But in
either case, dangling edges prevent the analysis of the short-cut rule’s application
into a sequence of two rule applications. Thus, the subsequent applications of
rules in the transformation chain (compare Fig. 4) would need to be revoked
first, before a reverse application of the respective second rule application is
possible in the first place. However, not every application of a short-cut rule, that
may not be analyzed, is a ‘short-cut’. For example, applying the short-cut rule
Root-To-Sub-SC to the left instance in Fig. 2, but with nodes rootP and subP
of type Package and rootF and subF of type Folder as match instead, creates
additional container edges for nodes subP and subF and a second Doc-File inside
of node subF. This instance is not an element of the language defined by the
original HLR system (Fig. 1). This stems from the fact that the short-cut rule
Root-To-Sub-SC revokes an application of the rule CreateRoot, while the elements
chosen to be revoked by the match have actually been created using the rule
CreateSub.

A first possible strategy to resolve that issue is the development of application
conditions [4] for short-cut rules that ensure that a short-cut rule is only applicable
at matches on which it revokes the proper rule. For example, the short-cut rule
Root-To-Sub-SC could be equipped with an application condition forbidding
the existence of incoming edges to nodes p and f, respectively. Another possible
strategy is the use of marked TGGs and trace information [6] to the same end,



12 L. Fritsche et al.

i. e., to only allow those matches for a short-cut rule where the rule that was
actually used to create the structure is revoked. We plan to further elaborate
and compare between both strategies as future work. Our aim is to arrive at
short-cut rules whose application does not desert from the language defined by
the HLR system from which the short-cut rules were derived.

5 Related Work: Comparison to other Formalisms of

Rule-Composition

In the literature, there exist several formalisms for composition of rules, most
importantly parallel, concurrent, and amalgamated rules [1–3]. We relate our
construction of short-cut rules to these other formalisms. A common difference to
short-cut rules is that the parallel, concurrent, and amalgamated rule construc-
tions are defined for general rules, whereas our construction of short-cut rules is
restricted to the case of monotonic rules. Therefore, in this section, we first recall
the relevant constructions generally and then relate these to our construction of
short-cut rules in the special case of monotonic rules.

The parallel rule of two rules combines their respective actions into one rule.
Two independent direct transformations arising by applications of these rules
may alternatively be replaced by an application of their parallel rule [2].

Definition 10 (Parallel rule). Given an adhesive category C with binary

coproducts, the parallel rule p1 + p2 of two rules pi = (Li
li←−↩ Ki

ri
↪−→ Ri), i = 1, 2,

is defined by p1 +p2 = (L1 +L2
l1+l2←−−−↩ K1 +K2

r1+r2
↪−−−→ R1 +R2), where + denotes

the coproduct or the induced morphism, respectively.

In categories with strict initial object, i. e., with initial object ∅ where each
morphism into ∅ is an isomorphism, short-cut rules along the trivial common
kernel rule are the same as parallel rules. This is, e. g., the case in the category of
(triple) graphs, where the empty (triple) graph is the (only) strict initial object.

Proposition 11 (Relation to parallel rule). Let two monotonic rules ri :
Li ↪→ Ri, i = 1, 2, in an adhesive category C with strict initial object ∅ be given.

Then, for the trivial common kernel rule id∅ : ∅ ↪→ ∅, the short-cut and the

parallel rule coincide, i. e., r−1
1 + r2 = r−1

1 nid∅ r2.

Like the parallel rule, a so-called E-concurrent rule combines the action of two
rule applications into the application of one rule. But here, the rule applications
may be sequentially dependent [2]. An E-dependency relation encodes this
possible dependency. The definition of E-dependency relations and E-concurrent
rules assumes a given class E of pairs of morphisms with the same codomain.

Definition 12 (E-dependency relation and E-concurrent rule). Given

two rules pi = (Li
li←− Ki

ri−→ Ri), i = 1, 2, an object E with morphisms e1 :
R1 → E and e2 : L2 → E is an E-dependency relation for p1 and p2 if



Short-Cut Rules 13

(e1, e2) ∈ E and the pushout complements (8a) and (8a) over K1
r1−→ R1

e1−→ E

and K2
l2−→ L2

e2−→ E as depicted below exist.

Given an E-dependency relation (e1, e2) ∈ E for rules p1, p2, the E-concurrent
rule p1 ∗E p2 is defined by p1 ∗E p2 := (L l◦k1←−−− K

r◦k2−−−→ R) as shown below, where

(9a) and (9b) are pushouts and (10) is a pullback.

L1 K1 R1 L2 K2 R2

(9a) (8a) (8b) (9a)

L C1 E C2 R

(10)

K

l1 r1

e1 e2

l2 r2

l r

k1 k2

The amalgamated rule combines the actions of two, maybe parallel dependent,
rule applications into one rule [1, 3].

Definition 13 (Amalgamated rule).

Given a common subrule p = (L l←−↩ K
r

↪−→
R) of rules pi = (Li

li←−↩ Ki
ri

↪−→ Ri), i =
1, 2, the amalgamated rule p1 ⊕p p2 =

(L′ l′←−↩ K ′
r′

↪−→ R′) is constructed by taking

the three pushouts depicted to the right,

where morphisms l′, r′ are given by the

universal property of pushout object K ′.

L K R

L1 K1 R1

L2 K2 R2

L′ K ′ R′

l r

l2 r2

l1 r1

l′ r′

We now relate short-cut rules to E-concurrent and amalgamated rules of
rules, where the first rule only deletes and the second rule only creates. Further,
we take E to be the class of pairs of morphisms which are jointly epimorphic
and where both morphisms are monomorphisms, i. e., the following statements
for concurrent rules hold under that assumption. To begin, both concurrent and
amalgamated rules “degenerate” in that setting. They are merely constructed as
sums over constant rules.

Lemma 14 (Degeneration). Let two monotonic rules ri : Li ↪→ Ri, i = 1, 2,
in an adhesive category C be given. Then the classes of E-concurrent rules and

amalgamated rules for r−1
1 and r2 coincide. In particular, they both coincide with

C :=
{

r−1
1 ⊕p r2 | p = (X1

x1←−↩ X
x2

↪−→ X2), x1, x2 isomorphisms, and p common

subrule of r1, r2
}
, the class of rules amalgamated along a common constant

subrule of r−1
1 and r2.

As a consequence of the above Lemma, in our context every E-concurrent
or amalgamated rule can be constructed as a short-cut rule. On the contrary,
concrete examples show that short-cut rules exist which cannot be constructed
as E-concurrent or amalgamated rule (and hence neither as parallel rule).



14 L. Fritsche et al.

Proposition 15 (Subsumption). Let two monotonic rules ri : Li ↪→ Ri, i =
1, 2, in an adhesive category C be given. Then every E-concurrent or amalgamated

rule for r−1
1 and r2 coincides with a short-cut rule for them, but generally not the

other way around, i. e., generally the class C of E-concurrent and amalgamated

rules for r−1
1 and r2 (Lemma 14) is properly contained in the class C ′ := {r−1

1 nk

r2 | k : L∩ ↪→ R∩ is a common kernel rule for r1, r2} of short-cut rules for r−1
1

and r2.

Idea of Proof. To show the containment relationship, it suffices to check that
r−1

1 ⊕pr2 = r−1
1 npr2 for a common constant subrule p of r−1

1 and r2 (in particular,
p is a common kernel rule for r1 and r2).

As stated in Example 5, one computes that Root-To-Sub-SC-Rule is the
short-cut rule for the inverse rule of CreateRoot-Rule and CreateSub-Rule along
CreateRoot-Rule as common kernel rule. But their parallel rule and the only
possibility for an amalgamated or E-concurrent rule is the second rule depicted
in Fig. 9, which differs from the short-cut rule in its interface graph. ut

L RK

→

→
Root-To-Sub-

SC-Rule:

Parallel Rule:
E-Concurrent Rule:
Amalgamted Rule:

f : 
Folder

p: 
Package

newP :
Package

newF :
Folder

d : 
Doc

f : 
Folder

p : 
Package

newP :
Package

newF :
Folder

f : 
Folder

p: 
Package

newP :
Package

newF :
Folder

→

→
f’ : 

Folder
p’ : 

Package

newP :
Package

newF :
Folder

d : 
Doc

f : 
Folder

p : 
Package

newP :
Package

newF :
Folder

newP :
Package

newF :
Folder

Fig. 9. Relating short-cut rule to other formalisms of rule composition

6 Conclusion

In this paper, we formally introduced short-cut rules for monotonic rules in
adhesive HLR systems, a novel kind of rule composition. We proved that short-cut
rules preserve information instead of deleting elements and recreating them again,
when revoking a transformation and applying another one instead. Additionally,
we gave examples using a TGG where applying a short-cut rules spares one from
rolling back whole chains of transformations, thus providing ‘short-cuts’ when
revising those. Moreover, we proved short-cut rules to differ from the already
established formalizations for composition of rules, i. e., the parallel, concurrent,
and amalgamated rules.

Besides developing language-preserving short-cut rules (as already discussed
at the end of Sect. 4), we plan to advance the theory of short-cut rules by
respecting possible application conditions of the involved rules or generalizing it
to general rules. On the practical side, we plan to operationalize short-cut rules
stemming from TGGs to enhance model synchronization.



Short-Cut Rules 15

Acknowledgments This work was partially funded by the German Research
Foundation (DFG), project “Triple Graph Grammars (TGG) 2.0”.

References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations. A
synchronization mechanism. Journal of Computer and System Sciences 34(2),
377–408 (1987)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

3. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.:M-adhesive trans-
formation systems with nested application conditions. Part 1: parallelism,
concurrency and amalgamation. Mathematical Structures in Computer Science
24(4), 240406 (2014)

4. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science
19(2), 245–296 (2009)

5. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical
Informatics and Applications 39(3), 511–545 (2005)

6. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging
incremental pattern matching techniques for model synchronisation. In: de Lara,
J., Plump, D. (eds.) 10th International Conference on Graph Transformation.
Lecture Notes in Computer Science, vol. 10373, pp. 179–195. Springer (2017)

7. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated
triple graph grammars: Formal foundation and application to visual language
translation. Journal of Visual Languages & Computing 42, 99–121 (2017)

8. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model Consistency Checking Using
Triple Graph Grammars and Linear Optimization Techniques. In: Huisman,
M., Rubin, J. (eds.) Proceedings of the 20th International Conference on
Fundamental Approaches to Software Engineering. Lecture Notes in Computer
Science, vol. 10202, pp. 191–207. Springer (2017)

9. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in
Computer Science. Lecture Notes in Computer Science, vol. 903, pp. 151–163.
Springer (1995)



16 L. Fritsche et al.

A Detailed Example for Short-Cut Rule Construction

In this section, we illustrate our construction of short-cut rules with a detailed
example. Concretely, we flesh out the calculations omitted in the presentation of
Example 5 in the main text.

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

f : 
Folder

p : 
Package

Fig. 10. CreateRoot-Rule as common kernel rule for CreateSub-Rule and itself (rules
depicted top down)

First, CreateRoot-Rule is a (non-trivial) common kernel rule for CreateSub-
Rule and itself, as depicted in Fig. 10. Here, and in the following figures, morphisms
are indicated by the names of the elements. Hence, CreateRoot-Rule is embedded
into itself via the identity morphisms and its RHS is mapped to nodes p of type
Package and f of type Folder in the RHS of CreateSub-Rule.

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

doc : 
Doc-File

Fig. 11. Construction of LHS and RHS of a short-cut rule

Next, computing L∪ and the LHS and RHS of the short-cut rule is done by
computing the three pushouts as depicted in Fig. 11. It is a concrete instantiation
of the lower part of the diagram depicted in Fig. 5. The two pushouts to the left
and in the middle are pushouts along the empty triple graph, i. e., the respective



Short-Cut Rules 17

objects are just copied next to each other. The pushout to the right is a pushout
along an isomorphism, hence the resulting morphism to the very right is an
isomorphism, too.

f : 
Folder

p : 
Package

supF : 
Folder

supP : 
Package

supF : 
Folder

supP : 
Package

f : 
Folder

p : 
Package

Fig. 12. Construction of the interface of a short-cut rule

Lastly, the interface of the short-cut rule is calculated as pushout as depicted
in Fig. 12. It is a concrete instantiation of the diagram depicted in Fig. 6. As
pushout along the empty triple graph, again, the resulting triple graph consists of
copies of the two triples at the lower left and the upper right. The monomorphisms
from the interface into the LHS and RHS computed above, are, again, indicated by
the names of the nodes. Thus, the resulting short-cut rule is Root-To-Sub-SC-Rule
as displayed in Fig. 3 or in the upper part of Fig. 9.

B Adhesive Categories

In this section, we recall adhesive categories and those of their properties that we
make use of in the proofs presented in Appendices C and D. Adhesive categories
can be understood as categories where pushouts along monomorphisms behave
like pushouts along injective maps in the category of sets. The definition of an
adhesive category uses the notion of van Kampen squares.

Definition 16 (Van Kampen square and adhesive category). A pushout

diagram as depicted in Fig. 13 is a van Kampen square if for every commutative

cube over it (like depicted in Fig. 14) where the backfaces are pullbacks, the front

faces are pullbacks iff the top face is a pushout.

A category C is called adhesive if

1. C has pushouts along monomorphisms (i. e., pushouts whenever at least one

of the two morphisms f or m in Fig. 13 is a monomorphism),

2. C has pullbacks, and

3. pushouts along monomorphisms are van Kampen squares.



18 L. Fritsche et al.

A B

C D

f

m

n

g

Fig. 13. A pushout square

A′

C′ B′

D′

A

C B

D

f ′ m′

a

n′

c

g′

b

d

f m

n g

Fig. 14. Commutative cube over pushout square

Important examples of adhesive categories include the categories of sets, of
(typed) graphs, and of (typed) triple graphs [2, 5]. We will use the following
properties of adhesive categories frequently:

Fact 17 (Properties of adhesive categories). If C is an adhesive category,

the following properties hold [5]:

1. Monomorphisms are stable under pushout, i. e.,

whenever m (or f) is a monomorphism in the

pushout diagram to the right, n (or g) is a monomor-

phism. Moreover, pushouts along monomorphisms

are pullbacks.

A B

C D

f

m

n

g

2. If f is a monomorphism (compare the diagram above), pushout complements

for n ◦ f are unique (up to isomorphism).
3. The category C is balanced, i. e., each morphism which is a mono- and an

epimorphism is already an isomorphism.
4. The subobjects of an object in an adhesive category form a distributive lattice.

Given two subobjects a, b : A, B ↪→ C of an object C in category C, their

meet A∩B is given by taking the pullback of a and b and their join A∪B by

taking the pushout of their meet. Particularly, the join A ∪B is a subobject

of C.

While every pushout along a monomorphism is a pullback in an adhesive
category, not every pullback along a monomorphism is a pushout again. The
following Corollary characterizes a special situation where a pullback already is
a pushout.

Corollary 18 (Pullbacks as pushouts). In any adhesive category C, let

(e1, e2) : L1, L2 ↪→ E be a pair of jointly epimorphic morphisms such that both of

them are monomorphisms. Then E is (isomorphic to) the pushout of the pullback

of (e1, e2).

Proof. Given the diagram below, where P arises as pullback of e1, e2, Q as
pushout of p1, p2, and the morphism h from the universal property of Q, we
show that h is an isomorphism. Since adhesive categories are balanced (Fact 17,
Item 3), it suffices to show that h is a monomorphism and an epimorphism.



Short-Cut Rules 19

L1

P Q E X

L2

p1

p2

q1
e1

q2 e2

h

f

g

Since e1, e2 are monomorphisms, the morphism h is a monomorphism (Fact 17,
Item 4). Given two morphisms f, g : E → X with f ◦ h = g ◦ h, it follows that

f ◦ h = g ◦ h⇒ f ◦ h ◦ q1 = g ◦ h ◦ q1

⇒ f ◦ e1 = g ◦ e1

and analogously f ◦ e2 = g ◦ e2. Since e1, e2 are jointly epimorphic, it follows that
f = g. Thus, h is an epimorphism. ut

C Detailed Proofs

This section contains the proofs that where omitted in the presentation of
the paper except for the proof of Lemma 9 which is presented separately in
Appendix D. We mainly just repeat the statements to be proven and give the
proofs subsequently. We follow the order in which the statements occur in the
paper.

Lemma 4 (Monomorphisms). In an adhesive category C, given two mono-

tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the induced morphisms l, r : K → L, R in the short-cut rule r−1
1 nk r2 are

monomorphisms.

Proof. Since (1b)+(3b) is a pushout along a monomorphisms, it is also a pullback
(Fact 17, Item 1), namely of the two monomorphisms L∪ ↪→ R and R∩ ↪→ R.
Hence, there exists a unique monomorphism r embedding the pushout object K
of L∩ ↪→ R∩ and L∩ ↪→ L∪ into R such that the resulting diagrams commute
(see Fact 17, Item 4). Analogously, K embeds into L. ut

Lemma 8 (Preservation). In an adhesive category C, let ri : Li ↪→ Ri, i =
1, 2, be two monotonic rules and k : L∩ ↪→ R∩ a common kernel rule for them. Let

g : G ↪→ G′ be a monomorphism arising by synthesis of a transformation sequence

G1 ⇒r−1
1 ,m1

G⇒r2,m2 G2 or by analysis of a transformation G1 ⇒r−1
1 nkr2,m′1

G2

(compare Theorem 7). Then g is an isomorphism iff k is.

Proof. The morphism g stems from first computing pushout (4) along k : L∩ ↪→
R∩ in Fig. 6 and pushout (6) along zL∪ : L∪ ↪→ K in Fig. 7, subsequently. Since
pushouts along isomorphisms result in isomorphisms, g is an isomorphism if k is
one. The other way around, pushouts (4) and (6) are pullbacks in an adhesive



20 L. Fritsche et al.

category and pullbacks along isomorphisms result in isomorphisms again. Thus,
if g is an isomorphism, first zL∪ and subsequently k are both isomorphisms,
too. ut

Proposition 11 (Relation to parallel rule). Let two monotonic rules ri :
Li ↪→ Ri, i = 1, 2, in an adhesive category C with strict initial object ∅ be given.

Then, for the trivial common kernel rule id∅ : ∅ ↪→ ∅, the short-cut and the

parallel rule coincide, i. e., r−1
1 + r2 = r−1

1 nid∅ r2.

Proof. In case of monotonic rules r−1
1 + r2 = (R1 + L2

r1+l2←−−−↩ L1 + L2
l1+r2

↪−−−→
L1 + R2), where l1, l2 are isomorphisms. Calculating r−1

1 nk r2, first the pushout
(2) in Definition 3 leads to L∪ = L1 +L2 and jLi

being the coprojection of Li into
the coproduct, i = 1, 2. It is easy to check that pushouts (3a) and (3b) are given
by R1 + L2 and L1 + R2, respectively, with morphisms r1 + l2 : L∪ = L1 + L2 ↪→
R1 + L2 and l1 + r2 : L∪ = L1 + L2 ↪→ L1 + R2, respectively. Furthermore,
computing pushout (4) leads to K = L∪ = L1 + L2 since id∅ : ∅ ↪→ ∅ is the
identity morphism. Thus, r−1

1 nid∅ r2 = r−1
1 + r2. ut

As was already stated in the main text, the next Lemma and Proposition
assume E to be the class of pairs of morphisms which are jointly epimorphic and
where both morphisms are monomorphisms.

Lemma 14 (Degeneration). Let two monotonic rules ri : Li ↪→ Ri, i = 1, 2,
in an adhesive category C be given. Then the classes of E-concurrent rules and

amalgamated rules for r−1
1 and r2 coincide. In particular, they both coincide with

C :=
{

r−1
1 ⊕p r2 | p = (X1

x1←−↩ X
x2

↪−→ X2), x1, x2 isomorphisms, and p common

subrule of r1, r2
}
, the class of rules amalgamated along a common constant

subrule of r−1
1 and r2.

Proof. We show that both the classes of amalgamated and E-concurrent rules
coincide with the class C.

First, by definition every element of C is an amalgamated rule for r−1
1 and

r2. For the converse, compare Fig. 15 which depicts an amalgamation along a
subrule p = (L l←−↩ K

r
↪−→ R) of r−1

1 and r2. Since r1, r2 are monotonic, both l1
and l2 are isomorphisms. Hence, l and r arise as pullbacks of isomorphisms and,
consequently, they both are isomorphisms. Thus, any common subrule p of p−1

1
and p2 is of the form p = (X1

x1←−↩ X
x2

↪−→ X2) with x1, x2 being isomorphisms.
Consequently, p′ = p−1

1 ⊕p p2.
Secondly, for a constant subrule p = (X1

x1←−↩ X
x2

↪−→ X2) of r−1
1 and r2

by definition there exist monomorphisms wL1 : X ↪→ L1 and wL2 : X ↪→ L2.
Computing their pushout (depicted as square (11) in Fig. 16), leads to (e1, e2) ∈ E :
as pushouts along a monomorphism they both are monomorphisms and they are
jointly epimorphic, since they are coprojections of a pushout by construction.
The pushout (11) coincides with the pushout in the middle of Fig. 15 for p =
(X1

x1←−↩ X
x2

↪−→ X2) = (L l←−↩ K
r

↪−→ R). Since l1 and l2 are isomorphisms, squares



Short-Cut Rules 21

L K R

R1 L1 L1

L2 L2 R2

L′ K′ R′

l r

l2 r2

r1 l1

l′ r′

Fig. 15. Amalgamation along a subrule of p−1
1 and p2

(8a) and (8b) in Fig. 16 can be computed as pushouts (instead of pushout
complements) and K ′ is (up to isomorphism) the resulting pushout object.
Pushout (9a) may equivalently be computed as pushout of wL2 : X ↪→ L2 and
r1 ◦ l−1

1 ◦ wL1 : X ↪→ R1, i. e., as pushout (9a) + (8a) + (11). Because X ∼= X1
(or K ∼= L), this is the same as the left pushout square in Fig. 15, i. e., L′ with
morphism l′ : K ′ ↪→ L′ is a pushout object for (9a). Completely analogous, R′ is
the result of computing pushout (9b). Thus, r−1

1 ⊕p r2 = r−1
1 ∗K′ r2.

Conversely, let an E-dependency relation (e1, e2) for r−1
1 and r2 be given,

i. e., jointly epimorphic monomorphisms e1, e2 : L1, L2 ↪→ K ′ for some object K ′.
Corollary 18 states that the pushout of the pullback of (e1, e2) is K ′ again. In
particular, (e1, e2) are coprojections of a pushout. We denote the pullback of
(e1, e2) with X and the resulting morphisms by wLi

: X ↪→ Li, i = 1, 2 (Fig. 16).
Since l1 and l2 are isomorphisms, squares (8a) and (8b) can be computed as
pushouts (instead of pushout complements). Now, computing the missing squares
(9a), (9b) and (10) equals computing r−1

1 ⊕p r2 where p = (X idX←−−↩ X
idX

↪−−→ X).
Moreover, p is a constant common subrule of r−1

1 and r2. Thus, r−1
1 ∗K′ r2 =

r−1
1 ⊕pr2 for a constant common subrule p of r−1

1 and r2 and hence r−1
1 ∗K′ r2 ∈ C.

ut

X

R1 L1 L1 (11) L2 L2 R2

(9a) (8a) (8b) (9b)

L′ K′ K′ K′ R′

(10)

K′

wL1 wL2

r1

e1

l1

e1 e2

l2

e2

r2

idK′l′ idK′ r′

k1 =
id

K ′ k2
= idK

′

Fig. 16. E-concurrent rule for p−1
1 and p2



22 L. Fritsche et al.

Proposition 15 (Subsumption). Let two monotonic rules ri : Li ↪→ Ri, i =
1, 2, in an adhesive category C be given. Then every E-concurrent or amalgamated

rule for r−1
1 and r2 coincides with a short-cut rule for them, but generally not the

other way around, i. e., generally the class C of E-concurrent and amalgamated

rules for r−1
1 and r2 (Lemma 14) is properly contained in the class C ′ := {r−1

1 nk

r2 | k : L∩ ↪→ R∩ is a common kernel rule for r1, r2} of short-cut rules for r−1
1

and r2.

Proof. Lemma 14 states that both amalgamated and E-concurrent rules are of
the form r−1

1 ⊕p r2 for a constant common subrule p = (X1
x1←−↩ X

x2
↪−→ X2) of r−1

1
and r2. By definition of subrule, x1 : X ↪→ X1 (and analogously x2 : X ↪→ X2)
is a common kernel rule for r1 and r2. It is easy to calculate that r−1

1 nx1 r2 =
r−1

1 ⊕p r2(= r−1
1 nx2 r2). Thus, every E-concurrent or amalgamated rule coincides

with a short-cut rule.
By presenting an example, we prove that not every short-cut rule can be

constructed as parallel, E-concurrent, or amalgamated rule. As stated in Exam-
ple 5 (or more detailed in Appendix A), Root-To-Sub-SC-Rule arises as short-cut
rule for the inverse rule of CreateRoot-Rule (r−1

1 ) and CreateSub-Rule (r2) along
CreateRoot-Rule as common kernel rule. It is depicted again, also showing the
interface graph K, as first rule in Fig. 9. It is immediate that the differing second
rule in Fig. 9 is the parallel rule of r−1

1 and r2. Since the RHS of r−1
1 is empty,

there is (up to isomorphism) only one possible choice for an E-dependency rela-
tion for r−1

1 and r2: the interface graph K in the second rule in Fig. 9. Computing
the corresponding E-concurrent rule results in the second rule of Fig. 9 again.
Since the LHS and the RHS of Root-To-Sub-SC-Rule are given as sums of the
respective LHSs and RHSs of r−1

1 and r2, the only possibility for a common
subrule p such that the LHS and RHS of r−1

1 ⊕p r2 equal the LHS and RHS of
Root-To-Sub-SC-Rule is p = (∅ ←↩ X ↪→ ∅) for some triple graph X. But that
implies X = ∅, which results in the parallel rule again. ut

D Equivalence of Pushout Complements

The aim of this section is to prove the following Lemma:

Lemma 9 (Equivalence of PO-complements). In any adhesive category with

initial pushouts, given a commutative diagram like Fig. 7 where (3a) and (7a) are

pushouts, a pushout complement G for m1◦r1 : L1 ↪→ G1 is a pushout complement

for n′1 ◦ zL∪ : L∪ ↪→ G′ and vice versa. Particularly, a pushout complement for

m1 ◦ r1 : L1 ↪→ G1 exists iff a pushout complement for n′1 ◦ zL∪ : L∪ ↪→ G′ exists.

Proving that a pushout complement G for n′1◦zL∪ : L∪ ↪→ G′ is also a pushout
complement for m1 ◦ r1 : L1 ↪→ G1 is easy. We first sketch the set-theoretic idea
behind the proof of the other direction: Given a pushout complement G for
the outer square in Fig. 7, since n′1 is injective, a pushout complement for
n′1 ◦ zL∪ : L∪ ↪→ G′ does not exist only if n′1 maps a node x of K without
adjacent edge and without preimage in L∪ to a node with adjacent edge in G′.



Short-Cut Rules 23

But since (3a) and (7a) are pushouts, node l(x) has a preimage in R1 which has
no preimage in L1 and is mapped to a node with an adjacent edge in G1 by m1
such that the adjacent edge has no preimage in R1. This is a contradiction to
the existence of a pushout complement for m1 ◦ r1.

To prove the above Lemma in the more general setting of adhesive categories,
we need to be able to characterize the situations in which a pushout complement
exists in more general terms. This is possible using the notion of initial pushouts
[2]. Therefore, we first introduce initial pushouts and some of their properties
and subsequently use those to lift the above sketched idea to prove Lemma 9 to
the setting of adhesive categories.

In the category of graphs, an initial pushout over a morphism m1 : R1 → G1
consists of a boundary graph B and a context graph C where B embeds into R1
and C embeds into G1. The graph B is the “smallest” graph such that a context
graph C can be found so that the gluing of C and R1 along B results in G1.
Therefore, if m1 is injective, B consists exactly of those nodes of R1 which get
mapped to a node with an adjacent edge in G1 that has no preimage under m1.

Definition 25 (Boundary and initial pushout [2]). Given a morphism

m : L→ G in an adhesive category C, an initial pushout over m is a pushout (0)
such that b is a monomorphism and (0) factors uniquely through every pushout

(13) over m where b′ is a monomorphism. I. e., for every pushout (13) over m
where b′ is a monomorphism, there exist unique morphisms b∗, c∗ with b = b′ ◦ b∗

and c = c′ ◦ c∗. If (0) is an initial pushout, b is called a boundary over m1, B
the boundary object and C the context object with respect to m.

B L

(0)

C G

b

m

c

B D L

(12) (13)

C E G

b′b∗

b

m

c∗

c

c′

Fact 26 (Properties initial pushout). Given an initial pushout over a mor-

phism m : L→ G like depicted above, the following holds:

– By decomposition of monomorphisms, b∗ and c∗ are also monomorphisms.

– The square (12) is a pushout ([5, Lemma 4.7]).

– If m is a monomorphism, every morphism in diagram (12) + (13) is a

monomorphism.

Initial pushouts can be used to characterize matches for which a rule is
applicable.

Fact 27 (Existence and uniqueness of contexts [2]). In an adhesive

category with initial pushouts, given a rule p = (L l←−↩ K
r

↪−→ R) and a match

m : L ↪→ G for that rule, the rule p is applicable at match m (i. e., the context



24 L. Fritsche et al.

object D for application of the rule exists) iff there exists a morphism b∗ : B → K
with l ◦ b∗ = b where B is the boundary object with respect to m and b is the

boundary over m (compare Fig. 17).

B L K R

(0)

C G D

m

b

b∗

rl

c

c∗

Fig. 17. Initial pushout and context object

Remark 28. Since b is a monomorphism, by decomposition of monomorphisms
the morphism b∗ in the above Fact is a monomorphism, too.

Initial pushouts over monomorphisms have the following closure property:

Fact 29 (Closure property of initial pushouts [2]). In an adhesive category,

given an initial pushout (0) over a monomorphism m : L ↪→ G and a pushout

diagram (14) where a : A ↪→ L is a monomorphism, also d : A → A′ is a

monomorphism and B and C are also boundary (resp. context) objects with

respect to d and b′ the boundary over d, where b′ is the monomorphism induced

by initiality of (0) (compare Fig. 18).

B L A

(0) (14)

C G A′

m

b

b′

d

a

c

c′

a′

Fig. 18. Closure of initial pushouts

Using the just introduced notions, we are able to prove Lemma 9.

Proof (Proof of Lemma 9). A pushout complement G for square (6) in Fig. 19 is
a pushout complement for the outer square (m1 ◦r1) as in the proof of Theorem 7
and pushout complements are unique (up to isomorphism) in adhesive categories.



Short-Cut Rules 25

Now, assume a pushout complement G for the larger right square ((3a) +
(7a) + (6)) in Fig. 19 to exist. According to Fact 27, this is equivalent to the
existence of monomorphism b∗ : B ↪→ L1 such that r1 ◦ b∗ = b, where (0a) is the
initial pushout over m1. Let (0b) denote the initial pushout over monomorphism
m′1 (with boundary b′). It is also the initial pushout over n′1 (with boundary b′′)
because n′1 is a monomorphism and Fact 29. To show that a pushout complement
Ḡ for n′1 ◦ zL∪ : L∪ ↪→ G′ exists, it suffices to show the existence of a morphism
b′′∗ : B′ → L∪ such that kL∪ ◦ b′′∗ = b′′ (again, according to Fact 27). If such
an object Ḡ exists, it is also a pushout complement for m1 ◦ r1 (compare the
proof of Theorem 7) such that Ḡ ∼= G since pushout complements are unique in
adhesive categories. We show the existence of the morphism b′′∗ in several steps.

(15)

B R1 L1

(0a) (3a)

B′ L K L∪

(0b) (7a) (6)

C C′ G1 G′ G

b∗

b

c∗

c

m1

jR1

b′

b′′ b′′∗

c′

m′1

jL1

r1

n1

n′1

l zL∪

h

Fig. 19. Overview for proof of equivalence of existence of pushout complements

First, compare Fig. 20. Let B′∩R1 denote the pullback of b′ and jR1 . We show
the existence of a monomorphism sB : B′ ∩R1 ↪→ B such that the triangle (16)
commutes. Take the pullback (18) of m′1 and c. Both are monomorphisms and
since c and m′1 ◦ jR1 are jointly epimorphic, also c and m′1 are jointly epimorphic.
Thus, Corollary 18 ensures that (18) is also a pushout. Hence, the initial pushout
(17) + (18) over m′1 factors uniquely through (18) and a monomorphism C ′ ↪→ C
exists. Now, pushout (0a) is also a pullback and its universal property as pullback
guarantees the existence of sB such that (16) commutes. Moreover, sB is a
monomorphism because of the decomposition property of monomorphisms: As
pullback of monomorphism b′, sR1 is a monomorphism.



26 L. Fritsche et al.

B′ ∩R1 R1

(16)

B

(0a)

B′ D L

(17) (18)

C′ C G1

b

sR1

sB′

sB

m1

jR1

b′

m′1

c′

c

Fig. 20. Existence of monomorphism sB : B′ ∩R1 ↪→ B

Monomorphism sB can now be used to prove the existence of b′′∗ as depicted
in Fig. 21. First take pullbacks (19a) and (19b) of jR1 and b′ and b′ and l ◦ zL∪ ,
respectively. The monomorphisms sB′ and tB′ are the coprojections of pushout
(20), since R1 ∪ L∪ = L. Furthermore,

l ◦ zL∪ ◦ jL1 ◦ b∗ ◦ sB ◦ oB′∩R1 = jR1 ◦ r1 ◦ b∗ ◦ sB ◦ oB′∩R1

= jR1 ◦ b ◦ sB ◦ oB′∩R1

= jR1 ◦ sR1 ◦ oB′∩R1

= b′ ◦ sB′ ◦ oB′∩R1

= l ◦ b′′ ◦ sB′ ◦ oB′∩R1

= l ◦ b′′ ◦ tB′ ◦ oB′∩L∪

= l ◦ zL∪ ◦ tL∪ ◦ oB′∩L∪

and since l◦zL∪ is a monomorphism jL1 ◦b∗◦sB ◦oB′∩R1 = tL∪ ◦oB′∩L∪ . Hence, a
unique morphism b′′∗ : B′ → L∪ with b′′∗ ◦ tB′ = tL∪ and b′′∗ ◦ sB′ = jL1 ◦ b∗ ◦ sB

exists.
With those equation, it is finally possible to compute

l ◦ zL∪ ◦ b′′∗ ◦ tB′ = l ◦ zL∪ ◦ tL∪

= b′ ◦ tB′

= l ◦ b′′ ◦ tB′ ,



Short-Cut Rules 27

thus zL∪ ◦ b′′∗ ◦ tB′ = b′′ ◦ tB′ since l is mono and similarly

l ◦ zL∪ ◦ b′′∗ ◦ sB′ = l ◦ zL∪ ◦ jL1 ◦ b∗ ◦ sB

= jR1 ◦ r1 ◦ b∗ ◦ sB

= jR1 ◦ b ◦ sB

= jR1 ◦ sR1

= b′ ◦ sB′

= l ◦ b′′ ◦ sB′ ,

thus zL∪ ◦ b′′∗ ◦ sB′ = b′′ ◦ sB′ since l is mono. Since sB′ and tB′ are jointly
epimorphic, it follows that zL∪ ◦ b′′∗ = b′′. ut

L1

(15) (3a)

B R1 L K L∪

(16) (19a) (19b)

B′ ∩R1 B′ B′ ∩ L∪

(20)

(B′ ∩R1) ∩ (B′ ∩ L∪)

jL1

r1

b

b∗

jR1 l zL∪

sB

sR1

sB′

b′ b′′

b′′∗

tB′

tL∪

oB′∩R1
oB′∩L∪

Fig. 21. Existence and properties of b′′∗


	Short-Cut Rules

