
Multi-Granular Conflict and Dependency Analysis in So�ware
Engineering based on Graph Transformation

Leen Lambers

Hasso-Plattner-Institut Potsdam,

Germany

leen.lambers@hpi.de

Daniel Strüber

Universität Koblenz-Landau,

Germany

strueber@uni-koblenz.de

Gabriele Taentzer, Kristopher

Born, Jevgenij Huebert

Universität Marburg, Germany

{taentzer,born,huebert}@mathematik.

uni-marburg.de

ABSTRACT
Con�ict and dependency analysis (CDA) of graph transformation

has been shown to be a versatile foundation for understanding

interactions in many software engineering domains, including soft-

ware analysis and design, model-driven engineering, and testing.

In this paper, we propose a novel static CDA technique that is

multi-granular in the sense that it can detect all con�icts and depen-

dencies on multiple granularity levels. Speci�cally, we provide an

e�cient algorithm suite for computing binary, coarse-grained, and

�ne-grained con�icts and dependencies: Binary granularity indi-

cates the presence or absence of con�icts and dependencies, coarse

granularity focuses on root causes for con�icts and dependencies,

and �ne granularity shows each con�ict and dependency in full

detail. Doing so, we can address speci�c performance and usability

requirements that we identi�ed in a literature survey of CDA us-

age scenarios. In an experimental evaluation, our algorithm suite

computes con�icts and dependencies rapidly. Finally, we present

a user study, in which the participants found our coarse-grained

results more understandable than the �ne-grained ones reported in

a state-of-the-art tool. Our overall contribution is twofold: (i) we

signi�cantly speed up the computation of �ne-grained and binary

CDA results and, (ii) complement them with coarse-grained ones,

which o�er usability bene�ts for numerous use cases.

CCS CONCEPTS
•Software and its engineering→ Automated static analysis;

1 INTRODUCTION
Con�icts and dependencies are fundamental phenomena in software

engineering. For example, when a software system is developed col-

laboratively [61], a change operation can facilitate or prohibit other

change operations. In concurrent programming, con�icts may arise

from data races [28, 56] when a thread writes to a memory loca-

tion accessed by another thread. From unrecognized con�icts and

dependencies, severe consequences may arise, ranging from pro-

ductivity obstacles to fatal safety hazards. Therefore, there is a need

for techniques to detect con�icts and dependencies automatically.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’18, Gothenburg, Sweden
© 2018 ACM. 978-1-4503-5638-1/18/05. . . $15.00

DOI: 10.1145/3180155.3180258

Graph transformation [17, 18, 53] has been shown to be a versa-

tile foundation for supporting con�ict and dependency detection

in software engineering, based on the following three principles:

First, graphs are used for representing structures of interest, such as

states of computation [1, 7] or versions of the system structure [8].

Second, certain changes, such as state or structure modi�cations,

are described using graph transformation rules. Third, the provided

transformation speci�cation is fed to the static con�ict and depen-
dency analysis (CDA) of graph transformations [27, 48]: Given a set

of transformation rules, all con�icts and dependencies arising from

a given pair of rules are identi�ed. A con�ict arises, for example, if

the �rst rule application deletes an element required by the second

rule application. A key bene�t of graph transformation is its mature

formal foundation, which supports CDA techniques that are correct

by design: all con�icts and dependencies can be detected.

Based on these principles, the CDA of graph transformations has

enabled a large number of use-cases in software engineering, includ-

ing analysis and design, model-driven engineering, and testing. For

example, graph transformations can be used to model the execution

behavior of Java programs in terms of preconditions and e�ects

on the object structure; identi�ed con�icts and dependencies are

then used as oracles for test generation [1, 54]. In software product

line engineering, feature interactions can be detected by specifying

features as graph transformations and identifying con�icts and de-

pendencies with CDA [33]. In model-based refactoring [46], graph

transformations and CDA are used to �nd a suitable order of refac-

toring steps. One contribution of this paper is a literature survey

that overviews 25 papers describing such use-cases.

Although generally helpful for the task at hand, however, sev-

eral authors report that the used CDA technique showed severe

limitations. In our survey, we identify three key requirements for

an improved CDA technique for software engineering: it shall be (i)

domain-independent to be applicable to a large variety of software

engineering domains, (ii) usable in the sense that it should display

a reasonable amount of information to support understandability,

and (iii) e�cient when applied to software projects of realistic size.

To address these requirements, we present a novel static CDA

technique for software engineering based on graph transformation.

The technique is based on the notion of granularity of con�icts and

dependencies introduced in [10]: Often, the user merely requires

to know if a given rule pair can induce con�icts or dependencies

at all, while details are irrelevant (binary granularity). At the next

level, the user wants to pinpoint certain elements that present the

root causes of con�icts or dependencies (coarse granularity). At the

�nal level, a complete description of each potential con�ict and de-

pendency is required (�ne granularity). To enable an e�cient com-

putation, we present an algorithm suite which can compute binary,

coarse-grained, and �ne-grained results rapidly. The computation

of �ne-grained ones harnesses coarse-grained ones. Moreover, we

conducted a user study, in which the participants found coarse-

grained analysis results more understandable and easier to work

with than �ne-grained ones reported by a state-of-the-art tool.

In summary, this paper presents a multi-granular CDA tech-
nique based on graph transformation achieving the same level

of (i) domain-independence as the state of the art, while providing

major (ii) understandability and (iii) performance improvements.

Speci�cally, we make the following contributions:

• A literature survey of existing CDA use-cases (Sec. 3),

focusing on granularity requirements.

• A formalization of di�erent granularity levels of con-

�ict and dependencies (Sec. 4), for ensuring the well-

foundedness of our technique.

• An algorithm suite supporting the computation of CDA

results at multiple granularity levels (Sec. 5).

• An implementation evaluation, in which we study the

performance of our algorithm suite (Sec. 6).

• Auser study to determine the usefulness of coarse-grained

con�ict results in comparison to �ne-grained ones (Sec. 7).

With these contributions, we aim to improve on the state-of-

the-art CDA technique, critical pair analysis [42, 59] (CPA). CPA

does not distinguish between granularity levels: Since its goal is to

provide all con�icts and dependencies, its output—a list of critical
pairs depicting each con�ict situation in a minimal context—always

exhibits �ne granularity. From the lack of support for di�erent

granularity levels, two main drawbacks arise. First, computing

all critical pairs can be computationally vastly expensive. Second,

comprehending the critical pairs of a set of rules can be a daunting

task, since the list of critical pairs generally re�ects numerous

options to combine the involved root causes.

Our work is the �rst to provide a general CDA technique for

graph transformations supporting multiple granularity levels. Ear-

lier usage scenarios either used CPA, or task-speci�c CDA tech-

niques relying on the structure of the involved rules [31, 35]. Our

earlier work [10, 40] serves as a formal foundation for the current

one. We now amend the existing declarative de�nitions with con-

structive characterizations that support e�cient computations. To

the best of our knowledge, we provide the �rst, albeit preliminary,

empirical evidence regarding the usefulness of CDA techniques.

2 RUNNING EXAMPLE
Our running example deals with requirement elicitation for a web

shop, a service-oriented software system that enables a retailer to

sell goods on a website. Customers can perform orders and inspect

the information on goods and orders. The retailer uses the available

information to manage its business processes. We focus on two

business processes, one for order management and one for data
mining, which we do not want to interfere with each other. This

means that activities of one process should not render activities of

the other process impossible; hence, con�icts between activities of

di�erent processes should not occur. To be able to analyze con�icts,

we specify activity requirements with graph transformation. A

transformation rule speci�es pre- and post-conditions of activities.

In our example, we consider two activities of the selected busi-

ness processes to be speci�ed by rules: Rule returnUnpaidGood on

the left of Fig. 1 returns a Good into the Stock by deleting the corre-

sponding OrderItem and BillItem. In addition, the returned good is

removed from the customer. Rule o�erGift speci�es a pattern for

data mining which looks for an Order with at least two OrderItems.
The Customer ordering and owning these items is marked for a

GiftO�er. Note that a customer may own a good without having

it ordered and paid since it may be a gift. Both rules are depicted

in an integrated form where annotations specify which graph el-

ements are deleted, preserved, and created. While the preserved

and deleted elements form the left-hand side (LHS) of a rule, the

preserved and created elements form its right-hand side (RHS).

Con�ict and granularity considerations. To run the selected

business processes for order management and for data mining con-

currently, they shall not interfere with each other. This is the case

if their activities do not interfere pairwise (neglecting any potential

control �ow on activities). We focus our investigations on activity

returnUnpaidGood being part of the order management process and

o�erGift being some data mining activity. To investigate interfer-

ences between these two activities, we analyze two rules specifying

them. If an application of the �rst rule renders an application of the

second rule impossible or, if the second rule is still applicable, but

not at the original match anymore, a con�ict occurs. To reduce the

amount of con�icts, we need to identify all their potential sources.

If the developer is just interested in knowing whether a given

pair of rules can induce a con�ict, this information can be easily

given in a table such as Table 1 where a ‘+’ marks that a con�ict for

the given rule pair arises while ‘-’ marks that there is no con�ict.

Rule 1 / Rule 2 returnUnpaidGood o�erGift

returnUnpaidGood + +

o�erGift - -

Table 1: Binary information about con�icts

To get a coarse understanding of con�icts, the developer may

be interested in knowing which rule elements can cause con�icts.

Since rules returnUnpaidGood and o�erGift specify activities of two

processes that shall not interfere, we are especially interested in

understanding all con�icts related to this rule pair. Two reasons

for con�icts are shown in the middle of Figure 1. Con�ict-causing

elements are included in minimal graphs that describe the needed

overlap of participating rules (depicted on the left and on the right)

to cause an actual con�ict on their applications. The upper graph

speci�es the deletion of an order item needed to o�er a gift. The

lower one shows the deletion of an owns-edge needed to o�er a gift.

Each of these graphs with their embeddings into rules are called

minimal con�ict reasons. Overlapping the rules along such a con�ict

reason yields two con�icting rule applications called critical pair.
For a �ne-grained representation of all con�icts, we also have

to consider all possible combinations of root causes. This means

that all possible compositions of minimal con�ict reasons describe

further con�ict situations which we just call con�ict reasons. One

example of such a con�ict reason is shown in Figure 2, where the

order item as well as the targeting owns-edge for one and the same

2

Figure 1: Rules returnUnpaidGood and o�erGi� and two minimal con�ict reasons – Coarse-grained information

good are deleted, both needed to o�er a gift. This graph induces one

of altogether 6 con�ict reasons caused by rule returnUnpaidGood
on rule o�erGift. The con�ict reasons not shown are analogous to

the three ones depicted in Figures 1 and 2. The remaining three

ones overlap 5:OrderItem and 6:Good of rule returnUnpaidGood with

3:OrderItem and 4:Good of rule o�erGift.

Figure 2: One of 6 con�ict reasons of rule returnUnpaidGood
on rule o�erGi� – Excerpt of �ne-grained information

The state-of-the-art CDA which computes essential critical pairs
[42], however, yields more results for this rule pair, namely 10 pairs

of con�icting transformations. While 6 of them directly correspond

to the ones discussed above, there are 4 further results which do

not show basically new con�ict reasons but just nuances of the

considered ones. Hence, the existing CDA provides an even more

�ne-grained information about con�icts. Table 2 compares the

numbers of coarse and �ne-grained results for our example, dis-

tinguishing our intended �ne-grained analysis (indicated by ‘New

Fine’) from the existing CDA (indicated by ‘Ex. Fine’) . While

the entry for rule pair (returnUnpaidGood, o�erGift) shows a mod-

erate increase of numbers, this is already more striking for rule

pair (returnUnpaidGood, returnUnpaidGood) demonstrating a bigger

di�erence between numbers of coarse and existing �ne-grained

con�ict information (3 versus 19). In general, a lot of di�erent criti-

cal pairs can exist and it may be tedious to go through all of them.

In Section 6, we found an example rule pair with 1588 ess. critical

pairs vs. 24 min. con�ict reasons.

Rule 1 / Rule 2 returnUnpaidGood o�erGift

returnUnpaidGood Coarse: 3 Coarse: 4

New Fine: 7 New Fine: 6

Ex. Fine: 19 Ex. Fine: 10

Table 2: Number of con�ict reasons and ess. critical pairs,
resp., in coarse and �ne-grained representations

Conclusion. Instead of overwhelming the user with a large

number of con�icts as the state-of-the-art �ne-grained CDA does,

a multi-granular analysis supports a continuously deeper under-

standing of con�icts where needed. In this example, rule pair (re-
turnUnpaidGood, o�erGift) is of special interest since it may be

con�icting and speci�es activities of two processes that should run

independently of each other. From the analysis, we can deduce that

data mining on unpaid goods may lead to inconsistencies. To avoid

such con�icts, the activities may be adapted by, e.g., o�ering a gift

only for goods that have been already paid.

3 LITERATURE SURVEY
We conducted a literature survey to explore the variety of software

engineering domains in which critical pair analysis (CPA) has been

applied, the designated state-of-the-art technique for con�ict and

dependency analysis (CDA) based on graph transformation. First,

we present collected statements to performance and usability of the

CPA. Then we elicit requirements regarding the actual granularity

level needed when performing CDA in speci�c use-cases.

To identify use-cases in the literature, we applied the search

clause "critical pair*" AND ("graph transformation" OR
"model transformation") to the �ve major CS online libraries

of ACM, IEE, Elsevier, Wiley, and Springer, restricting the search to

mentions in title and abstract. This search yielded an initial body

of 37 papers, to which we added 11 based on our knowledge about

CPA uses. We discarded those that focused on theoretical results,

and those represented by other papers in the same line of work on

the same overall use-case. We grouped the remaining 25 papers in

four main software engineering application domains (see Table 3).

Performance and usability statements. In several papers

such as [13, 23, 44, 62], the authors recognized severe performance
problems when using the state-of-the-art implementation of the CPA

in AGG [59]. They conclude that CPA does not scale for industrial

use. Often a too large number of critical pairs is computed which

makes the manual inspection of the CPA results nearly impossible.
As one solution to increase the performance and to drop the number

of results, authors tried to constrain the allowed graphs. Another

way out of this dilemma was to replace the static CDA by a runtime

check. However, these actions either change the kind of graphs

considered or switch from static to dynamic analysis. From this

review of performance and usability statements, we conclude that

3

Granularity /
SE domain

Analysis and design
of software systems

MDE techniques Testing Optimization of
rule-based computations

Binary Graph parsing [12], Activity diagram vali-

dation [20], Edit operation recognition [35],

Nondeterminism detection [23, 29]

Coarse-grained Consistency validation of use-cases [26],

service-based systems [38, 41], context-

aware and adaptive systems [13, 15, 44],

activity diagrams [20]; Feature interac-

tion detection [2, 33, 45, 62]

Model versioning [39, 60],

Refactoring recommendation

[46, 50], Detecting & re-

solving model inconsisten-

cies [47]

Test case gen-

eration [31] &

validation [54]

Fine-grained Veri�cation of model trans-

formations [6, 30]

Table 3: Granularity requirements and software engineering domains of the CPA in literature survey

a highly performant static analysis is needed which produces a

concise set of results that is easy to inspect manually. The essential

CPA [42], also available in AGG, was introduced as a �rst solution

to these requirements yielding a considerably smaller set of results

in a smaller amount of time. We observed, however, that even the

essential CPA often returns too �ne-grained results representing an

obstacle for performance as well as for usability when doing CDA.

Therefore, we analyze now the requirements w.r.t. the actual level

of granularity needed when performing CDA.

SE domains and granularity requirements. We describe our

�ndings w.r.t. granularity requirements of the CPA use cases along

their application domains in SE as illustrated in Table 3.

In software system design and analysis, the conformance of be-

havior models such as activity models and live sequence charts,

with the rule-based speci�cation of activities (methods, operations,

or services) is investigated. The CPA is mostly used to �nd and un-

derstand con�icts and dependencies in the data �ow and to reason

about their plausibility w.r.t. the considered system. In this context,

a coarse-grained CDA seems to be su�cient to start with.

Model-driven engineering (MDE) techniques are often speci�ed

on the basis of model transformations. The CPA can be used to

detect and to reason about the plausibility of con�icts and dependen-

cies between speci�ed transformations. In model version manage-

ment, the CPA is moreover used to resolve con�icts between model

changes. The coarse-grained analysis seems to be su�cient to �nd

con�icts and dependencies between transformation speci�cations

here. Con�uence proofs, however, have to be performed based on a

�ne-grained analysis since these proofs are based on completeness

of the CPA results which is only given in the �ne-grained case.

In testing, the CPA is used for reasoning about and generat-

ing interesting test cases. A coarse-grained analysis of rule inter-

dependencies seems adequate to understand the speci�ed activities.

In optimization of rule-based computations, the CPA has been

used to �nd out which rule pairs are con�icting or dependent at

all and to exploit this information for improving the computation.

The non-existence of con�icts or dependencies may allow compu-

tations without backtracking. Hence, binary information about the

existence of con�icts or dependencies is usually su�cient to either

avoid or deliberately postpone backtracking. For further optimiza-

tion, the elimination of existing con�icts or dependencies may be a

choice. Further information, i.e., a coarse-grained analysis, is then

needed to understand their causes and to modify rules accordingly.

Threats to Validity Regarding construct validity, we omit in-

vestigating expressiveness of the analyzed graph transformations

w.r.t. advanced transformation features such as negative application

conditions, which is orthogonal to the required granularity level.

The extension of our technique to these features is ongoing work.

While not being trivial, we are con�dent that this is possible, since

the underlying theory is given in a category-theoretical setting.

Conclusion. We deduce the following granularity requirements

for CDA: (1) Binary granularity refers to the situation where the

relevant information is whether a con�ict/dependency between

two graph transformations rules exists or not. Such information

is su�cient, e.g., to trim a solution space of possible alternatives.

(2) Coarse granularity refers to the situation where users need to

inspect individual con�icts and dependencies, but do not need to

know the precise details of each possible con�ict or dependency

situation. (3) Fine granularity is needed to inspect each con�ict and

dependency situation in-depth. This is necessary, for example, to

reason about con�uence of a state transition relation. Our observa-

tions (in Table 3) demonstrate that for most considered applications

of con�ict and dependency analyses, a binary or coarse-grained

analysis would have been su�cient or would have represented a

good starting point for analysis that can – only if necessary – still be

re�ned to a more �ne-grained one. These granularity requirements

support the need for a multi-granular approach to CDA.

4 CONFLICT AND DEPENDENCY CONCEPTS
We revisit con�ict and dependency concepts for graph transforma-

tion with varying granularity level in Sec. 4.1. As a new contribu-

tion, we instantiate the binary, coarse and �ne granularity level

(as identi�ed in Sec. 3) of our multi-granular CDA technique with

adequate formal con�ict and dependency concepts in Sec. 4.2.

4.1 Background
We recall main concepts from graph transformation with the con-

�ict notion underlying our work [17, 42]. Then, con�ict and depen-

dency concepts with varying granularity level are recalled [10, 40].

Graph transformation. Representing complex structures as

graphs, graph transformation is one of the main paradigms to de-

scribe their rule-based modi�cation. A rule mainly consists of two

graphs: L is the left-hand side (LHS) of the rule representing a pat-

tern that has to be found to apply the rule. After the rule application,

a pattern equal to R, the right-hand side (RHS), has been created.

The intersection K = L ∩ R is the part that is not changed, the part

that is to be deleted is de�ned by L \K , while R \K de�nes the part

to be created. To make the deletion part of a rule a graph, we add all

4

boundary nodes B ⊆ K , hence obtain deletion graph C = L \ (K \ B).
If C is empty, the rule is called non-deleting.

A graph transformation G
r,m
=⇒ H between two graphs G and H

is de�ned by �rst �nding a matchm, that is a mapping of the LHS

L of rule r into G such thatm is injective and ful�lls the dangling
condition [17]: all adjacent graph edges of a graph node to be deleted

must be deleted as well. Second, we construct H in two passes: (1)

build D := G \m(L \ K)), i.e., erase all graph elements that are to

be deleted; (2) construct H := D ∪m′(R \ K) such that a new copy

of all graph elements that are to be created is added.

Example [Graph rule and transformation] Figure 3 shows a graph

to which rules returnUnpaidGood and o�erGift in Figure 1 are ap-

plicable. Considering, e.g., rule returnUnpaidGood the red and the

grey parts form the LHS and the RHS consists of the green and the

grey parts. Hence, K is represented by the grey part. Boundary

nodes are 1:Customer, 2:Order, 4:Bill, and 6:Good. Deletion graph C
consists of the red rule part together with all boundary nodes.

Figure 3: Example graph to which rules returnUnpaidGood
and o�erGi� are applicable, with indicated matches

The rule’s matches are indicated by numbers. For example, 1:Cus-
tomer of rule returnUnpaidGood and 2:Customer of rule o�erGift
are both mapped to 1,2:Customer. An ‘_’ indicates that this node is

not in the corresponding match. Note that rule returnUnpaidGood
can be applied in two di�erent ways to this graph. Since rule of-
ferGift is non-deleting, the dangling condition is always ful�lled.

Rule returnUnpaidGood, however, deletes two nodes: 5:OrderItem
and 7:BillItem. Their images in the graph are not allowed to have

dangling edges, i.e., edges without origins in the LHS. This is the

case here, hence both mappings ful�ll the dangling condition.

The e�ect of applying rule returnUnpaidGood at the given match

is the deletion of edge owns from 1,2:Customer to 6,6:Good as well

as of nodes 5,5:OrderItem and 7,_:BillItem with adjacent edges. In

addition, a new edge from 3,_:Stock to 6,6:Good is added.

Con�ict. Given a graphG there are, in general, several rules ap-

plicable at di�erent matches. A pair of transformations (G
r1,m1

=⇒ H1,

G
r2,m2

=⇒ H2) is in con�ict if the �rst rule application deletes graph

elements used by the second one, i.e., if m1(C1 \ B1) ∩m2(L2) is

not empty. Since matches are injective, we can build a con�ict
part m−1

1
(m1(C1 \ B1) ∩m2(L2)) ⊆ C1 that can be completed by

adding incident boundary nodes to a con�ict graph S1, being a sub-

graph of the deletion graph C1 of rule r1. Moreover, we have a

mapping e2 = m−1
2
◦m1 of S1 into L2. Together with its embed-

ding into C1, a span s1 = (C1

⊇
← S1

e2
→ L2) for rule pair (r1, r2)

can be de�ned which distills the cause of a con�ict and therefore,

is called con�ict reason for G
r1,m1

=⇒ H1 and G
r2,m2

=⇒ H2. Given a

span s1 = (C1

⊇
← S1

e2
→ L2) for rule pair (r1, r2) and mappings

m1 : L1 → G andm2 : L2 → G we say that these mappings overlap
in s1 ifm1(S1) ∩m2(e2(S1)) ⊆ m1(L1) ∩m2(L2).

Example [Con�ict] In the graph in Figure 3 with the given matches

of rules returnUnpaidGood and o�erGift, the resulting pair of trans-

formations is in con�ict sincem1(C1 \ B1) ∩m2(L2) contains node

5,5:OrderItem with adjacent edges and edge owns from 1,2:Customer
to 6,6:Good, i.e. these elements are deleted by the �rst transfor-

mation and used by the second one. The corresponding con�ict

reason is given by the con�ict graph in Figure 2, its embedding into

the deletion graph of rule returnUnpaidGood, and its mapping into

the LHS of rule o�erGift. Both embeddings are given by numbers

(compare Figures 1 and 2). We focus on the con�ict graph of a

con�ict reason while embeddings are just given by corresponding

numbers as explained above.

Con�ict concepts. Heading towards a static con�ict analysis,

we do not investigate each pair of graph transformations but analyze

rule pairs instead. Rule pair (r1, r2) is in con�ict if there is any pair

of con�icting transformations applying rule r1 and then r2.

We further concentrate on rule parts that may cause con�icts.

The minimal building bricks of con�ict causes are called con�ict

atoms. An atom is derived from an atom candidate being a span

a1 = (C1

⊇
← A1

e2
→ L2) for rule pair (r1, r2), where A1 is a single

deleted node or edge incident with preserved nodes. It is deleted

by the �rst rule and used by the second one. A deleted edge with at

least one incident deleted node is not considered as atom candidate,

since the edge is deleted together with the deleted node anyway.

If a pair of transformations exists so that their match mappings

overlap on the atom candidate, it is called con�ict atom. Note that, in

general, the matches of such a pair of transformations may overlap

also in graph elements other than the con�ict atom.

A con�ict reason s1 = (C1

⊇
← S1

e2
→ L2) for rule pair (r1, r2)

subsumes all atoms being involved in a con�ict. Among the con�ict

reasons for two rules, there are minimal reasons describing minimal

compositions of atoms leading to con�ict reasons.

In contrast to con�ict reasons showing con�ict-causing rule
overlaps, a critical pair consists of two con�icting transformations
applying two rules in a minimal context, where all elements stem

from L1 or L2 or both. Critical Pair Analysis (CPA) [27, 48] is the

state-of-the-art static CDA for graph transformation. The set of

critical pairs has the important property that it is complete: each

possible con�icting pair of transformations is represented by some

critical pair. Two important subsets of critical pairs being still

complete have been identi�ed in the literature: An essential critical
pair [42] is one where the rules’ LHSs overlap merely deletion

graph elements of one rule with LHS elements of the other rule,

i.e. only the con�ict reason is overlapped. The rationale is that

overlapping additional preserved elements (as done in regular CPA)

does not contribute to new con�icts. (Essential) Critical pairs can be

computed with the state-of-the-art implementation of the CPA in

AGG [59] and VeriGraph [5]. An initial con�ict [40] is an essential

critical pair without isolated boundary nodes. The latter arise when

a preserved node with incident deletion edges of the �rst rule is

overlapped with a node of the second rule without overlapping

5

any incident deletion edge of the �rst rule. Such overlaps do not

contribute to new con�icts. Initial con�icts represent currently

the most optimal subset of critical pairs ful�lling the completeness

property, but their detection has not been implemented yet.

Example [Con�ict concepts]. Considering the con�ict reason in

Figure 2, it is covered by two con�ict atom graphs consisting of

node 5,5:OrderItem and edge owns from 1,2:Customer to 6,6:Good.

We can complete con�ict atom 5,5:OrderItem to a minimal con�ict

reason by adding both adjacent edges and their incident source or

target nodes. It is shown as top graph in Figure 1. The con�ict

atom including the owns edge already constitutes a minimal con�ict

reason shown underneath the top graph in Figure 1. Both together

form the con�ict reason shown in Figure 2. Overlapping the LHSs

of both example rules at this con�ict reason yields the graph in

Figure 3. The resulting LHS embeddings into this graph are actually

rule matches since they ful�ll the dangling condition (as shown

above). The corresponding transformations form a critical pair,

which is actually an initial con�ict here.

Dependency and dependency concepts. For reasoning about

dependencies, where graph elements being produced by the �rst

transformation are used by the second one, we simply consider the

dual concepts by inverting the �rst transformation of a con�icting

pair. Based on this analogy the concepts dependency between rules
and (minimal) dependency reason are de�ned accordingly.

4.2 Formalizing granularity levels
As suggested by the granularity requirements derived from our

literature survey in Sec. 3, various use-cases may require either �ne-

grained, coarse-grained, and binary analysis results. To support all

of these granularity levels in our technique, we formalized each

granularity level with appropriate con�ict and dependency concepts

as outlined in this section. A full account of formal de�nitions,

characterizations and proofs is given in [43].

Overapproximation. Our survey (in Sec. 3) indicates serious

performance problems in practice when computing con�ict infor-

mation on a �ne-grained level in the form of (essential) critical

pairs, as done in the state-of-the-art implementation in AGG [59].

Therefore we propose as �rst improvement a well-chosen overap-
proximation of results that is easier to compute. It is based on the

idea that, if there is a con�ict for a pair of rules (r1, r
′
2
), then an

equivalent con�ict exists for the rule pair (r1, r2) with r2 being the

non-deleting variant of rule r ′
2
. The other direction does not hold,

since the dangling condition of rule r ′
2

could be violated then.

Mapping con�ict concepts. Fig. 4 gives an overview of how

we further map con�ict concepts to granularity levels.

Since initial con�icts represent currently the most optimal subset

of critical pairs being still complete [40], we have chosen to return

all con�ict reasons for (r1, r2) corresponding to initial con�icts as

new �ne-grained results. An initial con�ict for (r1, r2) with r2 being

non-deleting simply corresponds to the overlap of such a con�ict

reason. As reported in Sec. 6, this choice represents a very good

trade-o� between precision and performance.

Moving to the coarse-grained level, we selected minimal con�ict
reasons, since our considered con�ict reasons at the �ne-grained

level are composed of minimal ones. The con�ict graph of minimal

con�ict reasons for a rule pair (r1, r2) with r2 non-deleting can be

Figure 4: Con�ict concepts & mapping to granularity

characterized as subgraph of a so-called deletion component. The

deletion part L1 \ K1 of a given rule r1 may consist of several dis-

joint fragments, called deletion fragments. Completing a deletion

fragment to a graph by adding all incident boundary nodes from B1
yields a deletion component. Each two deletion components overlap

in boundary nodes only; the union of all deletion components coin-

cides with the deletion graph C1 of the rule. Deletion components

thus specify maximal parts of C1 that need to be overlapped in or-

der to �nd corresponding con�icting transformations. Overlapping

more elements than present in a deletion component can never

lead to additional minimal con�ict reasons since, if the dangling

condition of r1 was not ful�lled before, it will never be ful�lled.

Example [Deletion components] Rule returnUnpaidGood in Figure 1

has three deletion fragments: Node 5:OrderItem with adjacent edges,

node 7:BillItem with adjacent edges, and edge owns from node 1 to

node 6. For completing them to deletion components, boundary

nodes 1:Customer, 2:Order, 4:Bill, and 6:Good are needed.

On the binary level, we report if a rule pair is con�icting, since

this means by de�nition that there is at least one pair of con�icting

transformations via these rules. In particular, we can check if there

is a minimal con�ict reason for the given rule pair (r1, r2) with r2
non-deleting, equivalent with the rule pair being con�icting.

Example [Granularity levels] Two minimal con�ict reasons of rule

pair (returnUnpaidGood, o�erGift) were discussed above. Hence,

these two rules are in con�ict. Two further minimal con�ict reasons

arise if node 5 of the �rst rule overlaps with node 3 of the second

rule, and if node 6 of the �rst rule is overlapped with node 4 of the

second one. These four minimal reasons form the coarse analysis

result of the considered rule pair. Together with all their possible

combinations, we get 6 con�ict reasons being reported as “New

Fine” analysis result in Table 2.

Mapping dependency concepts. As mentioned before, a de-
pendency can be understood as dual concept to con�icts. Analogous

to the con�ict case, we overapproximate produce-use dependencies

by produce-read dependencies. Then dependencies between rules,
minimal dependency and dependency reasons are mapped to the

binary, coarse and �ne granularity level accordingly.

5 ALGORITHM SUITE
We present an algorithm suite for computing binary, coarse and

�ne-grained con�icts. It is implemented in Henshin [3, 57], a model

transformation framework based on graph transformation concepts.

Given a pair of rules, we consider a non-deleting variant of

the second rule, supporting the overapproximation presented in

Section 4.2. The algorithm in Figure 5 computes minimal con�ict

reasons (coarse granularity). The algorithm in Figure 6 uses these

results to compute all con�ict reasons (�ne granularity). To support

use-cases where binary granularity is su�cient, we can stop the

computation as soon as one minimal con�ict reason is discovered.

6

1: funct computeMinReasons(r1 : Rule, r2 : Rule)

2: var r easons ← ∅
3: for each c ← ComputeAtomCandidates(r1, r2) do
4: computeMinReasonsRecursively(r1, r2, c, r easons)

5: return r easons
6:

7: funct computeAtomCandidates(r1 : Rule, r2 : Rule)

8: var candidates ← ∅
9: for each el1 ← r1 .conf l ict InducinдElements do

10: for each el2 ← r2 .lhs .occurenceOf (el1) do
11: var S1 ← new Graph({el1 })
12: var embedr

1
← new Mappinд({el1 7→el1 })

13: var embedr
2
← new Mappinд({el1 7→el2 })

14: candidates += new Span(S1, embedr
1
, embedr

2
)

15: return candidates
16:

17: funct computeMinReasonsRecursively(r1 : Rule, r2 : Rule, s1 :

Span, r easons : Set)

18: var (G,m1,m2) ← constructOver lap(r1, r2, s1)
19: var isCRs

1
← f indDanдlinдEdдes(r1,m1).isEmpty()

20: if isCRs
1
then r easons += s1 ; return; else

21: for each s2 ← extendSpan(r1, r2, s1, r easons) do
22: computeMinReasonsRecursively(r1, r2, s2, r easons)

23:

24: funct extendSpan(r1 : Rule, r2 : Rule, s1 : Span, r easons : Set)

25: var (G,m1,m2) ← constructOver lap(r1, r2, s1)
26: var danдlinд ← f indDanдlinдEdдes(r1,m1)

27: var f ixinд ← danдlinд .foreach(f indF ixinдEdдes(r1, r2, s1))
28: return aддeдrate(f ixinд .foreach(enumerateExtensions(s1)))

Figure 5: Computing minimal con�ict reasons.

Computing minimal con�ict reasons. For e�ciency, we

use the characterization of minimal con�ict reasons as introduced

in Sect. 4.2. The key idea is to compute �rst the set of all con�ict
atom candidates (line 3). To this end, all con�ict-inducing elements

of r1 are identi�ed in line 9. Each match of such an element to

r2 (line 10) is extended to a span (lines 11–14) yielding an atom

candidate. Next, we try to extend each atom candidate to minimal

con�ict reasons (line 4) recursively and return the results (line 5).

To determine e�ciently if a particular candidate can be extended

to a minimal con�ict reason recursively, we check if it gives rise to

a critical pair by computing the overlap graph G of the rules’ LHSs

along the candidate (line 18) and checking if the corresponding em-

beddings m1 : L1 → G and m2 : L2 → G are rule matches (line 19).

Since we assume r2 to be non-deleting,m2 is automatically a match.

We are �nished ifm1 is a match as well (i.e. if r1 can be applied at

embedding m1 without producing dangling edges) meaning that

we found a reason (line 20). Otherwise, we extend candidate spans

in potentially several ways (line 21), discarding further extension

opportunities in case we identi�ed a con�ict reason. We computed

all extensions by function extendSpan() (line 24). A span s1 has

to be extended if the rule’ LHS embeddings into a given overlap

graph do not ful�ll the dangling condition (line 25). An extension

is performed stepwise by �rst identifying all dangling edges (line

26). For each of them a set of �xing edges in r2 is searched (line

27). Suitable candidates for this purpose are all adjacent edges e in

C1 \ S1 of e’s adjacent node in S1 being identi�ed by calling �nd-
FixingEdges(). For each �xing edge, function enumerateExtensions()
(line 28) yields a set of spans, each extending s1 by an edge and its

adjacent node if not previously included in s1. All these sets have

to be aggregated to obtain the result (line 28). Since we know that

a minimal con�ict reason is always part of a deletion component,

we have a stopping criterion for the extension process, as we can

focus on adjacent edges when computing extensions.

Computing con�ict reasons. Starting from a set of minimal

con�ict reasons, all con�ict reasons can be composed of them. Func-

tion ComputeConflictReason in Figure 6 picks any minimal reason

mr out of a given set (line 4), adds it as reason (line 5), and composes

it with the set subReasons of all con�ict reasons computed from the

remaining set of minimal reasons (lines 7–12). All con�ict reasons

in subReasons are �rst of all con�ict reasons themselves (line 9) and

second to be composed withmr if composable (lines 11–12).

1: funct computeConflictReasons(minReasons : Set)

2: var r easons ← ∅
3: if minReasons .nonEmpty()
4: then varmr ←minReasons .pickAny()
5: r easons .add (mr)
6: if minReasons .size ≥ 2

7: then var subReasons = computeConflictReasons(

8: minReasons .r emove(mr))
9: r easons .add (subReasons)

10: for each s : subReasons do
11: if isComposable(mr, s)
12: then r easons .add (compose(mr, s))
13: return r easons

Figure 6: Computing con�ict reasons.

Computing dependency reasons. We invert rule r1, compute

all con�ict reasons, and interpret them as dependency reasons.

Implementation. We implemented the algorithm suite for

the Henshin model transformation language, which is based on

graph transformation concepts and the Eclipse Modeling Frame-

work (EMF). Our implementation includes a comprehensive test

suite, in which the test oracle is provided by computing �ne-grained

con�icts in the state-of-the-art CDA framework AGG. Section 6

studies the performance of our implementation.

6 IMPLEMENTATION EVALUATION
We evaluated our analysis via comparison to the existing analysis

in AGG, focusing on two research questions: RQ1: How fast are our
coarse and �ne-grained analyses in relation to the existing analysis
in AGG? RQ2: What is the degree of the overapproximation of the
multi-granular CDA technique?

We performed our evaluation on three subject rule sets, all

of them representing use-cases identi�ed in Sect. 3: Refac is a

set of refactoring rules as used in refactoring recommenders [46].

FMedit is a set of editing rules that was proposed in [58] as a

benchmark for edit operation detection [35]. NanoXML is a set

of rules that was reverse-engineered from the Java code for a

small XML parser [1] to provide an oracle for test case genera-

tion [54]. The implementation and evaluation artifacts are available

at https://github.com/KristopherBorn/multiCDA.

RQ1. We considered the essential CPA in AGG and compared

it with our computations of minimal con�ict/dependency reasons

(MCR/MDR) as coarse-grained analysis and con�ict/dependency

reasons (CR/DR) as �ne-grained one. We analyzed delete-use-

con�icts between each rule pair considering a non-deleting version

of the “use” rule in each case. Moreover, we preprocessed the rule

set and meta-model such that they �t to the features supported by

AGG and by our implementation. In the results (Table 4), we ob-

served that our approach achieved a major speed-up from e.g. over

8 minutes to 5 seconds for 1681 rule pairs. In terms of quantity, we

see that the mean number of results dropped considerably for the

7

Runtime (m:ss.x) #Results (mean)
#Rule MCR CR ess. MCR CR ess.

Rule set pairs MDR DR CPA MDR DR CPA

Refac 64 0:00.3 0:00.3 0:08.7 1.0 1.4 2.6

FMedit 1681 0:05.3 0:16.3 8:41.1 0.5 1.3 2.6

NanoXML 1296 0:04.6 0:04.7 1:30.4 0.2 0.2 0.2

Table 4: RQ1 results from our coarse (MCR/MDR) and �ne-
grained (CR/DR) vs. the existing analysis in AGG (ess. CPA).

Rule set prec. recall
Refac 0.88 1.0

FMedit 0.98 1.0

NanoXML 1.0 1.0

Table 5: Overapproximation results

larger cases, e.g. from 2.6 to 0.5 for FMedit rule pairs. There were

even more striking results for individual rule pairs. In the most

extreme case, we had 1588 ess. critical pairs, 644 con�ict reasons,

and 24 min. con�ict reasons. A trend towards excessive individual

cases is re�ected in a higher standard deviation of results, which

in the FmEdit case amounted to 1.4 for coarse-grained, 18.2 for

�ne-grained, and 49.1 for the essential CPA results.

RQ2. We computed the sets of essential critical pairs (ess. CPs)

for an original rule pair and the one for a pair where the second

rule is the non-deleting variant of the original one. Both sets of

ess. CPs have been �ltered w.r.t. initial con�icts (dependencies).

The precision is the percentage of rule pairs with equal numbers of

initial con�icts (dependencies). Since we do an overapproximation,

the recall is always 1.0, i.e., we do not miss a critical pair when

switching to the non-deleting rule variant. The precision, however,

happens to be smaller than 1.0, i.e., false positives can occur. As the

results in Table 5 show, the resulting precision is still acceptable.

Threads to validity. External validity can be questioned since

we focus on a limited number of rule sets being preprocessed ac-

cording to unsupported features such as application conditions [19]

and amalgamation [11]. We intend to support more transformation

features in the future, thus enabling a more comprehensive study

with more expressive subject rule sets.

7 USER STUDY
The goal of our user study is to test the usefulness of our technique’s

output compared to that of its predecessor, critical pair analysis

(CPA). As discussed in Section 3, in many use-cases, coarse-grained

results may provide a more suitable level of detail than the �ne-

grained ones produced by CPA. Focusing on such use-cases, we

investigated the following research question: How useful are our
coarse-grained results compared to �ne-grained ones?

We conducted a user study in which comprehension tasks had

to be solved based on con�ict analysis results. The analysis results

were embedded as screenshots into an online questionnaire. With

this web-based setup, we aimed to recruit a su�cient number of

participants with appropriate expertise in graph transformations.

A replication package with all tasks and data from our user study

is available at http://uni-marburg.de/y35ak.

Focusing on the usefulness concerns of user performance and

perception, our null hypotheses were as follows: (H0per f) Users
can solve comprehension tasks equally well using the given coarse-
and �ne-grained results; (H0perc) Users perceive the usefulness of the

given coarse- and �ne-grained results as equal. We used a standard

experimental setup involving independent, dependent, and con-

trolled variables. Granularity was the independent variable. User

performance and perception were the dependent variables. We

controlled the used examples and the chosen visualization by keep-

ing them constant. All analysis results were shown in the result

visualization of AGG [59].

Methods, participants, materials. Our study design is a cross-
over study, a variant of within-subject design [34] in which all par-

ticipants are sequentially exposed to both treatments (here: coarse-

and �ne-grained analysis results). We selected this design because

it minimizes the number of participants necessary to identify sta-

tistically signi�cant di�erences between the result types. The main

threat to the validity for this design are learning e�ects. We later

discuss threats and adopted mitigation measures.

The experiment took place in Summer 2017. To recruit sub-

jects with appropriate expertise, we invited participants of recent

software engineering conferences focusing on model and graph

transformations, and authors of the papers surveyed in Sect. 3. We

sent invitations to 131 persons, 33 of which participated in the sur-

vey. Our overall sample consisted of 24 academic/scientists, 5 PhD

students, 3 practitioners, and 1 MSc student. To survey the shared

software-engineering and graph-transformation background of our

participants, we collected demographic data based on �ve-point

Likert scales. 30 respondents rated their experience with UML-

based modeling 3 or higher (20 of them ≥4), like 32 did for their

graph-transformation experience (in 27 cases ≥4), 25 participants

rated their experience as CDA users as 3 or higher (14 cases ≥4).

The questionnaire was made up of three parts: an instruction

part, an experimental part, and a survey part. The instruction part

used an example to revisit basics about con�icts of graph transfor-

mations and familiarize the participants with the used visualization.

The comprehension part included question-based comprehension

tasks. In the survey part, we aggregated the demographic informa-

tion and asked the participants for their subjective experiences.

The instruction and comprehension parts used a common ex-

ample domain, namely the detection of con�icting requirements

during the development of an online shop. The rationale for choos-

ing this domain was twofold: First, it did not require expertise in a

specialized technical environment. Second, it is based on a use-case

in which we hypothesize that coarse-grained results are bene�cial,

namely consistency validation of use-cases [26]. The example in

Sect. 2 is representative for this example domain and use-case.

In the comprehension part, each participant solved two tasks,

one for each granularity level. Each task included an example

rule pair, a number of con�ict analysis results, and two questions:

First, whether any con�icts existed for the rule pair. Second, if the

�rst question was answered “yes”, we asked to name the speci�c

elements causing the con�icts. The rule pairs and their order were

the same for each participant. The order of the granularity levels

used to present the con�icts was assigned randomly. Based on the

questions, the task metrics were measured as follows: A correct

answer for the �rst question was rewarded with 1 point. The second

question was more complicated, which was re�ected in 2 points for

a fully and 1 point for a partially correct answer. The time needed

to complete both tasks was measured using the questionnaire.

8

Table 6: User study results.

Con�ict type Correctness Completion time Understandability Simplicity E�ort

5=hard to understand 5=hard to solve tasks 5=much e�ort

Fine-grained 93.9 % (± 13.0 %) 7.7 min (± 6.6 min) 2.6 / 5 (± 0.9) 2.5 / 5 (± 1.0) 2.9 / 5 (± 1.1)

Coarse-grained 91.9 % (± 14.5 %) 5.7 min (± 2.9 min) 2.0 / 5 (± 0.9) 2.0 / 5 (± 1.1) 2.0 / 5 (± 0.9)

p = 0.42 p = 0.10 p = 0.004 p = 0.008 p ≤ 0.001

We tested the tasks in a prestudy with 10 participants, in which

we experimented with various di�culty levels. We aimed to bal-

ance complexity—the drawbacks of �ne-grained results are more

obvious for complex examples and tasks—and simplicity, to avoid

participant exhaustion and to bene�t completion rate. To this end,

we decided to drop additional tasks concerning dependency ana-

lysis and con�ict repair. The actual tasks used in our experiment

were based on the con�ict example shown in Sect. 2 (Task 1) and a

comparable one (Task 2). Fine-grained results represent essential

critical pairs, as provided by the state-of-the-art CDA tool AGG.

Coarse-grained results are those of our multi-granular CDA.

In the survey part, to measure user perception, the participants

were asked for their subjective assessment of both granularity levels.

Three metrics were collected using �ve-point Likert scales: ratings

of understandability ("How easy was it to understand the results
of type X?"), di�culty of solving tasks ("‘How di�cult was it to
answer the questions using the results of type X?"), and perceived

e�ort ("‘How much e�ort was required to answer the questions using
the results of type X?"’). Finally, we asked them for their overall

preference between both granularity levels on a �ve-point Likert

scale. Additional qualitative information regarding the subjective

assessment was collected using free-form text �elds.

For statistical hypothesis testing, we used the Wilcoxon signed-

ranked test [22] and, where applicable, the paired-samples t-test

[63]. Wilcoxon is a standard nonparametrized test that supports

high-con�dence inferences for paired data. The t-test provides

greater statistical power than Wilcoxon for normally distributed

data. We checked for normality using the Shapiro-Wilk test [55].

Figure 7: Correctness and completion time.

Results. Table 6 summarizes the results in terms of descrip-

tive and inferential statistics. The task metrics are visualized with

boxplots in Fig. 7. Irrespective of whether coarse- or �ne-grained

detection results were used, the vast majority of all participants

answered the tasks with full correctness scores. The mean time re-

quired to complete the tasks was shorter by 33 % (2 minutes) when

coarse-grained results were used. Yet, the completion times for the

�ne-grained case included two excessive data points of 28 and 31

minutes, which can be considered as outliers. After removing them,

the mean completion time for coarse-grained is still lower by 0.6

minutes. The completion times did not not di�er to a statistically

signi�cant extent (p=0.10). In summary, since we cannot �nd a

signi�cant e�ect on correctness and completion time, our �rst null

hypothesis H0per f cannot be rejected.

The perception metrics of understandability, di�culty, and e�ort

are visualized in Fig. 8. In all cases, the participants reported more

positive (70–79 % vs. 36–55 %), fewer negative (9–12% vs. 18–36

%) , and fewer neutral scores (12–18% vs. 24–33 %) when working

with the coarse-grained detection results: they experienced better

understandability, ease of solving tasks, and less e�ort. The di�er-

ences were strongly statistically signi�cant (p ≤ 0.01). In summary,

our second null hypothesis H0perc is rejected.

Figure 8: User perception and preference.
Finally, we asked for an overall subjective preference. Fig. 8

gives a distribution overview: coarse-grained results attracted more

subjective preferences than �ne-grained ones. In fact, the overall

sample is mostly divided into two groups: those participants with

a preference for the coarse-grained results (48%, 30 % of them with

a strong preference), and those without a preference (42 %).

In qualitative information collected using the questionnaire, we

found that the reasons for preferring were largely in line with our

motivation: Participants found that “less results provided a quicker
overview”, and that coarse-grained results “boil down the problem to
actual distinguish con�icts”. Some subjects extrapolated from our

tasks to more complex cases: “Assuming that we have a larger set of
rules that con�ict with each other, I’d assume that the [�ne-grained]
results will become very complex and hard to understand”.

We also found reasons why this preference was not shared unan-

imously. Some participants found the redundancy of �ne-grained

bene�cial as it “presented con�icts more consistently” and felt that

coarse-grained results did not mirror their understanding of con-

�icts: “I believe that [�ne-grained] displays all con�icts, whereas
[coarse-grained] only displays selected con�icts.” This group of users

may still bene�t from our faster computation of �ne-grained results.

9

Threats to Validity. Construct validity. For our e�ort and un-

derstandability measurements, we rely on subjective ratings by the

participants. However, such subjective measures are highly corre-

lated with objective measures of cognitive load [24]. Moreover, we

aimed to avoid participant bias in favor of the experimenters by re-

placing the names of the used tools and concepts with pseudonyms.

Internal validity. The main threat in our within-subject design

are learning e�ects, in particular, since the same questions were

asked for each analysis result type (albeit for di�erent tasks). We

mitigated this threat by using counterbalancing, i.e., randomizing

the order in which the results were shown to the participants.

External validity. We addressed external validity by recruiting

a su�ciently large number of participants with relevant software

engineering and CDA expertise. However, our web-based setup

required some trade-o�s: the sample analysis results were relatively

small (3–10 entries) and were shown using screenshots instead of

in the actual tool. Generalizations to a greater variety of use-cases

are threatened since we considered a single domain and use-case.

While our discussion in Sect. 3 highlights key similarities to other

domains, a de�nitive verdict on the practical usefulness of coarse-

grained results is outside the scope of this paper.

Summary. Having identi�ed use-cases in which the level of de-

tail o�ered by our coarse-grained results seems su�cient (Sect. 3),

we set out to empirically study their usefulness in one such use-

case. While we did not detect an e�ect on participants’ perfor-

mance, the participants perceived coarse-grained results as easier

to understand and work with than �ne-grained ones. The relative

majority of participants preferred coarse-grained over �ne-grained

results. Our user study complements signi�cant performance bene-

�t achieved by our multi-granular computations and, to the best

of our knowledge, provides the �rst empirical evidence on the

usefulness of CDA for graph transformation.

8 RELATEDWORK
In this paper, we have presented a generic, multi-granular CDA tech-

nique based on graph transformation (GT) which is statically analyz-

ing transformation rules; it is fully automatic and state-independent.

We compare with other analysis techniques along these aspects.

Further GT analysis techniques. Another static analysis tech-

nique for GT checks for invariants [7, 9]. In contrast, model checking
techniques for GT [21, 51] need an initial start graph and then gener-

ate for this graph and a given rule set a corresponding state space in

order to analyze more complex temporal logic properties. Whereas

both kinds of analysis techniques are fully automatic, there exist

also interactive theorem proving techniques dedicated to GT that are

able to prove partial correctness of graph programs [25, 49].

With respect to designing and performing analysis techniques
with di�erent granularity levels, we can relate our work in a broader

sense to the work on counter example guided abstraction re�nement
(CEGAR) initially described in [14] and applied to the analysis of

GT in [37]. Our approach contains a similar idea in the sense that

we perform a stepwise analysis technique with di�erent levels of

accuracy and terminate with the level of accuracy that is needed.

In the CEGAR approach the desired level of accuracy is obtained

if either the desired property for the analyzed system is success-

fully veri�ed or a real counterexample has been detected. In our

approach there can be many di�erent use-cases to be satis�ed with

a certain level of accuracy of the analysis as described in detail in

the literature review in Section 3.

Other generic CDA techniques. Besides GT there exist other

formal approaches which allow for static and dynamic CDA of

speci�ed systems. A Church-Rosser-Checker for equational speci�-

cations in Maude [16] looks for critical pairs between conditional

term rewriting rules and tries to join them. There are also logic-

based approaches such as conditional transformations [36] provid-

ing static CDA techniques. These techniques are generic and there-

fore language-independent but the analysis techniques provided

are not multi-granular. Further logic-based approaches such as con-
straint networks and model checking approaches such as Alloy [32]

are not state-independent.

Language-speci�c CDA techniques. There are many sophis-

ticated CDA techniques in the context of sequential and concurrent

programming. In the context of concurrent threads, con�icts are

called data races; they occur if two di�erent threads access the

same memory location and at least one of them is a write (see

e.g. [28, 56]). Common challenges of these techniques are dynamic

object creation, dynamic thread creation, and references to ob-

jects [52]. Similarly, there has been a long line of works developing

data �ow analyses to �nd dependencies between object changes

and accesses; for example, static taint analyses have been recently

developed for Android applications as e.g. FlowDroid [4]. These

CDA techniques di�er considerably to ours in several aspects: they

are not generic but have been speci�cally developed to �nd bugs

in implementations. To the best of our knowledge, there are no

language-speci�c CDA techniques for reasoning about software en-

gineering activities. Language-speci�c CDA techniques are mostly

dynamic and therefore state-dependent. This is often not suitable

for engineering activities such as refactorings which are speci-

�ed state-independently. Moreover these CDAs are usually not

multi-granular so that gradual analysis time reduction and easy

understanding are not especially supported.

9 CONCLUSION
In this paper, we presented a novel static CDA technique for graph

transformation which can detect con�icts and dependencies in

software engineering on multiple granularity levels. Compared to

the state-of-the-art CDA, we were able to signi�cantly speed-up the

computation of �ne-grained CDA results and to complement them

with coarse-grained ones o�ering usability bene�ts for numerous

use-cases. Our technique is especially advantageous for analyzing

interactions on complex and dynamic object structures as, e.g., for

feature interaction in software product line engineering.

Our multi-granular CDA technique currently uses transforma-

tion rules without advanced features such as application condi-

tions [19] and amalgamation [11], for which the state-of-the-art

CDA technique has been investigated already. In the future, we

aim to support these more complex concepts in our technique

as well. Due to the major speed-up we could achieve with our

multi-granular approach, this technique has now the potential to

be applied in �elds where performance plays a larger role.

Acknowledgements. We wish to thank all participants of the

user (pre-)study for their participation and constructive feedback.

10

REFERENCES
[1] A. Alshanqiti and R. Heckel, “Extracting Visual Contracts from Java Programs

(T),” in ASE, 2015, pp. 104–114.

[2] Z. Altahat, T. Elrad, L. Tahat, and N. Almasri, “Detection of syntactic aspect inter-

action in UML state diagrams using critical pair analysis in graph transformation,”

CoRR, vol. abs/1312.6939, 2013.

[3] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: ad-

vanced concepts and tools for in-place EMF model transformations,” in MoDELS.

Springer, 2010, pp. 121–135.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel, “Flowdroid: Precise context, �ow, �eld, object-sensitive and

lifecycle-aware taint analysis for android apps,” SIGPLAN Not., vol. 49, no. 6, pp.

259–269, Jun. 2014.

[5] G. G. Azzi, J. S. Bezerra, L. Ribeiro, A. Costa, L. M. Rodrigues, and R. Machado,

“The Verigraph System for Graph Transformation,” in Graph Transformation,
Speci�cations, and Nets. In Memory of Hartmut Ehrig. Springer, 2018, pp. 160–

178.

[6] L. Baresi, K. Ehrig, and R. Heckel, “Veri�cation of model transformations: A case

study with BPEL,” in TGC, 2007, pp. 183–199.

[7] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling, “Symbolic invariant

veri�cation for systems with dynamic structural adaptation,” in ICSE, 2006, pp.

72–81.

[8] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis

and prediction for software evolution,” in ICSE, 2012, pp. 419–429.

[9] C. Blume, H. J. S. Bruggink, and B. König, “Recognizable graph languages for

checking invariants,” ECEASST, vol. 29, 2010.

[10] K. Born, L. Lambers, D. Strüber, and G. Taentzer, “Granularity of con�icts and

dependencies in graph transformation systems,” in ICGT, 2017, pp. 125–141.

[11] K. Born and G. Taentzer, “An algorithm for the critical pair analysis of amalga-

mated graph transformations,” in ICGT, 2016, pp. 118–134.

[12] P. Bottoni, G. Taentzer, and A. Schürr, “E�cient parsing of visual languages

based on critical pair analysis and contextual layered graph transformation,” in

VL/HCC, 2000, pp. 59–60.

[13] A. Bucchiarone, P. Pelliccione, C. Vattani, and O. Runge, “Self-repairing systems

modeling and veri�cation using AGG,” in WICSA/ECSA, 2009, pp. 181–190.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided

abstraction re�nement,” in CAV, 2000, pp. 154–169.

[15] S. Degrandsart, S. Demeyer, J. Van den Bergh, and T. Mens, “A transformation-

based approach to context-aware modelling,” Software & Systems Modeling,

vol. 13, no. 1, pp. 191–208, 2014.

[16] F. Durán and J. Meseguer, “A Church-Rosser Checker Tool for Conditional Order-

Sorted Equational Maude Speci�cations,” in WRLA, 2010, pp. 69–85.

[17] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph
Transformation, ser. Monographs in Theoret. Computer Science. Springer, 2006.

[18] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds., Handbook of Graph
Grammars and Computing by Graph Transformation: Vol. 2: Applications, Lan-
guages, and Tools. World Scienti�c Publishing, 1999.

[19] H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas, “M-adhesive transfor-

mation systems with nested application conditions. part 2: Embedding, critical

pairs and local con�uence,” Fundam. Inform., vol. 118, no. 1-2, pp. 35–63, 2012.

[20] C. Ermel, J. Gall, L. Lambers, and G. Taentzer, “Modeling with plausibility check-

ing: Inspecting favorable and critical signs for consistency between control �ow

and functional behavior,” in FASE. Springer, 2011, pp. 156–170.

[21] A. H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova, “Mod-

elling and analysis using GROOVE,” STTT, vol. 14, no. 1, pp. 15–40, 2012.

[22] J. D. Gibbons and S. Chakraborti, “Nonparametric statistical inference,” in Inter-
national encyclopedia of statistical science. Springer, 2011, pp. 977–979.

[23] H. Giese, S. Hildebrandt, and L. Lambers, “Bridging the gap between formal

semantics and implementation of triple graph grammars,” Software & Systems
Modeling, vol. 13, no. 1, pp. 273–299, 2014.

[24] D. Gopher and R. Braune, “On the psychophysics of workload: Why bother with

subjective measures?” Human Factors, vol. 26, no. 5, pp. 519–532, 1984.

[25] A. Habel and K. Pennemann, “Correctness of high-level transformation sys-

tems relative to nested conditions,” Mathematical Structures in Computer Science,
vol. 19, no. 2, pp. 245–296, 2009.

[26] J. H. Hausmann, R. Heckel, and G. Taentzer, “Detection of Con�icting Functional

Requirements in a Use Case-Driven Approach: A Static Analysis Technique

Based on Graph Transformation,” in ICSE, 2002, pp. 105–115.

[27] R. Heckel, J. M. Küster, and G. Taentzer, “Con�uence of Typed Attributed Graph

Transformation Systems,” in ICGT, 2002, pp. 161–176.

[28] T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by context inference,”

in PLDI, 2004, pp. 1–13.

[29] F. Hermann, H. Ehrig, U. Golas, and F. Orejas, “E�cient analysis and execution

of correct and complete model transformations based on triple graph grammars,”

in MDI, 2010, pp. 22–31.

[30] F. Hermann, H. Ehrig, F. Orejas, and U. Golas, “Formal analysis of functional

behaviour for model transformations based on triple graph grammars,” in ICGT,

2010, pp. 155–170.

[31] S. Hildebrandt, L. Lambers, and H. Giese, “Complete speci�cation coverage in

automatically generated conformance test cases for tgg implementations,” in

ICMT, K. Duddy and G. Kappel, Eds., 2013, pp. 174–188.

[32] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Softw.
Eng. Methodol., vol. 11, no. 2, pp. 256–290, Apr. 2002.

[33] P. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa, “Model composition

in product lines and feature interaction detection using critical pair analysis,” in

MoDELS, 2007, pp. 151–165.

[34] B. Jones and M. G. Kenward, Design and analysis of cross-over trials. CRC Press,

2014.

[35] T. Kehrer, U. Kelter, and G. Taentzer, “Consistency-Preserving Edit Scripts in

Model Versioning,” in ASE, 2013, pp. 191–201.

[36] G. Kniesel, “Detection and resolution of weaving interactions,” Trans. Aspect-
Oriented Software Development, vol. 5, pp. 135–186, 2009.

[37] B. König and V. Kozioura, “Counterexample-guided abstraction re�nement for

the analysis of graph transformation systems,” in TACAS, 2006, pp. 197–211.

[38] C. Krause, Z. Maraikar, A. Lazovik, and F. Arbab, “Modeling dynamic recon�g-

urations in reo using high-level replacement systems,” Sci. Comput. Program.,
vol. 76, no. 1, pp. 23–36, 2011.

[39] J. M. Küster, C. Gerth, and G. Engels, “Dependent and con�icting change opera-

tions of process models,” in ECMDA-FA, 2009, pp. 158–173.

[40] L. Lambers, K. Born, F. Orejas, D. Strüber, and G. Taentzer, “Initial con�icts and

dependencies: Critical pairs revisited,” in Graph Transformation, Speci�cations,
and Nets. In Memory of Hartmut Ehrig. Springer, 2018, pp. 105–123.

[41] L. Lambers, H. Ehrig, L. Mariani, and M. Pezzè, “Iterative model-driven develop-

ment of adaptable service-based applications,” in ASE, 2007, pp. 453–456.

[42] L. Lambers, H. Ehrig, and F. Orejas, “E�cient con�ict detection in graph trans-

formation systems by essential critical pairs,” Electr. Notes Theor. Comput. Sci.,
vol. 211, pp. 17–26, 2008.

[43] L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Hübert, “Multi-

granular con�ict and dependency analysis in software engineering based

on graph transformation: Extended version,” 2018, https://www.uni-

marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/.

[44] P. Leenheer and T. Mens, “Using graph transformation to support collaborative

ontology evolution,” in AGTIVE, 2008, pp. 44–58.

[45] K. Mehner-Heindl, M. Monga, and G. Taentzer, “Analysis of Aspect-Oriented

Models Using Graph Transformation Systems,” in Aspect-Oriented Requirements
Engineering, A. Moreira, R. Chitchyan, J. Araújo, and A. Rashid, Eds. Springer,

2013, pp. 243–270.

[46] T. Mens, G. Taentzer, and O. Runge, “Analysing refactoring dependencies using

graph transformation,” Soft. and Sys. Modeling, vol. 6, no. 3, pp. 269–285, 2007.

[47] T. Mens, R. Van Der Straeten, and M. D’Hondt, “Detecting and resolving model

inconsistencies using transformation dependency analysis,” in MoDELS, 2006,

pp. 200–214.

[48] D. Plump, “Critical Pairs in Term Graph Rewriting,” in Mathematical Foundations
of Computer Science, vol. 841, 1994, pp. 556–566.

[49] C. M. Poskitt and D. Plump, “Verifying monadic second-order properties of graph

programs,” in ICGT, 2014, pp. 33–48.

[50] F. Qayum and R. Heckel, “Local search-based refactoring as graph transformation,”

in SSBSE, 2009, pp. 43–46.

[51] A. Rensink, Á. Schmidt, and D. Varró, “Model checking graph transformations:

A comparison of two approaches,” in ICGT, 2004, pp. 226–241.

[52] M. C. Rinard, “Analysis of multithreaded programs,” in SAS, 2001, pp. 1–19.

[53] G. Rozenberg, Ed., Handbook of Graph Grammars and Computing by Graph
Transformations, Vol. 1: Foundations. World Scienti�c, 1997.

[54] O. Runge, T. A. Khan, and R. Heckel, “Test case generation using visual contracts,”

ECEASST, vol. 58, 2013.

[55] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete

samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[56] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound predictive

race detection in polynomial time,” SIGPLAN Not., vol. 47, no. 1, pp. 387–400, Jan.

2012.

[57] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf, and M. Tichy,

“Henshin: A usability-focused framework for emf model transformation develop-

ment,” in ICGT. Springer, 2017, pp. 196–208.

[58] D. Strüber, T. Kehrer, T. Arendt, C. Pietsch, and D. Reuling, “Scalability of Model

Transformations: Position Paper and Benchmark Set,” in BigMDE, 2016, pp.

21–30.

[59] G. Taentzer, “AGG: A graph transformation environment for modeling and

validation of software,” in AGTIVE, 2003, pp. 446–453.

[60] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer, “Con�ict detection for model

versioning based on graph modi�cations,” in ICGT, 2010, pp. 171–186.

[61] J. Whitehead, “Collaboration in software engineering: A roadmap,” in Future of
Software Engineering @ ICSE, 2007, pp. 214–225.

[62] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Araújo, “MATA: A

uni�ed approach for composing UML aspect models based on graph transforma-

tion,” Transactions on Aspect-Oriented Software Development VI: Special Issue on

11

Aspects and Model-Driven Engineering, pp. 191–237, 2009.

[63] D. W. Zimmerman, “Teacher’s corner: A note on interpretation of the paired-

samples t test,” Journal of Educational and Behavioral Statistics, vol. 22, no. 3, pp.

349–360, 1997.

12

