
OCL2AC

Automatic Translation of OCL Constraints to Graph
Constraints and Application Conditions for

Transformation Rules

Nebras Nassar1(�)[0000−0002−0838−6513], Jens Kosiol1[0000−0003−4733−2777], Thorsten
Arendt2[0000−0002−4866−6405], and Gabriele Taentzer1[0000−0002−3975−5238]

1 Philipps-Universität Marburg, Marburg, Germany
{nassarn,kosiolje,taentzer}@informatik.uni-marburg.de
2 GFFT Innovationsförderung GmbH, Bad Vilbel, Germany

thorsten.arendt@gfft-ev.de

Abstract. Based on an existing theory, we present a tool OCL2AC
which is able to adapt a given rule-based model transformation such
that resulting models guarantee a given constraint set. OCL2AC has
two main functionalities: First, OCL constraints are translated into se-
mantically equivalent graph constraints. Secondly, graph constraints can
further be integrated as application conditions into transformation rules.
The resulting rule is applicable only if its application does not violate
the original constraints. OCL2AC is implemented as Eclipse plug-in and
enhances Henshin transformation rules.

Keywords: OCL · Nested Graph Constraints ·Model Transformation · Henshin

1 Introduction

Model transformations are the heart and soul of Model-Driven Engineering
(MDE). They are used for various MDE-activities including translation, opti-
mization, and synchronization of models [13]. Resulting models should belong
to the transformation’s target language which means that they have to satisfy
all the corresponding language constraints. Consequently, the developer has to
design transformations such that they behave well w.r.t. language constraints.

Based on existing theory [8,12], we developed a tool, called OCL2AC, which
automatically adapts a given rule-based model transformation such that result-
ing models satisfy a given set of constraints. Use-cases for this tool are abundant,
including instance generation [12], ensuring that refactored models do not show
certain model smells (anymore), and generating model editing rules from meta-
models to enable high-level model version management [9].

Our tool builds upon the following basis: The de facto standard for defining
modeling languages in practice are the Eclipse Modeling Framework (EMF) [5]
for specifying meta-models and the Object Constraint Language (OCL) [10] for
expressing additional constraints. Graph transformation [6] has been shown to be

2 N. Nassar et al.

a versatile foundation for rule-based model transformation [7] focusing on the
models’ underlying graph structure. To reason about graph properties, Habel
and Pennemann [8] have developed (nested) graph constraints being equivalent
to first-order formulas on graphs.

OCL2AC consists of two main components: The first component OCL2GC
translates a reasonable subset of OCL constraints to graph constraints using
the formally defined OCL translation in [12] as conceptual basis. The second
component GC2AC integrates graph constraints as application conditions into
transformation rules specified in Henshin, a language and tool environment for
EMF model transformation [2]. The resulting application conditions ensure that
EMF models resulting from applications of the enhanced rules do not violate
the original constraints. The rules’ actions are not changed by the integration.
Each of these two components is designed to be usable on its own.

Note that our OCL translator is novel: Instead of checking satisfiability, it
enhances transformation rules such that their applications can result in valid
models only. To that extent, OCL2AC can be used to not just check constraint
satisfaction but also to tell the user how to improve transformation rules.

The paper is structured as follows: In Sect. 2, we present preliminaries. Sec-
tion 3 presents the two main components of the tool and their internal function-
alities. Related work is given in Sect. 4 while Sect. 5 concludes the paper.

2 Preliminaries

2.1 Introductory Example

Fig. 1. A simple Statecharts meta-model

To illustrate the behaviour of our
tool, we use a simple Statecharts
meta-model displayed in Fig. 1.

A StateMachine contains at
least one Region which may po-
tentially contain Transitions and
Vertices. Vertex is an abstract
class with a concrete subclass
State. FinalState inherits from
State. A State can again contain
Regions. Transitions connect Ver-
tices.

A basic constraint on Statecharts which is not expressible by just the graph-
ical structure of the meta-model or by multiplicities is: A FinalState has no
outgoing transition. We name this constraint no outgoing transitions.

2.2 OCL

The Object Constraint Language (OCL) [10] is a constraint language used to
supplement the specification of object-oriented models. OCL constraints may

OCL2AC 3

be used to specify invariants, operation contracts, or queries. The constraint
no outgoing transitions can be specified in OCL as:

context F i n a l S t a t e i n v a r i a n t n o o u t g o i n g t r a n s i t i o n s :
s e l f . outgo ing−>i sEmpty () ;

Our technique supports a slightly restricted subset of Essential OCL [10]. Since
OCL constraints are translated to nested graph constraints and thereby get a
precise semantics, we focus on OCL constraints corresponding to a first-order,
two-valued logic and relying on sets as the only collection type. Also, there is
only limited support for user-defined operations. Details can be found in [1,12].

2.3 Graph Rules, Graph Conditions, and Graph Constraints

Our tool currently enhances Henshin rules [2]. A rule specifies elements as to be
deleted, created, or preserved at application. Additionally, it may be equipped
with an application condition controlling its applicability. Figure 2 shows a Hen-
shin rule insert outgoing transition. When applying it at chosen nodes Vertex and
Transition in an instance, an edge of type outgoing is created between them.

Fig. 2. Transformation rule

∀
(
self:FinalState ,

@ self:FinalState var9:Transition
outgoing

)

1

Fig. 3. Graph constraint no outgoing transitions

(Nested) graph constraints are invariants which are checked for all graphs,
whereas (nested) graph conditions express properties of morphisms. The primary
example for that are application conditions for transformation rules. Constraints
are special cases of conditions since the empty graph can be included into any
graph. A version, important from the practical point of view, are compact con-
straints and conditions [12]. They allow for dense representation and obtain their
semantics by completing them into nested constraints or conditions. All those
formalisms allow to express first-order properties [8]. As an example, the graph
constraint in Fig. 3 states that a FinalState does not have an outgoing transition.

3 Tooling and Architecture

We implemented an Eclipse plug-in, called OCL2AC, with two components: (1)
OCL2GC takes an Ecore meta-model and a set of OCL constraints as inputs
and automatically returns a set of semantically equivalent graph constraints
as output. (2) GC2AC takes a transformation rule defined in Henshin and a
graph constraint, possibly compact, as inputs, and automatically returns the
Henshin rule with an updated application condition guaranteeing the given graph
constraint. Each component can be used independently as an Eclipse-based tool.
The tool is available for download at [1]. We introduce the architecture and
internal processes of both components and highlight some additional features.

4 N. Nassar et al.

3.1 From OCL to Graph Constraints

The first component of our tool takes an Ecore meta-model and a set of OCL
constraints as inputs and returns a set of semantically equivalent (nested) graph
constraints as output. The translation process is composed of the steps shown
in Fig. 4, which can be automatically performed.

1

Meta-model

OCL Constraints

OCL
Constraints

prepare

translate Compact
Condition

simplify

Nested Graph
Constraints

simplify

complete

1

2

3

4

5

Graph Constraints

Fig. 4. From OCL to graph constraints: Component design

In Step (1) an OCL constraint is prepared by refactorings. This is done to ease
the translation process, especially to save translation rules for OCL constraints.
The semantics of the constraint is preserved during this preparation. Step (2)
translates an OCL constraint to a graph constraint along the abstract syntax
structure of OCL expressions. This translation largely follows the one in [12]. Let
us consider the translation of OCL constraint no outgoing transitions to the graph
constraint displayed in Fig. 3: The expression self.outgoing→isEmpty() is refac-
tored to not(self.outgoing→size() ≥ 1). Hence, a translation rule for isEmpty() is
not needed. Then, this sub-expression is translated to a compact condition con-
taining a graph with one edge of type outgoing from a node of type FinalState
to a node of type Transition. The existence of such a pattern is negated.

Then a first simplification of the resulting compact condition takes place in
Step (3), using equivalence rules [11,12]. Applying those can greatly simplify the
representation of a condition; they can even collapse nesting levels.

Step (4) completes the compact condition to a nested graph constraint being
used to compute application conditions later on. The resulting nested graph
constraint is simplified in Step (5) using again equivalence rules. Our tool allows
to display the resulting constraint as nested graph constraint or as compact
constraint. The intermediate steps are computed internally only.

3.2 From Graph Constraints to Left Application Conditions

The second component of our tool takes a Henshin rule and a graph constraint
as inputs, and returns the Henshin rule with an updated application condition
guaranteeing the given graph constraint. Figure 5 gives an overview of the steps
to be performed:

In Step (1) the given graph constraint is prepared; if the input is a compact
constraint, it is expanded to a nested constraint. Moreover, it is refactored to
eliminate syntactic sugar. The operator ⇒ for implication, for example, is re-
placed with basic logic operators. Step (2) shifts a given graph constraint gc to

OCL2AC 5

2

Graph Constraint

Henshin Rule

Graph
Constraint

prepare

Henshin Rule

rac

Henshin Rule
lac

simplify

shift left

1

2 3

4

Updated

Henshin Rule
A B

ac

A B

ac

Fig. 5. Integration as application conditions: Component design

the RHS of the given rule so that we get a new right application condition rac for
this rule. The main idea of shift is to consider all possible ways in which gc could
be satisfied after rule application. This is done by overlapping the elements of the
rule’s RHS with each graph of gc in every possible way. This overlapping is done
iteratively along the nesting structure of gc. This algorithm is formally defined
in [8] and shown to be correct. The result of this calculation is yet impractical
as one would need to first apply the rule and then check the right application
condition to be fulfilled. Therefore, we continue with the next step.

Step (3) translates a right application condition rac to the LHS of the given
rule r to get a new left application condition lac. It is translated by applying
the rule reversely to the right application condition rac, again along its nesting
structure. If the inverse rule of r is applicable, the resulting condition is the new
left application condition. Otherwise r gets equipped with the application condi-
tion false, as it is not possible to apply r at any instance without violating gc.
The rule r with its new application condition has the property that, if it is appli-
cable, the resulting instance fulfills the integrated constraint. Step (4) simplifies
the resulting left application condition using equivalences as for graph condi-
tions. The output is the original Henshin rule with an updated left application
condition guaranteeing the given graph constraint.

For example, integrating the constraint no outgoing transitions into the rule
insert outgoing transition results in the application condition displayed in Fig. 6.
The upper part forbids node rv:Vertex being matched to a FinalState. The lower
part requires that the rule is matched to consistent models only, i.e., not con-
taining already a FinalState with an outgoing Transition. It may be omitted if
consistent input models can always be assumed.

¬∃



rv:FinalState

rt:Transition

,∃
rv:FinalState

rt:Transition

var9:Transition
outgoing

∨ ∃
rv:FinalState

rt:Transition


∧

¬∃




rv:Vertex

rt:Transition

self:FinalState

,∃

rv:Vertex

rt:Transition

self:FinalState var9:Transition
outgoing

∨ ∃

rv:Vertex

self:FinalState rt:Transition
outgoing




Fig. 6. Application condition for the rule insert outgoing transition after integrating the
constraint no outgoing transitions

6 N. Nassar et al.

Tool Features. OCL2AC provides a wizard for selecting a rule and a graph con-
straint that shall be integrated. The inputs of the wizard are a Henshin model
(file) and a graph constraint model being generated by OCL2GC or manually
designed based on the meta-model for compact conditions (at [1]). OCL2AC
additionally provides tool support for pretty printing graph constraints and ap-
plication conditions of Henshin rules in a graphical form as shown in Figs. 3 and
6 above. Pretty printing is supported for both compact and detailed representa-
tion of nested constraints and application conditions. The output of the pretty
printing is a LATEX-file being rendered as pdf-file and displayed in a developed
Eclipse PDF viewer.

4 Related Work

We briefly compare our tool with the most related tools for translating OCL or
calculating application conditions. To the best of our knowledge, we present the
first ready-to-use tool for integrating constraints as application conditions into
transformation rules.

In [3], Bergmann proposes a translation of OCL constraints into graph pat-
terns. The correctness of that translation is not shown. The implementation cov-
ers most of that translation. In [11], Pennemann introduces ENFORCe which
can check and ensure the correctness of high-level graph programs. It integrates
graph constraints as left application conditions of rules as well. However, the tool
is not published to try that out. Furthermore, there is no translation from OCL
to graph constraints available. Clarisó et al. present in [4] how to calculate an
application condition for a rule and an OCL constraint, directly in OCL. They
provide a correctness proof and a partial implementation.

5 Conclusion

OCL2AC automatically translates OCL constraints into semantically equivalent
graph constraints and thereafter, it takes a graph constraint and a Henshin rule
as inputs and updates the application condition of that rule such that it becomes
constraint-guaranteeing. OCL2AC is a ready-to-use tool implemented as Eclipse
plug-in based on EMF and Henshin. As future works, we intend to use it for
improving transformation rules for various modeling purposes such as model
validation and repair.

Acknowledgement. We are grateful to Jan Steffen Becker, Annegret Habel and
Christian Sandmann for their helpful support. This work was partially funded
by the German Research Foundation (DFG), projects “Generating Development
Environments for Modeling Languages” and “Triple Graph Grammars (TGG)
2.0”.

OCL2AC 7

References

1. OCL2AC: Additional material, https://ocl2ac.github.io/home/, (2018)
2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced

Concepts and Tools for In-Place EMF Model Transformations. In: Proc. of MOD-
ELS 2010. pp. 121–135. Springer (2010). https://doi.org/10.1007/978-3-642-16145-
2

3. Bergmann, G.: Translating OCL to Graph Patterns. In: Proc. of MODELS 2014.
pp. 670–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11653-
2 41

4. Clarisó, R., Cabot, J., Guerra, E., de Lara, J.: Backwards rea-
soning for model transformations: Method and applications. Jour-
nal of Systems and Software 116(Supplement C), 113–132 (2016).
https://doi.org/https://doi.org/10.1016/j.jss.2015.08.017

5. Eclipse Foundation: Eclipse Modeling Framework (EMF), http://www.eclipse.org/
emf/, (2018)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

7. Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation –
General Framework and Applications. Monographs in Theoretical Computer Sci-
ence. An EATCS Series, Springer (2015)

8. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19,
245–296 (2009)

9. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the spec-
ification of model editing operations from meta-models. In: Proc. of ICMT 2016.
pp. 173–188. Springer (2016). https://doi.org/10.1007/978-3-319-42064-6 12

10. OMG: Object Constraint Language, http://www.omg.org/spec/OCL/
11. Pennemann, K.H.: Development of Correct Graph Transformation Systems. Ph.D.

thesis, Carl von Ossietzky-Universität Oldenburg (2009)
12. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essen-

tial OCL invariants to nested graph constraints for generating instances of meta-
models. Science of Computer Programming 152, 38 – 62 (2018)

13. Sendall, S., Kozaczynski, W.: Model Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software 20(5), 42–45 (2003)

https://ocl2ac.github.io/home/
https://doi.org/10.1007/978-3-642-16145-2
https://doi.org/10.1007/978-3-642-16145-2
https://doi.org/{10.1007/978-3-319-11653-2_41}
https://doi.org/{10.1007/978-3-319-11653-2_41}
https://doi.org/https://doi.org/10.1016/j.jss.2015.08.017
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
https://doi.org/{10.1007/978-3-319-42064-6_12}
http://www.omg.org/spec/OCL/

	OCL2AC

