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Abstract. Model synchronization, i.e., the task of restoring consistency
between two interrelated models after a model change, is a challeng-
ing task. Triple Graph Grammars (TGGs) specify model consistency by
means of rules. They can be used to automatically derive specifications of
edit operations for single models and repair rules that propagate model
changes to related models. To support model (re-)synchronization activ-
ities more effectively, a construction mechanism for short-cut rules has
been recently developed. They describe consistency-preserving complex
edit operations across model boundaries. We show that edit and repair
rules can be derived from short-cut rules. As proof of concept, we im-
plemented the construction and application of short-cut edit and repair
rules in eMoflon. Our evaluation shows that short-cut-rule-based repair
processes have considerably decreased data loss and improved runtime
compared to former model synchronization processes in eMoflon.

Keywords: Model Synchronization · Triple Graph Grammars · Short-
Cut Rule

1 Introduction

Model-driven engineering has become an important technique to cope with the
increasing complexity of modern software systems. In the field of Concurrent
Engineering [7], for example, products are no longer realized in series but allow
parallel tasks. Each of these tasks has its view onto the product and, as a view
evolves, it may become inconsistent with the other ones. Keeping views synchro-
nized by checking and preserving their consistency can be a challenging problem
which is not only subject to ongoing research but also of practical interest for
industrial applications such as stated above.

Triple Graph Grammars (TGGs) [23] are a declarative, rule-based bidirec-
tional transformation approach that aims to synchronize models stemming from
different views (usually called domains in the TGG literature). Their purpose
is to define a consistency relationship between pairs of models in a rule-based
manner by defining traces between their elements. Given a finite set of rules that
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define how both models co-evolve, a TGG can be automatically operationalized

into source and forward rules. The source rules of an operationalized TGG can
be used to build up models of one domain while forward rules translate them to
models of the other domain, thereby establishing traces between their elements.
From a synchronization point of view, source rules specify edit operations to
change one model while forward rules specify repair operations to synchronize
model changes with one another [23,18,15]. Even though both, the translation
and the synchronization process, are formally defined and sound, there are in
fact several practical issues that arise for model synchronization from (poten-
tially transitive) dependencies between rule applications: To synchronize changed
models, popular TGG approaches do not always fix inconsistencies locally but
revert all dependent rule applications and start a retranslation process. However,
this kind of synchronization often deletes and recreates a lot of model elements
to reestablish model consistency, potentially losing information that is local to
just one model and wasting processing time. Existing solutions for this problem
are rather ad hoc and come without any guarantee to reestablish the consistency
of modified models [11,13].

As a new solution to this synchronization problem, we derive repair rules from
short-cut rules [8] that we recently introduced to handle complex consistency-
preserving model updates more effectively and efficiently. The construction of
short-cut rules is a kind of sequential rule composition that allows to replace
a rule application with another one while preserving involved model elements
(instead of deleting and re-creating them). We used short-cut rules to describe
model changes exchanging one edit step by another one. Since in this paper we
want to use short-cut rules for model synchronization as well, they have to be
operationalized into source and forward rules.

Our formal contributions (in Sect. 4) are two-fold: As short-cut rules may
be non-monotonic, i.e., may be deleting, we formalize the operationalization of
non-monotonic TGG rules which decomposes short-cut rules into (semantically
equivalent sequences of) source (edit) and forward (repair) rules. Moreover, we
obtain sufficient conditions under which an application of a short-cut rule pre-
serves the consistency of related pairs of models. This was left to future work
in [8]. Together, this constitutes the correctness of our approach using opera-
tionalized short-cut rules for model synchronization.

Practically, we implement our synchronization approach in eMoflon [20], a
state-of-the-art bidirectional graph transformation tool, and evaluate it (Sect. 5).
The results show that the construction of short-cut repair rules enables us to react
to model changes in a less invasive way by preserving information and increasing
the performance. We thus contribute to a more comprehensive research trend in
the bx-community towards Least Change synchronization [5]. Before presenting
these results in detail, we illustrate our approach using an example in Sect. 2 and
recall some preliminaries in Sect. 3. Finally, we discuss related work in Sect. 6
and conclude with pointers to future work in Sect. 7. In an appendix, we present
additional preliminaries (Appendix A), all proofs (Appendix B), and the rule
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set used for our evaluation, including more complex examples (Appendices C
and D).

2 Introductory Example

We motivate the use of short-cut repair processes by synchronizing a Java AST
(abstract syntax tree) model and a custom documentation model. For model
synchronization, we consider a Java AST model as source model and its doc-
umentation model as target model, i.e., changes in a Java AST model have to
be transferred to its documentation model. There are correspondence links in
between such that both models become correlated.
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Fig. 1. Example: TGG Rules
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Fig. 2. Example: TGG Forward Rules

TGG rules. Figure 1 shows the rule set of our running example consisting of
three TGG rules: Root-Rule creates a root Package together with a root Folder
and a correspondence link in between. This rule has an empty precondition and
only creates elements which are depicted in green and with the annotation (++).
Sub-Rule creates a Package and Folder hierarchy given that an already correlated
Package and Folder pair exists. Finally, Leaf-Rule creates a Class and a Doc-File

under the same precondition as Sub-Rule.
These rules can be used to generate consistent triple graphs in a synchronized

way consisting of source, correspondence, and target graph. A more general
scenario of model synchronization is, however, to restore the consistency of a
triple graph that has been altered on just one side. For this purpose, each TGG
rule has to be operationalized to two kinds of rules: source rules enable changes
of source models which is followed by translating this model to the target domain
with forward rules. As source rules for single models are just projections of TGG
rules to one domain, we do not show them explicitly.

Forward translation rules. Figure 2 depicts the forward rules. Using these rules,
we can translate the Java AST model depicted on the source side of the triple
graph in Fig. 3 (a) to a documentation model such that the result is the complete
graph in Fig. 3 (a). To obtain this result we apply Root-FWD-Rule at the root
Package, Sub-FWD-Rule at Packages p and subP, and finally Leaf-FWD-Rule

at Class c. To guide the translation process, context elements that have already
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been translated are annotated with X� in forward rules. A formerly created source
element gets the marking � → X� to indicate that applying the rule will mark
this element as translated; a formalization of this marking is given in [19]. Note
that Root-FWD-Rule can always be applied when Sub-FWD-Rule is applicable
which can lead to untranslated edges. For simplicity, we assume that the correct
rule is applied which in praxis can be achieved through negative application
conditions [14].
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Fig. 3. Exemplary Synchronization Scenario

Model synchronization. Given the triple graph in Fig. 3 (a), a user might want
to change a sub Package such as p to be a root Package, e.g., as could be the
case when the project is split up into multiple projects. Since p was created and
translated as a sub Package rather than a root element, this change introduces
an inconsistency. To resolve this issue, one approach is to revert the transla-
tion of p into f and re-translate p with an appropriate translation rule such as
Root-FWD-Rule. Reverting the former translation step may lead to further in-
consistencies as we remove elements that were needed as context elements by
other rule applications. The result is a reversion of all translation steps except
for the first one which translated the original root element. The result is shown
in Fig. 3 (b). Now, we can re-translate the unmarked elements yielding the re-
sult graph in (c). This example shows that this synchronization approach may
delete and re-create a lot of similar structures which appears to be inefficient.
Second, it may lose information that exists on the target side only, e.g., a use
case may be assigned to a document which does not have a representation in the
corresponding Java project.

Model synchronization with short-cut repair. In [8] we introduced short-cut rules
as a kind of rule composition mechanism that allows to replace a rule applica-
tion by another one while preserving elements (instead of deleting and re-creating
them). In our example, Root-Rule and Sub-Rule overlap in elements as the first
rule can be completely embedded into the latter one. Figure 4 depicts two possi-
ble short-cut rules based on Root-Rule and Sub-Rule. While the upper short-cut
rule replaces Root-Rule with Sub-Rule, the lower short-cut rule replaces Sub-Rule
with Root-Rule. Both short-cut rules preserve the model elements on both sides
and solely create elements that do not yet exist (++), or delete those depicted
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in red and annotated with (--). They are constructed by overlapping both origi-
nal rules such that each created element that can be mapped to the other rule
becomes context and as such, is not touched. When a created element cannot be
mapped because it only appears in the replacing rule, it is created. Consequently,
an element is deleted if the created element only appears in the replaced rule.
Finally, context elements occurring in both rules appear also in the short-cut
rule while overlapped context elements appear only once. Using Sub-To-Root-

SC-Rule enables the user to transform the triple graph in Fig. 3 (a) directly to
the one in (c).

Yet, these rules can still not cope with the change of a single model since
short-cut rules transform both models at once as TGG rules usually do. Hence,
in order to be able to handle the deleted edge between rootP and p, we have to
forward operationalize short-cut rules, thereby obtaining short-cut repair rules.
Figure 5 depicts the resulting short-cut repair rules derived from short-cut rules
in Fig. 4. A non-monotonic TGG-rule is forward operationalized by removing
deleted elements from the rule’s source graphs as they should not be present
after a source rule application. Short-cut repair rules allow to propagate source
graph changes directly to target graphs to restore consistency. In our example,
after having transformed Package p into a root element, the rule of choice is
Sub-To-Root-Repair-Rule which transforms Folder f in Fig. 3 (a) into a root
element and deletes the superfluous Doc-File. The result is again the consistent
triple graph depicted in Fig. 3 (c). This repair allows to skip the costly reversion
process with the intermediate result in Fig. 3 (b). Note that applying Sub-To-

Root-Repair-Rule at arbitrary matches may have undesired consequences: One
could, e.g., delete the edge between two Folders even if the matched Packages are
still connected. Our Theorem 8 characterizes matches where such violations of
the language of the grammar cannot happen. In our implementation, we exploit
an incremental pattern matcher to identify valid matches. Using suitable negative
application conditions [6] would be an alternative approach.

3 Preliminaries

To understand our formal contributions, we assume familiarity with the basics
of double-pushout rewriting in graph transformation and, more generally in ad-
hesive categories [6,17] as well as the definition of TGGs and in particular, their
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operationalizations [23]. Here, we recall non-basic preliminaries for our work
which are the construction of short-cut rules, the notion of sequential indepen-
dence, and a (simple) categorical definition of partial maps.

In [8], we introduced short-cut rules as a new way of sequential composition
for monotonic rules. Given an inverse rule of a monotonic rule (i.e., a rule that
only deletes) and a monotonic rule, a short-cut rule combines their respective
actions into a single rule. Its construction allows to identify elements that are
deleted by the first rule as re-created by the second one. These elements are pre-
served in the resulting short-cut rule. A common kernel, i.e., a common subrule
of both, serves to identify how the two rules overlap and which elements are
preserved instead of being deleted and re-created. We recall their construction
since our construction of repair rules is based on it. Examples are depicted in
Fig. 4.

Definition 1 (Short-cut rule). In an adhesive category C, given two mono-

tonic rules 𝑟𝑖 : 𝐿𝑖 →˓ 𝑅𝑖, 𝑖 = 1, 2, and a common kernel rule 𝑘 : 𝐿∩ →˓ 𝑅∩ for

them, the short-cut rule 𝑟−1
1 n𝑘 𝑟2 := (𝐿 𝑙←−˒ 𝐾

𝑟−˓→ 𝑅) is computed by executing

the following steps depicted in Figs. 6 and 7:

1. The union 𝐿∪ of 𝐿1 and 𝐿2 along 𝐿∩ is computed as pushout (2).
2. The LHS 𝐿 of the short-cut rule 𝑟−1

1 n𝑘 𝑟2 is computed as pushout (3𝑎).
3. The RHS 𝑅 of the short-cut rule 𝑟−1

1 n𝑘 𝑟2 is computed as pushout (3𝑏).
4. The interface 𝐾 of the short-cut rule 𝑟−1

1 n𝑘 𝑟2 is computed as pushout (4).
5. Morphisms 𝑙 : 𝐾 → 𝐿 and 𝑟 : 𝐾 → 𝑅 are obtained by the universal property

of 𝐾.

𝑅∩
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Fig. 6. Construction of LHS and RHS of short-cut
rule 𝑟−1

1 n𝑘 𝑟2
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𝐿∩ (2) 𝐿∪

𝐿2

(4)

𝑅∩ 𝐾

𝑢𝐿1
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𝑧𝑅∩

𝑧𝐿∪

𝑗𝐿1

𝑗𝐿2

Fig. 7. Construction of inter-
face 𝐾 of 𝑟−1

1 n𝑘 𝑟2

Sequential independence of two rule applications intuitively means that none
of these applications enables the other one. This implies that the order of their
application may be switched. The definition of sequential independence can be
extended to a sequence of rule applications longer than 2. In Theorem 8, we will
use this to identify language-preserving applications of short-cut rules.
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Definition 2 (Sequential independence). Given two rules 𝑝𝑖 = (𝐿𝑖
𝑙𝑖←−˒

𝐾𝑖
𝑟𝑖−˓→ 𝑅𝑖) with 𝑖 = 1, 2, two direct transformations 𝐺⇒𝑝1,𝑚1 𝐻1 and 𝐻1 ⇒𝑝2,𝑚2

𝐻2 via the rules 𝑟1 and 𝑟2 are sequentially independent if there exist two mor-

phisms 𝑑1 : 𝑅1 → 𝐷2 and 𝑑2 : 𝐿2 → 𝐷1 as depicted below such that 𝑛1 = 𝑓2 ∘ 𝑑1

and 𝑚2 = 𝑓1 ∘ 𝑑2.

𝐿1 𝐾1 𝑅1 𝐿2 𝐾2 𝑅2

𝐺 𝐷1 𝐻1 𝐷2 𝐻2

𝑚1 𝑛2

𝑙1 𝑟1

𝑛1 𝑚2

𝑙2 𝑟2

𝑓1𝑒1 𝑓2 𝑒2

𝑑1𝑑2

Given rules 𝑝 = (𝐿 ←˒ 𝐾 →˓ 𝑅) and 𝑝𝑖 = (𝐿𝑖 ←˒ 𝐾𝑖 →˓ 𝑅𝑖) with 1 ≤ 𝑖 ≤ 𝑡, a
transformation 𝐺𝑡 ⇒𝑝,𝑚 𝐻 is sequentially independent from a sequence of trans-
formations 𝐺0 ⇒𝑝1,𝑚1 𝐺1 ⇒𝑝2,𝑚2 · · · ⇒𝑝𝑡,𝑚𝑡

𝐺𝑡, 𝑡 ≥ 2 if first, 𝐺𝑡 ⇒𝑝,𝑚 𝐻 and

𝐺𝑡−1 ⇒𝑝𝑡,𝑚𝑡
𝐺𝑡 are sequentially independent and then, the arising transforma-

tions 𝐺𝑡−1 ⇒𝑝,𝑒𝑡∘𝑑𝑡
2

𝐺′𝑡 and 𝐺𝑡−2 ⇒𝑝𝑡−1,𝑚𝑡−1 𝐺𝑡−1 are sequentially independent

and so forth back to the transformations 𝐺0 ⇒𝑝1,𝑚1 𝐺1 and 𝐺1 ⇒𝑝,𝑒2∘𝑑2
2

𝐺′2
(where 𝑒𝑖 : 𝐷𝑖 →˓ 𝐺𝑖−1 is given by the transformation and 𝑑𝑖

2 : 𝐿 →˓ 𝐷𝑖 exists by

sequential independence as in the figure above).

To formalize the application of non-monotonic TGG rules, we need to con-
sider triple graphs with partial morphisms from correspondence to source (or
target) graphs. For expressing such triple graphs categorically, we recall a sim-
ple definition of partial morphisms [22] to be used in Sect. 4.1. An elaborated
theory of triple graphs with partial morphisms is out of scope of this paper.

Definition 3 (Partial morphism. Commuting square with partial mor-

phisms). A partial morphism 𝑎 from an object 𝐴 to an object 𝐵 is a(n equiva-

lence class of) span(s) 𝐴
𝜄𝐴←−˒ 𝐴′

𝑎−→ 𝐵 where 𝜄𝐴 is a monomorphism (denoted by

→˓). A partial morphism is denoted as 𝑎 : 𝐴 99K 𝐵; 𝐴′ is called the domain of

𝑎. A diagram with two partial morphisms 𝑎 and 𝑐 as depicted as square (1) in

Fig. 8 is said to be commuting if there exists a (necessarily unique) morphism

𝑥 : 𝐴′ → 𝐶 ′ such that both arising squares (2) and (3) in Fig. 9 commute.

𝐴 𝐵

(1)

𝐶 𝐷

𝑎

𝑓

𝑐

𝑔

Fig. 8. Square of partial morphisms

𝐴 𝐴′ 𝐵

(2) (3)

𝐶 𝐶′ 𝐷

𝑓

𝜄𝐶 𝑐

𝑔

𝜄𝐴 𝑎

𝑥

Fig. 9. Commuting square of partial morphisms
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4 Constructing Language-Preserving Repair Rules

The general idea of this paper is to use short-cut repair rules allowing an op-
timized model synchronization process based on TGGs. To this end, we opera-
tionalize short-cut rules being constructed from the rules of a given TGG. Since
those rules are not necessarily monotonic, we generalize the well-known opera-
tionalization of TGG rules to the non-monotonic case and show that the basic
property is still valid: An application of a source rule followed by an applica-
tion of the corresponding forward rule is equivalent to applying the original rule
instead. This is the content of Sect. 4.1. Constructing short-cut rules in [8], we
identified the following problem: Applying a short-cut rule derived from rules of
a given grammar might lead to an instance that is not part of the language de-
fined by that grammar. Therefore, in Sect. 4.2, we provide sufficient conditions
for applications of short-cut rules leading to instances of the grammar-defined
language only. Combining both results ensures the correctness of our approach,
i.e., a short-cut repair rule actually propagates a model change from the source
to the target model if it is correctly matched.

4.1 Operationalization of Generalized TGG Rules

Since the operationalization of TGG rules has been introduced for monotonic
rules only, we extend the theory to general triple rules and, moreover, allow
for partial morphisms from correspondence to source and target graph in triple
graphs. We split a rule on triple graphs into a source rule that only affects the
source part and a forward rule that affects correspondence and target part.

Definition 4 (TGG rule). Let the category of triple graphs and graph mor-

phisms be given. A triple rule 𝑝 is a span of triple graph morphisms

𝑝=((𝐿𝑆

𝜎𝐿←−−𝐿𝐶

𝜏𝐿−→𝐿𝑇 )
(𝑙𝑆 ,𝑙𝐶 ,𝑙𝑇 )
←−−−−−−˒ (𝐾𝑆

𝜎𝐾←−−𝐾𝐶

𝜏𝐾−−→𝐾𝑇 )
(𝑟𝑆 ,𝑟𝐶 ,𝑟𝑇 )
−˓−−−−−−→(𝑅𝑆

𝜎𝑅←−−𝑅𝐶

𝜏𝑅−−→𝑅𝑇 ))

which, wherever possible, are abbreviated by

𝑝=(𝐿𝑆𝐶𝑇

(𝑙𝑆 ,𝑙𝐶 ,𝑙𝑇 )
←−−−−−−˒𝐾𝑆𝐶𝑇

(𝑟𝑆 ,𝑟𝐶 ,𝑟𝑇 )
−˓−−−−−−→𝑅𝑆𝐶𝑇 ) .

Rules 𝑝𝑆 and 𝑝𝐹 are called source rule and forward rule of 𝑝.

𝑝𝑆=((𝐿𝑆←∅→∅)
(𝑙𝑆 ,𝑖𝑑∅,𝑖𝑑∅)
←−−−−−−−˒ (𝐾𝑆←∅→∅)

(𝑟𝑆 ,𝑖𝑑∅,𝑖𝑑∅)
−˓−−−−−−→(𝑅𝑆←∅→∅)) ,

𝑝𝐹 =(𝑅𝑆𝐿𝐶𝑇

(𝑖𝑑𝑅𝑆
,𝑙𝐶 ,𝑙𝑇 )

←−−−−−−−−𝑅𝑆𝐾𝐶𝑇

(𝑖𝑑𝑅𝑆
,𝑟𝐶 ,𝑟𝑇 )

−−−−−−−−→𝑅𝑆𝐶𝑇 )

with ∅ being the empty graph. In 𝑅𝑆𝐿𝐶𝑇 = (𝑅𝑆 L99 𝐿𝐶
𝜏𝐿−˓→ 𝐿𝑇 ), the morphism

from 𝐿𝐶 to 𝑅𝑆 may be partial and is defined by the span (𝐿𝐶
𝑙𝐶←−˒ 𝐾𝐶

𝑟𝑆∘𝜎𝐾−˓−−−→
𝑅𝑆) with 𝜎𝐾 : 𝐾𝐶 −˓→ 𝑅𝐶 . Target and backward rules 𝑝𝑇 and 𝑝𝐵 are defined

symmetrically in the other direction.

Given a TGG, a short-cut repair rule is a forward rule 𝑝𝐹 of a short-cut rule

𝑝 = 𝑟−1
1 n𝑘 𝑟2 where 𝑟1, 𝑟2 are (monotonic) rules of the TGG, i.e., a repair rule

is an operationalized short-cut rule.
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The above definition is motivated by our application scenario, i.e., the case where
a user edits the source (or target) model independently of the other parts. The
partial morphism in the forward rule reflects that a model change may introduce
a situation where the result is no longer a triple graph. A deleted source element
may have a preimage in the correspondence graph that is not deleted as well. In
the example short-cut rules in Fig. 4, this problem does not occur since edges
are deleted only. But in general, this definition of 𝑝𝑆 has the disadvantage that
often, 𝑝𝑆 is not applicable to any triple graph since the result would not be one.

In practical applications, however, the source rule specifies a user edit action
that is performed on the source part only, ignoring correspondence and target
graphs. The fact that the result is not a triple graph any longer is not a technical
problem. A missing source element that should be referenced by a correspondence
element gives information about a location that needs some repair. Therefore,
we define the application of a source rule such that the resulting triple graph
is allowed to be partial. Furthermore, forward rules may be applied to partial
triple graphs allowing for dangling correspondence relations.

Definition 5 (Constructing an operationalized rule application). Let a

triple graph rule 𝑝 = (𝐿𝑆𝐶𝑇
(𝑙𝑆 ,𝑙𝐶 ,𝑙𝑇 )←−−−−−− 𝐾𝑆𝐶𝑇

(𝑟𝑆 ,𝑟𝐶 ,𝑟𝑇 )−−−−−−−→ 𝑅𝑆𝐶𝑇 ) with source rule

𝑝𝑆 and forward rule 𝑝𝐹 be given. An operationalized rule application 𝐺⇒𝑝𝑆 ,𝑚𝑆

𝐺′ ⇒𝑝𝐹 ,𝑚𝐹
𝐻 is constructed as follows:

1. The rule 𝑝pr𝑆 = 𝐿𝑆
𝑙𝑆←− 𝐾𝑆

𝑟𝑆−→ 𝑅𝑆 is the projection of 𝑝𝑆 to its source part.

2. Given a match 𝑚pr
𝑆 for 𝑝pr𝑆 , construct the transformation 𝑡pr𝑆 : 𝐺𝑆 ⇒𝑝pr

𝑆
,𝑚pr

𝑆

𝐻𝑆, called source application and inducing the span 𝐺𝑆
𝑓𝑆←−˒ 𝐷𝑆

𝑔𝑆−˓→ 𝐻𝑆.

3. The transformation 𝑡pr𝑆 can be extended to the transformation 𝑡𝑆 : 𝐺 =
(𝐺𝑆

𝜎𝐺←−− 𝐺𝐶
𝜏𝐺−−→ 𝐺𝑇 ) ⇒𝑝𝑆 ,𝑚𝑆

𝐺′ = (𝐻𝑆 L99 𝐺𝐶
𝜏𝐺−−→ 𝐺𝑇 ) via 𝑝𝑆 at match

𝑚𝑆. The partial morphism 𝐺𝐶 99K 𝐻𝑆 is given as the span 𝐺𝐶 ←˒ 𝐺′𝐶 → 𝐻𝑆

that arises as pullback of the co-span 𝐺𝐶 → 𝐺𝑆 ←˒ 𝐷𝑆 as depicted in Fig. 10,

i.e., as morphism 𝑔𝑆 ∘ 𝑝𝐷 : 𝐺𝐶 99K 𝐻𝑆 with domain 𝐺′𝐶 .
4. Given co-match 𝑛𝑆 : 𝑅𝑆 →˓ 𝐻𝑆 and matches 𝑚𝑋 : 𝐿𝑋 →˓ 𝐺𝑋 with

𝑋 ∈ {𝐶, 𝑇} such that both arising squares are commuting, i.e., 𝑚𝐹 =
(𝑛𝑆 , 𝑚𝐶 , 𝑚𝑇 ) is a morphism of partial triple graphs, construct transforma-

tion 𝑡𝐹 : 𝐺′ ⇒𝑝𝐹 ,𝑚𝐹
𝐻 = (𝐻𝑆

𝜎𝐻←−− 𝐻𝐶
𝜏𝐻−−→ 𝐻𝑇 ), called forward applica-

tion, using transformations 𝐺𝑋 ⇒𝑝𝑋 ,𝑚𝑋
𝐻𝑋 for 𝑋 ∈ {𝐶, 𝑇} if they exist

and if there are morphisms 𝜎′𝐷 : 𝐷𝐶 → 𝐻𝑆 and 𝜏𝐷 : 𝐷𝐶 → 𝐷𝑇 such that

𝐻𝑆𝐷𝐶𝐷𝑇 →˓ 𝐻𝑆𝐺𝐶𝐺𝑇 and 𝑅𝑆𝐾𝐶𝐾𝑇 →˓ 𝐻𝑆𝐷𝐶𝐷𝑇 are triple morphisms.

𝐺𝑆

𝐺𝐶 (𝑃 𝐵) 𝐷𝑆 𝐻𝑆

𝐺′
𝐶

𝜎𝐺 𝑓𝑆

𝑔𝑆

𝑝𝐺 𝑝𝐷

Fig. 10. Retrieval of partial morphism 𝐺𝐶 99K 𝐻𝑆
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In the setting of this paper, it is enough to allow for partial morphisms only
in the input graph and not in the output graph of a forward rule application.
Intuitively this means that such an application deletes those elements from the
correspondence graph that could not be mapped to elements in the source graph
any longer and additionally deletes the preimages in the correspondence graph
of all deleted elements from the target graph as well (if there are any). The next
lemma states that the application of a source rule is well-defined, i.e., that the
mentioned partial morphism actually exists.

Lemma 6 (Correctness of application of source rules). Let a (non-

monotonic) triple graph rule

𝑝=(𝐿𝑆𝐶𝑇

(𝑙𝑆 ,𝑙𝐶 ,𝑙𝑇 )←−−−−−−𝐾𝑆𝐶𝑇

(𝑟𝑆 ,𝑟𝐶 ,𝑟𝑇 )−−−−−−−→𝑅𝑆𝐶𝑇 )

with source rule 𝑝𝑆 and projection 𝑝pr𝑆 to the source part be given. Given a match

𝑚𝑆 for 𝑝𝑆 to a triple graph 𝐺 = (𝐺𝑆
𝜎𝐺←−− 𝐺𝐶

𝜏𝐺−−→ 𝐺𝑇 ) such that 𝐺𝑆 ⇒𝑝pr
𝑆

,𝑚𝑆

𝐻𝑆, the partial morphism 𝐷𝐶 99K 𝐻𝑆 as described in Definition 5 exists.

The next theorem states that a sequential application of a source and a
forward rule indeed coincides with an application of the original rule as long
as the matches are consistent. This means that the forward rule has to match
the RHS 𝑅𝑆 of the source rule again and the LHS 𝐿𝐶 of the correspondence
rule needs to be matched in such a way that all elements not belonging to the
domain of the partial morphism from correspondence to source part in the input
model are deleted. The forward rule application defined in Definition 5 fulfills
this condition by construction.

Theorem 7 (Synthesis of rule applications). Let a triple graph rule 𝑝 with

source and forward rules 𝑝𝑆 and 𝑝𝐹 be given. If there are applications 𝐺⇒𝑝𝑆 ,𝑚𝑆

𝐺′ with co-match 𝑛𝑆 and 𝐺′ ⇒𝑝𝐹 ,𝑚𝐹
𝐻 with 𝑚𝐹 = (𝑛𝑆 , 𝑚𝐶 , 𝑚𝑇 ) as constructed

above, then there is an application 𝐺⇒𝑝,𝑚 𝐻 with 𝑚 = (𝑚𝑆 , 𝑚𝐶 , 𝑚𝑇 ).

4.2 Language-Preserving Short-Cut Rules

In this section we identify sufficient conditions for an application of a short-cut
rule that guarantee the result to be an element of the language of the original
grammar. Since our conditions apply to arbitrary adhesive categories and are
not specific for TGGs, we present the result in its general form.

Theorem 8 (Characterization of valid applications). In an adhesive cat-

egory 𝒞, given a sequence of transformations

𝐺⇒𝑟,𝑚 𝐺0 ⇒𝑝1,𝑚1 𝐺1 ⇒𝑝2,𝑚2 · · · ⇒𝑝𝑡,𝑚𝑡
𝐺𝑡 ⇒𝑟−1n𝑘𝑟′,𝑚𝑠𝑐

𝐻

with rules 𝑝1, . . . , 𝑝𝑡 and 𝑟−1 n𝑘 𝑟′ being the short-cut rule of monotonic rules

𝑟 : 𝐿 →˓ 𝑅 and 𝑟′ : 𝐿′ →˓ 𝑅′ along a common kernel 𝑘, there is a match 𝑚′ for
𝑟′ in 𝐺 and a transformation sequence

𝐺⇒𝑟′,𝑚′ 𝐺′1 ⇒𝑝1,𝑚′
1

. . . 𝐺′𝑡−1 ⇒𝑝𝑡,𝑚′
𝑡

𝐻 ,

provided that
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1. the application of 𝑟−1 n𝑘 𝑟′ with match 𝑚𝑠𝑐 is sequentially independent of

the sequence of transformations 𝐺0 ⇒𝑝1,𝑚1 𝐺1 ⇒𝑝2,𝑚2 · · · ⇒𝑝𝑡,𝑚𝑡
𝐺𝑡 and

2. the thereby implied match 𝑚′𝑠𝑐 for 𝑟−1 n𝑘 𝑟′ in 𝐺0, restricted to the RHS 𝑅
of 𝑟, equals the co-match 𝑛 : 𝑅 →˓ 𝐺0 of the transformation 𝐺⇒𝑟,𝑚 𝐺0 (i.e.,

𝑚′𝑠𝑐 ∘ 𝑗𝑅 = 𝑛 where 𝑗𝑅 embeds 𝑅 into the LHS of 𝑟−1 n𝑘 𝑟′ as in Fig. 6).

In particular, given a grammar 𝐺𝐺 = (ℛ, 𝑆) such that 𝑟, 𝑟′, 𝑝1, . . . , 𝑝𝑡 ∈ ℛ and

𝐺 ∈ ℒ(𝐺𝐺), then 𝐻 ∈ ℒ(𝐺𝐺).

Independence of the short-cut rule application 𝑡𝑠𝑐 : 𝐺𝑡 ⇒𝑟−1n𝑘𝑟′,𝑚𝑠𝑐
𝐻 from

the preceding transformation sequence 𝑡 : 𝐺⇒ 𝐺𝑡 requires the existence of mor-
phisms in two directions: morphisms 𝑑𝑖

2 from the LHS of the short-cut rule to
the context objects 𝐷𝑖 arising in 𝑡 and morphisms 𝑑𝑖

1 from the right-hand sides
𝑅𝑖 of the rules 𝑝𝑖 to the context object of 𝑡𝑠𝑐 (shifted further and further to the
beginning of the sequence). In the case of (typed triple) graphs, the existence of
morphisms 𝑑𝑖

2 ensures that none of the rule applications in 𝑡 enabled the trans-
formation 𝑡𝑠𝑐. The existence of morphisms 𝑑𝑖

1 ensures that the transformation
𝑡𝑠𝑐 does not delete structure needed to perform the transformation sequence 𝑡.

Application to model synchronization. The results in Theorems 7 and 8 are
the formal basis for an automatic construction of repair rules. Theorem 7 en-
sures that a suitable edit action followed by application of a repair rule at the
right match is equivalent to the application of a short-cut rule. Thus, whenever
an edit action on the source model (or symmetrically the target model) corre-
sponds to the source-action (target-action) of a short-cut rule, application of the
corresponding forward (backward) rule synchronizes the model again. Since the
language of a TGG is defined by its rules, every valid model can be reached
from every other valid model by inverse application of some of the rules of the
grammar followed by normal application of some rules. Often, edit actions are
rather small steps (or at least consist of those). Thus, it is not unreasonable to
expect that many typical edit actions can be realized as short-cut rules as these
formalize the inverse application of a rule followed by application of a normal
one. Theorem 8 characterizes the matches for short-cut rules at which applica-
tion stays in the language of the TGG. For operational short-cut rules, this can
either be used for detecting invalid edit actions or determining valid matches for
synchronizing forward rules.

5 Implementation and Evaluation

Implementation. Our implementation3 of an optimized model synchronizer is
based on the existing EMF-based general purpose graph and model transfor-
mation tool eMoflon [20]. It offers support for rule-based unidirectional and
bidirectional graph transformations where the latter is based on TGGs. To sup-
port an effective model synchronizer, we automatically calculate a small but
3 Both the implementation and evaluation workspace can be accessed via
https://github.com/Arikae00/FASE19_eMoflon-evaluation.
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useful subset of all possible short-cut rules. This is done by overlapping as many
created elements as possible and only varying in the way that context elements
are mapped onto each other. These selected short-cut rules are operationalized
to get repair rules that allow us to repair broken links similar to our exam-
ple in Sect. 2. The model synchronization process is based on an incremental

graph pattern matcher that tracks all matches that dis-/appear due to model
changes. Thus, it offers the ability to react to model changes without the need
to recompute matches from scratch. Our implementation uses this technique by
processing all those matches marked as broken by the pattern matcher after a
model change. A broken match is the starting point to find a repair match as it is
defined by the co-match of the performed model change and has to be extended.
If the pattern matcher can extend a broken match to a repair match, the corre-
sponding short-cut repair rule can be applied. Otherwise, we fall back to the old
synchronization strategy of revoking the current step. This completely automa-
tized synchronization process ensures that we are able to restore consistency as
long as the edited domain model still resides in the language of our TGG.

Evaluation. Our experimental setup consists of 23 TGG rules (shown in Ap-
pendix C) that specify consistency between Java AST and custom documen-
tation models and 37 short-cut rules derived from our TGG rule set. A small
modified excerpt of this rule set was given in Sect. 2. For this evaluation, how-
ever, we define consistency not only between Package and Folder hierarchies but
also between type definitions, e.g., Classes and Interfaces, and Methods with
their corresponding documentation entries. We extracted five models from Java
projects hosted on Github using the tool MoDisco [4] and translated them into
our own documentation structure. Also, we generated five synthetic models con-
sisting of n-level Package hierarchies with each non-leaf Package containing five
sub-Packages and each leaf Package containing five Classes. Given such Java
models, we refactored each model in three different scenarios such as by moving
a Class from one Package to another or completely relocating a Package. Then
we used eMoflon to synchronize these changes in order to restore consistency to
the documentation model, with and without repair rules.

These synchronization steps are subject to our evaluation and we pose the
following research questions: (RQ1) For different kinds of changes, how many

elements can be preserved that would otherwise be deleted and recreated? (RQ2)

How does our new approach affect the runtime performance? (RQ3) Are there

specific scenarios in which our approach performs especially good or bad?

Repair rules were developed to avoid unnecessary deletions of elements by
reverting too many rule applications in order to restore consistency as shown
exemplary in Sect. 2. This means that model changes where our approach should
perform especially good, have to target rule applications close to the beginning
of a rule sequence as this possibly renders many rule applications invalid. This
means that altering a root Package by creating a new Package as root would
imply that many rule applications have to be reverted to synchronize the changes
correctly (Scenario 1). In contrast, our approach might perform poorly when a
model change does not inflict a large cascade of invalid rule applications. Hence,
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we move Classes between Packages to measure if the effort of applying repair

rules does infer a performance loss when both the new and old algorithm do not
have to repair many broken rule applications (Scenario 2). Finally, we simulate
a scenario between the first two by relocating leaf Packages (Scenario 3).

Table 1. Legacy vs. new synchronizer – Time in sec. and number of created elements

Both Legacy Synchronization Synchro. by Repair Rules

Trans. Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

Models Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts

lang.List 0.3 25 0.2 20 – – 0.06 5 0.2 0 – – 0.03 0
tgg.core 6.4 1.6k 39 1.6k 3.8 99 0.64 17 0.8 0 0.11 0 0.05 0
modisco.java 9.9 3.2k 228 3.3k 18.6 192 3.6 33 2.5 0 0.2 0 0.09 0
eclipse.graphiti 20.7 6.5k 704 6.5k 63.9 490 5.65 25 6.1 0 0.21 0 0.09 0
eclipse.compare 10.74 3.8k 83 3.7k 3.1 76 2.36 47 0.7 0 0.08 0 0.04 0

synthetic 𝑛 = 1 0.3 35 0.32 30 0.2 30 0.03 1 0.1 0 0.05 0 0.03 0
synthetic 𝑛 = 2 0.9 160 1.03 155 0.3 30 0.03 1 0.1 0 0.05 0 0.02 0
synthetic 𝑛 = 3 2.8 785 6 780 0.4 30 0.04 1 0.1 0 0.07 0 0.02 0
synthetic 𝑛 = 4 13.5 3.9k 86.3 3.9k 1.2 30 0.08 1 0.4 0 0.14 0 0.04 0
synthetic 𝑛 = 5 91.5 20k 2731 20k 17.4 30 0.14 1 1.5 0 0.37 0 0.09 0

Table 1 depicts the measured times (Sec) and the number of created elements
(Elts) in each scenario. Each created element also represents a deleted element,
e.g., through revoking and reapplying a rule or applying a repair rule that creates
and deletes elements. In more detail, the table shows measurements for the
initial translation of the MoDisco model into the documentation structure and
synchronization steps for each scenario using the legacy synchronizer without
repair rules and the new synchronizer with repair rules.

W.r.t. our research questions stated above, we interpret this table as follows:
The right columns of the table show clearly that using repair rules preserves all
those elements in our scenarios that would otherwise be deleted and recreated by
the legacy algorithm4 (RQ1). The runtime shows a significant performance gain
for Scenario 1 including a worst-case model change (RQ2). Repair rules do not
introduce an overhead compared to the legacy algorithm as can be seen for the
synthetic time measurements in Scenario 3 where only one rule application has
to be repaired or reapplied. (RQ2). Our new approach excels when the cascade
of invalidated rule applications is long. Even if this is not the case, it does not
introduce any measurable overhead compared to the legacy algorithm as shown
in Scenarios 2 and 3 (RQ3).

Threats to validity. Our evaluation is based on five real world and five synthetic
models. Of course, there exists a wide range of projects that differ significantly
from each other due to their size, purpose, and developer styles. Thus, the re-
sults may probably differ for other projects. Nonetheless, we argue that the four
larger projects extracted from Github are representative since they are part of
established tools from the Eclipse community. In this evaluation, we selected
three edit operations that are representative w.r.t. their dependency on other
4 Scenario 1: We expect the new root element to already be translated.
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edit operations. They may not be representative w.r.t. other aspects such as size
or kind of change, which seems to be of minor importance in this context. Also
we limited our evaluation to one TGG rule set due to space issues. However, in
our experience the approach shows similar results for a broader range of TGGs
which can be accessed through eMoflon.

6 Related Work

Reuse in existing work on TGGs. Several approaches to model synchronization
based on TGGs suffer from the fact that the revocation of a certain rule applica-
tion triggers the revocation of all dependent rule applications as well [11,18,15].
Especially from a practical point of view such cascades of deletions shall be
avoided: In [9], Giese and Hildebrandt propose rules that save nodes instead
of deleting and then re-creating them. Their examples can be realized by our
construction of repair rules. But they do not present a general construction or
proof of correctness. This is left as future work in [10] again, where other aspects
of [9] are formalized and proven to be correct.

In [3], Blouin et al. added a specially designed repair rule to the rules of
their case study to avoid information loss. Greenyer et al. [13] also propose to not
directly delete elements but to mark them for deletion and allow for reuse of these
marked elements in other rule applications. But this approach comes without any
formalization or proof of correctness as well. Again, the given example can be
realized as short-cut repair. These uncontrolled and informal approaches are
potentially harmful. Re-using elements wrongly may lead to, e.g., containment
cycles or unconnected data. Hence, providing precise and sufficient conditions
for correct re-use of data is highly desirable as re-use may improve scalability
and decrease data-loss. Our short-cut rules formalize when data can be correctly
reused. In summary, we do not only offer a unifying principle behind different
practically used improvements of TGGs but also give a precise formalization
that allows for automatic construction of the rules needed. Thereby, we present
conditions under which rule applications lead to valid outputs.
Comparison to other bx approaches. Anjorin et al. [2] compared three state-of-
the-art bx tools, namely eMoflon [20] (rule-based), mediniQVT [1] (constraint-
based) and BiGUL [16] (bx programming language) w.r.t. model synchroniza-
tion. They point out that synchronization with eMoflon is faster than with both
other tools as the runtime of these tools correlates with the overall model size
while the runtime of eMoflon correlates with the size of the changes done by
edit operations. Furthermore, eMoflon was the only tool able to solve all but one
synchronization scenario. One scenario was not solved because it deleted more
model elements than absolutely necessary in that case. Using short-cut repair
rules, we can solve the remaining scenario and moreover, can further increase
eMoflons model synchronization performance.
Change-preserving model repair. Change-preserving model repair as presented
in [24,21] is closely related to our approach. Assuming a set of consistency-
preserving rules and a set of edit rules to be given, each edit rule is accompanied
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by one or more repair rules completing the edit step, if possible. Such a com-
plement rule is considered as repair rule of an edit rule w.r.t. an overarching
consistency-preserving rule. Operationalized TGG rules fit into that approach
but provide more structure: As graphs and rules are structured in triples, a source
rule is also an edit rule being complemented by a forward rule. In contrast to
that approach, source and forward rules can be automatically deduced from a
given TGG rule. By our use of short-cut rules we introduce a pre-processing step
to first enlarge the sets of consistency-preserving rules and edit rules.

Generalization of correspondence relation. Golas et al. provide a formalization of
TGGs in [12] which allows to generalize correspondence relations between source
and target graphs as well. They use special typings for the source, target, and
correspondence parts of a TGG and for edges between a correspondence part and
source and target part instead of using graph morphisms. That approach also
allows for partial correspondence relations. But it makes the deletion of elements
more complex as it becomes important how many incident edges a node has (at
least in the double-pushout approach). We therefore opted for introducing triple
graphs with partial morphisms. They allow us to just delete a node without
caring if it is needed within an existing correspondence relation.

7 Conclusion

Model synchronization, i.e., the task of restoring consistency between two mod-
els after a model change, poses challenges to modern bx approaches and tools:
We expect them to synchronize changes without losing data in the process, thus,
preserving information and furthermore, we expect them to show a reasonable
performance. While Triple Graph Grammars (TGGs) provide the means to per-
form model synchronization tasks in general, both requirements cannot always
be fulfilled since basic TGG rules do not define the adequate means to support
intermediate model editing. Therefore, we propose additional edit operations be-
ing short-cut rules, a special form of generalized TGG rules that allow to take
back one edit action and to perform an alternative one. In our evaluation, we
show that operationalized short-cut rules allow for a model synchronization with
considerably decreased data loss and improved runtime.

To better cope with practical application scenarios, we like to extend our
approach by formally incorporating type inheritance, application conditions and
attributes in the model synchronization process. Since all of these have been
formalized in the setting of (ℳ-)adhesive categories and our present work uses
that framework as well, these extensions are prepared but up to future work.
Propagating changes from one domain to another is basically done here by op-
erationalizing short-cut rules. A more challenging task is what we call model
integration where related pairs of models are edited concurrently and have to be
synchronized. These model edits may be in conflict across model boundaries. It
is up to future work to allow short-cut rules in model integration. Our hope is
to decrease data loss and to improve runtime of model integration tasks as well.



16 L. Fritsche et al.

References

1. Ikv++: Medini QVT. http://projects.ikv.de/qvt

2. Anjorin, A., Diskin, Z., Jouault, F., Ko, H., Leblebici, E., Westfechtel, B.: Bench-
marx reloaded: A practical benchmark framework for bidirectional transformations.
In: Proceedings of the 6th International Workshop on Bidirectional Transforma-
tions co-located with The European Joint Conferences on Theory and Practice of
Software, BX@ETAPS 2017, Uppsala, Sweden, April 29, 2017. pp. 15–30 (2017),
http://ceur-ws.org/Vol-1827/paper6.pdf

3. Blouin, D., Plantec, A., Dissaux, P., Singhoff, F., Diguet, J.P.: Synchroniza-
tion of models of rich languages with triple graph grammars: An experience
report. In: Di Ruscio, D., Varró, D. (eds.) Theory and Practice of Model
Transformations. pp. 106–121. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-08789-4_8

4. Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: A model driven reverse
engineering framework. Information and Software Technology 56(8), 1012–1032
(2014). https://doi.org/https://doi.org/10.1016/j.infsof.2014.04.007

5. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of least change
and least surprise for bidirectional transformations. Journal of Object Technology
16(1), 3:1–31 (Feb 2017). https://doi.org/10.5381/jot.2017.16.1.a3

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

7. Eppinger, S.D.: Model-based approaches to managing concurrent en-
gineering. Journal of Engineering Design 2(4), 283–290 (1991).
https://doi.org/10.1080/09544829108901686

8. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-Cut Rules. Se-
quential Composition of Rules Avoiding Unnecessary Deletions. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and
Foundations. pp. 415–430. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-030-04771-9_30

9. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models.
Tech. Rep. 28, Hasso-Plattner-Institut (2009)

10. Giese, H., Hildebrandt, S., Lambers, L.: Bridging the gap between formal semantics
and implementation of triple graph grammars. Software & Systems Modeling 13(1),
273–299 (Feb 2014). https://doi.org/10.1007/s10270-012-0247-y

11. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software & Systems Modeling 8(1), 21–43 (Feb 2009).
https://doi.org/10.1007/s10270-008-0089-9

12. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars. In: Ehrig, H.,
Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Graph Transformations. pp. 141–
155. Springer, Berlin and Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33654-6_10

13. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar,
B., Paige, R.F. (eds.) Modelling Foundations and Applications. Proceedings of
the 7th European Conference on Modelling Foundations and Applications. pp.
144–159. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21470-7_11

http://projects.ikv.de/qvt
http://ceur-ws.org/Vol-1827/paper6.pdf
https://doi.org/10.1007/978-3-319-08789-4_8
https://doi.org/https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.5381/jot.2017.16.1.a3
https://doi.org/10.1080/09544829108901686
https://doi.org/10.1007/978-3-030-04771-9_30
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-33654-6_10
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/978-3-642-21470-7_11


Efficient Model Synchronization 17

14. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution
of correct and complete model transformations based on triple graph gram-
mars. In: Proceedings of the First International Workshop on Model-Driven
Interoperability. pp. 22–31. MDI ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1866272.1866277

15. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Software & Systems Modeling 14(1), 241–269 (Feb
2015). https://doi.org/10.1007/s10270-012-0309-1

16. Ko, H., Zan, T., Hu, Z.: Bigul: a formally verified core language for putback-
based bidirectional programming. In: Proceedings of the 2016 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2016, St. Petersburg, FL, USA, January 20 – 22, 2016. pp. 61–72 (2016).
https://doi.org/10.1145/2847538.2847544

17. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories.
Theoretical Informatics and Applications 39(3), 511–545 (2005).
https://doi.org/10.1051/ita:2005028

18. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) Graph Transformations. pp. 401–415. Springer, Berlin, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33654-6_27

19. Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incremen-
tal pattern matching techniques for model synchronisation. In: de Lara, J., Plump,
D. (eds.) Graph Transformation. pp. 179–195. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-61470-0_11

20. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with eMoflon.
In: Di Ruscio, D., Varró, D. (eds.) Theory and Practice of Model Trans-
formations. pp. 138–145. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-08789-4_10

21. Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: Revision: a tool for history-
based model repair recommendations. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings, ICSE 2018,
Gothenburg, Sweden, May 27 – June 03, 2018. pp. 105–108. ACM (2018).
https://doi.org/10.1145/3183440.3183498

22. Robinson, E., Rosolini, G.: Categories of partial maps. Information and Compu-
tation 79(2), 95–130 (1988). https://doi.org/10.1016/0890-5401(88)90034-X

23. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 903, pp. 151–163. Springer (1995).
https://doi.org/10.1007/3-540-59071-4_45

24. Taentzer, G., Ohrndorf, M., Lamo, Y., Rutle, A.: Change-preserving model repair.
In: Fundamental Approaches to Software Engineering – 20th International Con-
ference, FASE 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10202, pp. 283–299. Springer
(2017). https://doi.org/10.1007/978-3-662-54494-5_16

https://doi.org/10.1145/1866272.1866277
https://doi.org/10.1007/s10270-012-0309-1
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1145/3183440.3183498
https://doi.org/10.1016/0890-5401(88)90034-X
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-662-54494-5_16


18 L. Fritsche et al.

A Additional Preliminaries

In this section, we recall our formal preliminaries thoroughly. We start with the
definition and central properties of adhesive categories as introduced by Lack
and Sobociński in [17] since they constitute a suitable framework for double-
pushout rewriting. Subsequently, we recall rules and the transformations defined
by them in adhesive categories and in the category of triple graphs in particular.
Moreover, we mention the Local Church-Rosser and the Short-Cut Theorem
since we use them to prove Theorem 8.

Adhesive categories can be understood as categories where pushouts along
monomorphisms behave like pushouts along injective maps in the category of
sets. The definition of an adhesive category uses the notion of van Kampen
squares.

Definition 9 (Van Kampen square and adhesive category). A pushout

diagram as depicted in Fig. 11 is a van Kampen square if for every commutative

cube over it (like depicted in Fig. 12) where the backfaces are pullbacks, the front

faces are pullbacks iff the top face is a pushout.

𝐴 𝐵

𝐶 𝐷

𝑓

𝑚

𝑛

𝑔

Fig. 11. A pushout square

𝐴′

𝐶′ 𝐵′

𝐷′

𝐴

𝐶 𝐵

𝐷

𝑓 ′
𝑚′

𝑎

𝑛′

𝑐

𝑔′

𝑏

𝑑

𝑓 𝑚

𝑛 𝑔

Fig. 12. Commutative cube over pushout square

A category C is called adhesive if

1. C has pushouts along monomorphisms (i.e., pushouts whenever at least one

of the two morphisms 𝑓 or 𝑚 in Fig. 11 is a monomorphism),

2. C has pullbacks, and

3. pushouts along monomorphisms are van Kampen squares.

Important examples of adhesive categories include the categories of sets, of
(typed) graphs, and of (typed) triple graphs [17,6]. We will use the following
properties of adhesive categories frequently:

Fact 10 (Properties of adhesive categories). If C is an adhesive category,

the following properties hold [17]:
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1. Monomorphisms are stable under pushout, i.e.,

whenever 𝑚 (or 𝑓) is a monomorphism in

the pushout diagram to the right, 𝑛 (or 𝑔)
is a monomorphism. Moreover, pushouts along

monomorphisms are pullbacks.

𝐴 𝐵

𝐶 𝐷

𝑓

𝑚

𝑛

𝑔

2. If 𝑓 is a monomorphism (compare the diagram above), pushout complements

for 𝑛 ∘ 𝑓 are unique (up to isomorphism).

The definition of rules and their applications is meaningful in arbitrary ad-
hesive categories. Rules offer a declarative means to specify transformations of
objects. A rule consists of a left-hand side (LHS) 𝐿, a right-hand side (RHS) 𝑅,
and a common subobject 𝐾, called interface. In the context of (triple) graphs,
applying a rule intuitively means to delete the elements from 𝐿 ∖ 𝐾 and add
those of 𝑅 ∖𝐾.

Definition 11 (Rules and application). Given an adhesive category C, a

rule (or production) 𝑝 consists of three objects 𝐿, 𝐾, and 𝑅, called left-hand
side, interface (or gluing object), and right-hand side, and two monomorphisms

𝑙 : 𝐾 →˓ 𝐿, 𝑟 : 𝐾 →˓ 𝑅. Given a rule 𝑝 = (𝐿 𝑙←−˒ 𝐾
𝑟−˓→ 𝑅), the inverse rule 𝑝−1 is

defined as 𝑝−1 = (𝑅 𝑟←−˒ 𝐾
𝑙−˓→ 𝐿). A rule 𝑝 = (𝐿 𝑙←−˒ 𝐾

𝑟−˓→ 𝑅) is called monotonic
(or non-deleting) if 𝑙 : 𝐾 →˓ 𝐿 is an isomorphism. In that case we just write

𝑟 : 𝐿 →˓ 𝑅. A subrule 𝑟′ of a monotonic rule 𝑟 : 𝐿 →˓ 𝑅 is a monotonic rule

𝑟′ : 𝐿′ →˓ 𝑅′ with monomorphisms 𝑢 : 𝐿′ →˓ 𝐿 and 𝑣 : 𝑅′ →˓ 𝑅 such the arising

square commutes, i.e., 𝑣 ∘ 𝑟′ = 𝑟 ∘ 𝑢. A common kernel rule 𝑘 for monotonic

rules 𝑟 and 𝑟′ is a common subrule of both.

Given a rule 𝑝 = (𝐿 𝑙←−˒ 𝐾
𝑟−˓→ 𝑅), an object 𝐺,

and a monomorphism 𝑚 : 𝐿 →˓ 𝐺, called match, a
(direct) transformation 𝐺⇒𝑝,𝑚 𝐻 from 𝐺 to 𝐻 via

𝑝 at match 𝑚 is given by the diagram to the right

where both squares are pushouts. The morphism 𝑛
is called co-match of the transformation, the arising

object 𝐷 its context object.

𝐿 𝐾 𝑅

𝐺 𝐷 𝐻

𝑙 𝑟

𝑚 𝑛

A rule 𝑝 is called applicable at match 𝑚 if the first pushout square above exists,

i.e., if 𝑚 ∘ 𝑙 has a pushout complement.

A grammar 𝐺𝐺 = (ℛ, 𝑆) consists of a set of rules ℛ and a start object 𝑆.
The language ℒ(𝐺𝐺) defined by a grammar consists of all objects 𝐻 that are

derivable by finite sequences of applications of rules of ℛ starting at 𝑆, i.e., of
objects 𝑆 ⇒*ℛ 𝐻.

Definition 12 (Triple graphs and triple graph morphisms). A graph 𝐺 =
(𝑉, 𝐸, 𝑠, 𝑡) consists of a set 𝑉 of vertices, a set 𝐸 of edges and source and target

functions 𝑠, 𝑡 : 𝐸 → 𝑉 . A graph morphism 𝑓 : 𝐺→ 𝐻 consists of two functions

𝑓𝑉 : 𝑉𝐺 → 𝑉𝐻 and 𝑓𝐸 : 𝐸𝐺 → 𝐸𝐻 that are compatible with the assignment of

source and target to edges, i.e., 𝑓𝑉 ∘ 𝑠𝐺 = 𝑠𝐻 ∘ 𝑓𝐸 and 𝑓𝑉 ∘ 𝑡𝐺 = 𝑡𝐻 ∘ 𝑓𝐸. A

graph morphism 𝑓 = (𝑓𝑉 , 𝑓𝐸) is injective/surjective/bijective if both 𝑓𝑉 and 𝑓𝐸

are.
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A triple graph 𝐺 = (𝐺𝑆
𝜎𝐺←−− 𝐺𝐶

𝜏𝐺−−→ 𝐺𝑇 ) consists of three graphs 𝐺𝑆 , 𝐺𝐶 , 𝐺𝑇 ,

called source, correspondence, and target graph, and two graph morphisms 𝜎𝐺 :
𝐺𝐶 → 𝐺𝑆 and 𝜏𝐺 : 𝐺𝐶 → 𝐺𝑇 . A triple graph morphism 𝑓 : 𝐺→ 𝐻 between two

triple graphs 𝐺 and 𝐻 consists of three graph morphisms 𝑓𝑆 : 𝐺𝑆 → 𝐻𝑆 , 𝑓𝐶 :
𝐺𝐶 → 𝐻𝐶 and 𝑓𝑇 : 𝐺𝑇 → 𝐻𝑇 such that 𝜎𝐻 ∘𝑓𝐶 = 𝑓𝑆 ∘𝜎𝐺 and 𝜏𝐻 ∘𝑓𝐶 = 𝑓𝑇 ∘𝜏𝐺.

A triple graph morphism 𝑓 = (𝑓𝑆 , 𝑓𝐶 , 𝑓𝑇 ) is injective/surjective/bijective if

𝑓𝑆 , 𝑓𝐶 and 𝑓𝑇 all are.

In practical applications, one assumes the triple graphs to be typed, i.e., in-
stead of considering the category of triple graphs one works in the slice category
over a fixed type triple graph 𝑇𝐺. Practically, this just means that nodes and
edges of the graphs get equipped with fixed types that are to be respected by
morphisms. The resulting category is an adhesive category with injective, type-
preserving triple morphisms as monomorphisms [6]. Adhesive categories have
been introduced as a suitable unifying framework for double-pushout rewrit-
ing [17] and being adhesive makes the following definitions – not explicitly for-
mulated for (typed) triple graphs – applicable to these, nonetheless.

The following fact is a part of the Short-Cut Theorem [8, Theorem 7] stating
the possibilities to analyze the application of a short-cut rule into the sequential
application of two rules under certain conditions.

Fact 13 ((Conditional) Analyzability of short-cut rules). In an adhesive

category C, let 𝑟𝑖 : 𝐿𝑖 →˓ 𝑅𝑖, 𝑖 = 1, 2, be two monotonic rules, 𝑘 : 𝐿∩ →˓ 𝑅∩ a

common kernel rule for them, and 𝑟−1
1 n𝑘 𝑟2 the corresponding short-cut rule.

Given a direct transformation 𝐺1 ⇒𝑟−1
1 n𝑘𝑟2,𝑚′

1
𝐺2 with context object 𝐺′ such

that a pushout complement for 𝑚1 ∘ 𝑟1 : 𝐿1 →˓ 𝐺1 exists, where 𝑚1 = 𝑚′1 ∘ 𝑗𝑅1 ,

then there exists a transformation sequence 𝐺1 ⇒𝑟−1
1 ,𝑚1

𝐺⇒𝑟2,𝑚2 𝐺2 compatible

with 𝑘. Moreover, a monomorphism 𝑔 : 𝐺 →˓ 𝐺′ exists.

The Local Church-Rosser Theorem [6, Theorem 5.12] states that sequentially
independent transformations may be applied in arbitrary order. In particular, it
ensures that in the above definition of sequential independence from a sequence
of rule applications the arising transformations 𝐺𝑖 ⇒𝑟,𝑒𝑖∘𝑑𝑖

2
𝐺′𝑖+1 exist in the

first place, i.e., that rule 𝑝 is applicable at the matches 𝑒𝑖 ∘ 𝑑𝑖
2. We recall only

a simplified version of one direction of the result, omitting the case for parallel
independence.

Fact 14 (Local Church-Rosser Theorem). In an adhesive category 𝒞, given
two sequentially independent transformations 𝐺 ⇒𝑝1,𝑚1 𝐻1 ⇒𝑝2,𝑚′

2
𝐺′, there

exist an object 𝐻2 and transformations 𝐺⇒𝑝2,𝑚2 𝐻2 ⇒𝑝1,𝑚′
1

𝐺′.

B Proofs

In this section, we present the proofs of the different statements of the paper.
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Proof (of Lemma 6). Since the category of triple graphs is adhesive, and the
morphism 𝑓𝑆 : 𝐷𝑆 →˓ 𝐺𝑆 arises as a pushout of the monomorphism 𝑟𝑆 : 𝐾𝑆 →˓
𝑅𝑆 , it is a monomorphism as well. Moreover, the category of triple graphs has
pullbacks and pullbacks of monos are mono, thus 𝑝𝐺 is mono and the span
𝐺𝐶 ←˒ 𝐺′𝐶 → 𝐻𝑆 with 𝑔𝑆 ∘ 𝑝𝐷 : 𝐺′𝐶 → 𝐻𝑆 defines a partial morphism. ⊓⊔

Proof (of Theorem 7). The transformation 𝐺𝑆 ⇒𝑝pr
𝑆

,𝑚𝑆
𝐻𝑆 as depicted in the

left part of Fig. 13 (most morphism names are omitted to retain readability)
exists by assumption. The partial morphism 𝐺𝐶 99K 𝐻𝑆 is induced as described
by Lemma 6. The pushout complements 𝐷𝑋 for the morphisms 𝑚𝑋 ∘ 𝑙𝑋 with
𝑋 ∈ {𝐶, 𝑇} exist by assumption as well as the morphisms 𝜏𝐷 : 𝐷𝐶 → 𝐷𝑇 and
𝜎′𝐷 : 𝐷𝐶 → 𝐻𝑆 ; the pushout complement for 𝑛𝑆 ∘ 𝑖𝑑𝑅𝑆

is 𝐻𝑆 again.
We need to show that there is a morphism 𝜎𝐷 : 𝐷𝐶 → 𝐷𝑆 such that 𝑘𝑆∘𝜎𝐾 =

𝜎𝐷 ∘ 𝑘𝐶 . If this is the case, the triple 𝐷𝑆
𝜎𝐷←−− 𝐷𝐶

𝜏𝐷−−→ 𝐷𝑇 is the unique pushout
complement for 𝑚 ∘ 𝑙 in the category of triple graphs with 𝑚 = (𝑚𝑆 , 𝑚𝐶 , 𝑚𝑇 )
and 𝑙 = (𝑙𝑆 , 𝑙𝐶 , 𝑙𝑇 ). Hence, 𝐺⇒𝑝,𝑚 𝐻.

By assumption, 𝐻𝑆𝐷𝐶𝐷𝑇 →˓ 𝐻𝑆𝐺𝐶𝐺𝑇 and 𝑅𝑆𝐾𝐶𝐾𝑇 →˓ 𝐻𝑆𝐷𝐶𝐷𝑇 are
triple morphisms. Hence, the whole cube in the center of Fig. 13 (the one with
the partial morphisms) commutes. First, by definition of commutativity of the
bottom square, there exists a morphism 𝜄 : 𝐷𝐶 →˓ 𝐺′𝐶 such that

𝑓𝐶 = 𝑝𝐺 ∘ 𝜄 (1)
𝑔𝑆 ∘ 𝑝𝐷 ∘ 𝜄 = 𝑖𝑑𝐻𝑆

∘ 𝜎′𝐷 ; (2)

in particular, 𝜄 is mono. We use this morphism to define 𝜎𝐷 := 𝑝𝐷 ∘ 𝜄. Moreover,
commutativity of the left side square implies the existence of a morphism 𝑥 :
𝐾𝐶 →˓ 𝐺′𝐶 such that

𝑝𝐺 ∘ 𝑥 = 𝑚𝐶 ∘ 𝑙𝐶 (3)
𝑔𝑆 ∘ 𝑝𝐷 ∘ 𝑥 = 𝑛𝑆 ∘ 𝑟𝑆 ∘ 𝜎𝐾 ; (4)

in particular, 𝑥 is mono. We first calculate that

𝑝𝐺 ∘ 𝜄 ∘ 𝑘𝐶
(1)= 𝑓𝐶 ∘ 𝑘𝐶

= 𝑚𝐶 ∘ 𝑙𝐶
(3)= 𝑝𝐺 ∘ 𝑥

which implies

𝑥 = 𝜄 ∘ 𝑘𝐶 (5)

(since 𝑝𝐺 is mono) and use this to calculate

𝑔𝑆 ∘ 𝜎𝐷 ∘ 𝑘𝐶 = 𝑔𝑆 ∘ 𝑝𝐷 ∘ 𝜄 ∘ 𝑘𝐶

(5)= 𝑔𝑆 ∘ 𝑝𝐷 ∘ 𝑥

(4)= 𝑛𝑆 ∘ 𝑟𝑆 ∘ 𝜎𝐾

= 𝑔𝑆 ∘ 𝑘𝑆 ∘ 𝜎𝐾
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which implies the desired result 𝜎𝐷 ∘ 𝑘𝐶 = 𝑘𝑆 ∘ 𝜎𝐾 (since 𝑔𝑆 is mono). ⊓⊔

𝐿𝑇

𝐾𝑇

𝐿𝑆 𝐿𝐶 𝐺𝑇 𝑅𝑇

𝐾𝑆 𝐾𝐶 𝐷𝑇

𝐺𝑆 𝐺′
𝐶 𝑅𝑆 𝐺𝐶 𝑅𝐶 𝐻𝑇

𝐷𝑆 𝑅𝑆 𝐷𝐶

𝐻𝑆 𝑅𝑆 𝐻𝐶

𝐻𝑆

𝐻𝑆

𝑚𝑇

𝑚𝑆

𝑘𝑆

𝑝𝐷

𝑝𝐺

𝑓𝑆

𝑔𝑆

𝑓𝐶

𝜎′
𝐷

𝜄

𝑛𝑆

𝜏𝐻

𝜎𝐻

𝑖𝑑𝐻𝑆

𝑖𝑑𝐻𝑆

𝑚𝐶

𝑛𝑆

𝑥

𝑘𝐶

Fig. 13. Application of source rule followed by application of forward rule

Proof (of Theorem 8). First, because of the sequential independence, repeated
application of the Local Church-Rosser Theorem [6, Theorem 5.12] is possible
and allows to convert the sequence

𝐺⇒𝑟,𝑚 𝐺0 ⇒𝑝1,𝑚1 𝐺1 ⇒𝑝2,𝑚2 · · · ⇒𝑝𝑡,𝑚𝑡
𝐺𝑡 ⇒𝑟−1n𝑘𝑟′,𝑚𝑠𝑐

𝐻

into a sequence

𝐺⇒𝑟,𝑚 𝐺0 ⇒𝑟−1n𝑘𝑟′,𝑚′
𝑠𝑐

𝐺′1 ⇒𝑝1,𝑚′
1

. . . 𝐺′𝑡−1 ⇒𝑝𝑡,𝑚′
𝑡

𝐻

by iteratively switching the order of rule applications.
Secondly, by assumption 𝑚′𝑠𝑐 ∘ 𝑗𝑅 = 𝑛 and furthermore an application of

a transformation is invertible [6, Remark 5.3]. Moreover, the transformation
𝐺0 ⇒𝑟−1n𝑘𝑟′,𝑚′

𝑠𝑐
𝐺′1 splits into two transformations 𝐺0 ⇒𝑟−1,𝑛 𝐺⇒𝑟′,𝑚′ 𝐺′1 by

the analysis case of the Short-cut Theorem [8]. Summarizing, we get

𝐺⇒𝑟,𝑚 𝐺0 ⇒𝑟−1n𝑘𝑟′,𝑚′
𝑠𝑐

𝐺′1 ⇒𝑝1,𝑚′
1

. . . 𝐺′𝑡−1 ⇒𝑝𝑡,𝑚′
𝑡

𝐻

= 𝐺⇒𝑟,𝑚 𝐺0 ⇒𝑟−1,𝑛 𝐺⇒𝑟′,𝑚′ 𝐺′1 ⇒𝑝1,𝑚′
1

. . . 𝐺′𝑡−1 ⇒𝑝𝑡,𝑚′
𝑡

𝐻

= 𝐺⇒𝑟′,𝑚′ 𝐺′1 ⇒𝑝1,𝑚′
1

. . . 𝐺′𝑡−1 ⇒𝑝𝑡,𝑚′
𝑡

𝐻 .

If 𝐺 ∈ ℒ(𝐺𝐺) for some grammar 𝐺𝐺 = (ℛ, 𝑆) with 𝑟, 𝑟′, 𝑝1, . . . , 𝑝𝑡 ∈ ℛ,
there exists a finite sequence of transformations 𝑆 ⇒*ℛ 𝐺 that extends to a finite
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sequence 𝑆 ⇒*ℛ 𝐻 by concatenating with the sequence above. Thus, 𝐻 ∈ ℒ(𝐺𝐺).
⊓⊔

C Evaluation Ruleset

In this section, we present additional information related to our evaluation from
Sect. 5.

Fig. 14 depicts the full TGG rule set used of our evaluation. The first rule
JavaModel-2-DocModel-Rule defines consistency between a MoDisco Model and
a DocModel that contains three sub DocModel and another Folder linked to the
common DocModel. These different containers are used to separate Java entities
on the documentation site to split them up into common Java data types, ex-
ternal Java references and source references. JavaModel-2-DocModel-Rule then
defines consistency between Packages and Folders given that their parent are a
MoDisco Model and a DocModel, respectively. Using JavaPackage-2-DocFolder-

Rule, we can now create Package and Folder hierarchies recursively. Furthermore,
there are four rules that define consistency for ClassesDeclarations, Interfaces-
Declaration, EnumDeclaration and inner ClassesDeclarations each with a Doc-

File. Also, for the nine primitive types, e.g., boolean, byte and short, consistency
is defined between each of them and a Doc-File. Given a ClassDeclaration or an
InterfaceDeclaration with its corresponding Doc-File, we also define consistency
between MethodDeclarations on one and MethodEntries on the other side. Using
the consistency between methods on both sides, we are able to define consistency
between TypeAccesses and Parameters, once for method signatures and once for
the return statement. Finally, we define consistency between generalization and
realization relationships using three rules. First, a rule for ClassesDeclarations

that extend another ClassDeclaration, second a rule for InterfacesDeclaration

extending another InterfaceDeclaration and last for ClassesDeclarations imple-
menting an InterfaceDeclaration.

D Exemplary Repair Rule with Partial Morphism

As was explained in Sect. 4.1, a short-cut rule can be operationalized such that
a source edit rule and a corresponding repair rule can be created. However,
it was also stated that these source edits may cause the result to no longer
be a graph triple because source elements are deleted without deleting their
preimage in the correspondence graph. We want to give an example here based
on the TGG rule set used in our evaluation and shown in Appendix C. We use
TypeAccess-2-Generalization-Rule and ClassDec-2-DocFile-Rule where the first
defines consistency for standard Java inheritance5 and the latter solely for single
ClassesDeclarations. In case that we want to revoke the generalization without
touching the ClassDeclaration, we would like to apply ClassDec-2-DocFile-Rule

instead.
5 Note that ClassDeclaration is also created here which implicitly forbids multi inher-
itance
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dm : 
DocModel

m : 
Model

JavaModel‐2‐DocModel‐Rule

common : 
DocModel

external : 
DocModel

sourceRef : 
DocModel

commonTypes : 
Folder

{equals(m.name, dm.name)}

dm : 
DocModel

m : 
Model

f : 
Folder

jp : 
Package

JavaPackage‐2‐DocModel‐Rule

{equals(jp.name, f.name)}

dParent : 
Folder

jParent : 
Package

f : 
Folder

jp : 
Package

JavaPackage‐2‐DocFolder‐Rule

{equals(jp.name, f.name)}

f : 
Folder

p : 
Package

dFile : 
DocFile

class : 
ClassDeclaration

ClassDec‐2‐DocFile‐Rule

{equals(class.name, dFile.name)}

f : 
Folder

p : 
Package

dFile : 
DocFile

enumDec : 
EnumDeclaration

EnumDec‐2‐DocFile‐Rule

{equals(enumDec.name, dFile.name)}

f : 
Folder

class : 
ClassDeclaration

dFile : 
DocFile

innerClass : 
ClassDeclaration

InnerClassDec‐2‐DocFile‐Rule

{equals(innerClass.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Boolean

Boolean‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Char

Char‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Short

Short‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Float

Boolean‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Float

Double‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Byte

Byte‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

p : 
Package

dFile : 
DocFile

interface : 
InterfaceDeclaration

InterfaceDec‐2‐DocFile‐Rule

{equals(interface.name, dFile.name)}

dFile : 
DocFile

class : 
ClassDeclaration

superFile : 
DocFile

superClass : 
ClassDeclaration

TypeAccess‐2‐Generalization‐Rule

typeAcc : 
TypeAccess

dMethod : 
MethodEntry

method : 
MethodDeclaration

typeDoc : 
DocFile

type : 
Type

TypeAccess‐2‐ReturnType‐Rule

typeAcc : 
TypeAccess

return : 
Parameter

dMethod : 
MethodEntry

method : 
MethodDeclaration

typeDoc : 
DocFile

type : 
Type

VariableDec‐2‐Parameter‐Rule

typeAcc : 
TypeAccess

param : 
Parameter

{equals(variableDec.name, param.name)}

variableDec : 
SingleVariableDeclaration

dFile : 
DocFile

class : 
ClassDeclaration

superFile : 
DocFile

interface : 
InterfaceDeclaration

TypeAccess‐2‐IRealization‐Rule

typeAcc : 
TypeAccess

dFile : 
DocFile

interface : 
InterfaceDeclaration

superFile : 
DocFile

superInterface : 
InterfaceDeclaration

TypeAccess‐2‐IGeneralization‐Rule

typeAcc : 
TypeAccess

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Int

Int‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Long

Long‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

f : 
Folder

m : Model

dFile : 
DocFile

type : 
PrimitiveType

Void

Void‐2‐DocFile‐Rule

{equals(type.name, dFile.name)}

dFile : 
DocFile

class : 
ClassDeclaration

mEntry : 
methodEntry

method : 
MethodDeclaration

MethodDec‐2‐COperation‐Rule

{equals(method.name, mEntry.name)}

dFile : 
DocFile

interface : 
InterfaceDeclaration

mEntry : 
methodEntry

method : 
MethodDeclaration

MethodDec‐2‐IOperation‐Rule

{equals(method.name, mEntry.name)}

Fig. 14. Evaluation - TGG Rule Set
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dFile : 
DocFile

class : 
ClassDeclaration

superFile : 
DocFile

superClass : 
ClassDeclaration

RemoveGeneralization‐SC‐Rule

typeAcc : 
TypeAccess

dParent : 
Folder

jParent : 
Package

Fig. 15. Short-cut Rule

Figure 15 depicts a short-cut rule which can be applied in order to transform
a rule application of TypeAccess-2-Generalization-Rule into that of ClassDec-
2-DocFile-Rule. On the source side, we delete the TypeAccess element together
with all adjacent links plus the correspondence link between TypeAccess and
superFile. Finally, we delete the link between dFile and superFile which results
in deleting all green elements of TypeAccess-2-Generalization-Rule that are not
present in ClassDec-2-DocFile-Rule.

The forward operationalization of this short-cut rule results in the repair rule
depicted in Fig. 17. As before, deleted elements on the source side are removed
because we expect these elements to already been deleted by the source edit rule
which is depicted in Fig. 16. The dashed elements are not part of the source edit
rule but depict the current state of the triple at this location. Thus, all elements
on correspondence and target side are dashed black and are not altered with
except for the edge that connects the correspondence node with typeAcc. It is
not directly deleted by the source edit rule but deleting typeAcc will also lead
to this edge being removed. The result is of course no triple graph any more

dFile : 
DocFile

class : 
ClassDeclaration

superFile : 
DocFile

superClass : 
ClassDeclaration

RemoveGeneralization‐Source‐Edit‐Rule

typeAcc : 
TypeAccess

dParent : 
Folder

jParent : 
Package

Fig. 16. Source Edit Rule

dFile : 
DocFile

class : 
ClassDeclaration

superFile : 
DocFile

superClass : 
ClassDeclaration

RemoveGeneralization‐Repair‐Rule

dParent : 
Folder

jParent : 
Package

Fig. 17. Repair Rule

which has to be fixed by our repair rule from Fig. 17. This also explains the
source dangling correspondence which is deleted by the repair rule and results
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again in a triple graph. Finally, the rule deletes the reference between dFile and
superFile and restores the consistency of the whole triple with respect to the
TGG rule set.
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