
Adhesive Subcategories of Functor Categories

with Instantiation to Partial Triple Graphs

Extended Version

Jens Kosiol1Lars Fritsche2Andy Schürr2Gabriele Taentzer1

1 Philipps-Universität Marburg
{kosiolje,taentzer}@mathematik.uni-marburg.de

2 TU Darmstadt
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de

Abstract. Synchronization and integration processes of correlated mod-
els that are formally based on triple graph grammars often suffer from
the fact that elements are unnecessarily deleted and recreated losing in-
formation in the process. It has been shown that this undesirable loss
of information can be softened by allowing partial correspondence mor-
phisms in triple graphs. We provide a formal framework for this new
synchronization process by introducing the category PTrG of partial
triple graphs and proving it to be adhesive. This allows for ordinary
double pushout rewriting of partial triple graphs. To exhibit PTrG as
an adhesive category, we present a fundamental construction of subcat-
egories of functor categories and show that these are adhesive HLR if
the base category already is. Secondly, we consider an instantiation of
this framework by triple graphs to illustrate its practical relevance and
to have a concrete example at hand.

Keywords: Adhesiveness · Functor Category · Double Pushout Rewrit-
ing · Triple Graphs

1 Introduction

Bidirectional transformation (bx) is a central concept in model-driven software
development among others [3,1]. Bx provides the means to define and restore
consistency between different kinds of artifacts or different views on a system.
Triple Graph Grammars (TGGs) [27] are an established bx-formalism. A triple
graph correlates two models (referred to as source and target) by defining a
correspondence graph in between that contains elements relating elements of
both sides. A TGG defines how correlated models co-evolve and can be used
to, e.g., automatically synchronize source and target model after a user edited
only one of them. Approaches that have been suggested for such synchroniza-
tion processes are either informal and rather ad-hoc [9,12], quite inefficient and
work under restricted circumstances only [16], or unnecessary deletions may be
included leading to a loss of information [10,21]. In [7], we present a synchroniza-
tion process based on triple graphs that allow correspondence morphisms to be

2 J. Kosiol et al.

partial. This largely improved existing approaches with regard to information
loss and runtime. The formal background in that work, however, was restricted
and an elaborated theory of partial triple graphs was left to future work. Such
a theory is one of the contributions of this paper. We show that the category
of partial triple graphs is adhesive such that double pushout rewriting becomes
possible [20,5].

When working with adhesive (HLR) categories, an often used technique is
to exhibit a category 𝒟 as (equivalent to) a functor category [𝒳 , 𝒞] where 𝒳 is
small and 𝒞 is known to be an adhesive (HLR) category. This ensures that 𝒟 is
an adhesive (HLR) category as well. Considering partial triple graphs and their
morphisms, they can be formalized quite naturally as a subcategory of a functor
category over an adhesive category. More precisely, they are formalized as those
functors of the category [← → ← → , Graph] that map both central
morphisms to injective morphisms. This category can be seen as an instance
of a more general principle. There are several categories of interest that form
a proper subcategory of a functor category [𝒳 , 𝒞] in a quite natural way. More
precisely, we consider subcategories consisting of only those functors that map a
designated subset 𝑆 of the morphisms from 𝒳 to monomorphisms (morphisms
from ℳ) in 𝒞. Besides the already mentioned partial triple graphs, examples
include but are not limited to:3

1. Elements of [→˓ , 𝒞], where 𝒞 is any adhesive (HLR) category, can be
understood as objects that come with a marked (ℳ-)subobject. These are
exactly the categories that Kastenberg and Rensink proved to be adhesive
in [17], for the case that 𝒞 is adhesive. They introduce a new concept of
attribution for the case where 𝒞 is the category Graph.

2. Elements of [←˒ →˓ , 𝒞], where 𝒞 is any adhesive (HLR) category, are
exactly the linear rules of 𝒞.

3. Elements of [←˒ → , 𝒞] are the partial morphisms of 𝒞 (without the usual
identification of equivalent ones [26]).

4. Let 𝒮𝑛 be a star-like shape: there exists a central node with 𝑛 outgoing
spans (the shape ← → ← → being the special case for 𝑛 = 2).
Let 𝒮𝑛 denote the same shape with the arrows pointing to the central node
designated to be mapped to monomorphisms. König et al. [19,29] use (slice
categories of) [𝒮𝑛, 𝒞] (where 𝒞 is a suitable category of models) to formalize
a correspondence relation between 𝑛 different (meta-)models via 𝑛 partial
morphisms from a correspondence model.

5. If 𝒯 is a finite tree and 𝒯 denotes the tree where every edge of 𝒯 is marked
as to be mapped to monomorphisms (morphisms from ℳ), after fixing an
appropriate decoration of the nodes of 𝒯 with quantifiers and logical con-
nectives the elements of [𝒯 , 𝒞] are nested conditions [13] in 𝒞 of a fixed
structure.
Simple examples (as Example 4) show that, in general, the full subcategory

generated by such a choice of functors will not be an adhesive (HLR) category. In
3 We do not depict identities of 𝒳 and mark the morphisms from the designated set

𝑆 by a hooked arrow.

Adhesive Subcategories 3

Sect. 4 we show that an adhesive (HLR) category is obtained by restricting the
class of morphisms to those natural transformations where all squares induced
by the designated morphisms are pullback squares (Theorem 11).

In the second part of this paper (Sect. 5), we instantiate our theory and
consider an application to triple graphs with partial morphism between corre-
spondence and source or target graphs. We discuss the expressiveness of double
pushout rewriting in that category (Proposition 20) and provide a basic char-
acterization of matches to partial triple graphs (Proposition 21). Moreover, we
define the decomposition of a rule on partial triple graphs into a source and a
forward rule (Theorem 23) in analogy to the procedure for TGGs [27].

We begin by presenting an introductory example in Sect. 2 and recall some
preliminaries in Sect. 3. After the main contributions, we discuss related work in
Sect. 6 and conclude in Sect. 7. All proofs that are skipped in the main part of
this paper are presented in Appendix A, together with some additional technical
preliminaries.

2 Introductory Example

We motivate our new construction of categories on an example of triple graph
grammars (TGGs). TGGs [27] provide a means to define consistency between
two correlated models in a declarative and rule-based way by incorporating a
third model, a correspondence model, to connect elements from both sides via
correspondence links. Elements connected in such a way are henceforth con-
sidered to be consistent. Figure 1 shows the rule set of our running example
consisting of three TGG rules taken from [7]. They allow to simultaneously cre-
ate correlated models of a Java abstract syntax tree and a custom documentation
model. Root-Rule creates a root Package and a root Folder together with a cor-
respondence link in between which is indicated by the annotation (++) and by
green colouring. This rule can be applied arbitrarily often as it does not contain
a precondition. Sub-Rule requires a Package, Folder, and a correspondence link
between both as precondition and creates a Package and Folder hierarchy to-
gether with a Doc-File. Finally, Leaf-Rule creates a Class with a corresponding
Doc-File under the same precondition as Sub-Rule. Given these rules, we can
generate consistent triple graphs like the one depicted in Fig. 2 by iteratively
applying the above rules. With content contained in the Doc-Files on the target
side, we indicate that a user has edited them independently such that the model
includes information that is private to the target side.

A common use case for TGGs is to synchronize changes between models in
order to restore consistency after a user edit. Assume that changes are applied
to the left side of Fig. 2 such that the element p is deleted and a new reference
is created connecting rootP with subP as depicted in Fig. 3 (a). Note that
this change also leads to a broken correspondence link, i.e., the result is not a
triple graph any longer. There are several TGG-based approaches to synchronize
source and target again. However, suggested incremental approaches [9,12] are
rather ad-hoc and not proven to be correct. One provably correct approach

4 J. Kosiol et al.

FolderPackage

FolderPackage

Doc-FileClass

Doc-File

Root-Rule

Sub-Rule

Leaf-Rule

(++)

(++)
(++)

(++)

(++)

(++)
(++)(++)

(++)
(++)

(++)

(++)

(++)
(++)

(++)

Package

Package

Folder

Folder

Fig. 1. Example: TGG Rules

rootF :
Folder

rootP:
Package

f :
Folder

p :
Package

d: Doc-File
content=c1

subF :
Folder

subP :
Package

sd: Doc-File
content=c2

cd: Doc-File
content=c3

c :
Class

Fig. 2. Example: instance model

parses the whole instance for a maximal remaining valid submodel [16] and is
thus quite inefficient and only applicable to a restricted class of TGGs. Other
approaches [10,21] first derive the triple graph depicted in Fig. 3 (b) and then
start a re-translation process using so-called forward rules, which are derived
from the TGG, to obtain the consistent triple shown in Fig. 3 (c). But the
Doc-Files’ contents have been lost in the process.

rootF :
Folder

rootP:
Package

f :
Folder

d: Doc-File
content=c1

subF :
Folder

subP :
Package

sd: Doc-File
content=c2

cd: Doc-File
content=c3

c :
Class

rootF :
Folder

rootP:
Package

rootF :
Folder

rootP:
Package

subF :
Folder

subP :
Package

sd: Doc-File
content=c2'

cd: Doc-File
content=c3'

c :
Class

subP :
Package

c :
Class

(a) (b) (c)

Fig. 3. A synchronization scenario

If it was possible to apply rules to partial triple graphs directly, the one
depicted in Fig. 3 (a) can be synchronized by applying Delta-Forward-Rule as
depicted in Fig. 5 where the red elements (additionally annotated with (−−))
are to be deleted. The qualitative difference of the result is that the contents of
both Doc-Files are preserved as both elements are not recreated in the process
and furthermore, less rule applications are necessary. Delta-Forward-Rule can
be obtained by splitting Delta-Rule (see Fig. 4) into two rules (which is also
called operationalization): Delta-Source-Rule which is a projection to the source
component and Delta-Forward-Rule which propagates the according changes to
correspondence and target graphs. In [8], we show how to construct rules like
Delta-Rule from given TGG rules. In [7], we operationalize these rules and use
them for more efficient synchronization processes. However, we did not introduce
partial triple graphs as a category. Moreover, we only defined rule applications
to partial triple graphs were the rules arise by operationalizing rules for triple

Adhesive Subcategories 5

graphs. Hence, an elaborated theory for applying and operationalizing rules for
partial triple graphs is still needed which is one of the contributions of this paper.

f :
Folder

subF :
Folder

subP :
Package

sd :
Doc-File

Delta-Rule

(--)

(--)

(--)

p :
Package

(--)

(++)

(--)

(--)

rootF :
Folder

rootP :
Package

(--)

d :
Doc-File

(--)

(++)

Fig. 4. Example: Delta-Rule

Delta-Source-Rule

f :
Folder

subF :
Folder

subP :
Package

sd :
Doc-File

Delta-Forward-Rule

(--)

(--)

(--)

p :
Package

subP :
Package

(--)

rootP :
Package

(++)

(--)

(--)

rootF :
Folder

rootP :
Package

(--)

d :
Doc-File

(--)

(++)

(--)

Fig. 5. Example: Operationalized Delta-Rule

3 Preliminaries

In this section, we introduce some preliminaries, namely adhesive (HLR) cat-
egories and double pushout rewriting. Adhesive categories can be understood
as categories where pushouts along monomorphisms behave like pushouts along
injective functions in the category of sets. They have been introduced by Lack
and Sobociński [20] to offer a unifying formal framework for double pushout
rewriting. Later, Ehrig et al. [5] introduced the more general notion of adhesive
HLR categories that includes practically relevant examples which are not adhe-
sive. We also introduce the notion of a partial van Kampen square [15] that we
need later on.

Definition 1 (Adhesive and adhesive HLR categories). A category 𝒞 with
a class of monomorphismsℳ is adhesive HLR if

– the class of monomorphisms ℳ contains all isomorphisms and is closed
under composition and decomposition, i.e., 𝑓, 𝑔 ∈ ℳ implies 𝑔 ∘ 𝑓 ∈ ℳ
whenever the composition is defined and 𝑔 ∘ 𝑓 ∈ℳ, 𝑔 ∈ℳ implies 𝑓 ∈ℳ.

– the category 𝒞 has pushouts and pullbacks along ℳ-morphisms and ℳ-
morphisms are closed under pushouts and pullbacks such that if Fig. 6 de-
picts a pushout square with 𝑚 ∈ ℳ then also 𝑛 ∈ ℳ and analogously if it
depicts a pullback square with 𝑛 ∈ℳ then also 𝑚 ∈ℳ.

– pushouts in 𝒞 along ℳ-morphisms are van Kampen squares, i.e., for any
commutative cube as depicted in Fig. 7 where the bottom square is a pushout
along anℳ-morphism 𝑚 and the backfaces are pullbacks then the top square
is a pushout if and only if both front faces are pullbacks.

A category 𝒞 is adhesive if it has all pullbacks, and pushouts along monomor-
phisms exist and are van Kampen squares.

Pushouts along ℳ-morphisms are partial van Kampen squares if for any
commutative cube as depicted in Fig. 7 where the bottom square is a pushout
along an ℳ-morphism 𝑚, the backfaces are pullbacks, and 𝑏 and 𝑐 are ℳ-
morphisms, then the top square is a pushout if and only if both front faces are
pullbacks and 𝑑 is anℳ-morphism.

6 J. Kosiol et al.

𝐴 𝐵

𝐶 𝐷

𝑓

𝑚

𝑛

𝑔

Fig. 6. A pushout square

𝐴′

𝐶′ 𝐵′

𝐷′

𝐴

𝐶 𝐵

𝐷

𝑓 ′
𝑚′

𝑎

𝑛′

𝑐 𝑓 𝑚

𝑛 𝑔

𝑔′

𝑏

𝑑

Fig. 7. Commutative cube over pushout square

Remark 2. Every adhesive category is adhesive HLR for ℳ being the class of
all monomorphisms [5]. Moreover, pushouts along monomorphisms are partial
van Kampen squares in adhesive categories [15].

Important examples of adhesive categories include the categories of sets, of
(typed) graphs, and of (typed) triple graphs [20,5]. Examples of categories that
are not adhesive but adhesive HLR (for an appropriate choice of ℳ) include
typed attributed [5] and symbolic attributed graphs [25]. Adhesive HLR cate-
gories are a suitable formal framework for rule-based rewriting as defined in the
double pushout approach: Rules are a declarative way to define transformations
of objects. They consist of a left-hand side (LHS) 𝐿, a right-hand side (RHS) 𝑅,
and a common subobject 𝐾, the interface of the rule. In case of (typed) graphs,
application of a rule 𝑝 to a graph 𝐺 amounts to choosing an image of the rule’s
LHS 𝐿 in 𝐺, deleting the image of 𝐿∖𝐾 and adding a copy of 𝑅∖𝐾. This proce-
dure can be formalized by two pushouts. Rules and their application semantics
are defined as follows.

Definition 3 (Rules and transformations). Given an adhesive HLR cat-
egory C, a rule 𝑝 consists of three objects 𝐿, 𝐾, and 𝑅, called left-hand side,
interface, and right-hand side, and two monomorphisms 𝑙 : 𝐾 →˓ 𝐿, 𝑟 : 𝐾 →˓ 𝑅.
Given a rule 𝑝, an object 𝐺, and a monomorphism
𝑚 : 𝐿 →˓ 𝐺, called match, a (direct) transformation
𝐺⇒𝑝,𝑚 𝐻 from 𝐺 to 𝐻 via 𝑝 at match 𝑚 is given
by the diagram to the right where both squares are
pushouts.

𝐿 𝐾 𝑅

𝐺 𝐷 𝐻

𝑙 𝑟

𝑚 𝑛

4 Adhesive Subcategories of Functor Categories

We are interested in investigating subcategories of functor categories [𝒳 , 𝒞] over
an adhesive HLR category 𝒞 with a set of monomorphisms ℳ. In particular,
these subcategories arise by restricting to those functors that map all morphisms
from a designated set 𝑆 of morphisms from 𝒳 to ℳ-morphisms in 𝒞. As the
next example shows, the induced full subcategory fails to be adhesive already

Adhesive Subcategories 7

for basic examples. The reason for this is that—in the category of morphisms—
the (componentwise computed) pushout of monomorphisms does not need to
result in a monomorphism again, even if additionally the morphisms between
the monomorphisms are monomorphisms as well. The counterexample below
has already been presented in [23].

Example 4. Let 𝒞 be the adhesive category Set and 𝒳 the category → .
Consider the full subcategory of the functor category [→ , Set] induced by
those functors that map the only non-identity morphism to an injective func-
tion in Set. This is just the category with injec-

∅
[1] [1]

[2]

[1]

[1] [1]

[1]

id[1]

id[1] id[1]

id[1] id[1]

id[1]

tive functions as objects and commuting squares
as morphisms. Let [𝑛] denote the set with 𝑛 ele-
ments and consider the commuting cube depicted
to the right: The two squares in the back are a
span of monomorphisms in that category. Com-
puting the top and the bottom square as pushouts,
i.e., computing the pushout of the two squares in
the back in the category [→ , Set], results in a
function that is not injective. It is not difficult to
check that the category with injective functions as
objects and commuting squares as morphisms does not have pushouts, even not
along monomorphisms: There is no way to replace the vertical morphism in the
front by an injective function and obtain a cube that is a pushout of the two
squares in the back.

To resolve this problem, we introduce our categories of interest not as full
subcategories of functor categories but restrict the class of allowed morphisms
between them.

Definition 5 (𝑆-functor. 𝑆-cartesian natural transformation). Given a
small category 𝒳 , a subset 𝑆 of the morphisms of 𝒳 , and an arbitrary category 𝒞
with designated class of monomorphismsℳ, an 𝑆-functor is a functor 𝐹 : 𝒳 →
𝒞 such that for every morphism 𝑚 ∈ 𝑆 the morphism 𝐹𝑚 is anℳ-morphism.

A natural transformation 𝜎 : 𝐹 → 𝐺 between two 𝑆-functors is 𝑆-cartesian if
for every morphism 𝑆 ∋ 𝑚 : 𝑥→ 𝑦 the corresponding naturality square 𝜎𝑦∘𝐹𝑚 =
𝐺𝑚 ∘ 𝜎𝑥 is a pullback square.

Example 6. The partial triple graph that is depicted in Fig. 3 (a) is an 𝑆-functor
from the category ← → ← → to the category of graphs where 𝑆 consists
of the two morphisms to the central object: The left object is mapped to the
source graph depicted to the left in Fig. 3 (a), the right object to the target
graph depicted to the right, and the central object to the correspondence graph
consisting of the four hexagons. The second and the fourth object are mapped
to the respective domains of the correspondence morphisms to source and target
graph. While the domain of the correspondence morphism to the target graph
is the whole correspondence graph, the domain of the correspondence morphism
to the source graph just consists of three of the hexagons. The outer morphisms

8 J. Kosiol et al.

of ← → ← → are mapped to the correspondence morphisms while the
central morphisms are mapped to the inclusion of the domains of the correspon-
dence morphisms into the correspondence graph, which are both injective.

Since the composition of two pullbacks is a pullback and the identity natu-
ral transformation is trivially 𝑆-cartesian, 𝑆-functors with 𝑆-cartesian natural
transformations as morphisms form a category (associativity of composition and
neutrality of the composition with the identity natural transformation are just
inherited from the full functor category). We call such categories 𝑆-cartesian
subcategories and denote them by [𝒳𝑆 , 𝒞].

Proposition 7. Given a small category 𝒳 , a subset 𝑆 of the morphisms of
𝒳 and an arbitrary category 𝒞 with designated class of monomorphisms ℳ, 𝑆-
functors with 𝑆-cartesian natural transformations as morphisms form a generally
non-full subcategory of the functor category [𝒳 , 𝒞]. In particular, there is an
inclusion functor 𝐼 : [𝒳𝑆 , 𝒞] →˓ [𝒳 , 𝒞].

Section 5 is devoted to develop the category of partial triple graphs as an
instantiation of this very general framework. In particular, it presents concrete
examples illustrating the abstract notions. In this section, we prove that if a cate-
gory 𝒞 is adhesive HLR, categories [𝒳𝑆 , 𝒞] are adhesive HLR again (Theorem 11),
assuming pushouts alongℳ-morphisms to be partial van Kampen squares. We
first collect results that contribute to the proof of our main theorem. They are
of independent interest as they determine that pushouts and pullbacks along
ℳ-morphisms are computed componentwise in categories of 𝑆-functors. Recall
that a functor 𝐹 : 𝒞 → 𝒟 is said to create (co-)limits of a certain type 𝒥 if for
every diagram 𝐷 : 𝒥 → 𝒞 and every (co-)limit for 𝐹 ∘ 𝐷 in 𝒟 there exists a
unique preimage under 𝐹 that is a (co-)limit of 𝐷 in 𝒞 [2].

In the following, let 𝒳 always be a small category and 𝑆 a subset of its mor-
phisms; moreover, 𝒞 is an arbitrary category with designated class of monomor-
phisms ℳ (in particular, if 𝒞 is adhesive HLR, ℳ is understood to be the
corresponding class of monomorphisms).

Proposition 8. Let [𝒳𝑆 , 𝒞] be an 𝑆-cartesian subcategory of [𝒳 , 𝒞]. If pullbacks
alongℳ-morphisms exist, [𝒳 , 𝒞] and [𝒳𝑆 , 𝒞] have pullbacks along natural trans-
formations where every component is anℳ-morphism and the inclusion functor
𝐼 : [𝒳𝑆 , 𝒞] →˓ [𝒳 , 𝒞] creates these.

The next lemma characterizes the monomorphisms of [𝒳𝑆 , 𝒞].

Lemma 9. Let [𝒳𝑆 , 𝒞] be an 𝑆-cartesian subcategory of [𝒳 , 𝒞]. Then every mor-
phism in [𝒳 , 𝒞] or in [𝒳𝑆 , 𝒞] where every component is a monomorphism is a
monomorphism in the respective category. If 𝒞 has pullbacks, then the converse
is true.

The next proposition states that also pushouts alongℳ-morphisms are cal-
culated componentwise in a category [𝒳𝑆 , 𝒞]. In contrast to the case of pullbacks,
the proof requires that 𝒞 is adhesive HLR and that pushouts alongℳ-morphisms
are partial van Kampen squares.

Adhesive Subcategories 9

Proposition 10. Let 𝒞 be an adhesive HLR category such that pushouts along
ℳ-morphisms are partial van Kampen squares. Let [𝒳𝑆 , 𝒞] be an 𝑆-cartesian sub-
category of [𝒳 , 𝒞]. Then [𝒳 , 𝒞] and [𝒳𝑆 , 𝒞] have pushouts along morphisms where
every component is an ℳ-morphism and the inclusion functor 𝐼 : [𝒳𝑆 , 𝒞] →˓
[𝒳 , 𝒞] creates these.

Together, the obtained results guarantee that our construction leads to cat-
egories that are adhesive HLR again:

Theorem 11 (Adhesive HLR). Let 𝒞 be an adhesive HLR category such that
pushouts alongℳ-morphisms are partial van Kampen squares. Let [𝒳𝑆 , 𝒞] be an
𝑆-cartesian subcategory of [𝒳 , 𝒞]. Then [𝒳𝑆 , 𝒞] is adhesive HLR for the classℳ′

of natural transformations where every component is anℳ-morphism.

Proof. By Lemma 9,ℳ′ consists of monomorphisms if 𝒞 is adhesive HLR and
is the class of all monomorphisms if 𝒞 is adhesive. By definition of ℳ′, the
necessary composition and decomposition properties are inherited fromℳ. Since
the inclusion functor from [𝒳𝑆 , 𝒞] to [𝒳 , 𝒞] creates pullbacks and pushouts along
ℳ′-morphisms (Propositions 8 and 10) and [𝒳 , 𝒞] is adhesive HLR with respect
to natural transformations that are ℳ-morphisms in every component, [𝒳𝑆 , 𝒞]
is adhesive HLR as well. ⊓⊔

The next proposition states that—whenever the involved objects and mor-
phisms belong to [𝒳𝑆 , 𝒞]—applying a rule in [𝒳𝑆 , 𝒞] or in [𝒳 , 𝒞] yields the same
result. For simplicity, we suppress the inclusion functor 𝐼 in its formulation.

Proposition 12 (Functoriality of rule application). Let 𝒞 be an adhesive
HLR category such that pushouts along ℳ-morphisms are partial van Kampen
squares. Let [𝒳𝑆 , 𝒞] be an 𝑆-cartesian subcategory of [𝒳 , 𝒞]. Let 𝑝 = (𝐿 𝜆←−˒ 𝐾

𝜌
−˓→

𝑅) be a rule and 𝜇 : 𝐿→ 𝐺 a match such that 𝜆, 𝜌, 𝜇, 𝐿, 𝐾, 𝑅, 𝐺 are morphisms
and objects of [𝒳𝑆 , 𝒞]. Then 𝑝 is applicable to 𝐺 with match 𝜇 in [𝒳𝑆 , 𝒞] if
and only if it is in [𝒳 , 𝒞]. Moreover, the resulting object 𝐻 coincides (up to
isomorphism).

5 The Category of Partial Triple Graphs

In this section, we apply the theory developed in the section above to the category
of (typed) partial triple graphs. Our definition of these rests upon the following
(simple) definition of partial morphisms in arbitrary categories. We refrain from
identifying equivalent partial morphisms as usually done [26].

Definition 13 (Partial morphism). A partial morphism 𝑎 : 𝐴 99K 𝐵 is a
span 𝐴

𝜄𝐴←−˒ 𝐴′ 𝑎−→ 𝐵 where 𝜄𝐴 is a monomorphism; 𝐴′ is called the domain of 𝑎.

In the section above, we address the framework of adhesive HLR categories
since we generally want to be able to support attribution concepts for par-
tial triple graphs. Two influential such concepts, namely attributed graphs and

10 J. Kosiol et al.

symbolic attributed graphs, have been shown to constitute adhesive HLR cate-
gories [5,25]. Moreover, it is not difficult to check that in both cases pushouts
along the respectiveℳ-morphisms are partial van Kampen squares. Hence, they
can be used as base categories 𝒞 when instantiating the framework from above.
But for simplicity, we here just present (typed) partial triple graphs without
attributes.

Definition 14 (Partial triple graph). The category of triple graphs TrG is
the functor category [← → , Graphs]. The category of partial triple graphs
PTrG is the category [← →˓ ←˒ → , Graphs].

Remark 15. By the definitions above, an object 𝐺 = (𝐺𝑆 ← 𝐺𝑆 →˓ 𝐺𝐶 ←˒ 𝐺𝑇 →
𝐺𝑇) of PTrG might equivalently be considered to consist of a graph 𝐺𝐶 with
partial morphisms 𝜎 : 𝐺𝐶 99K 𝐺𝐿 and 𝜏 : 𝐺𝐶 99K 𝐺𝑇 where 𝐺𝑆 and 𝐺𝑇 are the
domains of 𝜎 and 𝜏 , respectively. A morphism 𝑓 : 𝐺→ 𝐻 between partial triple
graphs then is a triple (𝑓𝑆 : 𝐺𝑆 → 𝐻𝑆 , 𝑓𝐶 : 𝐺𝐶 → 𝐻𝐶 , 𝑓𝑇 : 𝐺𝑇 → 𝐻𝑇) of graph
morphisms such that both induced squares of partial morphisms commute. In
our context, such a square with two opposed partial morphisms (as depicted as
square (1) in Fig. 8) commutes if there exists a morphism 𝑓𝑆 : 𝐺𝑆 → 𝐻𝑆 such
that both arising squares (2) and (3) (compare Fig. 9) commute and, moreover,
(2) is a pullback square. If 𝑓𝑆 exists, it is necessarily unique since 𝜄𝐻𝑆

is a
monomorphism. This is stricter than, e.g., the weak commutativity used in [24]
that does not require the square (2) to be a pullback square.

𝐺𝐶 𝐺𝑆

(1)

𝐻𝐶 𝐻𝑆

𝜎𝐺

𝑓𝐶

𝜎𝐻

𝑓𝑆

Fig. 8. Square of partial morphisms

𝐺𝐶 𝐺𝑆 𝐺𝑆

(2) (3)

𝐻𝐶 𝐻𝑆 𝐻𝑆

𝑓𝐶

𝜄𝐻𝑆 𝜎𝐻

𝑓𝑆

𝜄𝐺𝑆
𝜎𝐺

𝑓𝑆

Fig. 9. Commuting square of partial morphisms

The next proposition states that the category of triple graphs is isomorphic
to a full subcategory of the category of partial triple graphs.

Proposition 16. The category TrG of triple graphs is isomorphic to a full
subcategory of the category PTrG of partial triple graphs, i.e., there exists a full
and faithful functor 𝐽 : TrG → PTrG that is injective on objects. Moreover,
rule application is functorial.

In practical applications, the considered triple graphs are generally typed
over a fixed triple graph. The next definition introduces typing of partial triple
graphs over a fixed triple graph. For, e.g., synchronization scenarios as discussed
in [7], it is convenient if the partial triple graphs are still typed over essentially
the same triple graph as the original triple graph was.

Adhesive Subcategories 11

Definition 17 (Typed partial triple graph). The category of triple graphs
typed over a fixed triple graph TG = (TG𝑆 ← TG𝐶 → TG𝑇) is the slice
category TrG/TG, denoted TrGTG. The category of partial triple graphs typed
over a fixed triple graph TG, denoted PTrGTG, has as objects morphisms 𝑡𝐺 :
𝐺 → J (TG) from [← → ← → , Graphs] where 𝐽 is the inclusion
functor and 𝐺 is a partial triple graph. Morphisms are morphisms 𝑔 : 𝐺 → 𝐻
from PTrG such that 𝑡𝐻 ∘ 𝑔 = 𝑡𝐺.

Example 18. Figure 3 (a) was already presented as a partial triple graph in
Example 6. To consider it as still typed over the same type graph (not depicted)
as the original triple graph from Fig. 2, one just restricts its typing morphism
accordingly. Note that the resulting typing morphism is not 𝑆-cartesian but a
morphism in [← → ← → , Graphs]. We therefore did not define typing
of partial triple graphs just as slice category as well. We exemplify rules and
morphisms in PTrGTG using Delta-Rule depicted in Fig. 4: Its LHS consists
of the elements depicted in black or in red (not annotated or annotated with
(−−)) while its interface only consists of the black elements. First, the mapping
of the interface into the LHS is injective in every component. Moreover, all three
correspondence nodes in the LHS of the rule are in the domain of the according
correspondence morphism to the source side and the two correspondence nodes
that are already part of the interface of the rule are in the domain of the according
correspondence morphism as well. This means, the induced square of morphisms
is a pullback square. The same holds for the target side. Hence, the morphism
from the interface of Delta-Rule to its LHS is a morphism in PTrGTG.

In contrast, the morphism from the interface to the LHS of Delta-Source-
Rule as depicted in Fig. 5 is not a morphism in PTrGTG: The according square
𝐾𝑆 → 𝐾𝐶 → 𝐿𝐶 ← 𝐿𝑆 ← 𝐾𝑆 is not a pullback square since the domain of the
correspondence morphism to the source side in the interface graph only contains
two elements and not three. Theorem 23 explains why this is not a hindrance
to our desired application.

Proposition 19. Typed partial triple graphs form an adhesive category. More-
over, the category TrGTG of triple graphs typed over TG is isomorphic to a full
subcategory of the category PTrGTG of partial triple graphs typed over TG and
rule application is functorial.

We formulate the following results for the category PTrG; they hold for cate-
gories PTrGTG as well. The restriction to morphisms where certain squares are
required to form pullback squares comes with some limitations. Namely, it is not
possible to delete a reference (i.e., an element from the domain of a correspon-
dence morphism) without deleting the referencing element (i.e., the according
element in the correspondence graph), nor is it possible to create a reference
from an already existing correspondence element. And for every matched corre-
spondence element, a morphism also needs to match the according preimages in
the domains of the two correspondence morphisms (if they exist) to become a
valid match.

12 J. Kosiol et al.

Proposition 20 (Characterizing valid rules and matches). Let a rule
𝑝 = (𝐿 𝑙←−˒ 𝐾

𝑟−˓→ 𝑅) and a morphism 𝑚 : 𝐿 → 𝐺 in [← → ← →
, Graphs] be given where 𝐿, 𝐾, 𝑅, and 𝐺 are already objects from PTrG (i.e.,

𝐿 = (𝐿𝑆
𝜎𝐿←−− 𝐿𝑆

𝜄𝐿𝑆−˓−→ 𝐿𝐶

𝜄𝐿𝑇←−−˒ 𝐿𝑇
𝜏𝐿−→ 𝐿𝑇) and similar for 𝐾, 𝑅, 𝐺). Then 𝑝 is

a rule with match already in PTrG if and only if (compare Fig. 10 for notation)

1. ∀𝑥 ∈ 𝐿𝐶 .((𝑥 ∈ 𝜄𝐿𝑆
(𝐿𝑆)∧ 𝑥 ∈ 𝑙𝐶(𝐾𝐶))⇒ 𝑥 ∈ 𝑙𝐶(𝜄𝐾𝑆

(𝐾𝑆))) and analogously
∀𝑥 ∈ 𝐿𝐶 .((𝑥 ∈ 𝜄𝐿𝑇

(𝐿𝑇) ∧ 𝑥 ∈ 𝑙𝐶(𝐾𝐶))⇒ 𝑥 ∈ 𝑙𝐶(𝜄𝐾𝑇
(𝐾𝑇))),

2. ∀𝑥 ∈ 𝑅𝐶 .((𝑥 ∈ 𝜄𝑅𝑆
(𝑅𝑆)∧𝑥 ∈ 𝑟𝐶(𝐾𝐶))⇒ 𝑥 ∈ 𝑟𝐶(𝜄𝐾𝑆

(𝐾𝑆))) and analogously
∀𝑥 ∈ 𝑅𝐶 .((𝑥 ∈ 𝜄𝑅𝑇

(𝑅𝑇) ∧ 𝑥 ∈ 𝑟𝐶(𝐾𝐶))⇒ 𝑥 ∈ 𝑟𝐶(𝜄𝐾𝑇
(𝐾𝑇))), and

3. ∀𝑥 ∈ 𝐺𝐶 .((∃𝑦1 ∈ 𝐺𝑆 .𝑥 = 𝜄𝐺𝑆
(𝑦1) ∧ ∃𝑦2 ∈ 𝐿𝐶 .𝑥 = 𝑚𝐶(𝑦2)) ⇒ ∃𝑧 ∈

𝐿𝑆 .(𝑚𝑆(𝑧) = 𝑦1 ∧ 𝜄𝐿𝑆
(𝑧) = 𝑦2)) and analogously ∀𝑥 ∈ 𝐺𝐶 .((∃𝑦1 ∈ 𝐺𝑇 .𝑥 =

𝜄𝐺𝑇
(𝑦1) ∧ ∃𝑦2 ∈ 𝐿𝐶 .𝑥 = 𝑚𝐶(𝑦2))⇒ ∃𝑧 ∈ 𝐿𝑇 .(𝑚𝑇 (𝑧) = 𝑦1 ∧ 𝜄𝐿𝑇

(𝑧) = 𝑦2)).

𝑅𝑆 𝑅𝑆 𝑅𝐶 𝑅𝑇 𝑅𝑇

𝐾𝑆 𝐾𝑆 𝐾𝐶 𝐾𝑇 𝐾𝑇

𝐿𝑆 𝐿𝑆 𝐿𝐶 𝐿𝑇 𝐿𝑇

𝐺𝑆 𝐺𝑆 𝐺𝐶 𝐺𝑇 𝐺𝑇

(4) (5)

(6) (7)

(8) (9)
𝜎𝑅 𝜄𝑅𝑆

𝜄𝑅𝑇
𝜏𝑅

𝜎𝐾
𝜄𝐾𝑆

𝜄𝐾𝑇 𝜏𝐾

𝜎𝐿
𝜄𝐿𝑆

𝜄𝐿𝑇 𝜏𝐿

𝜎𝐺
𝜄𝐺𝑆

𝜄𝐺𝑇 𝜏𝐺

𝑙𝑆

𝑟𝑆 𝑟𝑆

𝑙𝑆

𝑟𝐶

𝑙𝐶

𝑟𝑇

𝑙𝑇

𝑟𝑇

𝑙𝑇

𝑚𝑆 𝑚𝑆 𝑚𝐶 𝑚𝑇 𝑚𝑇

Fig. 10. Rule with match in PTrG

We now elementary characterize matches at which a rule in PTrG is appli-
cable in the spirit of the gluing condition for graphs [5, Def. 3.9].

Proposition 21. Let a rule 𝑝 = (𝐿 𝑙←−˒ 𝐾
𝑟−˓→ 𝑅) and a match 𝑚 : 𝐿 → 𝐺 in

PTrG with 𝐿 = (𝐿𝑆
𝜎𝐿←−− 𝐿𝑆

𝜄𝐿𝑆−˓−→ 𝐿𝐶

𝜄𝐿𝑇←−−˒ 𝐿𝑇
𝜏𝐿−→ 𝐿𝑇), 𝑙 = (𝑙𝑆 , 𝑙𝑆 , 𝑙𝐶 , 𝑙𝑇 , 𝑙𝑇),

and 𝑚 = (𝑚𝑆 , 𝑚𝑆 , 𝑚𝐶 , 𝑚𝑇 , 𝑚𝑇) be given. Then 𝑝 is applicable at match 𝑚 if
and only if

1. 𝑚𝑆 , 𝑚𝐶 , and 𝑚𝑇 satisfy the gluing condition, i.e., none of these morphisms
identifies an element that is to be deleted with another element and none
of these morphisms determines a node to be deleted that has adjacent edges
which are not to be deleted as well [5, Def. 3.9] and

2. for every referenced element in the source and the target graphs that is deleted
the reference is deleted as well, i.e., for every element 𝑥 ∈ 𝐺𝑆 that has a
preimage in 𝐿𝑆 under 𝑚𝑆, no preimage under 𝑚𝑆 ∘ 𝑙𝑆 in 𝐾𝑆 but a preimage
in 𝐺𝑆 under 𝜎𝐺, there is an element 𝑦 ∈ 𝐿𝑆 such that 𝑚𝑆(𝜎𝐿(𝑦)) = 𝑥 =

Adhesive Subcategories 13

𝜎𝐺(𝑚𝑆(𝑦)). Analogously, for every element 𝑥 ∈ 𝐺𝑇 that has a preimage in
𝐿𝑇 under 𝑚𝑇 , no preimage under 𝑚𝑇 ∘𝑙𝑇 in 𝐾𝑇 but a preimage in 𝐺𝑇 under
𝜏𝐺, there is an element 𝑦 ∈ 𝐿𝑇 such that 𝑚𝑇 (𝜏𝐿(𝑦)) = 𝑥 = 𝜏𝐺(𝑚𝑇 (𝑦)).

Starting point for many practical applications of TGGs is the so-called oper-
ationalization of a rule which is a split of it into a source and a forward rule (or
equivalently: a target and a backward rule). The source rule only performs the
action of the original rule on the source part and the forward rule transfers this
to the correspondence and the target part. A basic result states that applying
a rule to a triple graph is equivalent to applying the source rule followed by an
application of the forward rule. In the rest of this section, we present a com-
parable definition and result for partial triple graphs. However, we generalize
the operationalization of rules in two directions: Our rules are rules on partial
triple graphs instead of triple graphs and, moreover, they are allowed to be delet-
ing, whereas classically the rules of a TGG are monotonic [27]. To be able to
do this, we need to deviate slightly from the original construction. Our source
rules perform the action of the original rule on the source side. Moreover, the
deletion-action on the domain of the correspondence morphism to the source part
is performed. All other actions are performed by the forward rule. In general,
the resulting source and forward rules are not rules in PTrG any longer but in
[← → ← → , Graphs]. However, the following theorem shows that the
application of a rule in PTrG is equivalent to applying first the source and after-
wards the forward rule (at a suitable match) in [← → ← → , Graphs].

Definition 22 (Source and forward rule). Let a rule 𝑝 = (𝐿 𝑙←−˒ 𝐾
𝑟−˓→ 𝑅)

in PTrG be given. Then its source rule 𝑝𝑆 = (𝐿𝑆 𝑙𝑆

←−˒ 𝐾𝑆 𝑟𝑆

−˓→ 𝑅𝑆) is defined
as depicted in Fig. 11 where ∅ denotes the empty graph. Its forward rule 𝑝𝐹 =
(𝐿𝐹 𝑙𝐹

←−˒ 𝐾𝐹 𝑟𝐹

−˓→ 𝑅𝐹) is defined as depicted in Fig. 12.

𝐿𝑆 = (𝐿𝑆 𝐿𝑆 𝐿𝐶 ∅ ∅)

𝐾𝑆 = (𝐾𝑆 𝐾𝑆 𝐿𝐶 ∅ ∅)

𝑅𝑆 = (𝑅𝑆 𝐾𝑆 𝐿𝐶 ∅ ∅)

𝑙𝑆

𝑟𝑆

Fig. 11. Source rule 𝑝𝑆 of a rule 𝑝

𝐿𝐹 = (𝑅𝑆 𝐾𝑆 𝐿𝐶 𝐿𝑇 𝐿𝑇)

𝐾𝐹 = (𝑅𝑆 𝐾𝑆 𝐾𝐶 𝐾𝑇 𝐾𝑇)

𝑅𝐹 = (𝑅𝑆 𝑅𝑆 𝑅𝐶 𝑅𝑇 𝑅𝑇)

𝑙𝐹

𝑟𝐹

Fig. 12. Forward rule 𝑝𝐹 of a rule 𝑝

Theorem 23. Let a rule 𝑝 = (𝐿 𝑙←−˒ 𝐾
𝑟−˓→ 𝑅) in PTrG with source and forward

rules 𝑝𝑆 = (𝐿𝑆 𝑙𝑆

←−˒ 𝐾𝑆 𝑟𝑆

−˓→ 𝑅𝑆) and 𝑝𝐹 = (𝐿𝐹 𝑙𝐹

←−˒ 𝐾𝐹 𝑟𝐹

−˓→ 𝑅𝐹) be given.

1. Given a direct transformation 𝐺 ⇒𝑝,𝑚 𝐻 in PTrG, there is a transforma-
tion sequence 𝐺⇒𝑝𝑆 ,𝑚 𝐺′ ⇒𝑝𝐹 ,𝑛 𝐻 in [← → ← → , Graphs].

14 J. Kosiol et al.

2. Given transformation steps 𝐺 ⇒𝑝𝑆 ,𝑚 𝐺′ ⇒𝑝𝐹 ,𝑛 𝐻 in [← → ← →
, Graphs] where 𝑛 coincides with the comatch of the first transformation
step on source and correspondence graph and 𝐺 and 𝑚 are already elements
of PTrG, there is a direct transformation 𝐺⇒𝑝,𝑚 𝐻 in PTrG.

Example 24. Delta-Rule as depicted in Fig. 4 is split by our construction into
Delta-Source-Rule and Delta-Forward-Rule as depicted in Fig. 5. Applying Delta-
Rule to the triple graph from Fig. 2 such that nodes p and f are deleted gives
the same result as first applying Delta-Source-Rule at the according match,
which gives the partial triple graph from Fig. 3 (a) as intermediate result, and
Delta-Forward-Rule subsequently (with consistent match). Namely, both yield
the triple graph from Fig. 3 (c).

6 Related Works

In [7] we have already used partial triple graphs to develop an optimized synchro-
nization process for correlated models where the correspondence relationship has
been formalized using TGGs. However, we only defined rule application for spe-
cial cases, only obtained a very restricted version of Theorem 23, and generally
left the thorough investigation of that category to future work.

The work that is most closely related to ours with regard to the formal
content is the introduction of a new concept of attribution by Kastenberg and
Rensink in [17]. They use subgraphs for attribution and prove that the category
of reflected monos ([→˓ , 𝒞] in our notation) is adhesive if 𝒞 is. Since proving
this for an arbitrary 𝑆-cartesian subcategory [𝒳𝑆 , 𝒞] reduces to inspection of a
single naturality square at a morphism 𝑚 ∈ 𝑆, our proofs are similar in places.
However, they do not consider the case of 𝒞 being adhesive HLR and do not
relate to the full functor category [→ , 𝒞].

Golas et al. provide a formalization of TGGs in [11] which allows to gener-
alize correspondence relations between source and target graphs as well. They
use special typings for the source, target, and correspondence parts of a triple
graph and introduce edges between correspondence and source and target nodes
instead of using graph morphisms. Hence, they allow for even more flexible cor-
respondence relations and for more flexible deletion and creation of references
than possible in our approach. In contrast, we allow for references also between
edges and are more in line with the standard formalization of TGGs.

Double pushout rewriting of graph transformation rules by so-called 2-rules
has been extensively studied by Machado et al. in [23]. They, too, identify the
problem that applying a 2-rule to a rule does not need to result in a rule again
since the resulting morphisms are not necessarily injective. Instead of restricting
the allowed morphisms, they equip their 2-rules by suitable application condi-
tions. However, their approach is specific to rewriting of graph transformation
rules and not directly generalizable to a purely categorical setting. It is not dif-
ficult to see that, instantiated for typed graphs, their framework is more general
than ours: None of the involved morphisms needs to form a pullback square for a

Adhesive Subcategories 15

2-rule to be applicable and result in a rule again. This evokes the research ques-
tion whether it is possible to increase the classes of morphisms in the categories
we presented and still obtain categories that are adhesive HLR.

In contrast to TGGs, where correspondence between elements is defined by
total morphisms, partial morphisms have already been used to formalize the
correspondence of elements in situations where more than two meta-models are
involved [19,29]. As mentioned in Sect. 1, this can also be seen as an instantiation
of our general framework. In our practical application to partial triple graphs, we
are interested in allowing for partial correspondence morphisms to obtain a more
incremental synchronization process. Overall correspondence is still defined via
total morphisms.

Partial morphisms have long been a research topic in the area of graph trans-
formation, in particular in connection with the single pushout approach to graph
transformation as, e.g., in [18,22,4]. Moreover, there has been research computing
limits in categories of partial morphisms [28] or relating properties of pushouts
in a category to properties of a pushout in the according category of partial mor-
phisms [15,14]. In this line of research, one enlarges the class of morphisms of
a given category by considering also partial morphisms, whereas our framework
allows to consider partial morphisms as objects but pushouts and pullbacks are
still computed along total morphisms (componentwise).

In [6], Ehrig et al. also consider certain functors as objects of a new category
to model distributed objects. They prove (co-)completeness in case the base
category is. However, their functors allow for change in the category (or graph)
from which the functor starts and the considered morphisms are accordingly
quite different from ours.

7 Conclusion

In this paper, we present a new way to construct a category that is adhesive HLR
out of a given one, namely as a certain subcategory of a functor category. This
construction unifies several categories for which rewriting has been discussed
separately so far. As a new application case, we present a category of partial
triple graphs. This inspection (as well as comparison to another approach to
rewriting rules) shows that, while still interesting in practice, the restriction to a
certain kind of morphisms comes with a price. Searching for a (categorical) way
to relax this restriction is interesting future work. Moreover, we plan to apply
our formal framework to other instances, e.g., to rewriting of constraints.

Acknowledgments We would like to thank the anonymous reviewers for their
valuable feedback. This work was partially funded by the German Research
Foundation (DFG), project “Triple Graph Grammars (TGG) 2.0”.

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Introduction
to bidirectional transformations. In: Gibbons, J., Stevens, P. (eds.) Bidirectional

16 J. Kosiol et al.

Transformations – International Summer School. Lecture Notes in Computer Sci-
ence, vol. 9715, pp. 1–28. Springer (2018)

2. Awodey, S.: Category Theory, Oxford Logic Guides, vol. 52. Oxford University
Press, Inc., New York, NY, USA, 2nd edn. (2010)

3. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: A cross-discipline perspective. In: Paige, R.F. (ed.) The-
ory and Practice of Model Transformations. pp. 260–283. Springer, Berlin (2009)

4. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini,
A.: Algebraic Approaches to Graph Transformation – Part II: Single Pushout Ap-
proach and Comparison with Double Pushout Approach. In: Rozenberg, G. (ed.)
Handbook of Graph Grammars and Computing by Graph Transformation, chap. 4,
pp. 247–312. World Scientific, Singapore (1997)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

6. Ehrig, H., Orejas, F., Prange, U.: Categorical foundations of distributed graph
transformation. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) Graph Transformations. pp. 215–229. Springer, Berlin (2006)

7. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Efficient Model Synchronization
by Automatically Constructed Repair Processes. In: van der Aalst, W., Hähnle, R.
(eds.) Proceedings of FASE ’19. pp. 1–18. No. 11424 in LNCS (2019)

8. Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-Cut Rules. Sequential
Composition of Rules Avoiding Unnecessary Deletions. In: Mazzara, M., Ober,
I., Salaün, G. (eds.) Software Technologies: Applications and Foundations. pp.
415–430. Springer International Publishing, Cham (2018)

9. Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models.
Tech. Rep. 28, Hasso-Plattner-Institut (2009)

10. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software & Systems Modeling 8(1), 21–43 (Feb 2009)

11. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars. In: Ehrig, H.,
Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Graph Transformations. pp. 141–
155. Springer, Berlin (2012)

12. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) Modelling Foundations and Applications. pp. 144–159. Springer,
Berlin (2011)

13. Habel, A., Pennemann, K.H.: Correctness of High-Level Transformation Systems
Relative to Nested Conditions. Mathematical Structures in Computer Science 19,
245–296 (2009)

14. Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese, H., König,
B. (eds.) Graph Transformation. pp. 177–191. Springer International Publishing,
Cham (2014)

15. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) Graph Transformations. pp. 250–265. Springer, Berlin
(2010)

16. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Software & Systems Modeling 14(1), 241–269 (Feb
2015)

Adhesive Subcategories 17

17. Kastenberg, H., Rensink, A.: Graph Attribution Through Sub-Graphs. In: Heckel,
R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets: In Memory
of Hartmut Ehrig, pp. 245–265. Springer International Publishing, Cham (2018)

18. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In: Ehrig,
H., Kreowski, H.J., Rozenberg, G. (eds.) Graph Grammars and Their Application
to Computer Science. pp. 490–504. Springer, Berlin (1991)

19. König, H., Diskin, Z.: Efficient consistency checking of interrelated models. In:
Anjorin, A., Espinoza, H. (eds.) Modelling Foundations and Applications. pp. 161–
178. Springer International Publishing, Cham (2017)

20. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Infor-
matics and Applications 39(3), 511–545 (2005)

21. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.J.,
Rozenberg, G. (eds.) Graph Transformations. pp. 401–415. Springer, Berlin (2012)

22. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(1), 181–224 (1993)

23. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: Towards higher-order graph grammars. Theoretical Computer Science 594,
1–23 (2015)

24. Montanari, U., Ribeiro, L.: Linear Ordered Graph Grammars and Their Algebraic
Foundations. In: Corradini, A., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds.)
Graph Transformation. pp. 317–333. Springer, Berlin (2002)

25. Orejas, F., Lambers, L.: Symbolic Attributed Graphs for Attributed Graph Trans-
formation. Electronic Communications of the EASST 30(International Colloquium
on Graph and Model Transformation (GraMoT) 2010) (2010)

26. Robinson, E., Rosolini, G.: Categories of partial maps. Information and Compu-
tation 79(2), 95–130 (1988)

27. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 903, pp. 151–163. Springer (1995)

28. Shir Ali Nasab, A.R., Hosseini, S.N.: Pullback in partial morphism categories.
Applied Categorical Structures 25(2), 197–225 (2017)

29. Stünkel, P., König, H., Lamo, Y., Rutle, A.: Multimodel correspondence through
inter-model constraints. In: Conference Companion of the 2nd International Con-
ference on Art, Science, and Engineering of Programming. pp. 9–17. ACM, New
York (2018)

18 J. Kosiol et al.

A Proofs and Additional Preliminaries

A.1 Additional Preliminaries

Amongst others, adhesive and adhesive HLR categories have the following prop-
erties. We restrict to those that we will use in our proofs.

Fact 25 (Properties of adhesive HLR categories). If C is an adhesive
(HLR) category, the following properties hold [20,5]:

1. Monomorphisms (ℳ-morphisms) are stable under pushout and pushouts
along monomorphisms (ℳ-morphisms) are pullbacks.

2. If 𝑚 in Fig. 6 is a monomorphism (ℳ-morphism), pushout complements for
𝑔 ∘𝑚 are unique (up to isomorphism).

3. If 𝒞 is adhesive, it is balanced, i.e., each morphism that is a mono- and an
epimorphism is already an isomorphism. Analogously, if 𝒞 is adhesive HLR,
each morphism that is anℳ- and an epimorphism is an isomorphism.

4. If 𝒞 is adhesive, every functor category [𝒳 , 𝒞] where 𝒳 is small and ev-
ery slice or co-slice category 𝒞/𝐶 or 𝐶/𝒞 for an object 𝐶 of 𝒞 is adhesive.
Analogously, if 𝒞 is adhesive HLR, every functor category [𝒳 , 𝒞] where 𝒳
is small and every slice or co-slice category 𝒞/𝐶 or 𝐶/𝒞 for an object 𝐶 of
𝒞 is adhesive HLR. Here, the new class of ℳ-morphisms is given by nat-
ural transformations that consist of ℳ-morphisms componentwise, or the
restriction ofℳ to the morphisms in 𝒞/𝐶 or 𝐶/𝒞, respectively.

In [20], the balancedness is proven for adhesive categories but the same proof
works for adhesive HLR categories.

A.2 Proofs

Proof (of Proposition 7). Let 𝐹 be an arbitrary 𝑆-functor from 𝒳 to 𝒞. The
identity natural transformation is a morphism in [𝒳𝑆 , 𝒞] since for every 𝑆 ∋ 𝑚 :
𝑥→ 𝑦, the square depicted in Fig. 13 is a pullback square.

Given two 𝑆-cartesian natural transformations 𝜎 : 𝐹 → 𝐺 and 𝜏 : 𝐺 →
𝐻, the composition 𝜏 ∘ 𝜎 is 𝑆-cartesian since for every 𝑆 ∋ 𝑚 : 𝑥 → 𝑦, the
composition of the two pullbacks (1𝑎) and (1𝑏) depicted in Fig. 14 is a pullback.

𝐹 𝑥 𝐹 𝑥

𝐹 𝑦 𝐹 𝑦

𝑖𝑑𝐹 𝑥

𝐹 𝑚 𝐹 𝑚

𝑖𝑑𝐹 𝑦

Fig. 13. Identity morphism in [𝒳𝑆 , 𝒞]

𝐹 𝑥 𝐺𝑥 𝐻𝑥

(1𝑎) (1𝑏)

𝐹 𝑦 𝐺𝑦 𝐻𝑦

𝐺𝑚

𝜎𝑦

𝐹 𝑚

𝜎𝑥 𝜏𝑥

𝜏𝑦

𝐻𝑚

Fig. 14. Composition of morphisms in [𝒳𝑆 , 𝒞]

Adhesive Subcategories 19

Moreover, mapping every 𝑆-functor from [𝒳𝑆 , 𝒞] to itself as object in [𝒳 , 𝒞]
and every 𝑆-cartesian natural transformation from [𝒳𝑆 , 𝒞] to itself as morphism
in [𝒳 , 𝒞] gives a faithful functor that is also injective on objects. ⊓⊔

Proof (of Proposition 8). If a (co)limit of a certain type exists in the category 𝒞, a
functor category [𝒳 , 𝒞] has (co)limits of this type as well and they are computed
componentwise [2]. Hence, if 𝒞 has pullbacks along ℳ-morphisms, [𝒳 , 𝒞] has
pullbacks along morphisms where every component is anℳ-morphism and they
are computed componentwise. It remains to show, that the inclusion functor 𝐼
creates these.

Let two 𝑆-cartesian natural transformations 𝜎 : 𝐵 → 𝐷 and 𝜏 : 𝐶 → 𝐷
between 𝑆-functors 𝐵, 𝐶, 𝐷 be given and let every component of 𝜏 be an ℳ-
morphism. Since 𝐼 is an inclusion, we have to show that the componentwise
computed pullback 𝐴 in [𝒳 , 𝒞] with natural transformations 𝜂 : 𝐴 → 𝐵 and
𝜇 : 𝐴→ 𝐶 is a pullback in [𝒳𝑆 , 𝒞] as well. This means, we have to show (i) that
𝐴 is an 𝑆-functor and that 𝜂 and 𝜇 are 𝑆-cartesian and (ii) that given another 𝑆-
functor 𝑄 with 𝑆-cartesian natural transformations 𝜈1 : 𝑄→ 𝐵 and 𝜈2 : 𝑄→ 𝐶
such that 𝜎∘𝜈1 = 𝜏 ∘𝜈2 the unique mediating natural transformation 𝜖 : 𝑄→ 𝐴,
guaranteed to exist in [𝒳 , 𝒞], is 𝑆-cartesian as well (i.e., is a morphism in [𝒳𝑆 , 𝒞]).

To show (i), let 𝑆 ∋ 𝑚 : 𝑥 → 𝑦 be an arbitrary morphism. Computing the
pullbacks of the co-spans 𝐵𝑥 → 𝐷𝑥 ← 𝐶𝑥 and 𝐵𝑦 → 𝐷𝑦 ← 𝐶𝑦 leads to the
left cube depicted in Fig. 15. These pullbacks exist in 𝒞 by assumption. The
morphism 𝐴𝑚 is the unique morphism determined by the universal property of
the pullback square at the bottom of the cube. Since the front faces are pullbacks
(by assumption) and the top and the bottom square are computed as pullbacks,
the faces to the back are pullbacks as well. Moreover, the morphism 𝐴𝑚 is anℳ-
morphism since it arises as pullback of theℳ-morphism 𝐵𝑚 (or, equivalently,
𝐶𝑚). Hence, 𝐴 is an 𝑆-functor and 𝜂 and 𝜇 are 𝑆-cartesian.

𝑄𝑥

𝐵𝑥 𝐴𝑥

𝐷𝑥 𝐶𝑥 𝑄𝑦

𝐵𝑦 𝐴𝑦

𝐷𝑦 𝐶𝑦

𝜖𝑦

𝜈1,𝑦

𝜈2,𝑦

𝜂𝑥

𝐴𝑚

𝜇𝑥

𝐵𝑚

𝜎𝑥

𝑄𝑚

𝜖𝑥

𝜈1,𝑥

𝜈2,𝑥

𝐷𝑚
𝜎𝑦

𝜂𝑦

𝜇𝑦

𝜏𝑦

𝐶𝑚

𝜏𝑥

Fig. 15. Pullback of a cartesian naturality

20 J. Kosiol et al.

(ii) Since the square 𝑄𝑥 → 𝐶𝑥 → 𝐶𝑦 ← 𝑄𝑦 ← 𝑄𝑥 is a pullback by as-
sumption and 𝐴𝑥 → 𝐶𝑥 → 𝐶𝑦 ← 𝐴𝑦 ← 𝐴𝑥 is a pullback as well, pullback
decomposition implies that the square 𝑄𝑥 → 𝐴𝑥 → 𝐴𝑦 ← 𝑄𝑦 ← 𝑄𝑥 is also a
pullback. Hence, 𝜖 is an 𝑆-cartesian natural transformation. ⊓⊔

Proof (of Lemma 9). Every morphism in a functor category [𝒳 , 𝒞] that is a
monomorphism componentwise is a monomorphism and the converse holds if 𝒞
has pullbacks [2]. Since 𝐼 is a faithful functor from [𝒳𝑆 , 𝒞] to [𝒳 , 𝒞] and faithful
functors reflect monomorphisms, a morphism in [𝒳𝑆 , 𝒞] that has only monomor-
phisms as components is a monomorphism. In particular, every morphism in
[𝒳 , 𝒞] or in [𝒳𝑆 , 𝒞] where each component is an ℳ-morphism is a monomor-
phism (independent of the existence of all pullbacks in 𝒞).

Provided pullbacks in 𝒞 and given a monomorphism 𝜇 : 𝐴 → 𝐵 in [𝒳𝑆 , 𝒞],
the span 𝐴

𝑖𝑑𝐴←−− 𝐴
𝑖𝑑𝐴−−→ 𝐴 is a pullback of 𝜇 along itself [2]. By Proposition 8,

this means that for every 𝑥 ∈ 𝒳 the pullback of 𝐴𝑥
𝜇𝑥−−→ 𝐵𝑥

𝜇𝑥←−− 𝐴𝑥 in 𝒞 is given
by 𝐴𝑥

𝑖𝑑𝐴𝑥←−−− 𝐴𝑥
𝑖𝑑𝐴𝑥−−−→ 𝐴𝑥. By the same characterization of monomorphisms as

used above, this implies that every component 𝜇𝑥 is a monomorphism. ⊓⊔

Proof (of Proposition 10). Like in the proof of Proposition 8, because 𝒞 has
pushouts alongℳ-morphisms, [𝒳 , 𝒞] has pushouts along morphisms where ev-
ery component is an ℳ-morphism and they are computed componentwise. It
remains to show, that the inclusion functor 𝐼 creates these.

Let two 𝑆-cartesian natural transformations 𝜎 : 𝐴 → 𝐵 and 𝜏 : 𝐴 → 𝐶
between 𝑆-functors 𝐴, 𝐵, 𝐶 be given and let every component of 𝜏 be an ℳ-
morphism. Since 𝐼 is an inclusion, we have to show that the componentwise
computed pushout 𝐷 in [𝒳 , 𝒞] with natural transformations 𝜂 : 𝐵 → 𝐷 and
𝜇 : 𝐶 → 𝐷 is a pushout in [𝒳𝑆 , 𝒞] as well. This means, we have to show (i) that
𝐷 is an 𝑆-functor and that 𝜂 and 𝜇 are 𝑆-cartesian and (ii) that given another 𝑆-
functor 𝑄 with 𝑆-cartesian natural transformations 𝜈1 : 𝐵 → 𝑄 and 𝜈2 : 𝐶 → 𝑄
such that 𝜈1∘𝜎 = 𝜈2∘𝜏 the unique mediating natural transformation 𝜖 : 𝐷 → 𝑄,
guaranteed to exist in [𝒳 , 𝒞], is 𝑆-cartesian as well (i.e., is a morphism in [𝒳𝑆 , 𝒞]).

To show (i), let 𝑆 ∋ 𝑚 : 𝑥 → 𝑦 be an arbitrary morphism. Computing the
pushouts of the spans 𝐵𝑥 ← 𝐴𝑥 → 𝐶𝑥 and 𝐵𝑦 ← 𝐴𝑦 → 𝐶𝑦 leads to the
left cube depicted in Fig. 16. These pushouts exist, since 𝒞 is adhesive HLR
and 𝜏𝑥, 𝜏𝑦 ∈ ℳ by assumption. The morphism 𝐷𝑚 is the unique morphism
determined by the universal property of the pushout square at the top of the
cube. That the front faces are pullbacks and 𝐷𝑚 is anℳ-morphism is a direct
consequence of the bottom square being a partial van Kampen square. Hence,
𝐷 is an 𝑆-functor and 𝜂 and 𝜇 are 𝑆-cartesian.

(ii) It remains to show that 𝐷𝑥 → 𝑄𝑥 → 𝑄𝑦 ← 𝐷𝑦 ← 𝐷𝑥 is a pullback
square. To see this, first compute the pullback 𝐷𝑥′ of 𝑄𝑥 →˓ 𝑄𝑦 ← 𝐷𝑦 which
exists since 𝑄𝑚 ∈ ℳ. The universal property if this pullback implies the ex-
istence of a morphism 𝐷𝑚′ : 𝐷𝑥 → 𝐷𝑥′ such that 𝐷𝑚 = 𝐷𝑚′′ ∘ 𝐷𝑚′ and
𝜖𝑥 = 𝜖𝑥′ ∘𝐷𝑚′. We show that 𝐷𝑚′ is an isomorphism. For this, by balancedness
of 𝒞, it is enough to show that 𝐷𝑚′ ∈ℳ and that 𝐷𝑚′ is an epimorphism.

Adhesive Subcategories 21

𝑄𝑥

𝐵𝑥 𝐷𝑥

𝐴𝑥 𝐶𝑥

𝐵𝑥′ 𝐷𝑥′

𝐶𝑥′ 𝑄𝑦

𝐵𝑦 𝐷𝑦

𝐴𝑦 𝐶𝑦

𝜖𝑦

𝜈1,𝑦

𝜈2,𝑦

𝜂𝑥

𝐵𝑚′

𝐵𝑚′′

𝜂𝑥′

𝐷𝑚′ 𝐷𝑚

𝐷𝑚′′

𝜖𝑥′
𝜇𝑥

𝐵𝑚

𝜎𝑥

𝑄𝑚

𝜖𝑥

𝜈1,𝑥

𝜈2,𝑥

𝐴𝑚

𝜎𝑦

𝜂𝑦

𝜇𝑦

𝜏𝑦

𝜇𝑥′

𝐶𝑚

𝐶𝑚′

𝐶𝑚′′

𝜏𝑥

Fig. 16. Pushout of a cartesian naturality square

We already stated that 𝐷𝑚 ∈ ℳ and, moreover, 𝐷𝑚′′ ∈ ℳ since it arises
by pullback along the ℳ-morphism 𝑄𝑚. By decomposition of ℳ-morphisms,
𝐷𝑚′ ∈ℳ.

To see that 𝐷𝑚′ is an epimorphism, compute the pullbacks 𝐶𝑥′ of 𝐷𝑥′ →˓
𝐷𝑦 ← 𝐶𝑦 and 𝐵𝑥′ of 𝐷𝑥′ →˓ 𝐷𝑦 ← 𝐵𝑦 (which both exist since 𝐷𝑚′′ ∈ ℳ).
Since 𝐶𝑥→ 𝑄𝑥→ 𝑄𝑦 ← 𝐶𝑦 ← 𝐶𝑥 is a pullback, its universal property implies
the existence of a unique morphism ¯𝐶𝑚′ : 𝐶𝑥′ → 𝐶𝑥 with 𝜈2,𝑥 ∘ ¯𝐶𝑚′ = 𝜖𝑥′ ∘𝜇𝑥′

and 𝐶𝑚 ∘ ¯𝐶𝑚′ = 𝐶𝑚′′. One uses this to first calculate 𝐶𝑚′′ ∘ 𝐶𝑚′ ∘ ¯𝐶𝑚′ =
𝐶𝑚 ∘ ¯𝐶𝑚′ = 𝐶𝑚′′. Moreover,

𝐷𝑚′′ ∘ 𝜇𝑥′ ∘ 𝐶𝑚′ ∘ ¯𝐶𝑚′ = 𝜇𝑦 ∘ 𝐶𝑚′′ ∘ 𝐶𝑚′ ∘ ¯𝐶𝑚′

= 𝜇𝑦 ∘ 𝐶𝑚 ∘ ¯𝐶𝑚′

= 𝜇𝑦 ∘ 𝐶𝑚′′

= 𝐷𝑚′′ ∘ 𝜇𝑥′

Since 𝐷𝑚′′ is a monomorphism, this implies 𝜇𝑥′ ∘𝐶𝑚′ ∘ ¯𝐶𝑚′ = 𝜇𝑥′ . But 𝑖𝑑𝐶𝑥′ is
the unique morphism with these two properties and hence 𝑖𝑑𝐶𝑥′ = ∘𝐶𝑚′ ∘ ¯𝐶𝑚′.
In particular, 𝐶𝑚′ is an epimorphism. Analogously, there exists a morphism

¯𝐵𝑚′ : 𝐵𝑥′ → 𝐵𝑥 that can be used to show that 𝐵𝑚′ is an epimorphism.
Moreover, since the bottom square is a van Kampen square, the morphisms 𝜇𝑥′

and 𝜂𝑥′ are jointly epimorphic (as coprojections of a pushout). Since this is a
composition with epimorphisms, 𝜂𝑥′ ∘𝐵𝑚′ and 𝜇𝑥′ ∘ 𝐶𝑚′ are jointly epimorpic
as well.

22 J. Kosiol et al.

To finally show that 𝐷𝑚′ is an epimorphism, let 𝑓, 𝑔 : 𝐷𝑥′ → 𝑍 be two
morphisms (in 𝒞) with 𝑓 ∘𝐷𝑚′ = 𝑔 ∘𝐷𝑚′. Then

𝑓 ∘ 𝜇𝑥′ ∘ 𝐶𝑚′ = 𝑓 ∘𝐷𝑚′ ∘ 𝜇𝑥

= 𝑔 ∘𝐷𝑚′ ∘ 𝜇𝑥

= 𝑔 ∘ 𝜇𝑥′ ∘ 𝐶𝑚′

and analogously 𝑓 ∘ 𝜂𝑥′ ∘ 𝐵𝑚′ = 𝑔 ∘ 𝜂𝑥′ ∘ 𝐵𝑚′. Hence, 𝑓 = 𝑔 and 𝐷𝑚′ is an
epimorphism. ⊓⊔

Proof (of Proposition 12). That a rule application in [𝒳𝑆 , 𝒞] is a rule application
in [𝒳 , 𝒞] is a corollary to Proposition 10 and Theorem 11.

Let the rule 𝑝 be applicable to 𝐺 at match 𝜇 in [𝒳 , 𝒞]. Let 𝐷 be the pushout
complement computed in the first step of the rule application and 𝜅 : 𝐾 → 𝐷
and 𝜑 : 𝐷 → 𝐺 the resulting morphisms. It suffices to show that 𝜅 and 𝜑
are 𝑆-cartesian and that 𝐷 is an 𝑆-functor. Then, the pushout complement is
a pushout complement in [𝒳𝑆 , 𝒞] as well. That computing the second pushout
of the rule application is the same in [𝒳𝑆 , 𝒞] or in [𝒳 , 𝒞] is, again, stated by
Proposition 10.

𝐾𝑥

𝐿𝑥 𝐷𝑥

𝐺𝑥

𝐾𝑦

𝐿𝑦 𝐷𝑦

𝐺𝑦

𝜆𝑥 𝜅𝑥

𝐾𝑚

𝜇𝑥

𝐿𝑚 𝜆𝑦 𝜅𝑦

𝜇𝑦 𝜑𝑦

𝜑𝑥

𝐷𝑚

𝐺𝑚

Fig. 17. Pushout complement for one
component

𝐾𝑥

𝐿𝑥 𝐷𝑥′

𝐺𝑥

𝐾𝑦

𝐿𝑦 𝐷𝑦

𝐺𝑦

𝜆𝑥
𝜅′

𝑥

𝐾𝑚

𝜇𝑥

𝐿𝑚 𝜆𝑦 𝜅𝑦

𝜇𝑦 𝜑𝑦

𝜑′
𝑥

𝐷𝑚′

𝐺𝑚

Fig. 18. Pullback resulting in pushout
complement

Letℳ∋ 𝑚 : 𝑥→ 𝑦 be arbitrary. Figure 17 depicts the pushout complement
at the components 𝑥 and 𝑦 with morphism 𝐷𝑚 : 𝐷𝑥 → 𝐷𝑦 which exist by
assumption. Since 𝜆 and 𝜇 are 𝑆-cartesian, the two vertical squares to the left
are pullbacks and hence, 𝐾𝑥 → 𝐺𝑥 → 𝐺𝑦 ← 𝐾𝑦 ← 𝐾𝑥 is a pullback. Hence,
if we show that 𝐷𝑥 → 𝐺𝑥 → 𝐺𝑦 ← 𝐷𝑦 ← 𝐷𝑥 is a pullback square, 𝐾𝑥 →
𝐾𝑦 → 𝐷𝑦 ← 𝐷𝑥← 𝐾𝑥 is a pullback square as well by pullback decomposition
and 𝐷𝑚 is an ℳ-morphism since it arises as pullback along the ℳ-morphism
𝐺𝑚. Computing the pullback of the co-span 𝐺𝑥 → 𝐺𝑦 ← 𝐷𝑦 (which exists
in 𝒞 since 𝐺𝑚 is anℳ-morphism) results in an object 𝐷𝑥′ withℳ-morphism
𝐷𝑚′ : 𝐷𝑥′ →˓ 𝐷𝑦. Then, the pullback of 𝜅𝑦 along 𝐷𝑚′ exists and results (up to

Adhesive Subcategories 23

isomorphism) in 𝐾𝑥 again since it completes the pullback of the co-span 𝐺𝑥 →˓
𝐺𝑦 ← 𝐾𝑦. Since the bottom square is a van Kampen square in 𝒞 and all vertical
faces are pullbacks, the top square is a pushout. Since pushout complements are
unique in categories that are adhesive HLR, there is an isomorphism between
𝐷𝑥′ and 𝐷𝑥 that is compatible with 𝜑𝑥 and 𝜑′

𝑥. Hence, the square at the right
front is a pullback. ⊓⊔

Proof (of Proposition 16). Let a triple graph 𝐺 = (𝐺𝑆
𝜎𝐺←−− 𝐺𝐶

𝜏𝐺−−→ 𝐺𝑇) be
given. Define the functor 𝐽 to map 𝐺 to the partial triple graph 𝐺 = (𝐺𝑆

𝜎𝐺←−−

𝐺𝐶

𝑖𝑑𝐺𝐶−˓−−→ 𝐺𝐶

𝑖𝑑𝐺𝐶←−−−˒ 𝐺𝐶
𝜏𝐺−−→ 𝐺𝑇). This is clearly injective on objects and 𝑖𝑑𝐺𝐶

is a monomorphism. The components (𝑓𝑆 , 𝑓𝐶 , 𝑓𝑇) of a morphism between triple
graphs 𝐺 = (𝐺𝑆

𝜎𝐺←−− 𝐺𝐶
𝜏𝐺−−→ 𝐺𝑇) and 𝐻 = (𝐻𝑆

𝜎𝐻←−− 𝐻𝐶
𝜏𝐻−−→ 𝐻𝑇) are mapped

by 𝐽 to the quintuple (𝑓𝑆 , 𝑓𝐶 , 𝑓𝐶 , 𝑓𝐶 , 𝑓𝑇). As depicted in Fig. 19, 𝑓𝐶 makes
squares (2) and (3) (since (𝑓𝐶 , 𝑓𝑇) is a morphism between 𝜏𝐺 and 𝜏𝐻) commute
and (2) into a pullback square; the situation on the source part is analogous.
Moreover, this mapping is injective. And every morphism (𝑓𝑆 , 𝑓𝐶 , 𝑓𝐶 , 𝑓𝐶 , 𝑓𝑇)

between partial triple graphs 𝐺 = (𝐺𝑆
𝜎𝐺←−− 𝐺𝐶

𝑖𝑑𝐺𝐶−˓−−→ 𝐺𝐶

𝑖𝑑𝐺𝐶←−−−˒ 𝐺𝐶
𝜏𝐺−−→ 𝐺𝑇)

and 𝐻 = (𝐻𝑆
𝜎𝐻←−− 𝐻𝐶

𝑖𝑑𝐻𝐶−˓−−→ 𝐻𝐶

𝑖𝑑𝐻𝐶←−−−˒ 𝐻𝐶
𝜏𝐻−−→ 𝐻𝑇) where the three central

objects are identical (and connected by the identity morphism) has (𝑓𝑆 , 𝑓𝐶 , 𝑓𝑇)
as a preimage under 𝐽 . Hence the mapping is full.

𝐺𝐶 𝐺𝐶 𝐺𝑇

(2) (3)

𝐻𝐶 𝐻𝐶 𝐻𝑇

𝑓𝐶

𝑖𝑑𝐻𝐶
𝜏𝐻

𝑓𝑇

𝑖𝑑𝐺𝐶 𝜏𝐺

𝑓𝐶

Fig. 19. Mapping a morphism between triple graphs to one between partial triple
graphs

That rule application is functorial, is a consequence of Proposition 10: Pushout
complements (if they exist) and pushouts along monomorphisms are computed
componentwise. Hence, the pushout complement for 𝐽(𝑚)∘𝐽(𝑙), with 𝑚, 𝑙 being

ordinary triple graph morphisms, can be chosen as 𝐷𝑆
𝜎𝐷←−− 𝐷𝐶

𝑖𝑑𝐷𝐶−˓−−→ 𝐷𝐶

𝑖𝑑𝐷𝐶←−−−˒
𝐷𝐶

𝜏𝐺−−→ 𝐷𝑇 where 𝐷𝑆
𝜎𝐷←−− 𝐷𝐶

𝜏𝐺−−→ 𝐷𝑇 is the according pullback complement
for 𝑚 ∘ 𝑙 and given a pullback complement 𝐷𝑆

𝜎𝐷←−− 𝐷𝐶
𝜏𝐺−−→ 𝐷𝑇 for 𝑚 ∘ 𝑙,

then 𝐷𝑆
𝜎𝐷←−− 𝐷𝐶

𝑖𝑑𝐷𝐶−˓−−→ 𝐷𝐶

𝑖𝑑𝐷𝐶←−−−˒ 𝐷𝐶
𝜏𝐺−−→ 𝐷𝑇 is a pullback complement for

𝐽(𝑚) ∘ 𝐽(𝑙). The same holds for pushouts. ⊓⊔

Proof (of Proposition 19). Since partial triple graphs are a category and, hence,
identity morphisms exist and composition of morphisms is possible, typed par-

24 J. Kosiol et al.

tial triple graphs are a subcategory of the slice category [← → ← →
, Graphs]/𝑇𝐺.

This category is adhesive since in a slice category, pushouts and pullbacks are
just computed along the morphisms and the typing is induced by the universal
property of the pushout or by composition of morphisms, respectively [5]. This
means, e.g., the pushout of morphisms 𝑓 : 𝑡𝐺 → 𝑡𝐻 and 𝑔 : 𝑡𝐺 → 𝑡𝐾 in [←
→ ← → , Graphs]/𝑇𝐺 is given by 𝑡𝐷 where 𝐷 arises as pushout object

of 𝐻
𝑓←− 𝐺

𝑔−→ 𝐾 in [← → ← → , Graphs] and the typing morphism 𝑡𝐷 :
𝐷 → 𝑇𝐺 is induced by 𝐷’s universal property. In this case, the morphisms stem
from PTrG and by Propositions 8 and 10, computing pullbacks and pushouts
along morphims from PTrG in [← → ← → , Graphs] is the same as
computing them directly in PTrG. Hence, adhesivity is inherited from PTrG.

The rest of the proof is equivalent to the one of Proposition 16. ⊓⊔

Proof (of Proposition 20). By assumption, all squares in Fig. 10 are commuting.
Moreover, the hooked morphisms are injective. Hence, all the statements are just
translations of the requirement that the squares (4) − (9) are pullback squares
into its set-theoretic meaning. ⊓⊔

Proof (of Proposition 21). First, let the rule 𝑝 be applicable at match 𝑚. Since
pushouts are computed componentwise in PTrG, so are pushout complements.
In particular, pushout complements exist for 𝑚𝑆 ∘ 𝑙𝑆 , 𝑚𝐶 ∘ 𝑙𝐶 , and 𝑚𝑇 ∘ 𝑙𝑇 . Since
these are graph morphisms, the existence of the pushout complement implies
that the gluing condition is fulfilled [5]. Moreover, there exist morphisms 𝜎𝐾 :
𝐾𝑆 → 𝐾𝑆 and 𝜎𝐷 : 𝐷𝑆 → 𝐷𝑆 making the left cube in Fig. 20 commute. Let
𝑥 ∈ 𝐺𝑆 be such that there is a preimage 𝑧1 for 𝑥 in 𝐿𝑆 and 𝑧2 for 𝑥 in 𝐺𝑆 . Since
the central vertical square is a pushout square as well, 𝑧2 either has a preimage in
𝐿𝑆 or in 𝐷𝑆 . Assume it to only have in preimage 𝑧3 in 𝐷𝑆 . Then 𝑑𝑆(𝜎𝐷(𝑧3)) = 𝑥,
thus 𝑥 has a preimage in 𝐿𝑆 and in 𝐷𝑆 and since the left vertical square is a
pushout, there is a preimage for 𝜎𝐷(𝑧3) in 𝐾𝑆 which contradicts the assumption
that 𝑥 has no preimage under 𝑚𝑆 ∘ 𝑙𝑆 .

Secondly, let the two conditions be fulfilled. In particular, the pushout com-
plement object 𝐷𝐶 exists. Compute the pullback of the co-span 𝐺𝑆 →˓ 𝐺𝐶 ←˒
𝐷𝐶 . A morphism 𝑘𝑆 : 𝐾𝑆 → 𝐷𝑆 is obtained by the universal property of this
pullback. Moreover, since the vertical square to the right is a pushout and hence
a van Kampen square, the arising vertical square in the center is a pushout
square as well (all side faces are pullbacks). It remains to show that there exists
a morphism 𝜎𝐷 : 𝐷𝑆 → 𝐷𝑆 making the left cube commute. Since 𝑑𝑆 is injective,
the only possible choice to define 𝜎𝐷 such that the bottom square commutes is

𝜎𝐷(𝑥) := 𝑑−1
𝑆 (𝜎𝐺(𝑑𝑆(𝑥))) .

Adhesive Subcategories 25

𝐿𝐶

𝐿𝑆 𝐾𝐶

𝐿𝑆 𝐾𝑆

𝐾𝑆 𝐺𝐶

𝐺𝑆 𝐷𝐶

𝐺𝑆 𝐷𝑆

𝐷𝑆

𝑚𝐶

𝜎𝐿

𝜄𝐿𝑆

𝑚𝑆

𝑙𝑆

𝑙𝑆

𝑚𝑆 𝜎𝐺

𝜄𝐺𝑆

𝑑𝑆

𝑑𝑆
𝜎𝐷

𝑘𝑆

𝜎𝐾

𝑘𝑆

𝜄𝐾𝑆

𝜄𝐷𝑆

𝑙𝐶

𝑘𝐶

𝑑𝐶

Fig. 20. Characterizing applicability of a rule at a match

Given this definition one calculates

𝑑𝑆 ∘ 𝑘𝑆 ∘ 𝜎𝐾 = 𝑚𝑆 ∘ 𝑙𝑆 ∘ 𝜎𝐾

= 𝑚𝑆 ∘ 𝜎𝐿 ∘ 𝑙𝑆

= 𝜎𝐺 ∘𝑚𝑆 ∘ 𝑙𝑆

= 𝜎𝐺 ∘ 𝑑𝑆 ∘ 𝑘𝑆

= 𝑑𝑆 ∘ 𝜎𝐷 ∘ 𝑘𝑆

which implies 𝑘𝑆 ∘ 𝜎𝐾 = 𝜎𝐷 ∘ 𝑘𝑆 and hence commutativity of the whole cube,
provided that such a 𝜎𝐷 exists. Assume an 𝑥 ∈ 𝐺𝑆 to exist, that has a preimage
𝑧1 under 𝜎𝐺 ∘ 𝑑𝑆 but no preimage in 𝐷𝑆 . Since the left vertical square is a
pushout, then 𝑥 has a preimage 𝑧2 in 𝐿𝑆 but 𝑧2 does not have in preimage in
𝐾𝑆 . Since 𝑑𝑆(𝑧1) is a preimage for 𝑥 in 𝐺𝑆 , by assumption there is a preimage
𝑧3 for 𝑧2 and 𝑑𝑆(𝑧1) in 𝐿𝑆 . Since the vertical square in the center is a pushout,
there exists 𝑧4 ∈ 𝐾𝑆 with 𝑙𝑆(𝑧4) = 𝑧3 and 𝑘𝑆(𝑧4) = 𝑧1. By commutativity of the
involved squares

𝑑𝑆(𝑘𝑆(𝜎𝐾(𝑧4))) = 𝑚𝑆(𝑙𝑆(𝜎𝐾(𝑧4)))
= 𝑚𝑆(𝜎𝐿(𝑙𝑆(𝑧4)))
= 𝑚𝑆(𝜎𝐿(𝑧3))
= 𝑚𝑆(𝑧2)
= 𝑥

which is a contradiction to 𝑥 having no preimage under 𝑑𝑆 . ⊓⊔

Proof (of Theorem 23). Let 𝑝, 𝑝𝑆 , and 𝑝𝐹 be given. The rules 𝑝𝑆 and 𝑝𝐹 are rules
in [← → ← → , Graphs] which is an adhesive HLR category as well.
Hence, if we show that 𝑝 is a concurrent rule for 𝑝𝑆 and 𝑝𝐹 , i.e., 𝑝 = 𝑝𝑆 *𝐸 𝑝𝐹

26 J. Kosiol et al.

for a suitable dependency relation 𝐸, the Concurrency Theorem [5, Thm. 5.23]
is applicable and provides the desired result in [← → ← → , Graphs].

To see this, first observe that 𝑅𝑆 and 𝐿𝐹 map jointly epimorphic to 𝐿𝐹 .
Hence, 𝑅𝑆 = 𝐿𝐹 with the obvious morphisms is a natural choice for a de-
pendency object. Moreover, the pushout complements for 𝐾𝑆 𝑟𝑆

−˓→ 𝑅𝑆 →˓ 𝐿𝐹

and 𝐾𝐹 𝑙𝐹

−˓→ 𝐿𝐹 𝑖𝑑−˓→ 𝐿𝐹 exist and are given by 𝐾𝐿 and 𝐾𝐹 again where
𝐾𝐿 := (𝐾𝑆 ← 𝐾𝑆 →˓ 𝐿𝐶 ←˒ 𝐿𝑇 → 𝐿𝑇) (see (1a) and (1b) in Fig. 21). Com-
puting the pushouts (2𝑎) and (2𝑏) results in 𝐿 and 𝑅, respectively. One easily
checks that computing the pullback (3) results in 𝐾 and that 𝑙𝑆 ∘ 𝑘1 = 𝑙 and
𝑟𝐹 ∘ 𝑘2 = 𝑟. In summary, 𝑝 = 𝑝𝑆 *𝑅𝑆 𝑝𝐹 .

𝐿 = 𝐿𝑆 𝐾𝑆 𝑅𝑆 𝐿𝐹 𝐾𝐹 𝑅 = 𝑅𝐹

(2𝑎) (1𝑎) (1𝑏) (2𝑏)

𝐿 𝐾𝐿 𝐿𝐹 𝐾𝐹 𝑅

(3)

𝐾

𝑙𝑆 𝑟𝑆 𝑙𝐹 𝑟𝐹

𝑙𝑆 𝑟𝑆 𝑙𝐹 𝑟𝐹

𝑖𝑑 𝑖𝑑𝑖𝑑
𝑖𝑑

𝑘1 𝑘2

Fig. 21. Original rule 𝑝 as concurrent rule of 𝑝𝑆 and 𝑝𝐹

Applying the Concurrency Theorem gives the desired results at least it [←
→ ← → , Graphs] and Proposition 16 allows to lift the results to PTrG:

1. Given a direct transformation 𝐺 ⇒𝑝,𝑚 𝐻 in PTrG, by Proposition 16
this is a transformation in [← → ← → , Graphs]. Then the
Concurrency Theorem guarantees existence of a transformation sequence
𝐺 ⇒𝑝𝑆 ,𝑚 𝐺′ ⇒𝑝𝐹 ,𝑛 𝐻 in [← → ← → , Graphs] where 𝑛 is the
comatch of the first transformation step.

2. Given transformation steps 𝐺 ⇒𝑝𝑆 ,𝑚 𝐺′ ⇒𝑝𝐹 ,𝑛 𝐻 in [← → ← →
, Graphs] where 𝑛 is the comatch of the first transformation step, the Con-
currency Theorem guarantees existence of a direct transformation 𝐺⇒𝑝,𝑚 𝐻
in [← → ← → , Graphs]. Since 𝐺 and 𝑚 are already elements of
PTrG, by Proposition 16 this is a transformation already in PTrG. ⊓⊔

	Adhesive Subcategories of Functor Categories with Instantiation to Partial Triple Graphs

