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Abstract. Con�ict and dependency analysis (CDA) is a static analy-
sis for the detection of con�icting and dependent rule applications in
a graph transformation system. Recently, granularity levels for con�icts
and dependencies have been investigated focussing on delete-use con�icts
and produce-use dependencies. A central notion for granularity consid-
erations are (minimal) con�ict and dependency reasons. For a rule pair,
where the second rule is non-deleting, it is well-understood based on
corresponding constructive characterizations how to e�ciently compute
(minimal) con�ict and dependency reasons. We further explore the no-
tion of (minimal) con�ict reason for the general case where the second
rule of a rule pair may be deleting as well. We present new constructive
characterizations of (minimal) con�ict reasons distinguishing delete-read
from delete-delete reasons. Based on these constructive characterizations
we propose a procedure for computing (minimal) con�ict reasons and we
show that it is sound and complete.
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1 Introduction

Graph transformation [1] is a formal paradigm with many applications. A graph
transformation system is a collection of graph transformation rules that, in union,
serve a common purpose. For many applications (see [2] for a survey involving 25
papers), it is bene�cial to know all con�icts and dependencies that can occur for
a given pair of rules. A con�ict is a situation in which one rule application ren-
ders another rule application inapplicable. A dependency is a situation in which
one rule application needs to be performed such that another rule application
becomes possible. For a given rule set, a con�ict and dependency analysis (CDA)
technique is a means to compute a list of all pairwise con�icts and dependencies.

Inspired by the related concept from term rewriting, critical pair analysis
(CPA, [3]) has been the established CDA technique for over two decades. CPA



reports each con�ict as a critical pair1, that is, a minimal example graph together
with a pair of rule applications from which a con�ict arises. Recently it has been
observed that applying CPA in practice is problematic: First, computing the
critical pairs does not scale to large rules and rule sets. Second, the results are
often hard to understand; they may contain many redundant con�icts that di�er
in subtle details only, typically not relevant for the use case at hand.

To address these drawbacks, in previous work, we presented themulti-granular
con�ict and dependency analysis (MultiCDA [5, 2]) for graph transformation sys-
tems. It supports the computation of con�icts on a given granularity level: On
binary granularity, it reports if a given rule pair contains a con�ict at all. On
coarse granularity, it reports minimal con�ict reasons, that is, problematic rule
fragments shared by both rules that may give rise to a con�ict. Fine granularity
is, roughly speaking, the level of granularity provided by critical pairs. (In the
terminology of our recent work [4], we here focus on di�erent levels of overlap
granularity with �xed coarse context granularity.) We showed that coarse-grained
results are more usable than �ne-grained ones in a diverse set of scenarios and
can be used to compute the �ne-grained results much faster.

In this work, we address a major current limitation of MultiCDA [2]. The
computation of con�icts is only exact for cases where the second rule of the
considered rule pair is non-deleting. In this case, it is well-understood how to
compute con�icts e�ciently, using constructive characterisations of minimal con-
�ict reasons (for coarse granularity) and con�ict reasons (for �ne granularity).
In the other case, MultiCDA can provide an overapproximation of the actual
con�icts, by replacing the second rule with its non-deleting variant. On the one
hand, this overapproximation may contain con�icts which can never actually
arise. On the other hand, the overapproximation does not distinguish con�icts
for rule pairs where the second rule is non-deleting from those for rule pairs
where the second rule is deleting (i.e. no distinction between delete-delete and
delete-read). The �rst issue leads to a MultiCDA that may report false positives,
whereas the latter issue causes the MultiCDA to report true positives without
the desired level of detail. Therefore the overapproximation presents an obstacle
to the understandability of the results and the usability of the overall technique.

In this paper, we come up with the foundations for an improved MultiCDA
avoiding this limitation, thus delivering in all cases exact as well as detailed
results. To this end we present new constructive characterizations of (minimal)
con�ict reasons for rule pairs where the second rule may be deleting, distin-
guishing in particular delete-read (dr) from delete-delete (dd) reasons. Based on
these constructive characterizations we propose a basic procedure for computing
dr/dd (minimal) con�ict reasons and we show that it is sound and complete.
In particular, we learn that we can reduce the computation of dr/dd minimal
reasons to the constructions presented for the overapproximation [2]. Moreover,
the construction of dr/dd reasons can reuse the results computed for minimal
reasons, representing the basis for an e�cient computation of �ne-grained results

1 For brevity, since all con�ict-speci�c considerations in this paper dually hold for
dependencies (see our argumentation in [4]), we omit talking about dependencies.



Rule 3: ReplaceMemberWithSubstitute

«delete»
canReplace

«delete»
canReplace

«preserve»
:Branch

«preserve»
:Team

«preserve»
:Team

«delete»
:Member

«preserve»
:Member

«preserve»
teams

«delete»
assigned

«create»
assigned

«delete»
:Role

«preserve»
:Role

«delete»
assigned

«preserve»
teams

«preserve»
roles

«delete»
roles

Rule 1: ShiftMember

 

«preserve»
:Team

«preserve»
:Member

«create»
assigned

«preserve»
:Role

«preserve»
roles

«preserve»
:Role

«delete»
assigned

«preserve»
roles

Rule 2: ShiftRole
«preserve»

:Team

«preserve»
:Member

«preserve»
:Role

«create»
roles

«preserve»
:Team

«delete»
roles

«preserve»
assigned

Fig. 1. Rules for running example in an integrated representation

based on coarse-grained ones. We illustrate our results using a running example
modeling requirements for a project management software.

The rest of this paper is structured as follows: Section 2 introduces our run-
ning example. Section 3 revisits preliminaries. Section 4 introduces delete-read
and delete-delete con�ict reasons. Section 5 presents a new characterization of
con�ict reasons, accommodating both delete-read (dr) and delete-delete (dd)
con�icts. Section 6 is devoted to the construction of con�ict reasons based on
the new characterizations. Section 7 discusses related work and concludes. We
present some additional technicalities and proofs that are omitted from the main
part of the paper in Appendices A and B.

2 Running example

In agile software development processes [6], enterprises quickly react to changes by
�exibly adapting their team structures. Figure 1 introduces a set of rules describ-
ing requirements for a project management software. The rules are represented
in the Henshin [7] syntax, using an integrated syntax with delete, create, and
preserve elements. Delete and create elements are only contained in the LHS
and RHS, respectively, whereas a preserved element represents an element that
occurs both in the LHS and RHS.

The rules, focusing on restructuring and deletion cases for illustration pur-
poses, stem from a larger rule overall set. The �rst two rules allow the project
managers of a branch of the company to reassign roles and members between
teams. Rule ShiftMember assigns a member to a di�erent role in the same team.
Rule ShiftRole moves a role and its assigned team member to a di�erent team.
The other rule deals with a team member leaving the company. Rule Replace-
MemberWithSubstitute (abbreviated to ReplaceM in what follows) removes a



team member while �lling the left role with a replacement team member, based
on their shared expertise. The role of the replacement member in the existing
project is deleted. Note that a variant of this rule, in which the existing role is
not deleted, may exist as well.

Con�icts and dependencies between requirements such as those expressed
with the rules from Fig. 1 can be automatically identi�ed with a CDA tech-
nique. Doing so is useful for various purposes: To support project managers
from di�erent teams who may want to plan changes to the personnel structure
as independently as possible. Or, for the software developers, to check whether
con�icts and dependencies expected to arise actually do, thereby validating the
correctness of the requirement speci�cation. Therefore, we use this running ex-
ample to illustrate the novel CDA concepts introduced in this paper.

3 Preliminaries

As a prerequisite for our exploration of con�ict reasons, we recall the double-
pushout approach to graph transformation as presented in [1]. Furthermore, we
reconsider con�ict notions on the transformation and rule level [8, 9, 2], including
con�ict reasons.

3.1 Graph Transformation and Con�icts

Throughout this paper we consider graphs and graph morphisms as presented in
[1] for the category of graphs; all results can be easily extended to the category
of typed graphs by assuming that each graph and morphism is typed over some
�xed type graph TG .

Graph transformation is the rule-based modi�cation of graphs. A rule mainly
consists of two graphs: L is the left-hand side (LHS) of the rule representing
a pattern that has to be found to apply the rule. After the rule application, a
pattern equal to R, the right-hand side (RHS), has been created. The intersection
K is the graph part that is not changed; it is equal to L ∩ R provided that
the result is a graph again. The graph part that is to be deleted is de�ned by
L \ (L ∩R), while R \ (L ∩R) de�nes the graph part to be created.

A direct graph transformation G
m,r
=⇒ H between two graphs G and H is

de�ned by �rst �nding a graph morphism2 m of the LHS L of rule r into G
such that m is injective, and second by constructing H in two passes: (1) build
D := G \ m(L \ K), i.e., erase all graph elements that are to be deleted; (2)
construct H := D ∪m′(R \K). The morphism m′ has to be chosen such that a
new copy of all graph elements that are to be created is added. It has been shown
for graphs and graph transformations that r is applicable at m i� m ful�lls the
dangling condition. It is satis�ed if all adjacent graph edges of a graph node to be

2 A morphism between two graphs consists of two mappings between their nodes and
edges being both structure-preserving w.r.t. source and target functions. Note that
in the main text we denote inclusions by ↪→ and all other morphisms by →.



deleted are deleted as well, such that D becomes a graph. Injective matches are
usually su�cient in applications and w.r.t. our work here, they allow to explain
constructions with more ease than for general matches. In categorical terms, a
direct transformation step is de�ned using a so-called double pushout as in the
following de�nition. Thereby step (1) in the previous informal explanation is
represented by the �rst pushout and step (2) by the second one [1].

De�nition 1 ((non-deleting) rule and transformation). A rule r is de�ned

by r = (L
le←↩ K ri

↪→ R) with L,K, and R being graphs connected by two graph

inclusions. The non-deleting rule of r is de�ned by ND(r) = (L
idL←↩ L ri′

↪→ R′) with

(L
ri′

↪→ R′ ←↩ R) being the pushout of (le, ri). Given rule r1 = (L1
le1←↩ K1

ri1
↪→ R1),

square (1) in Figure 2 can be constructed as initial pushout over morphism le1.
It yields the boundary graph B1 and the deletion graph C1.

A direct transformation G
m,r
=⇒ H which

applies rule r to a graph G consists of
two pushouts as depicted right. Rule r
is applicable and the injective morphism
m : L→ G is called match if there exists
a graph D such that (PO1) is a pushout.

L K R

G D H

(PO1) (PO2)m m′

Given a pair of transformations, a delete-use con�ict [1] occurs if the match
of the second transformation cannot be found anymore after applying the �rst
transformation. Note that we do not consider delete-use con�icts of the second
transformation on the �rst one explicitly. To get those ones as well, we simply
consider the inverse pair of transformations. The following de�nition moreover
distinguishes two cases [8]: (1) a delete-read con�ict occurs if the match of the
�rst transformation can still be found after applying the second one (2) a delete-
delete con�ict occurs if this is not the case, respectively.

De�nition 2 (dr/dd con�ict). Given a pair of direct transformations (t1, t2) =

(G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) applying rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and r2 : L2

le2←↩
K2

ri2
↪→ R2 as depicted in Fig. 2. Transformation pair (t1, t2) is in delete-use con-

�ict if there does not exist a morphism x21 : L2 → D1 such that g1 ◦ x21 = m2.
Transformation pair (t1, t2) is in dr con�ict if it is in delete-use con�ict and if
there exists a morphism x12 : L1 → D2 such that g2 ◦ x12 = m1. Transformation
pair (t1, t2) is in dd con�ict if it is in delete-use con�ict and if there does not
exist a morphism x12 : L1 → D2 such that g2 ◦ x12 = m1.

3.2 Con�ict Reasons

We consider delete-use con�icts between transformations where at least one
deleted element of the �rst transformation is overlapped with some used ele-
ment of the second transformation. This overlap is formally expressed by a span
of graph morphisms between the deletion graph C1 of the �rst rule, and the



L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2

d2 m′
2

(1)

(2)

S1

C1B1

L1K1R1

D1H1

x
o1 q12

b1

c1

le1ri1

g1h1

m1

x12x21d1m′
1

Fig. 2. Illustration of con�ict and con�ict reason

LHS of the second rule (Fig. 2). Remember that C1 := L1 \ (K1 \ B1) contains
the deletion part of a given rule and boundary graph B1 consisting of all nodes
needed to make L1 \ K1 a graph. C1 \ B1 may consist of several disjoint frag-
ments, called deletion fragments. Completing a deletion fragment to a graph by
adding all incident nodes (i.e. boundary nodes) it becomes a deletion component
in C1. Each two deletion components overlap in boundary nodes only; the union
of all deletion components is C1. If two transformations overlap such that there
is at least one element of a deletion fragment included, they are in con�ict.

The overlap conditions reintroduced in Def. 3 describe for an overlap of a
given pair of rules under which conditions it may lead to a con�ict (con�ict con-
dition), since there exist transformations (transformation condition) that overlap
all elements as prescribed by the given overlap indeed (completeness condition).
We call such an overlap con�ict reason and it is minimal if no bigger one exists in
which it can be embedded. Table 1 provides an overview over all con�ict notions
for rules (as reintroduced in Def. 4) and their overlap conditions.

General setting: For the rest of this paper, we assume the following basic

setting: Given rules r1 : L1
le1←↩ K1

ri1
↪→ R1 with the initial pushout (1) for K1

le1
↪→

L1 and r2 : L2
le2←↩ K2

ri2
↪→ R2, we consider a span s1 : C1

o1←↩ S1
q12→ L2 as depicted

in Fig. 2.

De�nition 3 (overlap conditions). Given rules r1 and r2 as well as a span
s1, overlap conditions for the span s1 of (r1, r2) are de�ned as follows:

1. Weak con�ict condition: Span s1 satis�es the weak con�ict condition if there
does not exist any injective morphism x : S1 → B1 such that b1 ◦ x = o1.

2. Con�ict condition: Span s1 satis�es the con�ict condition if for each coprod-
uct

⊕
i∈I S

i
1, where each Si

1 is non-empty and S1 =
⊕

i∈I S
i
1, each of the

induced spans si1 : C1

oi1←↩ Si
1

qi12→ L2 with oi1 = o1|Si
1
and qi12 = q12|Si

1
ful�lls

the weak con�ict condition.



3. Transformation condition: Span s1 satis�es the transformation condition if

there is a pair of transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) via

(r1, r2) with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in Fig. 2).
4. Completeness condition: Span s1 satis�es the completeness condition if there

is a pair of transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) via (r1, r2)

such that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 2.

5. Minimality condition: A span s′1 : C1
o′1←↩ S′1

q′12→ L2 can be embedded into
span s1 if there is an injective morphism e : S′1 → S1, called embedding
morphism, such that o1 ◦ e = o′1 and q12 ◦ e = q′12. If e is an isomorphism,
then we say that the spans s1 and s′1 are isomorphic. (See (3) and (4) in
Fig. 3.) Span s1 satis�es the minimality condition w.r.t. a set SP of spans
if any s′1 ∈ SP that can be embedded into s1 is isomorphic to s1.

L2 K2 R2
le2 ri2

(1)

(3) (4)

S′
1

S1C1B1

L1K1R1

o1

q12

o′1

q′12
e

c1

le1ri1

Fig. 3. Illustrating span embeddings

Note that span s1 which ful�ls the weak con�ict condition, also ful�ls the
con�ict condition i� S1 does not contain any isolated boundary nodes [4].

De�nition 4 (con�ict notions). Let the rules r1 and r2 as well as a span s1
be given.

1. Span s1 is called con�ict part candidate for the pair of rules (r1, r2) if it
satis�es the con�ict condition. Graph S1 is called the con�ict graph of s1.

2. A con�ict part candidate s1 for (r1, r2) is a con�ict part for (r1, r2) if s1
ful�ls the transformation condition.

3. A con�ict part candidate s1 for (r1, r2) is a con�ict atom candidate for
(r1, r2) if it ful�ls the minimality condition w.r.t. the set of all con�ict part
candidates for (r1, r2).

4. A con�ict part s1 for (r1, r2) is a con�ict atom if it ful�ls the minimality
condition w.r.t. the set of all con�ict parts for (r1, r2).

5. A con�ict part s1 for (r1, r2) is a con�ict reason for (r1, r2) if s1 ful�ls the
completeness condition.

6. A con�ict reason s1 for (r1, r2) is minimal if it ful�ls the minimality condi-
tion w.r.t. the set of all con�ict reasons for (r1, r2).

Con�ict notions are in various interrelations as shown in [4]. Here, we recall
those that are relevant for our further exploration of con�ict reasons.



Table 1. Overview of con�ict notions

Overlap condition / con�ict transf. compl. minimality
con�ict notion condition condition condition condition

con�ict part candidate x
con�ict part x x

con�ict atom candidate x x
con�ict atom x x x

con�ict reason x x x
min. con�ict reason x x x x

De�nition 5 (covering and composition of con�ict parts).

1. Given a con�ict part s1, the set A of all con�ict atoms that can be embedded

into s1 covers s1 if for each con�ict part s′1 : C1
o′1←↩ S′1

q′12→ L2 for (r1, r2)
that can be embedded into s1, it holds that s′1 is isomorphic to s1 if each
atom in A can be embedded into s′1.

2. Given a con�ict part s1, the set M = {smi | i ∈ I} of spans that can be
embedded into s1 via a corresponding set of embedding morphisms EM =
{ei| i ∈ I} composes s1 if the set EM is jointly surjective.

Fact 1 (Interrelations of con�ict notions and characterization [4, 2]) Let
rules r1 and r2 as well as con�ict part candidate s1 for (r1, r2) be given.

1. If s1 is a con�ict part for (r1, r2), there is a con�ict reason for (r1, r2) such
that s1 can be embedded into it.

2. If s1 is a con�ict atom candidate for rules (r1, r2), its con�ict graph S1 either
consists of a node v s.t. o1(v) ∈ C1 \ B1 or of an edge e with its incident
nodes v1 and v2 s.t. o1(e) ∈ C1 \B1 and o1(v1), o1(v2) ∈ B1.

3. If s1 is a con�ict part (esp. con�ict reason) for rules (r1, r2), the set A of
all con�ict atoms that can be embedded into s1 is non-empty and covers s1.

4. If s1 is a con�ict reason for rule pair (r1,ND(r2)), it can be composed of all
minimal con�ict reasons for (r1,ND(r2)) that can be embedded into s1.

5. If s1 is a minimal con�ict reason for rule pair (r1,ND(r2)), its con�ict graph
S1 is a subgraph of a deletion component of C1.

4 DR/DD Con�ict Reasons

Con�ict reasons are constructed from con�ict part candidates. We distinguish
delete-read (dr) from delete-delete (dd) con�ict part candidates (and conse-
quently also reasons) by requiring that the dd candidate entails elements that
are deleted by both rules, whereas the dr candidate does not.

De�nition 6 (dr/dd con�ict reason). Let the rules r1 and r2 and a con�ict
part candidate s1 for (r1, r2) be given.



1. s1 is a dr con�ict part candidate for (r1, r2) if there exists a morphism
k12 : S1 → K2 such that le2 ◦ k12 = q12.

2. s1 is a dd con�ict part candidate for (r1, r2) otherwise.

A con�ict part, atom or (minimal) reason is a dr (dd) con�ict part, atom or
(minimal) reason, respectively, if it is a dr (dd) con�ict part candidate.

A con�ict atom consists of either a deleted node or deleted edge with incident
preserved nodes (see Fact 1). DR atoms, where the con�ict graph consists of a
node, might possess incident edges that are deleted not only by the �rst, but
also by the second rule. We say that a dr atom is pure if this is not the case.

De�nition 7 (pure dr atom). Given a con�ict reason s1 : C1
o1←↩ S1

q12→ L2

and a dr atom s′1 : C1

o′1←↩ S′1
q′12→ L2 embedded into s1 via e : S′1 → S1, then s′1

is pure with respect to s1 if the con�ict graph S′1 consists of an edge, or if S′1
consists of a node x and each edge y in C1 with source or target node o′1(x) has
a pre-image y′ in S1 with source or target node e(x) s.t. q12(y

′) ∈ le2(K2).

In this paper, we consider the general case of rule pairs where both rules
may be deleting. This implies that con�icts may arise in both directions. The
following de�nition therefore describes for a given pair of rules and a con�ict
part candidate how compatible counterparts look like for the reverse direction.
It naturally leads to the notion of compatible con�ict reasons that may occur in
the same con�ict in reverse directions. We distinguish compatible counterparts
that overlap in at least one deletion item as special case, since they will be
important for the dd con�ict reason construction.

De�nition 8 (compatibility, join, dd overlapping). Given rules r1 and r2

with con�ict part candidates s1 for (r1, r2) and s2 : C2
o2←↩ S2

q21→ L1 for (r2, r1)
as in Fig. 4.

1. Candidates s1 and s2 are compatible if the pullbacks S1
a1←− S′

a2−→ S2 of

(c1 ◦ o1, q21) and S1
a′
1←− S′′

a′
2−→ S2 of (q12, c2 ◦ o2) are isomorphic via an

isomorphism i : S′ → S′′ such that a′1 ◦ i = a1 and a′2 ◦ i = a2. We denote a

representative of these pullbacks as s : S1
a1←↩ S′ a2

↪→ S2.

2. Let S1

s′1
↪→ S

s′2←↩ S2 be the pushout of s. Morphisms ls1 and ls2 are the
universal morphisms arising from this pushout and the fact that c1 ◦o1 ◦a1 =

q21 ◦ a2 and c2 ◦ o2 ◦ a2 = q12 ◦ a1. Then L1
ls1←↩ S ls2

↪→ L2 as in Fig. 4 is called
the join of s1 and s2 and S is called the joint con�ict graph.

3. Compatible con�ict part candidates s1 for (r1, r2) and s2 for (r2, r1) are dd
overlapping if there do not exist morphisms k1 : S′ → K1 with le1 ◦ k1 =
c1 ◦ o1 ◦ a1 and k2 : S′ → K2 with le2 ◦ k2 = c2 ◦ o2 ◦ a2.

Con�ict parts, atoms, or reasons are (dd overlapping) compatible if the cor-
responding con�ict part candidates are, respectively.



L2 K2

C2 B2

S2

le2

c2

S1

C1B1

L1K1

S′

S

G

o1

q12

o2

q21c1

le1

a1 a2

ls1 ls2

s′1 s′2

m1 m2

Fig. 4. Compatible con�ict part candidates

As clari�ed in the following proposition a dr con�ict reason can be responsible
on its own for a con�ict: if only a dr con�ict reason is overlapped by correspond-
ing matches, then we obtain a dr initial con�ict. Contrarily, for a dd con�ict
reason, there exists at least one compatible con�ict reason for the reverse rule
pair that it can be overlapped with leading to a dd initial con�ict. The idea of
initial con�icts [9] is that they describe all possible con�icts in a minimal way
by overlapping as less elements as possible from both rules.

Proposition 1 (dr/dd con�ict reasons and initial con�icts).

� Given a dr con�ict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2), then

the pushout (m1 : L1 → K,m2 : L2 → K) of L1
c1◦o1←↩ S1

q12→ L2 determines

the matches of an dr initial con�ict (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2) with

the pullback of (m1 ◦ c1,m2) being isomorphic to s1.
� Given a dd con�ict reason s1 for rule pair (r1, r2), then there exists a non-

empty set DD(s1) of dd overlapping compatible dd con�ict reasons for rule
pair (r2, r1) s.t. for each s2 in DD(s1) the pushout (m1 : L1 → K,m2 :
L2 → K) of the join of (s1, s2) determines the matches of an dd initial

con�ict (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2).

Finally, we can conclude from the overapproximation already considered in [2]
the following relationship between con�ict reasons and overapproximated ones.

Proposition 2 (overapproximating con�ict reasons). If a span s1 is a
con�ict reason for rule pair (r1, r2), it is a dr con�ict reason for (r1,ND(r2)).

5 Characterizing DR/DD Con�ict Reasons

Table 2 gives a preview of characterization results for dr/dd con�ict reasons
described in this section and used for coming up with basic procedures for con-
structing them in Sect. 6. We start with characterizing dr/dd con�ict reasons
via atoms (Prop. 3). We proceed to characterize dr/dd minimal con�ict reasons,
showing that we can reuse the constructions for a pair of rules, where the sec-
ond one is non-deleting (Prop. 4 and Prop. 5). We conclude with characterizing



dr/dd con�ict reasons via minimal ones (Corr. 1). We distinguish dr from dd
con�ict reasons and learn that the dd case is more involved than the dr case.

Table 2. Characterizing dr/dd con�ict reasons for rule pair (r1, r2)

con�ict notion characterization result

dr con�ict reason covered by pure dr atoms only (Prop. 3)

dd con�ict reason covered by at least one dd or non-pure dr atom and ar-
bitrary number of pure dr atoms (Prop. 3)

dr min. con�ict reason equals min. reason for (r1,ND(r2)) (Prop. 4)

dd min. con�ict reason composed of min. reasons for (r1,ND(r2)) being dd con-
�ict part candidates for (r1, r2) (Prop. 5)

dr con�ict reason composed of dr min. con�ict reasons only (Corr. 1)

dd con�ict reason composed of min. con�ict reasons where at least one of
which is dd (Corr. 1)

Characterizing DR/DD Reasons via Atoms. From the characterization
of con�ict reasons via atoms (see Fact 1), we can conclude that dr reasons are
covered (see Def. 5) by pure dr atoms (see Def. 7). Moreover, each dd reason
entails at least one dd atom or non-pure dr atom.

Proposition 3 (dr/dd con�ict reason characterization). A dr con�ict rea-
son is covered by pure dr atoms only. On the contrary, a dd con�ict reason is
covered by at least one dd atom or non-pure dr atom and an arbitrary number
of pure dr atoms.

From the above characterization it follows that it makes sense to distinguish
as special case dd con�ict reasons that are covered by dd atoms only.

De�nition 9 (pure dd con�ict reason). A dd con�ict reason is pure if it is
covered by dd atoms only.

Characterizing DR/DD Minimal Reasons. A dr minimal con�ict reason
for a given rule pair equals the minimal con�ict reason for the rule pair, where
the second rule of the given rule pair has been made non-deleting.

Proposition 4 (dr minimal con�ict reason characterization). Each dr
minimal con�ict reason s1 for rule pair (r1, r2) is a dr minimal con�ict reason
for rule pair (r1,ND(r2)).

We can therefore conclude that the con�ict graph of a dr minimal con�ict
reason is again a subgraph of one deletion component (see Fact 1).

Example 1 (dr minimal con�ict reason). Figure 5 shows two dr minimal con�ict
reasons as examples, one for (r1, r2) and one for (r2, r1). Note that they do not



overlap in elements to be deleted. They are the same minimal reasons as for the
cases where the second rule is made non-deleting. For comparison, AGG [10]
computes 4 critical pairs for (r1, r2) one of which is an initial con�ict. Figure 5
shows a critical pair but not the initial con�ict. For obtaining the initial con�ict,
it is enough to overlap merely the dr minimal con�ict reason for (r1, r2) (see
Prop. 1).
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A:Role D:Team3:Team1:Role 4:Role
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K2
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Fig. 5. Two dr minimal con�ict reasons for rules ShiftMember and ShiftRole

A dd minimal con�ict reason for a rule pair is composed (Def. 5) of minimal
reasons for the rule pair, where the second rule has been made non-deleting.

Proposition 5 (dd minimal con�ict reason characterization). Given a dd
minimal con�ict reason s1 for (r1, r2), s1 is composed of a set M = {smi | i ∈ I}
of minimal con�ict reasons for (r1,ND(r2)). Moreover, each reason in M is a
dd con�ict part candidate for (r1, r2).

Remember that the con�ict graph of each minimal con�ict reason for a rule
pair, where the second rule is non-deleting, consists of a subgraph of one deletion
component. We can therefore conclude that the con�ict graph of a dd minimal
con�ict reason is a subgraph of one or more deletion components.

Example 2 (dd minimal con�ict reason). Figure 6 shows an example of a dd
minimal con�ict reason s1 for rule pair (ReplaceM, ReplaceM). s1 is a dd con�ict
reason since S1 cannot be mapped to K2 in a suitable way. Furthermore, we see
that graph G can be constructed such that the completeness condition is ful�lled
and m1 and m2 are matches. It remains to show that s1 is indeed minimal.
Con�ict part candidate s′1 would also be a promising candidate. The resulting
graph G, however, would not merge nodes 4:Role with D:Role. Morphism m1

would not satisfy the dangling condition then. For a con�ict part candidate
comprising nodes 2B: Member, 4D: Role, and 5E:Team we can argue similarly.
Due to Prop. 5, s1 has to be composed of minimal con�ict reasons for (ReplaceM,



ND(ReplaceM)) which have to be deletion components as shown in [2]. Hence,
there are no further possibilities to choose a smaller span than s1. Note that a
dd con�ict reason is not always pure. For example, the atom 1A:Member is a
(non-pure) dr atom. In addition to this dd minimal con�ict reason there exist
two more. Their con�ict graphs contain the following sets of nodes: {1B:Member,
2A:Member, 3D:Role} and {2A:Member, 4C:Role, 5F:Team}.
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Fig. 6. A dd (minimal) con�ict reason for the rule pair (ReplaceM,ReplaceM )

For the rule pair (ReplaceM, ND(ReplaceM)), four minimal con�ict rea-
sons exist instead. Their con�ict graphs contain the following sets of nodes:
{1B:Member, 2A:Member, 3D:Role}, {2A:Member, 4C:Role, 5F:Team}, {1A:Member,
2B:Member, 3C:Role}, and {2B:Member, 4D:Role, 5E:Team}. While the �rst two
are also con�ict graphs of dd minimal con�ict reasons for rule pair (ReplaceM,
ReplaceM), this is not the case for the last two as the dangling condition is not
satis�ed in those cases. Moreover, the dd minimal con�ict reason in Figure 6 is a
con�ict reason for (ReplaceM, ND(ReplaceM)) but not a minimal one. For com-
parison, for the rule pair (ReplaceM, ReplaceM) AGG [10] computes 71 critical
pairs. Figure 6 shows one initial con�ict (according to Prop. 1).

Characterizing DR/DD Reasons via Minimal Reasons. The following
proposition was proven for a rule pair with the second rule non-deleting, but
it can be generalized to the case where the second rule is not necessarily non-
deleting. It allows us to construct also for this general case con�ict reasons from
minimal ones by composing them appropriately.

Proposition 6 (composition of con�ict reasons by minimal reasons).
Given a con�ict reason s1 for (r1, r2), there is a set of minimal con�ict reasons
for (r1, r2) s1 is composed of (Def. 5).



This allows to establish the following relationship between dr/dd con�ict
reasons and minimal ones.

Corollary 1 (composition of dr/dd con�ict reasons by minimal ones).

� A dr con�ict reason is composed of dr minimal con�ict reasons only.
� A dd con�ict reason is composed of minimal con�ict reasons where at least

one of which is dd.

6 Constructing DR/DD Con�ict Reasons

It is known how to construct (minimal) con�ict reasons for a rule pair, where the
second rule is non-deleting [2]. Proposition 4 tells us that each dr minimal con�ict
reason for a rule pair (r1, r2) equals a minimal con�ict reason for the rule pair
(r1,ND(r2)). Each such minimal con�ict reason for the rule pair (r1,ND(r2))
that is in addition dr for (r1, r2) delivers us a dr minimal con�ict reason. From
Corollary 1 we know that each dr con�ict reason is a composition of dr minimal
con�ict reasons again such that their construction is analogous to the one already
presented in [2]. In the following, we construct dd minimal con�ict reasons from
rule pairs, which is much more involved than the dr case.

De�nition 10 (composability, composition of con�ict part candidates).

Given rules r1 and r2 with con�ict part candidates s1 and s′1 : C1

o′1←↩ S′1
q′21→ L2

for (r1, r2).

1. Candidates s1 and s′1 are composable if the pullbacks s : S1
a1←− S′

a2−→
S′1 of (o1, o

′
1) and S1

a′
1←− S′′

a′
2−→ S′1 of (q21, q

′
21) are isomorphic via an

isomorphism i : S′ → S′′ such that a′1 ◦ i = a1 and a′2 ◦ i = a2. We denote a
representative of these pullbacks as s.

2. Let S1

s′1
↪→ S

s′2←↩ S′1 be the pushout of s. Morphisms ls1 and ls2 are the
universal morphisms arising from this pushout and the fact that o1 ◦ a1 =

o′1 ◦ a2 and q21 ◦ a2 = q′21 ◦ a1. Then C1
ls1←↩ S ls2

↪→ L2 is called the composition
of s1 and s′1.

3. Given a set C of candidates, they are composable for |C| < 2. If C is larger,
each two of its candidates have to be composable. The composition of all can-
didates in C is the candidate itself if |C| = 1 and the successive composition
of its candidates otherwise.

Con�ict parts, atoms, or reasons are composable if the corresponding con�ict
part candidates are, respectively.

Construction (dd minimal con�ict reasons).
Let the rules r1 and r2 be given.

� Let CPC 1 be the set of all minimal con�ict reasons for (r1,ND(r2)) which
are dd con�ict part candidates for (r1, r2).



� Given a con�ict part candidate s1, let CPC 2(s1) be the set of all con�ict

reasons s2 : C2
o2←↩ S2

q21→ L1 for (r2,ND(r1)) such that s1 is dd overlapping
compatible with s2.

The set DDMCR of all dd minimal con�ict reasons for (r1, r2) can be constructed
as follows (compare Fig. 4):

1. Let DDMCR be the empty set and n := 1.
2. For each subset M of n composable candidates in CPC1 for which the com-

position of a subset M ′ ⊂M of n− 1 candidates is not in DDMCR yet:
(a) Compose all candidates in M to a candidate s1 and construct CPC 2(s1).
(b) For each s2 in CPC2(s1):

� Construct the pushout L1
m1
↪→ G

m2←↩ L2 of the join of s1 and s2.
� If m1 is a match for rule r1 and m2 a match for r2 and if the pullback
of (m1 ◦ o1,m2) is isomorphic to s1, then add s1 to DDMCR and
break.

(c) n := n+ 1

Remark: Note that a composition of 0 candidates is trivially not in an empty
DDMCR. This construction terminates since CPC 1 is �nite and it has �nitely
many subsets. n is increased maximally to the size of CPC 1.

Example 3 (Construction of dd min. con�ict reason).We construct a dd minimal
con�ict reason for rule pair (ReplaceM, ReplaceM). We start with n = 1 and
choose s′1 including con�ict graph S′1 in Fig. 6. It is a min. reason for (ReplaceM,
ND(ReplaceM)) not belonging to DDCMR yet. As discussed in Example 2, it is
not a con�ict reason for (ReplaceM, ReplaceM). Hence, we cannot �nd a suitable
s2 ∈ CPC 2(s

′
1). The argumentation for the other minimal con�ict reason for

(ReplaceM, ND(ReplaceM)) is analogous. Hence, we have to set n = 2. As s1 is a
composition of two minimal con�ict reasons for (ReplaceM, ND(ReplaceM)), we
choose this candidate next. Figure 6 shows that there is an s2 ∈ CPC 2(s1) such
that two matches m1 and m2 with the pullback of (m1◦o1,m2) being isomorphic
to s1 can be constructed. Hence, s1 is in DDMCR.

Theorem 2 (Correctness dd min. con�ict reason construction). Given
two rules r1 and r2, the construction above yields dd minimal con�ict reasons
for (r1, r2) only (soundness) and all those (completeness).

Proof. Soundness: Because of Prop. 5 we know that a dd minimal con�ict reason
for s1 for (r1, r2) is composed of a set of minimal con�ict reasons for (r1,ND(r2)),
where each of them is a dd con�ict part candidate for (r1, r2). In Step 2 of the
construction we select exactly these building bricks for minimal con�ict reasons
and compose them if composable. We then perform a breadth-�rst search (w.r.t.
size of composition) over all possible compositions of minimal con�ict reasons
for (r1,ND(r2)). The search returns all compositions for which we can �nd a
compatible con�ict part candidate (see Corollary 2) that leads to a dd reason
for (r1, r2) (see Prop. 1). We only continue searching for new minimal reasons if
we did not �nd a successful smaller composition already.



Completeness: By checking in the construction for all possible combinations
of minimal con�ict reasons for (r1,ND(r2)) if we can �nd a compatible con�ict
part candidate leading to an initial con�ict (see Prop. 1), we �nd all minimal
con�ict reasons for (r1,ND(r2)). ut

Having constructions for dr/dd minimal con�ict reasons at hand, we can
compute dd con�ict reasons. Each dd reason is composed from minimal reasons,
where at least one of them is dd (see Cor. 1). Their construction is thus analogous
to the one for dd minimal con�ict reasons with the following two di�erences: (1)
Instead of CPC 1 we have the set MCR1 of minimal dr/dd reasons for (r1, r2).
(2) Step 2 considers each set of n composable minimal reasons in MCR1 with
at least one of them dd, no matter if the composition of a subset is already
present in the result set or not (since we do not need minimality). Soundness
and completeness follows analogous to the proof of Theorem 2 based on Cor. 1
instead of Prop. 5 and omitting the argument for minimality.

7 Related Work and Conclusion

Our paper continues a recent line of research on con�ict and dependency anal-
ysis (CDA) for graph transformations aiming to improve on the previous CDA
technique of critical pair analysis (CPA). Originally inspired by the CPA in
term and term graph rewriting [3], the CPA theory has been extended to graph
transformation and generally, toM-adhesive transformation systems [11, 1].

Azzi et al. [12] conducted similar research to identify root causes of con�ict-
ing transformations as initiated in [8] and continued in [5]. Their work is based
upon an alternative characterization of parallel independence [13] that led to a
new categorical construction of initial transformation pairs. The most important
di�erence is that we de�ne our con�ict notions (including the dr/dd characteriza-
tion) for rule pairs instead of transformation pairs [12] with the aim of coming up
with e�cient CDA. Moreover, we consider con�ict atoms and (minimal) reasons,
whereas Azzi et al. [12] focus con�ict reasons (in our terminology).

In this paper, we extend the foundations for computing con�icts and depen-
dencies for graph transformations in a multi-granular way. In particular, our
earlier work relied on an over-approximation of (minimal) con�ict reasons; we
assumed a non-deleting version of the second rule of the considered rule pair as
input. In contrast, our present work introduces a new constructive characteri-
zation of (minimal) con�ict reasons distinguishing dr from dd reasons and we
present a basic computation procedure that is sound and complete. Building on
our recent work [2], we now support precise con�ict computation for any given
granularity level, from binary (con�ict atom) over medium (minimal con�ict rea-
son) to �ne (con�ict reason). Future work is needed to implement the presented
constructions, to evaluate e�ency and to investigate usability.
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A Additional Technicalities

This section contains technicalities that are necessary to proof the main results
of our paper.



De�nition 11 (initial con�ict [9]). A pair of transformations ic : (G
r1,m1
=⇒

H1, G
r2,m2
=⇒ H2) for a pair of rules (r1, r2) with deletion and boundary graphs Ci

and Bi over the morphisms lei : Ki → Li for i = 1, 2 (compare Fig. 2 for the
asymmetric case) is an initial con�ict if ic has the following properties:

1. Minimal context: m1 and m2 are jointly surjective.
2. At least one con�icting element being deleted by r1 and used by r2:

m1(L1) ∩m2(L2) 6⊆ m1(le1(K1)).
3. Overlap in deletion graphs only:

m1(L1) ∩m2(L2) ⊆ (m1(c1(C1)) ∩m2(L2)) ∪ (m1(L1) ∩m2(c2(C2))).
4. No isolated boundary node in overlap graph:
∀x ∈ m1(c1(b1(B1))) ∩m2(L2) :
∃e ∈ m1(c1(C1)) ∩m2(L2) : x = src(e) ∨ x = tgt(e) and
∀x ∈ m2(c2(b2(B2))) ∩m1(L1) :
∃e ∈ m2(c2(C2)) ∩m1(L1) : x = src(e) ∨ x = tgt(e).

Lemma 1 (Composition of pullback with monomorphism). Let b1 : B1 →
C and b2 : B2 → C be arbitrary morphisms in a category and m : C → D be a
monomorphism. Then a span B1

a1← A
a2→ B2 is a pullback of (b1, b2) if and only

if it is a pullback of (m ◦ b1,m ◦ b2).

Proof. For the whole argument, compare Fig. 7. First, let the spanB1
a1← A

a2→ B2

be a pullback of B1
b1→ C

b2← B2. Let q1 : Q→ B1 and q2 : Q→ B2 be morphisms
such that m ◦ b1 ◦ q1 = m ◦ b2 ◦ q2. Since m is monic, this implies b1 ◦ q1 = b2 ◦ q2.
By the universal property of A, there exists a unique morphism h : Q→ A such
that a1 ◦ h = q1 and a2 ◦ h = q2. Hence, the span B1

a1← A
a2→ B2 is a pullback of

B1
m◦b1−→ D

m◦b2←− B2 as well.

B1

Q A C D

B2

q1

q2

h

a1

a2

b1

m ◦ b1

b2

m ◦ b2

m

Fig. 7. Composing a pullback square with a monomorphism

Secondly, let the span B1
a1← A

a2→ B2 be a pullback of B1
m◦b1−→ D

m◦b2←− B2.
Let q1 : Q→ B1 and q2 : Q→ B2 be morphisms such that b1 ◦ q1 = b2 ◦ q2. By
composition with m also m ◦ b1 ◦ q1 = m ◦ b2 ◦ q2 holds. Again by the universal
property of A, there exists a unique morphism h : Q→ A such that a1 ◦ h = q1

and a2 ◦ h = q2. Hence, the span B1
a1← A

a2→ B2 is a pullback of B1
b1→ C

b2← B2

as well. ut



Lemma 2 (Compatibility of con�ict parts). Let rules r1 and r2 with con-

�ict part candidates s1 for (r1, r2) and s2 : C2
o2←↩ S2

q21→ L1 for (r2, r1) as in
Fig. 4 be given. If there exists a common graph G such that both rule r1 and r2
are applicable to G and s1 and s2 are con�ict parts with respect to the according
matches m1 and m2, then the con�ict parts s1 and s2 are compatible.

Proof. By assumption, there exists a graph G and matches m1 : L1 → G and
m2 : L2 → G such that m1 ◦ c1 ◦ o1 = m2 ◦ q12 and m1 ◦ q21 = m2 ◦ c2 ◦ o2. By
Lemma 1, computing the pullback of (c1 ◦ o2, q21) is the same as computing the
pullback of (m1 ◦c1 ◦o2,m1 ◦q21) since m1 is injective. But m1 ◦c1 ◦o1 = m2 ◦q12
and m1 ◦ q21 = m2 ◦ c2 ◦ o2 by assumption. Again, by Lemma 1, computing the
pullback of (m2 ◦ q12,m2 ◦ c2 ◦ o2) is the same as computing the pullback of
(q12, c2 ◦ o2). Thus, s1 and s2 are compatible. ut

Fact 3 (Overapproximating con�icts [2]) Given a pair of rules (r1, r2), the

following holds: If transformation pair (t1, t2) = (G
r1,m1
=⇒ H1, G

r2,m2
=⇒ H2) is in

delete-use con�ict, then transformation pair (t1, t
′
2) = (G

r1,m1
=⇒ H1, G

ND(r2),m2
=⇒

H ′2) is in dr con�ict according to Def. 2.

Lemma 3 (Covering of incident edges). Let a con�ict reason s1 for (r1, r2)
and a node x ∈ S1 be given such that there exists an edge e ∈ S1 that is incident
to x. If o1(x) ∈ C1 \B1 or q12(x) ∈ L2 \K2 (interpreted as di�erences of sets),
then there is no con�ict reason s′1 that embeds into s1, contains x but does not
contain e.

Proof (of Lemma 3). Assume such a con�ict reason s′1 to exist and G′ be a graph
to which both rules are applicable at matches m′1 and m′2 such that s′1 is the
corresponding con�ict reason. Then, m1(c1(o1(e(x)))) is a node to be deleted in
G′, either by application of r1 at m′1 or of r2 at m′2. But both m′2(q12(e)) and
m′1(c1(o1(e))) are necessarily incident edges to m1(c1(o1(e(x)))) in G′ and m′1
does not match m′2(q12(e)) and m′2 does not match m′1(c1(o1(e))) (otherwise, S

′
1

could not arise as pullback of (m′1 ◦ c1,m′2)). Hence, neither r1 is applicable at
match m′1 nor r2 at match m′2 which is a contradiction to the existence of s′1. ut

B Additional Proofs

Proof (of Proposition 1).

� It follows from Theorem 6 in [4] that an initial con�ict (t′1, t
′
2) = (K ′

m′
1,r1=⇒

P1,K
′ m

′
2,r2=⇒ P2) exists with the pullback of (m′1 ◦c1,m′2) being isomorphic to

s1. Consider the pushout (m1 : L1 → K,m2 : L2 → K) of L1
c1◦o1←↩ S1

q12→ L2

with the induced morphism k′ : K → K ′. We can deduce that m1 and m2

are the matches of an essential critical pair (t1, t2) that can be embedded
into (t′1, t

′
2) ([8], Theorem 4.1, part 1). In particular, (t1, t2) is an initial

con�ict, since it is an essential critical pair that does not overlap any isolated
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Fig. 8. Showing the morphism x12 : L1 → D2 to exist

boundary nodes [9]. Because of initiality it follows that (t′1, t
′
2) and (t1, t2)

are isomorphic.
We now show that (t1, t2) (being isomorphic to (t′1, t

′
2)) is dr. By de�nition

there exists a morphism k12 : S1 → K2 such that le2 ◦ k12 = q12.
Compute the intial pushout over the morphism c1 ◦ o1 as depicted in Fig. 8.
Since initial pushouts are closed by composition with pushouts (compare
Lemma 6.5 in [1]), the two left squares form an initial pushout over m2.
Since the right square is a pushout over m2 as well, there exist morphisms
y1 : BS → K2 and y2 : CS → D2 such that m1 ◦ cS = g2 ◦ y2. With that
property we compute

g2 ◦ d2 ◦ k12 ◦ bS = m2 ◦ le2 ◦ k12 ◦ bS
= m2 ◦ q12 ◦ bS
= m1 ◦ c1 ◦ o1 ◦ bS
= m1 ◦ cS ◦ z
= g2 ◦ y2 ◦ z .

Since g2 is injective and d2 ◦ k12 ◦ bS = y2 ◦ z, the the universal property the
left pushout square implies the existence of a morphism x12 : L1 → D2 such
that x12 ◦ cS = y2 and x12 ◦ c1 ◦ o1 = d2 ◦ k12. Now,

g2 ◦ x12 ◦ cS = g2 ◦ y2 = m1 ◦ cS

and

g2 ◦ x12 ◦ (c1 ◦ o1) = g2 ◦ d2 ◦ k12
= m2 ◦ le2 ◦ k12
= m2 ◦ q12
= m1 ◦ (c1 ◦ o1)

and since cS and c1◦o1 are jointly surjective (as co-projections of a pushout),
this implies g2 ◦ x12 = m1.



� It follows from Theorem 6 in [4] that an initial con�ict (t′1, t
′
2) = (K ′

m′
1,r1=⇒

P1,K
′ m

′
2,r2=⇒ P2) exists with the pullback of (m′1 ◦ c1,m′2) being isomorphic

to s1. Consider also the pullback s2 of (m′1,m
′
2 ◦ c1).

By construction, the preconditions of Lemma 2 are met and s1 and s2 are
compatible, hence. The matches induced by the pushout of the join of both

reasons L1
ls1← S

ls2→ L2 lead to an essential critical pair (t1, t2) that can be
embedded into (t′1, t

′
2) ([8], Theorem 4.1, part 2). In particular, (t1, t2) is an

initial con�ict, since it is an essential critical pair that does not overlap any
isolated boundary nodes [9]. Therefore by initiality both pairs are isomorphic.
Moreover (t1, t2) is a dd transformation: Assume a morphism x12 : L1 → D2

to exist such that g2 ◦ x12 = m1, i.e., assume the transformation to be dr.
Then m2 ◦ q12 = m1 ◦ c1 ◦ o1 = g2 ◦x12 ◦ c1 ◦ o1 and the universal property of
K2 as pullback of (m2, g2) implies the existence of a morphism k12 : S1 → K2

such that le2 ◦ k12 = q12. But this contradicts the assumption of s1 being
dd.
We show that s1 and s2 are moreover dd-overlapping. Since s1 is a dd con�ict
reason, we know that there exists an element y in S1 s.t. c1 ◦o1(y) ∈ L1 \K1

and q12(y) ∈ L2 \K2. Assume that only boundary nodes would be deleted
by r2, then since S1 does not contain any isolated boundary nodes, we have
a contradiction, since the incident edge would need to be deleted as well.
Now it follows that q12(y) has a preimage y′ in C2 \ B2 such that c2(y

′) =
q12(y). Since s1 was built as pullback of m′1 ◦ c1 and m′2 we know that
m′1(c1(o1(y))) = m′2(q12(y)). We thus have that m′1(c1(o1(y))) = m′2(c2(y

′)).
Because of compatibility, we know that there is a preimage of y′ in S2.
Therefore, it follows that also in S′ there is a preimage such that no morphism
k1 : S′ → K1 exists with le1 ◦k1 = c1 ◦o1 ◦a1 and no morphism k2 : S′ → K2

exists with le2 ◦ k2 = c2 ◦ o2 ◦ a2.
Finally, s2 is indeed a con�ict reason. By construction s2 ful�lls the com-
pleteness and transformation condition. From the fact that s1 and s2 are dd
overlapping, it follows that s2 ful�lls the weak con�ict condition. Since s2
was constructed from an initial con�ict, it also ful�lls the con�ict condition.

Proof (of Proposition 2). Since span s1 is a con�ict reason for rule pair (r1, r2),

there is an initial con�ict (Prop. 1) (t1, t2) = (G
r1,m1
=⇒ H1, G

r2,m2
=⇒ H2). Due to

Fact 3, the transformation pair (t1, t
′
2) = (G

r1,m1
=⇒ H1, G

ND(r2),m2
=⇒ H ′2) is a dr

con�ict. Span s1 is a con�ict reason for (r1, ND(r2)), since it ful�lls the trans-
formation condition because of the existence of (t1, t

′
2). Moreover, the con�ict

condition and completeness condition are still ful�lled.

Proof (of Proposition 3). Let s1 be a dr con�ict reason for rules r1 and r2. By
De�nition 6 there exists a morphism k12 : S1 → K2 such that le2 ◦ k12 = q12.
From Fact 1 we know that a dr con�ict reason is covered by con�ict atoms.
Assume that there exists a dd con�ict atom or non-pure dr con�ict atom s′1 :

C1

o′1←↩ S′1
q′12→ L2 that embeds into s1 via morphism e : S′1 → S1. De�ne a

morphism k′12 : S′1 → K2 via k′12 := k12 ◦ e. Since e is an embedding it holds



that q′12 = q12 ◦ e = le2 ◦ k12 ◦ e = le2 ◦ k′12. This is a contradiction to s′1 being a
dd con�ict atom or non-pure dr con�ict atom.

Let s1 be a dd reason for rules r1 and r2. By De�nition 6 there does not
exist a morphism k12 : S1 → K2 such that le2 ◦ k12 = q12. Assume that s1 is
covered by pure dr atoms only. Then this leads to a contradiction, since it would
be possible to construct a morphism k12 : S1 → K2 such that le2 ◦ k12 = q12,
since for each of the atoms covering s1 such a morphism exists and all incident
edges of pure dr atoms are preserved by de�nition by the second rule as well. ut

Proof (of Proposition 4). By Corollary 2, s1 is a dr con�ict reason for the rule
pair (r1, ND(r2)). We show that it is also minimal.

Assume s1 to not be minimal as con�ict reason for the rule pair (r1, ND(r2)),

i.e., there exists a con�ict reason s′1 : C1

o′1←↩ S′1
q′12→ L2 which embeds into s1

via morphism e : S′1 → S1. By the transformation condition, there exists a
graph G′ and matches m′1 and m′2 for r1 and ND(r2), respectively, such that
r1 and ND(r2) are applicable at these matches and S′1 is the pullback of (m′1 ◦
c1,m

′
2). We show that also r2 is applicable at match m′2. Thus, s

′
1 would be a

con�ict reason for (r1, r2) as well which contradicts the minimality of s1. By

Proposition 1, we can assume without loss of generality that L1

m′
1

↪→ G′
m′

2←↩ L2

is the pushout of (c1 ◦ o′1, q′12). By its universal property, there is a morphism
f : G′ → G such that f ◦m′2 = m2. The only way for r2 to not be applicable at
m′2 is that it deletes a node without deleting an incident edge. Assume x ∈ G′ to
be such a node, i.e., it is an element of m′2(L2 \K2). Then f(x) is an element of
m2(L2 \K2) in G and since s1 is dr, f(x) /∈ m2(le2(k12(S1))). By commutativity
of the involved morphisms, x /∈ m′2(le2(k12(e(S

′
1)))). Hence, every edge that is

incident to x also stems from L2\K2 and is deleted by application of r2 at match
m′2 as well. ut

Proof (of Proposition 5). Consider s1 as minimal con�ict reason for (r1, r2),
then we know from Corollary 2 that s1 is also a con�ict reason for (r1, ND(r2)).
From Fact 1 we know that each such con�ict reason is composed of minimal
con�ict reasons for (r1, ND(r2)). Let M = {smi | i ∈ I} be this set of minimal
con�ict reasons for (r1, ND(r2)) that s1 is composed of. Assume that smi is a
dr con�ict part candidate for (r1, r2). Since smi is moreover a minimal reason
for (r1, ND(r2)) it is a dr minimal reason for (r1, r2) due to Proposition 4.
Because of Proposition 1 we know that smi gives rise via pushout construction
(overlapping merely smi ) to a dr initial con�ict. This is a contradiction with s1
being minimal. ut

Proof (of Proposition 6). Let x be an arbitrary element of S1. First, if x is an
edge such that both the source and target nodes of o1(x) and q12(x) already are
elements of B1 and of K2, respectively, the subgraph S′1 of S1 only consisting of
x and its incident nodes, is a minimal con�ict reason: Gluing L1 and L2 along S′1
results in a graph to which both r1 and r2 are applicable and S′1 is the according
con�ict reason. Moreover, S′1 is obviously minimal.



Secondly, let x ∈ S1 be any other element. Let s′1 : C1

o′1←↩ S′1
q′12→ L2 be a

con�ict reason that contains x, embeds into s1, and into which no other con�ict
reason that contains x embeds. We show that s′1 is a minimal con�ict reason.
It is not di�cult to see that S′1 consists of only one connected component and
does not contain an edge e such that both the source and target nodes of o′1(e)

and q′12(e) already are elements of B1 and of K2. Assume s2 : C1
o2←↩ S2

q22→ L2

to be a con�ict reason that can be embedded into s′1 and whose con�ict graph
S2 does not contain x. Then S′1 \S2, de�ned via initial pushout, contains x and,
moreover, by Lemma 3 none of its boundary nodes is to be deleted by either r1
or r2 (otherwise, the incident edges would have been elements of S2). We show
S′1 \ S2 to be a con�ict reason. This is a contradiction to the minimality of S′1.

Glue L1 and L2 along S2 \ S′1. We show that r1 and r2 are applicable to
the resulting graph G2 at the induced matches. The only possibility for r1 or
r2 to not be applicable is a dangling edge. Let n be a node in G2 that is to be
deleted by r1. If n does not stem from S′1 \ S2, none of its incident edges does.
Thus, every incident edge is to be deleted by r1 as well. If n stems from S′1 \ S2

it can be a boundary node, i.e., it may also be contained in S2. Assume n to
be a boundary node. As boundary node, an incident edge needs to exist that
does not belong to S2. But since s2 is a con�ict reason, Lemma 3 implies that
every edge incident to x also belongs to S2. Hence, this situation cannot occur.
Thus, x /∈ S2. But this implies that every edge incident to x is to be deleted as
well by r1�otherwise s′1 would not be a con�ict reason. A completely analogous
argument shows that r2 is applicable to G2. ut


