
Constructing Constraint-Preserving Interaction

Schemes in Adhesive Categories

Extended Version

Jens Kosiol1, Lars Fritsche2, Nebras Nassar1, Andy Schürr2, and Gabriele
Taentzer1

1 Philipps-Universität Marburg
{kosiolje,nassarn,taentzer}@mathematik.uni-marburg.de

2 TU Darmstadt
{lars.fritsche,andy.schuerr}@es.tu-darmstadt.de

Abstract. When using graph transformations to formalize model trans-
formations, it is often desirable to design transformations that preserve
consistency with respect to a given set of (model) integrity constraints.
The standard approach is to equip transformations with suitable appli-
cation conditions such that the introduction of constraint violations is
prevented. This may lead to rules that are applicable seldom or even inap-
plicable at all, though. To supplement this approach, we present a new and
systematic procedure to develop correct-by-construction transformations
with respect to a special kind of constraints. Instead of controlling the
applicability of a rule we complement its action in such a way that a given
constraint holds after application: For every way in which the rule could
introduce a violation of the constraint, we derive a supplementary action
for the rule that remedies that violation. We formalize this construction
in the setting of adhesive categories for monotonic rules and positive
atomic constraints and present sufficient conditions for its correctness.

Keywords: Algebraic Graph Transformation · Multi-Amalgamation ·
Nested Graph Constraints · Correctness-by-Construction

1 Introduction

Algebraic graph transformation [4] has proved to be a suitable formal framework
to reason about model transformations [3]. In application scenarios like model gen-
eration and editing or refactoring of models, it is desirable that transformations
preserve consistency with respect to a set of (model) integrity constraints. Nested
constraints [7] allow to express (first-order) properties of graphs and (a large
subset of) constraints formulated in OCL [16] – a widespread constraint language
in modeling – may be (automatically) translated into those [17,13]. In the context
of algebraic graph transformation, the standard approach to ensure the validity of
results of transformations with respect to a constraint is to equip transformation
rules with suitable application conditions. This approach is elaborated for arbi-
trarily nested constraints inℳ-adhesive categories [7] and has tool support for

2 J. Kosiol et al.

EMF model transformations [13]. It comes in two variants: Given a constraint 𝑐
and a rule, one can construct a 𝑐-guaranteeing and a 𝑐-preserving application
condition for the rule. The 𝑐-guaranteeing application condition ensures that the
rules’ application is possible if and only if the constraint 𝑐 is fulfilled afterwards.
The 𝑐-preserving one is logically weaker: The constraint 𝑐 is only ensured to be
fulfilled after a rule application if it was so before. Though sound from the formal
point of view for every constraint, from the practical point of view the results are
especially satisfactory in the case of negative constraints, which forbid a certain
structure to exist. Then the new application conditions prohibit applications of
the rule that would introduce this structure. However, for positive constraints
requiring structures to exist, an application of a rule may be prohibited, e.g.,
because it creates a structure that necessitates another structure to exist that is
not created likewise. In this way, frequently the application conditions stemming
from positive constraints lead to rules which are applicable only rarely or are
even inapplicable at all (see Sect. 2 for a concrete example).

To supplement this just described approach, we develop an alternative con-
struction. Given a positive constraint 𝑐, instead of using application conditions,
our idea is to complement the action of a rule in such a way that 𝑐 holds after
its application. Our construction works for monotonic rules, i.e., rules which
only create structure, and positive atomic constraints. Some instance 𝐺 satisfies
a positive atomic constraint – which may be compactly notated as ∀ (𝑃,∃𝐶)
where 𝑃 is a subobject of 𝐶 – if for all subobjects of 𝐺 that are isomorphic to 𝑃
there exists a subobject isomorphic to 𝐶 which includes the image of 𝑃 . Positive
atomic constraints are highly relevant in practice, e.g., they occur frequently
when translating OCL into graph constraints and the application conditions
arising from them in the standard approach are often way to restrictive.

The crucial idea of our approach is to calculate all possible ways in which the
application of a rule 𝑟 may lead to a new match for the premise 𝑃 of a constraint
𝑐 = ∀ (𝑃,∃𝐶). These are the different ways in which an application of 𝑟 may
introduce a new violation of 𝑐. They can significantly differ from each other
and thus require diverging actions to resolve the would-be introduced violation.
Hence, for each such situation we derive a rule that includes 𝑟 as subrule but
additionally creates structure that complements the new match for 𝑃 to a new
match for 𝐶. All these rules are collected into an interaction scheme [6] that is
constraint-preserving: Applying an interaction scheme means to apply a common
subrule – here 𝑟 – once and every other rule from the interaction scheme as
often as possible but with fixed partial match given by the match of the common
subrule (the common actions are only performed once). In this way, every image
of 𝑃 that gets newly created by an application of 𝑟 is complemented to an image
of 𝐶 by application of one of the rules of the interaction scheme and the validity
of the constraint is preserved. Slightly extending this construction also gives
a constraint-guaranteeing interaction scheme, i.e., an interaction scheme that
additionally includes rules that “repair” already existing violations.

The original motivation for this research is to continue work from [12]. There,
multi-rules for triple graph grammars (TGGs) [19] – a formalism for the declar-

Constraint-Preserving Interaction Schemes 3

ative description of consistency relationships between two modeling languages
with graph-like representations – have been developed. The exemplary multi-rules
in [12] serve to preserve consistency with (informally described) constraints but
were developed “by hand”. This has the disadvantage that preservation of the
constraint is not ensured by construction and has to be checked on a case-by-case
basis. Our work paves the way to automate the design of those multi-rules in a
way that guarantees correctness by construction. Our restriction to monotonic
rules corresponds with that motivation since TGGs are composed of those.

The main contribution of this paper is the introduction and formalization
of constraint-preserving and -guaranteeing interaction schemes in the setting of
adhesive categories [11]. It is organized as follows. In Sect. 2 we illustrate our
results with an example. Section 3 recalls relevant background. In Sect. 4 we
present our construction of interaction schemes while Sect. 5 points out further
possibilities to refine that construction. Section 6 compares to related work before
we conclude in Sect. 7. This extended version differs from the original paper in
the following respects: A short introduction to adhesive categories and those of
their properties important for our proofs is given in Appendix A. These proofs
are given in Appendix B. Moreover, the main text includes additional definitions
and an additional lemma, clearly marked as such. Example 1 is extended and
Appendix C illustrates a concept, merely stated in Sect. 5, in more detail.

2 Introductory Example

We adapt the example from [12] since, in a way, we continue the work of con-
structing multi-amalgamated rules for triple-graph grammars (TGGs). There, a
TGG for co-evolution of a class diagram and a documentation structure is given.
We use a simplified version of this example, namely a plain graph grammar.

Doc Entry
owned

refDoc

refEntry

Fig. 1. Meta-model for
documentation structures

The meta-model in Fig. 1 is a blueprint for sim-
ple documentation structures. They consist of Docs
owning Entries. Moreover, Docs reference Docs and En-
tries. Figure 2 presents a grammar allowing to create
instances of the meta-model. Black elements have to
exist for a rule to be applicable and green elements
(additionally marked with ++) are newly created upon
application. The rules allow for creation of a new Doc, insertion of a reference
between existing Docs, and creation of an Entry to an existing Doc, respectively.

d :
Doc

++
Rule createDoc

d1 :
Doc

d2 :
Doc

refDoc

++
d :

Doc
e :

Entry

owned

++

Fig. 2. Monotonic rules to create documentation structures

4 J. Kosiol et al.

If an instance of that meta-model is to be understood as documentation
structure for a class-diagram, it is reasonable, e.g., to expect owned Entries of
referenced Docs to be referenced, too. This constraint is expressible as positive
atomic constraint. Figure 3 depicts it in an intuitive graphical representation.

∀

⎛
⎜⎜⎜⎜⎝

doc1:
Doc

doc2:
Doc

ent:
Entry

refDoc owned , ∃ doc1:
Doc

doc2:
Doc

ent:
Entry

refDoc owned

refEntry ⎞
⎟⎟⎟⎟⎠

Fig. 3. Constraint PropagationOfEntries

The (simplified) constraint-preserving version of createEntry with respect to
PropagationOfEntries is depicted in Fig. 4. Its application is prohibited at every
Doc that is already referenced by another one. Thus, the creatable instances and
the order of possible rule applications are severely restricted. As an alternative,
we will automatically derive so-called multi-rules like createEntry-multi depicted
in Fig. 5. Applying it as so-called interaction scheme with kernel rule createEntry
at a Doc still creates an Entry but additionally inserts a reference to this Entry
from every Doc that references the chosen Doc. This is equivalent to applying its
complement rule (Fig. 6) at every possible match with fixed partial match induced
by a precedent application of createEntry. Applying, e.g., the rule createEntry at

owned

d1 :
Doc

refDoc d2 :
Doc

e :
Entry

Rule createEntry-NAC

Fig. 4. Rule createEntry
with negative application
condition (the crossed-out
red elements are forbidden
to exist)

owned
refEntry

d1 :
Doc

++

refDoc*

++

*

d2 :
Doc

*

e :
Entry

++

Rule createEntry-multi

Fig. 5. Multi-rule of cre-
ateEntry (when seen as inter-
action scheme, the parts dec-
orated with a Kleene star are
applied as often as possible)

owned
refEntry

d1 :
Doc

refDoc

++

d2 :
Doc

e :
Entry

Rule createEntry-comp

Fig. 6. Complement rule of
createEntry-multi for cre-
ateEntry as subrule

node d1 to the graph depicted in Fig. 7 leads to the graph in Fig. 8. This clearly
violates the constraint PropagationOfEntries. While the rule createEntry-NAC

is not applicable at that match, applying the rule createEntry-multi at it as
interaction scheme leads to the valid instance depicted in Fig. 9.

Constraint-Preserving Interaction Schemes 5

d1:
Doc

d2:
Doc

d3:
Doc

refDoc refDoc

Fig. 7. Example for an in-
stance graph

d1:
Doc

d2:
Doc

d3:
Doc

e:
Entry

refDoc refDoc

owned

Fig. 8. After application of
rule createEntry at d1

d1:
Doc

d2:
Doc

d3:
Doc

e:
Entry

refDoc refDoc

owned

refEntryrefEntry

Fig. 9. After application of
createEntry-multi at d1

3 Preliminaries

In this section, we present some technical preliminaries. We conduct our work in
the framework of adhesive categories [11]. They have been introduced as a general
setting for double pushout rewriting and can be understood as categories where
pushouts along monomorphisms behave like pushouts along injective functions in
the category of sets and functions. Here, we only recall rules and transformations
in adhesive categories with a focus on multi-amalgamation after introducing
positive atomic constraints.

To express properties of graphs in a way fitting to the algebraic approach
to graph transformation, first graph predicates or graph conditions have been
developed (being expressively equivalent to a first-order logic on graphs) and
later been generalized to the setting of so-called ℳ-adhesive categories [18,7].
Our approach deals with a small but nonetheless in practice highly important
fragment of that logic, namely positive atomic constraints [4].

Definition 1 (Positive atomic constraint). In an adhesive category 𝒞, a
positive atomic constraint 𝑐 is a monomorphism 𝑝 : 𝑃 →˓ 𝐶 between two objects.

We will write 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓ 𝐶) or ∀ (𝑃,∃𝐶) for short for such a constraint.

We call 𝑃 the premise and 𝐶 the conclusion of the constraint.

An object 𝐺 satisfies a positive atomic constraint 𝑐, denoted by 𝐺 |= 𝑐, if for
every monomorphism 𝑔 : 𝑃 →˓ 𝐺 there exists a monomorphism 𝑞 : 𝐶 →˓ 𝐺 such

that 𝑔 = 𝑞 ∘ 𝑝.

Positive atomic constraints are the only kind of constraints we consider, so we will
just call them constraints when this is not apt to introduce misunderstanding.

Rules are a declarative way to define transformations of objects. They consist
of a left-hand side 𝐿, a right-hand side 𝑅, and an interface 𝐾. Informally, in
the category of graphs, the application of a rule to a graph 𝐺 means to delete
the elements of 𝐿 and create those of 𝑅 while preserving the elements stemming
from the interface 𝐾. A match identifies the “location” in 𝐺 where this is done.
Formally and more generally in adhesive categories, a transformation can be
defined using two pushout diagrams.

Definition 2 ((Monotonic) Rule. Transformation). Given an adhesive

category C, a rule 𝑝 consists of three objects 𝐿, 𝐾, and 𝑅, called left-hand
side (LHS), interface, and right-hand side (RHS), and two monomorphisms

6 J. Kosiol et al.

𝑙 : 𝐾 →˓ 𝐿, 𝑟 : 𝐾 →˓ 𝑅. Its inverse rule is the rule 𝑝−1 = (𝑅 ←˒ 𝐾 →˓ 𝐿). A rule

𝑝 = (𝐿 ←˒ 𝐾 →˓ 𝑅) is called monotonic (or non-deleting) if 𝑙 : 𝐾 →˓ 𝐿 is an

isomorphism. In that case we just write 𝑟 : 𝐿 →˓ 𝑅.

Given a rule 𝑝 = (𝐿 ←˒ 𝐾 →˓ 𝑅), an object 𝐺, and a

monomorphism 𝑚 : 𝐿 →˓ 𝐺, called match, a (direct)
transformation 𝐺⇒𝑝,𝑚 𝐻 from 𝐺 to 𝐻 via 𝑝 at match

𝑚 is defined by the diagram to the right where both

squares are pushouts.

𝐿 𝐾 𝑅

𝐺 𝐷 𝐻

𝑙 𝑟

𝑚 𝑛

A rule 𝑝 is called applicable at match 𝑚 if the first pushout square above

exists, i.e., if 𝑚 ∘ 𝑙 has a pushout complement.

Since we exclusively consider monotonic rules in this paper, we will just
call them rules and give the following definition for the monotonic case only.
Subrules and their multi-rules have a twofold purpose. First, the application of
a rule, then called a multi-rule, may be equivalently split into the application
of a subrule followed by one of a complement rule with respect to that subrule.
An example is displayed in Fig. 6; we give a definition after the following one.
This decomposition of a rule application allows for important extensions in two
directions: coordinated parallelism and a for-each like syntax. A subrule may
capture the common behavior of several multi-rules and thus serve as a kernel to
amalgamate their respective actions into application of a singlemulti-amalgamated

rule. Secondly, often a subrule is intended to be applied once followed by as many
applications of the complement rule as possible. Interaction schemes unify both
ideas into one concept: An interaction scheme consists of a bundle of multi-rules
for the same kernel rule. Its application is defined by applying the kernel rule
once and each of the complement rules of the multi-rules as often as possible
with the fixed partial match given by application of the kernel rule.

Definition 3 (Subrule. Multi-rule. Interaction scheme. Application).

A subrule or kernel rule 𝑟0 of a rule 𝑟1 : 𝐿1 →˓ 𝑅1 is a rule

𝑟0 : 𝐿0 →˓ 𝑅0 with kernel morphism 𝑠1 : 𝑟0 →˓ 𝑟1 consisting

of the monic components 𝑠1,𝐿 : 𝐿0 →˓ 𝐿1 and 𝑠1,𝑅 : 𝑅0 →˓ 𝑅1
such that the arising square in the diagram to the right is a

pullback. The rule 𝑟1 is then called a multi-rule for 𝑟0.

𝐿0 𝑅0

𝐿1 𝑅1

𝑟0

𝑠1,𝐿 𝑠1,𝑅

𝑟1

An interaction scheme is a finite set is = {𝑠1, . . . , 𝑠𝑛} of kernel morphism

from a kernel rule 𝑟0 to different multi-rules 𝑟1 : 𝐿1 →˓ 𝑅1, . . . , 𝑟𝑛 : 𝐿𝑛 →˓ 𝑅𝑛 of

𝑟0. The application of the interaction scheme is to an object 𝐺 with kernel match

𝑚0 : 𝐿0 →˓ 𝐺 is defined as follows: A maximal matching 𝐽 for is is computed,

i.e., a family of matches (𝑚𝑗 : 𝐿𝑗 →˓ 𝐺)𝑗∈𝐽 that is (i) consistent, i.e.,

𝑚0 = 𝑚𝑗 ∘ 𝑠𝑗,𝐿 for all 𝑗 ∈ 𝐽

and (ii) maximal, i.e., no further match for one of the LHSs 𝐿1, . . . , 𝐿𝑛 can be

added to the family of matches such that it still is consistent.

Then, the (multi-)amalgamated rule 𝑟𝑠 : 𝐿𝑠 →˓ 𝑅𝑠, that is the rule arising by

computing the colimits 𝐿𝑠 of the family of morphisms (𝑠𝑗,𝐿)𝑗∈𝐽 and 𝑅𝑠 of the

family of morphisms (𝑠𝑗,𝑅)𝑗∈𝐽 with 𝑟𝑠 being induced by the universal property of

𝐿𝑠, is applied.

Constraint-Preserving Interaction Schemes 7

Remark 1. In adhesive categories, for every finite family 𝐽 of matches the col-
imits exist (as iterated pushouts along monomorphisms), the morphism 𝑟𝑠 is a
monomorphism, and all rules 𝑟𝑗 are subrules of the resulting multi-amalgamated
rule 𝑟𝑠 [6]. In practical applications, e.g., when working with finite graph-like
structures, this property is automatically fulfilled.

The following definition is just one way to introduce complement rules; the
construction of a rule with the desired properties is not unique. Our choice, also
used in [12], is a simple possibility for monotonic rules. A more general, but quite
involved one can be found in [6]. The relevant theorems derived there using the
more general construction are still valid in our setting. The most important one of
these is the Multi-Amalgamation Theorem stating how bundles of transformations
may be composed into application of one multi-amalgamated rule and application
of a multi-amalgamted rule may be decomposed into a bundle of transformations.

Additional Definition 1 (Complement rule).

In an adhesive category 𝒞, given a kernel rule

𝑟0 : 𝐿0 →˓ 𝑅0 with multi-rule 𝑟1 : 𝐿1 →˓ 𝑅1
and kernel morphism 𝑠1 : 𝑟0 →˓ 𝑟1, the com-
plement rule 𝑟1 of 𝑟1 with respect to 𝑟0 is

defined as 𝑟1 : 𝐿1 →˓ 𝑅1, where 𝐿1 is com-

puted as pushout of 𝑟0 and 𝑠1,𝐿, 𝑅1 = 𝑅1 and

𝑟1 is induced by the universal property of the

pushout (as depicted to the right).

𝑅0

𝐿0 (𝑃𝑂) 𝐿1 𝑅1 = 𝑅1

𝐿1

𝑟0

𝑠1,𝐿

𝑒1

𝑠1,𝑅

𝑒2

𝑟1

𝑟1

The next Lemma states the well-definedness of the above construction and,
more importantly, that an application of a multi-rule may equivalently be split
into an application of the kernel rule followed by an application of the complement
rule where the matches agree on certain parts. Formally it expresses the multi-rule
as a concurrent rule (see [4, Def. 5.21]). The Concurrency Theorem [4, Thm. 5.23]
then gives the analysis of the application of the multi-rule into two applications
of first the kernel and then the complement rule.

Additional Lemma 1 (Well-definedness and property of complement

rule). In an adhesive category 𝒞, given a kernel rule 𝑟0 : 𝐿0 →˓ 𝑅0 with multi-

rule 𝑟1 : 𝐿1 →˓ 𝑅1 and kernel morphism 𝑠1 : 𝑟0 →˓ 𝑟1 and the complement

rule 𝑟1 : 𝐿1 →˓ 𝑅1 as defined above, then 𝑟1 is a monomorphism, i.e., the rule

𝑟1 : 𝐿1 →˓ 𝑅1 is well-defined. Moreover, 𝑟1 = 𝑟0 *𝐿1
𝑟1, where *𝐿1

denotes the

concurrent rule construction with 𝐸-dependency object 𝐿1.

For formalizing our intended construction, we need a way to express the
difference between objects in the setting of adhesive categories. The concept of
initial pushouts [4] allows for this.

Definition 4 (Initial pushout). Given a morphism 𝑒 : 𝐸 → 𝑃 , an initial
pushout over 𝑒 is a pushout (0) as in the left square below such that 𝑏𝑃 is a

monomorphism and the pushout (0) factors as a pushout (1) uniquely through

8 J. Kosiol et al.

every pushout (2) over 𝑒 where 𝑏′
𝑃 is a monomorphism as in the right diagram

below. Given an initial pushout (0) over 𝑒, 𝐵𝑃 is called the boundary object and
𝐶𝑃 the context object with respect to 𝑒.

𝐵𝑃 𝐸

(0)

𝐶𝑃 𝑃

𝑏𝑃

𝑒

𝑐𝑃

𝐵𝑃 𝐴1 𝐸

(1) (2)

𝐶𝑃 𝐴2 𝑃

𝑏′
𝑃𝑏*

𝑃

𝑏𝑃

𝑒

𝑐*
𝑃

𝑐𝑃

𝑐′
𝑃

In the category of sets, if the morphism 𝑒 : 𝐸 → 𝑃 is injective, the set 𝐵𝑃 is
empty and 𝐶𝑃 is isomorphic to 𝑃 ∖𝑒(𝐸). In the category of graphs, if 𝑒 is injective,
𝐶𝑃 is the graph arising by adding to 𝑃 ∖ 𝑒(𝐸) those nodes from 𝐸 necessary to
complete it to a graph and 𝐵𝑃 consists exactly of those boundary nodes. Thus,
𝐵𝑃 consists of those nodes of 𝐸 which get mapped to a node with an adjacent
edge in 𝑃 that has no preimage in 𝐸. Thus, we will often use 𝑃 ∖ 𝐸 instead of
𝐶𝑃 to denote the context object in an initial pushout over a monomorphism.

4 Constraint-Preserving Interaction Schemes

In this section, we develop our construction of constraint-preserving and -guaran-
teeing interaction schemes. We prove the construction to be well-defined, i.e., it
results in a family of multi-rules, and present sufficient conditions for the desired
preservation property of the arising interaction schemes.

The central idea of the construction of a constraint-preserving interaction
scheme is to identify each way in which the application of a rule may introduce
a violation of a given positive atomic constraint 𝑐 = ∀ (𝑃,∃𝐶). These are the
different ways in which the rule can create a new occurrence of 𝑃 . For each
such situation we derive a multi-rule that additionally amends this new 𝑃 to 𝐶.
Applying the such arising interaction scheme instead of the original rule preserves
the validity of the constraint (if the multi-rules themselves do not introduce new
violations again). Slightly extending this strategy additionally provides rules
that repair already existing violations of the constraint, i.e., enable to not only
preserve but guarantee consistency.

We first introduce compatible rule-constraint intersections to classify the
ways in which a rule 𝑟 : 𝐿 →˓ 𝑅 may introduce an image of the premise 𝑃 of
a constraint ∀ (𝑃,∃𝐶). Assume a transformation 𝐺 ⇒𝑟,𝑚 𝐻 to be given; the
co-match is an embedding of 𝑅 in 𝐻. If there is an image of 𝑃 in 𝐻, it intersects
with that image of 𝑅 in 𝐻 (maybe emptily). This intersection restricts to an
intersection between the images of 𝐿 and 𝑃 in 𝐻 as well. Thus, we introduce
compatible intersections as monomorphisms 𝜄 : 𝐷 →˓ 𝐸 where 𝐸 is a subobject
of 𝑅 and 𝑃 and 𝐷 is a subobject of 𝐿 and 𝑃 in a compatible way. The intuition
is that 𝐷 is that part of 𝑃 already matched by the rule and 𝐸 ∖𝐷 is the part
the rule’s application created anew. This suggests that if 𝜄 is an isomorphism, a
situation is captured where the rule only matches some part of an image of 𝑃

Constraint-Preserving Interaction Schemes 9

without creating a part of it (compare Lemma 2). We only need to consider those
intersections that actually stem from applications of rules. Thus, calculating all
such intersections gives all conceivable different ways in which an application of
the rule might introduce a new subobject (isomorphic to) 𝑃 .

Definition 5 (Compatible rule-constraint intersection). Let 𝒞 be an

adhesive category, 𝑟 : 𝐿 →˓ 𝑅 a monotonic rule, and 𝑐 = ∀ (𝑃,∃𝐶) a positive

atomic constraint in 𝒞. A compatible rule-constraint intersection for 𝑟 and 𝑐 is a

pair of spans of monomorphisms 𝑑 : 𝐿
𝑑𝐿←−˒ 𝐷

𝑑𝑃−˓→ 𝑃 and 𝑒 : 𝑅
𝑒𝑅←−˒ 𝐸

𝑒𝑃−˓→ 𝑃 with

monomorphism 𝜄 : 𝐷 →˓ 𝐸 such that (compare Fig. 10)

1. 𝑑𝑃 = 𝑒𝑃 ∘ 𝜄,
2. the square (1) is a pullback, i.e., 𝜄 : 𝐷 →˓ 𝐸 is a subrule of 𝑟, and
3. there exists an object 𝐻 and monomorphisms 𝑛1 : 𝑅 →˓ 𝐻 and 𝑚2 : 𝑃 →˓ 𝐻

such that the arising square (2) is a pullback and a pushout complement 𝐺
for 𝑛1 ∘ 𝑟 exists (i.e., the rule 𝑟−1 is applicable at 𝐻 with match 𝑛1).

𝐵𝑃

𝐷

𝐿 (4)

(1) 𝐺 𝐵𝑃

𝐸 (3) 𝑃 ∖ 𝐸

𝑅 (2) 𝑃

𝐻

𝑒𝑅 𝑒𝑃

𝑟

𝑚1

𝑏𝑃

𝑐𝑃

𝑑𝐿

𝑑𝑃

𝜄

𝑛1

𝑚2

𝑔

Fig. 10. Compatible intersections

𝐵𝑃

𝐷 𝑃 ∖ 𝐸

𝐿 𝐷 +𝐵𝑃 𝑃 ∖ 𝐸

𝐿𝑑,𝑒

𝐸

𝑅 𝐶

𝑅𝑑,𝑒

𝑑𝐿

𝜄

𝑟

𝑒𝑅

𝑝 ∘ 𝑒𝑃

𝑥

𝑟𝑑,𝑒

Fig. 11. Construction of the multi-rule 𝑟𝑑,𝑒

Example 1. The uppermost diagram in Fig. 12 depicts a compatible rule-constraint
intersection for rule createEntry and the constraint PropagationOfEntries. It is
the only compatible intersection for them where 𝜄 is not an isomorphism.

Only intersecting the node of type Entry from the rule’s RHS with the one
from the constraint’s premise (inducing an empty intersection between the LHS
and the premise as depicted in the second diagram in Fig. 12) leads to a pair of
intersections that satisfy the first two properties of Definition 5 but not the third
one: It is not possible that an application of createEntry only creates the node of
type Entry of an occurrence of the premise but not its corresponding incoming
edge of type ownedEntry as this would imply that the edge existed without a
target node before the application of the rule createEntry which is not allowed in
a graph. This situation is depicted as last diagram in Fig. 12.

10 J. Kosiol et al.

d :
Doc

e :
Entry

owned

d :
Doc

doc1 :
Doc

doc2 :
Doc

refDoc

ent :
Entry

owned

d,doc2 :
Doc

d,doc2 :
Doc

e,ent :
Entry

owned

dL

eR

eP

dP

ι l

d :
Doc

e :
Entry

owned

d :
Doc

doc1 :
Doc

doc2 :
Doc

refDoc

ent :
Entry

owned

e,ent :
Entry

dL

eR
eP

dP

ι l

doc1 :
Doc

doc2 :
Doc

refDoc

owned

d :
Doc

Compatible rule-constraint intersection:

Incompatible rule-constraint intersection:

Implied situation before rule application:

Fig. 12. A compatible and an incompatible rule-constraint intersection for rule cre-
ateEntry and constraint PropagationOfEntries (node names indicate the morphisms)

Constraint-Preserving Interaction Schemes 11

In the example above, the node doc2 is a (in fact the only) boundary element:
When deleting 𝐸 from 𝑃 , this node needs to be added to the result again for
it to become a graph (so that the edge of type refDoc is not dangling). This
signifies that this node must have been existent before application of the rule
and is one of the places (here even the place) at which 𝐸 and 𝑃 ∖ 𝐸 are glued to
receive a complete copy of 𝑃 . Hence, this node needs to be matched by the rule
application to create 𝑃 and, thus, is already part of 𝐷, the intersection of 𝐿 and
𝑃 . The next lemma states that this generalizes, i.e., the boundary object 𝐵𝑃 is
always a subobject of 𝐷 and the existence of this inclusion morphism is vital for
our construction.

Lemma 1 (Covering of boundary elements). Let 𝒞 be an adhesive category

with initial pushouts, 𝑟 : 𝐿 →˓ 𝑅 a rule, 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓ 𝐶) a constraint in

𝒞, and (𝑑 : 𝐿 ←˒ 𝐷 →˓ 𝑃, 𝑒 : 𝑅 ←˒ 𝐸 →˓ 𝑃) with monomorphism 𝜄 : 𝐷 →˓ 𝐸
a compatible rule-constraint intersection. Let 𝐵𝑃 be the boundary object of the

initial pushout over 𝑒𝑃 : 𝐸 →˓ 𝑃 . Then there exists a monomorphism 𝑥 : 𝐵𝑃 →˓ 𝐷
such that 𝜄∘𝑥 = 𝑏𝑃 . In particular, 𝐵𝑃 is a pullback object for the monomorphisms

𝜄 : 𝐷 →˓ 𝐸 and 𝑏𝑃 : 𝐵𝑃 →˓ 𝐸 (compare Fig. 10).

Given a compatible rule-constraint intersection (𝑑, 𝑒), we use it to compute a
multi-rule 𝑟𝑑,𝑒. Its RHS is just the join of 𝑅 and 𝐶 along 𝐸, thus completing a
newly created 𝑃 to 𝐶. The multi-rule 𝑟𝑑,𝑒 should match exactly in those cases
where 𝑟 creates a new 𝑃 by adding 𝐸 ∖ 𝐷 to some already existing structure.
Thus, 𝑃 has to exist except for the part 𝐸 ∖𝐷 before rule application and the
multi-rule needs to match that structure. This is achieved by joining 𝐿 with the
join of 𝑃 ∖ 𝐸 and 𝐷 along the boundary object 𝐵𝑃 .

Construction 1 (Constraint-guaranteeing and constraint-preserving

interaction scheme). Let 𝒞 be an adhesive category with initial pushouts,

𝑟 : 𝐿 →˓ 𝑅 a monotonic rule, and 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓ 𝐶) a positive atomic con-

straint in 𝒞. For each (up to isomorphism) compatible rule-constraint intersection

(𝑑 : 𝐿
𝑑𝐿←−˒ 𝐷

𝑑𝑃−˓→ 𝑃, 𝑒 : 𝑅
𝑒𝑅←−˒ 𝐸

𝑒𝑃−˓→ 𝑃) with monomorphism 𝜄 : 𝐷 → 𝐸 for 𝑟
and 𝑐, compute the multi-rule 𝑟𝑑,𝑒 : 𝐿𝑑,𝑒 →˓ 𝑅𝑑,𝑒 in the following way (compare

Fig. 11):

1. Compute the LHS 𝐿𝑑,𝑒 of 𝑟𝑑,𝑒 as pushout of the morphisms 𝑑𝐿 ∘ 𝑥 : 𝐵𝑃 →˓ 𝐿
and 𝐵𝑃 →˓ 𝑃 ∖ 𝐸.

2. Compute the RHS 𝑅𝑑,𝑒 of 𝑟𝑑,𝑒 as pushout of the morphisms 𝑒𝑅 : 𝐸 →˓ 𝑅 and

𝑝 ∘ 𝑒𝑃 : 𝐸 →˓ 𝐶.

3. The morphism 𝑟𝑑,𝑒 : 𝐿𝑑,𝑒 →˓ 𝑅𝑑,𝑒 is induced by the universal property of the

pushout computing 𝐿𝑑,𝑒.

The constraint-guaranteeing interaction scheme for 𝑟 with respect to 𝑐 consists

of the arising multi-rules and is denoted with is𝑟,𝑐. Its restriction is𝑝
𝑟,𝑐 consists of

those multi-rules stemming from pairs of intersections (𝑑, 𝑒) where 𝜄 : 𝐷 →˓ 𝐸 is

not an isomorphism and is called constraint-preserving interaction scheme.

12 J. Kosiol et al.

Example 2. Given the rule createEntry and the constraint PropagationOfEntries,
the constraint-preserving interaction scheme consists only of the kernel morphism
embedding createEntry into the multi-rule createEntry-multi, depicted in Fig. 5,
as the only possible choice for a compatible rule-constraint intersection, which is
not an isomorphism, is the one given in Example 1.

The constraint-guaranteeing interaction scheme additionally contains the
multi-rules depicted in Fig. 13. The intersections from which they are arising are
given by the two isomorphisms from the empty graph to itself and from one node
of type Doc to itself, respectively. The node of type Doc then might by identified
with each of the two nodes of type Doc occurring in the constraint.

d1 :
Doc

e1 :
Entry

d1 :
Doc

e1 :
Entry

owned

d2 :
Doc

refDoc

refEntry

*d2 :
Doc

e2 :
Entry

owned

d3 :
Doc

refDoc

refEntry *

**

*
owned

e2 :
Entry

owned

d2 :
Doc

e2 :
Entry

owned

d1 :
Doc

refDoc

refEntry
* e1 :

Entry

owned

*

Fig. 13. Additional multi-rules contained in the constraint-guaranteeing interaction
scheme of rule createEntry and constraint PropagationOfEntries

Remark 2. We introduced interaction schemes, as usual, as finite sets in Defini-
tion 3. For the construction of the amalgamated rule (Definition 3 and Remark 1)
it is important that the set 𝐽 is finite – otherwise the colimits do not need to
exist. The most natural setting to guarantee that both the interaction schemes
arising by the above construction and the number of matches in their maximal
matchings are finite is that of finitary categories, i.e., categories where every
object has only finitely many subobjects. Moreover, in finitary adhesive categories
initial pushouts always exist [5, Fact 3.12] – thus they do not need to be required
as additional precondition. But since, for the above construction, the number
of compatible rule-constraint intersections is not relevant and the number of
matches in a maximal matching might be finite even if the considered interaction
scheme is not, we did not restrict ourselves to finitary categories.

Showing that this construction actually leads to multi-rules of the original
rule exploits the van Kampen property of the cube in Fig. 11; in this way the
right front face is a pullback.

Theorem 1 (Well-definedness of construction). Let 𝒞 be an adhesive cate-

gory with initial pushouts, 𝑟 : 𝐿 →˓ 𝑅 a monotonic rule, and 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓
𝐶) a positive atomic constraint in 𝒞. Then for every compatible rule-constraint

intersection (𝑑, 𝑒) the rule 𝑟𝑑,𝑒 : 𝐿𝑑,𝑒 →˓ 𝑅𝑑,𝑒 as introduced in Construction 1 is a

multi-rule of 𝑟 and the morphism 𝑟𝑑,𝑒 is a monomorphism.

Constraint-Preserving Interaction Schemes 13

The next lemma states that compatible rule-constraint intersections are
capable of distinguishing if an application of a rule 𝑟 first enabled a matching of
𝑃 in 𝐻 or if this match already restricts to a match in 𝐺 where 𝐺⇒𝑟 𝐻.

Lemma 2 (Classification of compatible rule-constraint intersections).

Let 𝒞 be an adhesive category with initial pushouts, 𝑟 : 𝐿 →˓ 𝑅 a monotonic

rule, 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓ 𝐶) a positive atomic constraint, and (𝑑 : 𝐿
𝑑𝐿←−˒ 𝐷

𝑑𝑃−˓→
𝑃, 𝑒 : 𝑅

𝑒𝑅←−˒ 𝐸
𝑒𝑃−˓→ 𝑃) with morphism 𝜄 : 𝐷 →˓ 𝐸 a compatible rule-constraint

intersection for the rule 𝑟 and the premise 𝑃 of the constraint 𝑐. Let 𝐻 be an

object with monomorphisms 𝑛1 : 𝑅 →˓ 𝐻 and 𝑚2 : 𝑃 →˓ 𝐻 such that the induced

square is a pullback and a pushout complement 𝐺 for 𝑛1 ∘𝑟 exists. Then 𝑃 already

embeds into 𝐺 in a way compatible to its embedding in 𝐻 if and only if 𝜄 : 𝐷 →˓ 𝐸
is an isomorphism.

Intuitively, applying the original rule 𝑟 and the complement rules of the
constructed interactions scheme afterwards, these complement rules supplement
each at that moment existing image of the premise 𝑃 of the constraint with
an image of its conclusion 𝐶. But it may happen that the application of such
complement rules introduces new occurrences of 𝑃 which, by nature of our
construction, are not supplemented. Consequently, it may happen that after
applying the interaction scheme the constraint is violated, nonetheless. The next
definition serves to be able to exclude situations like that rigorously and assumes
familiarity with the concept of parallel independence [4]. The subsequent theorem
states that this condition of independence is a sufficient (not necessary) condition
for the constructed interaction schemes to preserve (guarantee) consistency with
respect to a constraint. Its proof uses this independence to show that occurrences
of 𝑃 must stem from application of 𝑟 or have already existed before. Than one
needs to check that each such situation is covered by a multi-rule which is done
by showing the arising intersections to be compatible (see Definition 5).

Definition 6 (Complementable). Given a monotonic rule 𝑟 : 𝐿 →˓ 𝑅 and a

positive atomic constraint 𝑐 = ∀ (𝑃,∃𝐶), 𝑟 is called (strongly) complementable
with respect to 𝑐 if for every multi-rule 𝑟𝑑,𝑒 : 𝐿𝑑,𝑒 →˓ 𝑅𝑑,𝑒 from the interaction

scheme 𝑖𝑠𝑝
𝑟,𝑐 (𝑖𝑠𝑟,𝑐) the inverse of its complement rule and the constant rule

𝑃 →˓ 𝑃 are parallel independent.

Theorem 2 (Guarantee and preservation). Let an adhesive category 𝒞 with

initial pushouts be given. Let 𝑟 : 𝐿 →˓ 𝑅 be a monotonic rule, 𝑐 = ∀ (𝑃,∃ 𝑝 : 𝑃 →˓
𝐶) a positive atomic constraint, and 𝑖𝑠𝑟,𝑐 and 𝑖𝑠𝑝

𝑟,𝑐 the constraint-guaranteeing

and constraint-preserving interaction schemes from Construction 1, respectively.

Let 𝑚1 be a match for 𝑟 at an arbitrary object 𝐺 with maximal matchings 𝐽 and

𝐽𝑝 for 𝑖𝑠𝑟,𝑐 and 𝑖𝑠𝑝
𝑟,𝑐 extending 𝑚1.

1. If 𝑟 is strongly complementable with respect to 𝑐 and 𝐽 is finite, then the object

𝐻 arising by application of 𝑖𝑠𝑟,𝑐 with that matching satisfies the constraint 𝑐.
2. If 𝑟 is complementable with respect to 𝑐 and 𝐽𝑝 is finite then the object 𝐻

arising by application of 𝑖𝑠𝑟,𝑐 with that matching satisfies the constraint 𝑐.

14 J. Kosiol et al.

5 Prospects and Future Work

This paper focuses on presenting the general idea behind the construction of
constraint-preserving interaction schemes and proving their fundamental property.
However, there are a lot of possible refinements and interesting future work:

In adhesive categories with strict initial object ∅, a constraint of the form
∃𝐶, which requires 𝐶 to be a subobject of 𝐺 to be valid for an object 𝐺, is
semantically equivalent to ∀ (∅,∃ ∅ →˓ 𝐶), i.e., preservation or guarantee of those
constraints is dealt with in our framework as well.

The general idea presented in this paper may be used for deleting rules
𝑟 = (𝐿 ←˒ 𝐾 →˓ 𝑅) as long as it is not possible that an application of that rule
deletes an occurrence 𝐶 of the relevant constraint ∀ (𝑃,∃𝐶). The construction
stays the same, in principle, with 𝐾 playing the role of 𝐿. Only every arising
multi-rule gets equipped with left-hand side 𝐿𝑑,𝑒 arising as pushout of 𝐾 →˓ 𝐿
and 𝐾 →˓ 𝐾𝑑,𝑒.

The precondition of complementability that comes with Theorem 2 is a
severe restriction. There are examples, where this precondition is not met, but
where recursively repeating our construction for the computed multi-rules again
terminates (with no new multi-rules arising anymore) and where these multi-rules
of multi-rules can be equivalently expressed as simple multi-rules of the original
rule and the constraint is preserved by that extended interaction scheme. We
give an example for this, namely a constraint requiring transitive closure over
edges of a certain type, in Appendix C. Investigating this possibility in more
detail is future work.

We plan to further integrate application conditions into our approach. Another
topic for future research is to support preservation or guarantee of more than one
constraint simultaneously. It would be especially interesting to combine support
for positive atomic constraints and negative ones of the form ¬∃𝐶, forbidding
𝐶 to be an subobject of 𝐺 to be valid for 𝐺. Our vision is to characterize
those combinations of rules and constraints such that it is possible to preserve
consistency with the whole set of constraints by incorporating the negative ones
as application conditions into the rules and then constructing the preserving
interaction schemes to support the positive atomic ones.

6 Related Work

As already discussed in Sect. 1 and 2, our work can be seen as a continuation
of [12] and a supplement to [7]. To the best of our knowledge, we are the first to
suggest an automatable construction to alter a rule into an interaction scheme to
preserve consistency with respect to a given constraint.

We are aware of two works, both with tool support, allowing for automatic
construction of interaction schemes in the context of EMF model transformation,
but none of them explicitly aims at preservation of constraints. In [1], Alshanqiti
et al. derive visual contracts from Java programs. They monitor the execution
of programs and generate transformation rules describing the behavior of the

Constraint-Preserving Interaction Schemes 15

program. The process supports the generation of interaction schemes. In contrast
to our work aiming at preservation of constraints, their derived rules provide an
abstract and visual representation of observed behavior.

Kehrer et al. allow a user to specify examples of how a transformation should
(or should not) act and from that infer a rule subsuming the provided examples [9].
Their tool is also able to derive interaction schemes. As above, the aim is not to
preserve correctness of an explicitly given constraint, and a generated interaction
scheme may or may not happen to do so (depending on the quality of the input
of the user) or serve a completely different purpose.

There are two works, [14,15] and [8], that derive repair programs from (graph)
constraints. In both works, given a set of constraints, a set of rules and some con-
trol structure are derived such that applying the resulting program to an instance
results in an instance satisfying those constraints. In neither case interaction
schemes are derived, but by passing of parameters or marking and applying rules
as often as possible, the same effects are achieved. The second work is done in the
context of (labeled) graphs and supports quite a large class of graph constraints,
though support for sets of constraints is limited. The first one is done in the
context of EMF models and repairs violations of multiplicities while respecting
the in-built constraints of EMF. Moreover, it is implemented [15].

In [2], Becker et al. propose a method to design consistency-preserving rule-
based refactorings. Given such a refactoring and a constraint, an invariant
checker provides the user with minimal counterexamples for situations in which
the refactoring does not preserve consistency with respect to the constraint. The
user may use this information to redesign the refactoring and iterate over this
process. The class of supported constraints is slightly larger than ours (supporting
also negative constraint). Refactorings are specified via graph transformation
rules and though there is no explicit support for interaction schemes, it is possible
to use marking and iterate the application of rules as often as possible, which
can have the same effect. If a constraint-preserving specification of a refactoring
is achieved, of course, depends on the user.

In [10], Kehrer et al. automatically derive edit rules from meta-models. Start-
ing with atomic operations, they revise rules such that elementary consistency
constraints, necessary to be met for a model to be opened in a typical editor,
are preserved on application of those roles. When viewing lower bounds of multi-
plicities of containment edges as positive atomic constraints and applying our
construction to these constraints and their elementary rules for node creation, we
receive exactly the rules they are using, too. In this case, however, the resulting
rules actually not are multi-rules since the LHSs of the resulting multi-rules are
the LHSs of the original rules again.

7 Conclusion

In the setting of adhesive categories, given a positive atomic constraint and
a monotonic rule, we presented a construction of a constraint-preserving (or
-guaranteeing) interaction scheme. We showed that our construction is well-

16 J. Kosiol et al.

defined and gave (sufficient) conditions under which the constraint is preserved
(or guaranteed) when applying the resulting interaction schemes. With this
approach, we are aiming at being able to replace the computation of constraint-
preserving (or -guaranteeing) application conditions for rules in a situation where
this has the often undesired effect of severely restricting the applicability of
the rule. With our approach we are already able to automate the construction
of multi-rules that had to be developed by hand before in [12]. We pointed at
promising directions of research to be able to generalize our construction, to
overcome the precondition of complementability that was necessary for our main
theorem to hold, and to increase the effectiveness of our method in practice.

Acknowledgments This work was partially funded by the German Research
Foundation (DFG), projects “Triple Graph Grammars (TGG) 2.0” and “Gener-
ating Development Environments for Modeling Languages”.

References

1. Alshanqiti, A., Heckel, R., Kehrer, T.: Inferring visual contracts from Java programs.
Automated Software Engineering (Jul 2018)

2. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative Development of
Consistency-Preserving Rule-Based Refactorings. In: Cabot, J., Visser, E. (eds.)
Theory and Practice of Model Transformations. pp. 123–137. Springer, Berlin (2011)

3. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent EMF model
transformations by algebraic graph transformation. Software & Systems Modeling
11(2), 227–250 (2012)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

5. Gabriel, K., Braatz, B., Ehrig, H., Golas, U.: Finitary ℳ-adhesive categories.
Mathematical Structures in Computer Science 24(4), 240403 (2014)

6. Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application
conditions in ℳ-adhesive categories. Math. Struct. in Comp. Science 24 (2014)

7. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. in Comp. Science 19, 245–296 (2009)

8. Habel, A., Sandmann, C.: Graph repair by graph programs. In: Kreowski, H.J.
(ed.) Graph Computation Models (GCM 2018), Electronic Pre-Proceedings (2018),
https://www.gcm2018.uni-bremen.de/assets/gcm_2018_paper_5.pdf

9. Kehrer, T., Alshanqiti, A., Heckel, R.: Automatic Inference of Rule-Based Specifica-
tions of Complex In-place Model Transformations. In: Guerra, E., van den Brand,
M. (eds.) Theory and Practice of Model Transformation. pp. 92–107. Springer,
Cham (2017)

10. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the speci-
fication of model editing operations from meta-models. In: Van Gorp, P., Engels,
G. (eds.) Theory and Practice of Model Transformations. pp. 173–188. Springer,
Cham (2016)

11. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Infor-
matics and Applications 39(3), 511–545 (2005)

https://www.gcm2018.uni-bremen.de/assets/gcm_2018_paper_5.pdf

Constraint-Preserving Interaction Schemes 17

12. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple
graph grammars: Formal foundation and application to visual language translation.
Journal of Visual Languages & Computing 42, 99–121 (2017)

13. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: OCL2AC. Automatic Translation
of OCL Constraints to Graph Constraints and Application Conditions for Transfor-
mation Rules. In: Lambers, L., Weber, J. (eds.) Proc. of ICGT 2018. pp. 171–177.
Springer, Cham (2018)

14. Nassar, N., Kosiol, J., Radke, H.: Rule-based repair of emf models: Formalization
and correctness proof. In: Corradini, A. (ed.) Graph Computation Models (GCM
2017), Electronic Pre-Proceedings (2017), pages.di.unipi.it/corradini/Workshops/
GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf

15. Nassar, N., Radke, H., Arendt, T.: Rule-based repair of emf models: An automated
interactive approach. In: Guerra, E., van den Brand, M. (eds.) Theory and Practice
of Model Transformation. pp. 171–181. Springer, Cham (2017)

16. OMG: Object Constraint Language, http://www.omg.org/spec/OCL/
17. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential

OCL invariants to nested graph constraints for generating instances of meta-models.
Science of Computer Programming 152, 38–62 (2018)

18. Rensink, A.: Representing First-Order Logic Using Graphs. In: Ehrig, H., Engels,
G., Parisi-Presicce, F., Rozenberg, G. (eds.) Graph Transformations. pp. 319–335.
Springer, Berlin (2004)

19. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) Graph-Theoretic Concepts in Com-
puter Science. pp. 151–163. Springer (1995)

A Adhesive Categories

In this section, we recall adhesive categories and some of their properties. Adhesive
categories can be understood as categories where pushouts along monomorphisms
behave like pushouts along injective maps in the category of sets. The definition
of an adhesive category uses the notion of van Kampen squares.

Definition 7 (Van Kampen square and adhesive category). A pushout

diagram as depicted in Fig. 14 is a van Kampen square if for every commutative

cube over it (like depicted in Fig. 15) where the backfaces are pullbacks, the front

faces are pullbacks iff the top face is a pushout.

A category C is called adhesive if

1. C has pushouts along monomorphisms (i.e., pushouts whenever at least one

of the two morphisms 𝑓 or 𝑚 in Fig. 14 is a monomorphism),
2. C has pullbacks, and
3. pushouts along monomorphisms are van Kampen squares.

Important examples of adhesive categories include the categories of sets,
of (typed) graphs, and of (typed) triple graphs [11,4]. We will use (or assume
implicitly) the following properties of adhesive categories:

Fact 1 (Properties of adhesive categories). If C is an adhesive category,

the following properties hold [11]:

pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
http://www.omg.org/spec/OCL/

18 J. Kosiol et al.

𝐴 𝐵

𝐶 𝐷

𝑓

𝑚

𝑛

𝑔

Fig. 14. A pushout square

𝐴′

𝐶′ 𝐵′

𝐷′

𝐴

𝐶 𝐵

𝐷

𝑓 ′
𝑚′

𝑎

𝑛′

𝑐

𝑔′

𝑏

𝑑

𝑓 𝑚

𝑛 𝑔

Fig. 15. Commutative cube over pushout square

1. Monomorphisms are stable under pushout, i.e.,

whenever 𝑚 (or 𝑓) is a monomorphism in

the pushout diagram to the right, 𝑛 (or 𝑔)
is a monomorphism. Moreover, pushouts along

monomorphisms are pullbacks.

𝐴 𝐵

𝐶 𝐷

𝑓

𝑚

𝑛

𝑔

2. If 𝑓 is a monomorphism (compare the diagram above), pushout complements

for 𝑛 ∘ 𝑓 are unique (up to isomorphism).
3. The subobjects of an object in an adhesive category form a distributive lattice.

Given two subobjects 𝑎, 𝑏 : 𝐴, 𝐵 →˓ 𝐶 of an object 𝐶 in category C, their

meet 𝐴∩𝐵 is given by taking the pullback of 𝑎 and 𝑏 and their join 𝐴∪𝐵 by

taking the pushout of their meet. Particularly, the join 𝐴 ∪𝐵 is a subobject

of 𝐶.

B Proofs

Proof (of Additional Lemma 1). First, in an adhesive category, the mediating
morphism of the pushout of a pullback of two monomorphisms is a monomorphism
again.

Secondly, the following diagram exhibits 𝑟1 as 𝐸-concurrent rule of 𝑟0 and 𝑟1
with 𝐸-dependency relation 𝐿1 (observe that the pair of morphisms (𝑒1, 𝑖𝑑𝐿1

) is
jointly epi since 𝑖𝑑𝐿1

is epi).

𝐿0 𝐿0 𝑅0 𝐿1 𝐿1 𝑅1 = 𝑅1

(𝑃𝑂) (𝑃𝑂) (𝑃𝑂) (𝑃𝑂)

𝐿1 𝐿1 𝐿1 𝐿1 𝑅1 = 𝑅1

(𝑃𝐵)

𝐿1

𝑠1,𝐿 𝑖𝑑𝑅1

𝑖𝑑𝐿0

𝑠1,𝐿

𝑟0

𝑒1 𝑖𝑑
𝐿1

𝑖𝑑
𝐿1

𝑖𝑑
𝐿1

𝑟1

𝑒2

𝑖𝑑𝐿1 𝑖𝑑
𝐿1

𝑟1

𝑖𝑑𝐿1
𝑒2

Constraint-Preserving Interaction Schemes 19

⊓⊔

Proof (of Lemma 1). To show the existence of a monomorphism 𝑥 : 𝐵𝑃 →˓ 𝐷 with
𝜄 ∘𝑥 = 𝑏𝑃 , first compute the pushout 𝐻 ′ of 𝑒𝑅 : 𝐸 →˓ 𝑅 and 𝑒𝑃 : 𝐸 →˓ 𝑃 (square
(1) in Fig. 16). Since 𝒞 is adhesive, the arising mediating map ℎ : 𝐻 ′ →˓ 𝐻, where
𝐻 is given by definition of compatible intersections, is a monomorphism. Hence,
by the Restriction Theorem [4, Theorem 6.18], the rule 𝑟−1 is applicable at the
match 𝑛′

1 : 𝑅 →˓ 𝐻 ′′ yielding an object 𝐺′ (square (2)). By the closure property
of initial pushouts [4, Lemma 6.5], (1)+(3) is an initial pushout over 𝑛′

1. Since (2)
is another pushout over 𝑛′

1, there exists a (unique) monomorphism 𝑥′ : 𝐵𝑃 →˓ 𝐿
such that 𝑟 ∘ 𝑥′ = 𝑒𝑅 ∘ 𝑏𝑃 (and a (unique) monomorphism 𝑦′ : 𝑃 ∖ 𝐸 →˓ 𝐺′ with
the corresponding property). The universal property of the pullback (4) implies
the existence of a morphism 𝑥 : 𝐵𝑃 →˓ 𝐷 with 𝜄 ∘ 𝑥 = 𝑏𝑃 (and 𝑑𝐿 ∘ 𝑥 = 𝑥′).
Moreover, the morphism 𝑥 is monic since 𝑥′ is. ⊓⊔

𝐷 𝐵𝑃

𝐿 (4) 𝐸

𝑅 (3)

(2) (1) 𝑃 ∖ 𝐸

𝐺′ 𝐻 ′ 𝑃

𝐺 𝐻

𝑑𝐿 𝜄

𝑥

𝑥′

𝑏𝑃

𝑟 𝑒𝑅

𝑒𝑃

𝑛′
1

𝑛1
𝑐𝑃

𝑦′

Fig. 16. Existence of embedding 𝑥 : 𝐵𝑃 →˓ 𝐷

Proof (of Theorem 1). First, the pushout of the morphisms 𝐵𝑃 →˓ 𝑃 ∖ 𝐸 and
𝑑𝐿 ∘ 𝑥 : 𝐵𝑃 →˓ 𝐿 computing the LHS 𝐿𝑑,𝑒 of the multi-rule can be split into two
pushouts (compare Fig. 17): The pushout of the morphisms 𝑥 : 𝐵𝑃 →˓ 𝐷 and
𝐵𝑃 →˓ 𝑃 ∖ 𝐸 gives rise to a morphism 𝐷 +𝐵𝑃

𝑃 ∖ 𝐸 →˓ 𝐿𝑑,𝑒 by its universal
property. Since the outer and the right square in Fig. 17 are pushouts, by pushout
decomposition, the arising square to the left is a pushout as well. Hence, 𝐿𝑑,𝑒

20 J. Kosiol et al.

can equivalently be computed as pushout of the morphisms 𝑑𝐿 : 𝐷 →˓ 𝐿 and
𝐷 →˓ 𝐷 +𝐵𝑃

𝑃 ∖𝐸 which we will exploit in the following: We construct the cube
depicted in Fig. 11. Since both the top and the bottom squares are pushouts, if
both back faces are pullbacks, both front faces are pullbacks by the van Kampen
property of pushouts in adhesive categories. The left face in the back is a pullback
by assumption.

𝐿 𝐷 𝐵𝑃

𝐿𝑑,𝑒 𝐷 +𝐵𝑃 𝑃 ∖ 𝐸 𝑃 ∖ 𝐸

𝑑𝐿 𝑥

Fig. 17. Splitting the pushout that computes 𝐿𝑑,𝑒

To show the right face in the back to be a pullback square, first compare
Fig. 18. The morphism 𝐷 +𝐵𝑃

𝑃 ∖𝐸 →˓ 𝑃 is induced by the universal property of
the just constructed pushout at the top. The bottom square is the initial pushout
over 𝑒𝑃 . Since 𝐵𝑃 is a subobject of 𝐷, the vertical square to the left in the back
is a pullback. The vertical square to the right in the back is a pullback in every
category. By the van Kampen property, both vertical squares in the front are
pullbacks. In particular, 𝐷 is a pullback object of 𝐸 →˓ 𝑃 and 𝐷 +𝐵𝑃

𝑃 ∖ 𝐸.

𝐵𝑃

𝐷 𝑃 ∖ 𝐸

𝐷 +𝐵𝑃 𝑃 ∖ 𝐸

𝐵𝑃

𝐸 𝑃 ∖ 𝐸

𝑃

𝑥

𝑖𝑑𝐵𝑃

𝜄 𝑖𝑑𝑃 ∖𝐸

𝑏𝑃

𝑒𝑃 𝑐𝑃

Fig. 18. Van Kampen square showing 𝐷 to be a
pullback object of 𝐸 and 𝐷 +𝐵𝑃 𝑃 ∖ 𝐸 in 𝑃

𝐷 𝐸

𝐷 +𝐵𝑃 𝑃 ∖ 𝐸 𝑃

𝐷 +𝐵𝑃 𝑃 ∖ 𝐸 𝐶

𝜄

𝑒𝑃

𝑖𝑑𝐷+𝐵𝑃
𝑃 ∖𝐸 𝑝

Fig. 19. 𝐷 as pullback object of 𝐸
and 𝐷 +𝐵𝑃 𝑃 ∖ 𝐸 in 𝐶

This pullback appears again as top square in Fig. 19. The bottom square is
a pullback since 𝐷 +𝐵𝑃

𝑃 ∖ 𝐸 is a subobject of 𝑃 . Hence, the outer square in

Constraint-Preserving Interaction Schemes 21

Fig. 19 – i.e., the square we need to show to be a pullback – is one by pullback
composition.

As pushout of the pullback of two monomorphisms 𝐿 →˓ 𝑅𝑑,𝑒 and 𝐷 +𝐵𝑃
𝑃 ∖

𝐸 →˓ 𝑅𝑑,𝑒, the intermediate morphism 𝑟𝑑,𝑒 : 𝐿𝑑,𝑒 →˓ 𝑅𝑑,𝑒 is a monomorphism in
an adhesive category. ⊓⊔

Proof (of Lemma 2). By definition, there exists (at least) one object 𝐻 with
monomorphisms 𝑛1 : 𝑅 →˓ 𝐻 and 𝑚2 : 𝑃 →˓ 𝐻 such that the induced square is a
pullback and a pushout complement 𝐺 for 𝑛1 ∘𝑟 exists. Without loss of generality,
the pullback square is also a pushout. Otherwise one builds the pushout of
the pullback. In an adhesive category, this is a pullback as well, and, by the
Restriction Theorem [4, Theorem 6.18], a pushout complement still exist.

Let 𝜄 : 𝐷 →˓ 𝐸 be an isomorphism. Building the pullback of 𝑔 and 𝑚2
leads to an object 𝑋. Pulling back the pullback diagram along the morphism
𝑛1 : 𝑅 →˓ 𝐻 leads to the cube displayed in Fig. 20: Since pushouts along
monomorphisms are pullbacks in adhesive categories, the pullbacks of 𝑛1 and
𝑔 or 𝑛1 and 𝑚2, respectively, are given by the pushout diagrams existing by
assumption. Then, 𝐷 is the pullback of 𝑟 and 𝑒𝑅 by assumption. The resulting
cube has pullbacks as bottom and top faces and pushouts as front faces. Hence,
by the Cube pushout-pullback lemma [4, Theorem 4.26], the backfaces are
pushouts, too. Since 𝜄 is an isomorphism and pushouts along isomorphisms result
in isomorphisms, the morphism 𝑥𝑃 : 𝑋 →˓ 𝑃 is an isomorphism. Hence, the
morphism 𝑚′

2 := 𝑥𝐺 ∘ 𝑥−1
𝑃 : 𝑃 →˓ 𝐺 is a monomorphism with 𝑚2 = 𝑔 ∘𝑚′

2 ∘ 𝑥−1
𝑃 .

If, on the other hand, there is a monomorphism 𝑚′
2 : 𝑃 →˓ 𝐺 with 𝑚2 = 𝑔∘𝑚′

2,
the diagram at the bottom of the cube in Fig. 21 is a pullback. Pulling this
pullback square again back along 𝑛1 : 𝑅 →˓ 𝐻 results in the cube displayed in
Fig. 21 with the square in the right back being a pushout square, analogously
to the argument above. Since a pushout along a monomorphism is a pullback
in an adhesive category and pullbacks of isomorphisms are isomorphisms, the
morphism 𝜄 : 𝐷 →˓ 𝐸 is one. ⊓⊔

𝐷

𝐿 𝐸

𝑅

𝑋

𝐺 𝑃

𝐻

𝑑𝐿 𝜄

𝑟

𝑚1 𝑒𝑃

𝑥𝐺 𝑥𝑃

𝑔 𝑚2

𝑒𝑅

𝑛1

Fig. 20. Cube showing 𝑃 to be subobject
of 𝐺

𝐷

𝐿 𝐸

𝑅

𝑃

𝐺 𝑃

𝐻

𝑑𝐿 𝜄

𝑟

𝑚1 𝑒𝑃

𝑚′
2 𝑖𝑑𝑃

𝑔 𝑚2

𝑒𝑅

𝑛1

Fig. 21. Cube showing 𝜄 : 𝐷 →˓ 𝐸 to be an
isomorphism

Before the next proof, we shortly recall the notion of parallel independence.

22 J. Kosiol et al.

Additional Definition 2 (Parallel independence). In an adhesive category

𝒞, given two rules 𝑝𝑖 = (𝐿𝑖
𝑙𝑖←−˒ 𝐾𝑖

𝑟𝑖−˓→ 𝑅𝑖) with 𝑖 = 1, 2 two direct transformations

𝐺⇒𝑝1,𝑚1 𝐻1 and 𝐺⇒𝑝2,𝑚2 𝐻2 via those rules are parallel independent if there
exist two morphisms 𝑑1 : 𝐿1 → 𝐷2 and 𝑑2 : 𝐿2 → 𝐷1 as depicted below such that

𝑚1 = 𝑓2 ∘ 𝑑1 and 𝑚2 = 𝑓1 ∘ 𝑑2. The rules 𝑝1 and 𝑝2 are parallel independent if
every pair of transformations 𝐻1 ⇐=

𝑝1
𝐺 =⇒

𝑝2
𝐻2 is.

𝑅1 𝐾1 𝐿1 𝐿2 𝐾2 𝑅2

𝐻1 𝐷1 𝐺 𝐷2 𝐻2

𝑛1 𝑛2

𝑟1 𝑙1

𝑚1 𝑚2

𝑙2 𝑟2

𝑓1 𝑓2

𝑑1𝑑2

Proof (of Theorem 2). Let an object 𝐺 and a match 𝑚1 for 𝑟 be given such
that the maximal matching 𝐽 for 𝑖𝑠𝑟,𝑐 (or 𝑖𝑠𝑝

𝑟,𝑐) extending this match is finite.
Let 𝐻 be the object resulting from application of 𝑖𝑠𝑟,𝑐 (or 𝑖𝑠𝑝

𝑟,𝑐) at 𝐽 and let
𝑚2 : 𝑃 →˓ 𝐻 be an arbitrary match for 𝑃 in 𝐻. We need to show the existence
of a monomorphism 𝑞 : 𝐶 →˓ 𝐻 such that 𝑞 ∘ 𝑝 = 𝑚2.

Applying 𝑖𝑠𝑟,𝑐 (or 𝑖𝑠𝑝
𝑟,𝑐) at 𝐽 , by [6, Fact 5.8 and Theorem 5.9] (the Multi-

Amalgamation Theorem), inductively splits into a finite sequence 𝐺 ⇒𝑟,𝑚1

𝐻 ′ ⇒ · · · ⇒ 𝐻 of direct transformations, where the second part consists of the
applications of the relevant complement rules of the multi-rules. Because of the
(strong) complementability, these complement rules are in parallel independence
with the constant rule 𝑖𝑑𝑃 : 𝑃 →˓ 𝑃 . Thus, by repeated application of the Local
Church-Rosser Theorem [4, Theorem 5.12], the match 𝑚2 of 𝑃 in 𝐻 restricts to
a match 𝑚′

2 of 𝑃 in 𝐻 ′. We show that this 𝑃 was supplemented to an image of
𝐶 by application of a suitable multi-rule (or such an image of 𝐶 already existed).
We do this in two steps, namely in showing a suitable multi-rule to exist by
presenting the according compatible rule-constraint intersection and showing
a match for its complement rule to exist in 𝐻 ′ (i.e., it was actually applied to
supplement 𝑃 to 𝐶).

First, given such a monomorphism 𝑚′
2 : 𝑃 →˓ 𝐻 ′, we compute the pullback

(2) of 𝑚′
2 and the comatch 𝑛1 of 𝑅 in 𝐻 ′ (compare Fig. 22) and subsequently

the pullback (1) of 𝑟 and 𝑒𝑅. By construction, the resulting pair of spans (𝑑 :
𝐿

𝑑𝐿←−˒ 𝐷
𝑒𝑃 ∘𝜄−˓−−→ 𝑃, 𝑒 : 𝑅

𝑒𝑅←−˒ 𝐸
𝑒𝑃−˓→ 𝑃) is a compatible rule-constraint intersection

for 𝑟 and 𝑐.
Secondly, if (𝑑, 𝑒) is a compatible rule-constraint intersection, an according

multi-rule 𝑟𝑑,𝑒 for 𝑟 exists. Let 𝐿𝑑,𝑒 be the LHS of its complement rule (with
respect to 𝑟). The proof of Lemma 1 showed also a monomorphism 𝑦′ : 𝑃 ∖𝐸 →˓ 𝐺
to exist in such a situation, since (3) is an initial pushout; hence, 𝑔∘𝑦′ : 𝑃 ∖𝐸 →˓ 𝐻
is a monomorphism to 𝐻. Then, iteratively using the universal property of
the pushouts defining 𝐷 +𝐵𝑃

𝑃 ∖ 𝐸, 𝐿𝑑,𝑒, and 𝐿𝑑,𝑒, respectively, results in a
monomorphism 𝑚*

1 : 𝐿𝑑,𝑒 →˓ 𝐻 ′ such that 𝑛1 ∘ 𝑟 = 𝑚*
1 ∘ 𝑢𝑑,𝑒 = 𝑔 ∘𝑚1, i.e., a

Constraint-Preserving Interaction Schemes 23

𝐵𝑃

𝐷 (4) 𝐵𝑃

𝐸 (3) 𝑃 ∖ 𝐸

(1)

𝐿 𝑅 (2) 𝑃 𝐷 +𝐵𝑃 𝑃 ∖ 𝐸

𝐺 𝐻 ′ 𝐿𝑑,𝑒 𝐶

𝐻 ′
𝑑,𝑒 𝑅𝑑,𝑒 = 𝑅𝑑,𝑒

𝐻

𝑥 𝑖𝑑𝐵𝑃

𝜄

𝑑𝐿

𝑥

𝑏𝑃

𝑒𝑅 𝑒𝑃

𝑐𝑃

𝑟

𝑚1

𝑛1 𝑚′
2

𝑔

ℎ′

𝑚*
1

𝑟𝑑,𝑒 𝑞′

ℎ

𝑛*
1

𝑢𝑑,𝑒

𝑝

Fig. 22. Proving guarantee or preservation

24 J. Kosiol et al.

match for the complement rule in 𝐻 ′ (and, simultaneously, in a match for 𝐿𝑑,𝑒

in 𝐺). Hence, the complement rule 𝑟𝑑,𝑒 with respect to 𝑟 is applicable to 𝐻 ′

and the corresponding match for 𝐿𝑑,𝑒 in 𝐺 is part of the maximal matching
𝐽 . Since all the applications of complement rules constituting the sequence of
direct transformations 𝐻 ′ ⇒ · · · ⇒ 𝐻 are pairwise parallelly independent [6,
Fact 5.8], this sequence is of the form 𝐻 ′ ⇒𝑟𝑑,𝑒,𝑚*

1
𝐻 ′

𝑑,𝑒 ⇒ · · · ⇒ 𝐻 without loss
of generality and the original match 𝑚2 of 𝑃 in 𝐻 decomposes as 𝑚2 = ℎ∘ℎ′ ∘𝑚′

2.
Finally,

𝑚2 = ℎ ∘ ℎ′ ∘𝑚′
2

= ℎ ∘ 𝑛*
1 ∘ 𝑞′ ∘ 𝑝

which means that 𝑞 := ℎ ∘ 𝑛*
1 ∘ 𝑞′ is the desired monomorphism, i.e., the image of

𝐶 created by application of 𝑟𝑑,𝑒 supplemented the image of 𝑃 correctly.
The only difference between the two statements concering the interaction

schemes 𝑖𝑠𝑟,𝑐 and 𝑖𝑠𝑝
𝑟,𝑐 is the existence of multi-rules 𝑟𝑑,𝑒 where 𝜄 : 𝐷 →˓ 𝐸 is an

isomorphism. These are not part of 𝑖𝑠𝑝
𝑟,𝑐 and are, consequently, not applied when

applying that interaction scheme. But, by Lemma 2, if 𝜄 is an isomorphism, the
image of 𝑃 in 𝐻 ′ given by 𝑚′

2 restricts to an image in 𝐺. And, by assumption,
𝐺 |= 𝑐 in the case for preservation, thus an according monomorphism 𝐶 →˓ 𝐺
exists and obviously extends to the required monomorphism 𝑞 : 𝐶 →˓ 𝐻. ⊓⊔

C Additional Example

The following example shows how repeating our construction can result in
constraint-preserving interaction schemes, even if the considered rule is not
strongly complementable with respect to the given constraint, i.e., in situations
where the derived multi-rules might create new images for 𝑃 themselves.

Additional Example 1. As a second constraint over the meta-model from Fig. 1

consider the constraint displayed in Fig. 23. It requires the edges of type refDoc
to be transitively closed.

∀

⎛
⎜⎜⎜⎜⎝

doc1:
Doc

doc2:
Doc

doc3:
Doc

refDoc refDoc , ∃ doc1:
Doc

doc2:
Doc

doc3:
Doc

refDoc refDoc

refDoc
⎞
⎟⎟⎟⎟⎠

Fig. 23. Constraint TransitiveClosure

Calculating the constraint-preserving interaction scheme for the constraint

TransitiveClosure and the rule insertReference (see Fig. 2) results in the two

multi-rules displayed in Figs. 24 and 25. They insert additional references from

the source-Doc of the inserted reference the to all Docs referenced by the target-

Doc or from all Docs referencing the source-Doc of the inserted reference to the

Constraint-Preserving Interaction Schemes 25

d2 :
Doc

d1 :
Doc

refDoc

d3 :
Doc

refDoc

refDoc

*

*

Fig. 24. Multi-rule insert-
ing references to referenced
Docs

d2 :
Doc

d1 :
Doc

refDoc

d3 :
Doc

refDoc

refDoc
*

*

Fig. 25. Multi-rule inserting
references from referencing
Docs

d2 :
Doc

d1 :
Doc

refDoc

d4 :
Doc

refDoc

refDoc

d3 :
Doc

refDoc
*

*
*

Fig. 26. Additional multi-
rule inserting references
from referencing to refer-
enced Docs

target-Doc, respectively. This interaction scheme is not yet consistency-preserving,

as an application of the multi-rules may create new situations where for a chain

of two edges of type refDoc the required third one does not exist.

The situation displayed in Fig. 27 serves as an example. Applying the interac-

tion scheme consisting of the multi-rules insertReference-multi1 and insertReference-
multi2 with the kernel rule insertReference matching the nodes d1 and d2 results

in the instance displayed in Fig. 28. The multi-rules additionally connect d3 and

d2 and d1 and d4. This results in the need to also connect the nodes d3 and d4
for which no multi-rule is available.

d3:
Doc

d1:
Doc

d2:
Doc

d4:
Doc

refDoc refDoc

Fig. 27. Instance showing the derived interaction scheme to not be constraint-preserving

d3:
Doc

d1:
Doc

d2:
Doc

d4:
Doc

refDoc refDocrefDoc

refDoc refDoc

Fig. 28. Instance after application violating the constraint TransitiveClosure

Repeating our construction of constraint-preserving interaction schemes with

the complement rules of the multi-rules insertReference-multi1 and insertReference-
multi2 results in a multi-rule of a multi-rule (only one, since both complement

rules coincide). In that case this multi-rule of a multi-rule can be equivalently

restricted to be a simple multi-rule of the original rule insertReference. It is the

26 J. Kosiol et al.

multi-rule displayed in Fig. 26. Further continuing the process does not result in

structurally new multi-rules so it terminates. Applying the interaction scheme

consisting of all three multi-rules instead results in the valid instance depicted in

Fig. 29.

d3:
Doc

d1:
Doc

d2:
Doc

d4:
Doc

refDoc refDocrefDoc

refDoc refDoc

refDoc

Fig. 29. Instance after application of the extended interaction scheme satisfying the
constraint TransitiveClosure

It is not difficult to prove that interaction scheme to be constraint-preserving.

However, more generally identifying rules and constraints such that iterating our

proposed construction terminates and yields a constraint-preserving interaction

scheme is future work.

	Constructing Constraint-Preserving Interaction Schemes in Adhesive Categories

