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Abstract. [Context and motivation] User stories (USs) are a widely
used notation for requirements in agile software development. [Ques-
tion/problem] In large software projects, redundancies between USs
can easily occur, and unresolved redundancies can impact software qual-
ity. It is crucial for requirements engineers to know where redundancy
occurs in their projects. However, some forms of redundancy may be
acceptable. [Principal ideas/results] We present two automated ap-
proaches for detecting redundancy in a set of USs in order to prevent a
decrease of software quality due to the realisation of redundant USs. The
first approach is based on annotation graphs, containing the main actions
and entities of a US. By design, this approach effectively identifies a strict
form of redundancy. The second approach detects redundancies of a more
semantic nature using large language models (LLMs). [Contribution]
We present the concepts and tools of both approaches and evaluate their
potential and limitations by applying them to a large corpus of USs.
Our results show that the inherently fuzzy LLM-based approach is able
to detect most of the strict redundancies and additionally finds many
more non-strict semantic redundancies. Thus, this study contributes to
the advancement of automated quality control of USs.

Keywords: User Story Quality · Redundancy · Graph · Large Lan-
guage Model · Agile Development

1 Introduction

User stories (USs) are short requirements specifications from the user’s point of
view that are increasingly used in agile requirements engineering. In fact, they
have become a common notation for requirements in agile projects [19]. As a key
development artefact, USs with poor quality are detrimental to the quality of the
resulting code [12]. Several sources, such as the IEEE Recommended Practice
for Software Requirements Specifications [9], the INVEST framework [4], the
Quality User Story Framework (AQUSA) [12], or Heck and Zaidman [8], present
quality criteria for (sets of) USs, such as correctness, unambiguity, completeness,
and uniqueness. However, despite the popularity of USs, the number of methods
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for assessing and improving their quality is limited and existing methods focus
on quality criteria that concern only a single US (such as atomicity or well-
formedness).

In this work, we contribute to a human-in-the-loop approach to the quality
assurance of sets of USs by presenting automated approaches to identify pairs
of USs that show redundancy. Requirement engineers (REs) should be informed
about pairs of redundant USs, as these may violate the uniqueness demand of
USs and lead to redundant development steps later on, particularly in scenarios
where multiple contributors are working in parallel or distributed across teams
over an extended period. Redundancy can also indicate conflicts between USs
in the sense that they are inconsistent. In the literature, pairs of USs are either
checked for exact equality [12] or for similarity [7], where it remains unclear
what ‘similarity’ precisely means. Dedicated automated analysis techniques for
detecting redundancies in USs are missing.

To fill this gap, we present the following contributions: First, we define re-
dundancy as a specific kind of similarity of USs, inspired by Lucassen et al. [11].
Intuitively, redundancy should capture that in two USs the same functionality
is required or/and the same purpose is addressed. We define two forms of redun-
dancy: strict redundancy, which compares key information of USs for equality,
and semantic redundancy, which accounts for equivalence in meaning and thus
captures the intuition more reliably. Our definitions assume that a US comes
with an annotation graph, which provides a trace between different parts of the
US and the conceptual roles these parts play in the story. We then present two
approaches to automated redundancy detection; the first is based directly on
annotation graphs, the second uses a large language model (LLM). We have
evaluated both approaches on a large set of USs extracted from [1,5]. The eval-
uation shows that the graph-based approach quickly computes all strict redun-
dancies. The LLM-based approach is still quite accurate and provides a broader,
semantic analysis of USs. Thus, it goes beyond the intrinsic limitations of strict
redundancy and also finds many more semantic redundancies.

Our paper is structured as follows: First, we discuss the related work on US
quality assessment in Sec. 2. We then present our contributions: In Sec. 3, we
define two forms of redundancy of USs based on a graph-like conceptual model
(cf. [1]) and discuss them. We then introduce two approaches for redundancy
detection between USs: a direct implementation of strict redundancy in Sec. 4
and an approach based on LLMs, which can identify redundancies on a more
semantic level in Sec. 5. We evaluate the effectiveness and efficiency of our re-
dundancy detection approaches in Sec. 6 using a large set of annotated USs from
[1,5]. Finally, we summarise our findings and identify future research in Sec. 7.

2 Related Work

In this section, we discuss existing approaches to automated quality control and
improvement of USs, with a particular focus on approaches that use LLMs.
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Lucassen et al. [12,11] introduced the Quality User Story Framework, which
consists of 14 quality criteria for USs. Their criterion of uniqueness corresponds
closely to the notion of redundancy presented in this paper. Although different
types of uniqueness are discussed, ranging from identical USs to only semantic
similarity, based on a semi-formal conceptual model of USs, the underlying proof-
of-concept tool AQUSA can only detect exact duplicates of USs. This means that
the tool cannot distinguish between different spellings of the same word, e.g.,
when one US is written in British English and the other in American English. In
their evaluations of AQUSA, only two uniqueness violations are reported. The
evaluation data is not published.

Duszkiewicz et al. used the Universal Sentence Encoder (USE) to find sim-
ilarities between USs [7]. With a threshold of 70% similarity, a pair of USs is
considered similar. The implementation was tested on 13 USs (i.e., 169 pairs of
USs) and compared with a human evaluation. Except for 4 false positives, all
similar pairs were correctly identified. The authors note that false estimations
occur particularly for values such as “add” and “remove”, as these differences
are not sufficiently penalised by the model. In addition, the use of synonyms can
lead to a large change in the assessment of the similarity of USs.

Ronanki et al. [18] analysed the quality criteria well-formedness, atomicity
and minimality from the Quality User Story Framework using ChatGPT. They
have compared the results of ChatGPT with the results of the Quality User Story
Framework by human evaluation. The results show that the human evaluators
have a higher agreement rate with the results of ChatGPT than with those of
AQUSA.

Zhang et al. [23] used LLMs to improve given USs in terms of the US quality
criteria formulated in the INVEST framework [4]. In their evaluation, the USs
are clearer and more understandable after improvement. However, human intel-
ligence is still required to evaluate the modified USs to minimise hallucination
and increase contextual accuracy. Redundancy of user stories is not checked in
this approach.

In summary, beyond searching for exact duplicates or “similar” USs, where
the notion of similarity used remains imprecise, automated approaches detecting
well-defined and more focused similarities between USs are lacking.

3 User Stories and their Redundancy

In this section, we introduce USs and their annotation graphs. Based on these,
we semi-formally define two kinds of redundancy.

User stories and their annotations USs, providing a concise and accessible overview
of the required functionality of a system, are an important artefact in agile soft-
ware development [1,11,15]. A US is a natural language text that expresses who
wants to perform what action and, potentially, why in the system. While no
uniform definition exists [13,20], the following template, which goes back to
Cohn [4], is widely used in practice [13]: ‘As a <role>, I want <goal>, [so that
<benefit>]’, where
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1. <role> describes the person involved in the US;
2. <goal> describes the actions performed by the person on entities; and
3. an optional <benefit> describes what the person will receive after perform-

ing these actions.

Example 1. The following two sentences are USs, slightly adapted from the
dataset g14 of Dalpiaz et al. [5], that conform to the template from above. US1:
‘As a <Publisher>, I want <to publish a dataset>, so that <I can view just
the dataset with a few people>.’; US2: ‘As a <publisher>, I want to <publish
a dataset>, so that <I can inspect the dataset with a selected set of people>.’

In order to process USs automatically, it is advantageous to annotate them
explicitly. An annotation is based on a conceptual model for USs and provides a
trace between the different parts of a US and the concepts they belong to.

Figure 1 shows our conceptual model which can be represented as a graph; it
is a slight adaptation of the conceptual model introduced by Arulmohan et al. [1].
This model captures instances of USs in a unified format, ensuring that the core
information is consistently represented, while emphasizing the key actions that
will be performed on each entity. A UserStory contains a Persona that triggers
Actions which, in turn, target Entities. These might contain further Entities. In
contrast to Arulmohan et al. [1], who use an additional attribute to distinguish
between Actions and Entities which belong to the goal or the benefit of the US,
we introduce dedicated types for each.

Fig. 1. The conceptual model for annotated User Stories

Definition 1 (Annotated user story). An annotated user story is a user
story (US) together with an instance c of the conceptual model from Fig. 1 such
that each name-attribute of a node of c contains a part of the US text; the instance
c is then called the annotation graph of US .

We call a targets-edge together with incident GoalAction and GoalEntity an
activity of the annotated user story and a targets-edge together with incident
BenefitAction and BenefitEntity a reason.

Example 2. Figure 2 shows annotation graphs of the two USs from Ex. 1.

An annotated US needs to satisfy certain consistency criteria to be of value.
Most importantly, the type of a node should align with the role its stored text
plays in the US. For instance, the Persona-node should indicate the acting person
of the US, or GoalAction should indicate the central verb, GoalEntity its object
and a targets-edge should connect them. Such criteria are very hard to formally
define in generality (and not just for USs following strictly a specific template);
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Persona
name = ‘publisher’

GoalAction
name = ‘publish’

GoalEntity
name = ‘dataset’

BenefitAction
name = ‘view’

BenefitEntity
name = ‘dataset’

US1

triggers

targets

targets

Persona
name = ‘publisher’

GoalAction
name = ‘publish’

GoalEntity
name = ‘dataset’

BenefitAction
name = ‘inspect’

BenefitEntity
name = ‘dataset’

US2

triggers

targets

targets

Fig. 2. Annotation graphs of the two USs from Ex. 1
the conceptual model we employ, however, is (to a certain degree) independent
from such templates [1]. We therefore refrain from formally defining such criteria.

We define, however, well-formedness [11] as a quality criterion for annotated
USs, upon which our notion of redundancy (and, hence, our approaches to re-
dundancy detection) technically rest.

Definition 2 (Well-formedness [11]). An annotated user story is well-formed
if the annotation graph contains a Persona, an activity (i.e., a targets-edge that
connects a GoalAction to a GoalEntity) and, if the benefit is not missing, a reason
(i.e., a targets-edge that connects a BenefitAction to a BenefitEntity).

In the following, we present two definitions of redundancy as a specific kind
of similarity of a pair of (annotated) USs. Intuitively, we want to consider two
USs as redundant if (i) the same actions are performed on same entities in the
goal or (ii) they share the same benefit (this is inspired by similar definitions by
Lucassen et al. [11]). Redundant USs might be duplicates (violating the quality
criterion of uniqueness), might point to feature variation in the system or might
contradict each other [11]. In any case, it is important that REs are aware of
redundant USs so that they are able to make a qualified decision, like deleting
a duplicated US, discussing conflicting USs with stakeholders or developing a
system architecture that elegantly accounts for the feature variation.

Assuming that a US is correctly annotated, the targets-edges and their in-
cident nodes capture exactly the central information about the US’s goal and
benefit. Therefore, we use this information to formally define two forms of re-
dundancy. The strict form relies on the equality of strings, but thus only ap-
proximates what one would intuitively consider to constitute a redundancy. The
second, semantic form of redundancy is related to the meaning of USs.

Definition 3 (Strict and semantic redundancy of USs). Let two well-
formed annotated user stories be given. They are strictly redundant in their goal
(benefit) if they share an equal activity (reason), i.e., if amongst the activities
(reasons) there is pair stemming from both USs such that their GoalAction (Ben-
efitAction) and GoalEntity (BenefitEntity) have equal name-attributes.

They are semantically redundant in their goal (benefit) if they share a se-
mantically equivalent activity (reason), i.e., if amongst the activities (reasons)



6 Lukas Sebastian Hofmann et al.

there is a pair stemming from both USs such that their GoalAction (BenefitAction)
and GoalEntity (BenefitEntity) have semantically equivalent name-attributes.

Note that we consider semantic equivalence to be reflexive; in particular, every
strict redundancy is also a semantic one by definition.

Example 3. Consider the USs introduced in Ex. 1 and their annotation graphs
(Fig. 2). Here, GoalAction, GoalEntity, and BenefitEntity are literally equal (the
value of their name-attributes), whereas the BenefitActions are merely semanti-
cally equivalent (‘view’ and ‘inspect’). Hence, this pair of USs is semantically
redundant in their benefits and even strictly redundant in their goals.

To further clarify the concept of semantic redundancy, we provide another
instance for US redundancy in the goal part. We classify the US pair ‘As a
data manager, I want to check the data model’s completeness.’ and ‘As a data
manager, I want to verify that the data schema contains all necessary attributes
and relationships.’ as redundant according to our definition because the actions
and entities are semantically equivalent within their given context.

Discussion Our definitions of US redundancy have the following limitations: (i)
both redundancy definitions depend on accurate annotation graphs and the well-
formedness of USs; (ii) strict redundancy cannot account for misspellings and
synonyms, and (iii) although semantic redundancy is more flexible by definition,
it is difficult to analyse due to its inherent ambiguity.

However, relying on the annotation graph allows us to abstract from things
like word order and to examine USs for redundancy that conform to different
templates. Furthermore, the process of annotating a US can be automated [15];
and well-formedness is an established quality criterion that a US should meet
anyway [11]. To guarantee well-formedness, tooling to fix ambiguous or poorly
structured USs can be used, e.g., tooling by Lucassen et al. [11].

4 Strict Redundancy Analysis using Annotation Graphs

In this section, we present an approach for the detection of strict redundancies
that is based on the annotation graphs of USs. By directly implementing Def. 3,
the approach is guaranteed to be correct and complete. The pseudo-code is shown
in Algorithm 1; our Python implementation is available on GitHub3.

First, the annotated USs are translated into a JSON format in which each ac-
tivity (reason), i.e., each targets edge, is represented as a pair [src, dest ] where src
is equal to the value of the name attribute of the GoalAction (BenefitAction) and
dest is equal to the value of the name-attribute of the GoalEntity (BenefitEntity)
of the respective activity (reason). Then, for each pair of USs, it is checked
whether at least one activity (or reason) of the first US is contained in the sec-
ond US of the pair. Using the optimised JSON format, we can check for strict
3 https://github.com/Hofmannl/GraphAndLLMbasedRedundancyAnalysis

https://github.com/Hofmannl/GraphAndLLMbasedRedundancyAnalysis
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Algorithm 1: Graph-based analysis of strict redundancies
Data: A set of annotated USs
Result: A list containing pairs of USs that are redundant in the goal or

benefit, respectively.
1 Translate annotations into JSON scheme;
2 pairs ← compute all pairs of USs;
3 goalRedundancies ← ∅ ;
4 benefitRedundancies ← ∅ ;
5 foreach (us1, us2) ∈ pairs do
6 foreach activity ∈ us1 do
7 if activity ∈ us2 then
8 goalRedundancies.add((us1, us2));
9 end

10 end
11 foreach reason ∈ us1 do
12 if reason ∈ us2 then
13 benefitRedundancies.add((us1, us2));
14 end
15 end
16 end
17 return (goalRedundancies, benefitRedundancy);

redundancy by checking whether both stories contain a tuple with identical src
and dest values.

For example, US1 (shown in Fig. 2) contains the pairs [publish, dataset ] in the
goal and [view , dataset ] in the benefit and US2 (also shown in Fig. 2) contains
the pairs [publish, dataset ] in the goal and [inspect , dataset ] in the benefit. The
graph-based approach detects the strict redundancy in the goal but cannot detect
the semantic redundancy in the benefit.

Our approach and implementation could easily be extended to provide at
least basic support for finding more general forms of redundancies by using a
tool like WordNet4 to analyse individual words for semantic equivalence. This is
also suggested (but not implemented) for AQUSA in [12].

5 Redundancy Analysis with Large Language Models

We now present our LLM-based approach to detecting US redundancies accord-
ing to Def. 3. For example, Arulmohan et al. [1], Devlin et al. [6] and Miller et
al. [14] have shown that LLMs can easily work with text, e.g., summarising or
detecting similarities. Furthermore, the versatility of LLMs to adapt to differ-
ent tasks through prompt engineering [3,21,22] makes them powerful tools. This
motivated us to take advantage of the natural language capabilities of LLMs

4 https://wordnet.princeton.edu/

https://wordnet.princeton.edu/
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to analyse redundancy in USs; we have realised a proof-of-concept implemen-
tation3. Our implementation relies on the GPT models from OpenAI5, which
are prominent state-of-the-art examples of LLMs which are based on the pre-
trained transformer model architecture [?]. However, our proof-of-concept has
been designed to be easily adaptable to other (open) LLMs, such as Mistral6,
Qwen27, and LLaMA8, which offer greater control over data flow, rather than
relying solely on OpenAI’s proprietary GPT models. This flexibility is realised
by a modular architecture based on the Strategy Pattern, which allows us to
define adapters for each LLM agent that correspond to a common interface.

The workflow for our LLM-based approach consists of the following steps:

1. Select & Pre-process US data: The user selects the set of USs to be
analysed. Either the textual descriptions or the annotation graphs can be
used as an input to the LLM. In addition, all USs that do not conform to
the conceptual model introduced in Sec. 3 are reported and ignored.

2. Build LLM prompts: This step creates the required prompt message chain
(PMC) containing the general context for the analysis and a specific US pair
to be analysed. We also provide examples of redundant US pairs and a JSON
schema to be returned by the LLM; it contains a boolean field to indicate
whether a redundancy was detected or not, a string field for a redundancy
description and a tuple for redundant text parts (analogous to Sec. 4).

3. Handling US pairs with LLMs: We send the PMC for each US pair to
the LLM. This includes processing our prompt sequences and validating the
JSON response. For schema violations, a repaired JSON is requested.

An important aspect of using LLMs is the prompt engineering; we follow
the research in [3,2,10,17,21,22] and use Role-Based Prompting where we set the
context and role for the model, Chain-of-Thoughts to structure our input from
problem to solution to ensure a logical flow, and Few-Shot Prompting to feed
the agent with input-output examples to guide it to produce a valid output.
As an additional strategy, we use Feedback-Loop-Prompting to request a new
JSON response from the LLM if the JSON schema for the response has been
violated. We also rely on system simulations. A system simulation is a prompt
that is used to specify a pre-defined response from the LLM to a particular
request by tagging that prompt with the ‘system’ role, which helps to guide the
agent’s behaviour and responses. This mechanism allows us to control how the
LLM processes inputs and generates outputs, ensuring that the responses are
consistent with our specific goals and requirements. The actual prompts can be
found in our repository3; their general structure is: MSequence = PContext-Framing+∑n

i=1 P
i
Example + PProcess-Request +

∑τ
j=1(P

j
Agent-Answer + P j

Repair-Request) where
n ∈ N is the number of shots in a few-shot prompt, and j ∈ N is the number of
repair attempts required to obtain a valid output, constrained by a preset repair
5 https://platform.openai.com/docs/models
6 https://mistral.ai/
7 https://github.com/QwenLM/Qwen2
8 https://llama.meta.com/

https://platform.openai.com/docs/models
https://mistral.ai/
https://github.com/QwenLM/Qwen2
https://llama.meta.com/
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{
" goalRedundancies ": {

" redundant ": true ,
" redundancyDescription ": "Both Publisher want to publish a

dataset ",
" tupleOfActivityRedundancies ": [[[" publish "," dataset "] ,["

publish "," dataset "]]] , [...]
},
" benefitRedundancies ": {

" redundant ": true ,
" redundancyDescription ": "The datasets shall be visible ",
" tupleOfReasonRedundancies ": [[[" view "," dataset "] ,[" inspect

"," dataset "]]] , [...]
}

}

Fig. 3. Simplified example for the structure of a potential response of the GPT model

threshold τ that must not be exceeded. The ‘+’-operator indicates concatenation
of strings which includes insertion of a system simulation. In addition,

1. PContext-Framing contains explanations and content for the actor role, the
redundancy definition (Def. 3), and the output format,

2. P i
Example consists of a US pair example containing an input and its corre-

sponding redundancy output. We use such examples to frame the LLM agent
for the specific task. Here, n is the number of examples to insert.

3. PProcess-Request is a prompt instructing the agent to analyse a particular pair
of USs and respond with a JSON string, and

4. if an invalid response is generated, the prompt is re-sent with additional
prompts, namely the invalid JSON response P j

Agent-Answer and P j
Repair-Request,

a prompt describing why the JSON response does not match the expected
schema.

Our implementation can integrate the pair of USs in PProcess-Request either
via their annotation graphs (see Fig. 2) or just via their text. In both cases, we
expect the same JSON output format containing information about the detected
redundancies. The expected format is illustrated in Fig. 3 for the pair of USs
from Ex. 1.

6 Evaluation

The goal of our evaluation is to assess the strengths and limitations of both
the graph- and LLM-based approaches in order to understand how they can be
used effectively. As our definition of strict redundancy is clear-cut and the graph-
based approach implements it directly, our main focus in this evaluation is to see
how well the LLM-based approach finds semantic redundancies. Furthermore, we
want to find out whether the identification of strict redundancies by the graph-
based approach alone is sufficient or whether semantic redundancy detection
with LLMs is also essential. For this, we answer the following research questions
(RQs):

RQ1: Is the LLM-based approach suitable for finding redundancies?
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RQ1a: How reliably does the LLM-based approach detect semantic redun-
dancies?

RQ1b: To what extent is the set of strict redundancies covered by the re-
dundancies identified through the LLM-based approach?

RQ2: Is the LLM-based approach able to detect redundancies without the
help of annotation graphs?

RQ3: How common are semantic redundancies that are not strict?

6.1 Setup and Experiments

We evaluate our approaches using two datasets of USs from different domains.
These were extracted from a dataset presented in [1,5]. The first dataset (orig-
inally named G19 and containing 137 USs) relates to ‘Assistive Technology for
Elderly Care’ (ATE) and addresses user-centered needs. The second dataset
(originally named G22 and containing 83 USs) relates to ‘Data Management
Plans’ (DMPs) and focuses on formal data management. These datasets were
chosen for their diversity in scope to assess the effectiveness of our approaches in
different use cases. In total, our dataset for the evaluation consists of 12,719 US
pairs. Note that 3 ATE and 8 DMP USs were excluded during the preprocessing
step because they do not fit the conceptual model (cf. Fig. 1).

We conducted the following experiments: In Exp. 1, the graph-based ap-
proach is used to compute all strict redundancies of the dataset. This establishes
a ground truth for them. In Exp. 2, the LLM-based approach is used to com-
pute semantic redundancies with only the annotation graphs of the USs as input.
The annotations should help the LLM to focus on its task (detecting redundan-
cies) and minimise the risk of errors due to misinterpretation of activities or
reasons. In Exp. 3, the LLM-based approach is used to compute semantic re-
dundancies using only the text of the USs as input. The aim here is to check
to what extent the LLM is able to interpret the activities and reasons of a US
on its own, i.e., whether it is able to extract the key information of a US. This
could indicate whether it is sufficient to provide only the text of a US as input
or whether annotation graphs are useful for redundancy detection. In order to
determine the strict redundancies among the US pairs identified as redundant
by the LLM-based approaches, we performed an automated check. For semantic
redundancies, establishing a ground truth for a dataset of this size (12,719 US
pairs) is hardly feasible: in the absence of reliable tool support, manual inspec-
tion would be the only option. To account for this, we (i) at least manually
checked the plausibility of all semantic redundancies (goal redundancies: 4.242,
benefit redundancies: 666) found in Exp. 2 and Exp. 3 and (ii) manually checked
the correctness of the result of a further 1,600 randomly selected US pairs for
which no experiment reported a redundancy. Four researchers were assigned to
manually verify the US pairs marked as redundant. We organised two working
sessions; the first focused on the research context and the presentation of the
conceptual model (Fig. 1), while the second focused on discussing the perception
of semantic redundancies. Each researcher was assigned to a junk of the data
and uncertainties were discussed.
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Our experiments were executed on custom hardware with the following spec-
ifications: Intel® Core™ i7-8565U CPU @ 1.80GHz (8 CPUs), 8070MB RAM,
Windows 11 Home 64-bit. We used GPT -4o mini (gpt-4o-mini-2024-07-18) with
a temperature of 0.2, OpenAI’s default parameters otherwise, 12 threads to pro-
cess the requests, a repair threshold of 3, and 7 given examples in the PMC. The
results of our experiments and in particular the output of the LLM are available
on GitHub3.

6.2 Quantitative Analysis
Table 1 reports the basic data we measured in our experiments. The graph-based
approach takes 0.6 seconds compared to roughly 3 hours for the LLM-based
approaches. In case of the LLM-based approaches, Exp. 2 (annotation-based)
requires more repair steps than Exp. 3 (text-based), namely 472 compared to
384, but fails considerably less often (51 compared to 120, where ‘failure’ means
that no valid JSON output was produced before reaching the repair threshold).
By design, the graph-based approach does not need repair steps and cannot fail.
Finally, Exp. 2 reports fewer semantic redundancies in the goal of USs than
Exp. 3 (1,913 compared to 2,329) but considerably more in the benefit (484
compared to 182).
Table 1. Overview of measured data (Rep.: Number of repair steps; Fails: Number of
cases without valid JSON output; Reported redundancies are strict in case of Exp. 1
and semantic in case of Exp. 2 and 3)

Basic data Reported redundancies
Approach & Results Runtime Rep. Fails in goal in benefit

Graph-Based (Exp. 1) 0.6 s — — 582 35

LLM-Based (Exp. 2) 185.24 min 472 51 1,913 484
LLM-Based (Exp. 3) 179.84 min 384 120 2,329 182

Next, we analyse the reported redundancies in more detail; an overview can
be found in Table 2. Our manual inspection of all reported semantic redundan-
cies revealed that in Exp. 2 (annotation-based), 1,750 (goal) and 322 (benefit)
of these are correct, which corresponds to a precision of 0.91 and 0.67, resp. For
Exp. 3 (text-based), the corresponding numbers are 2,032 correctly identified
semantic redundancies in the goal (precision: 0.87) and 158 in the benefit (preci-
sion: 0.87). Combining this manual inspection for correctness with an automated
comparison of the reported redundancies, we find that Exp. 2 and 3 together de-
tected 2,346 correct semantic redundancies in the goal and 446 in the benefit. Of
these, 75 % (goal) and 72 % (benefit) were detected by Exp. 2 and 87 % (goal)
and 35 % (benefit) were detected by Exp. 3. Since our further manual inspection
of 1,600 pairs of USs that were not reported as redundant in any of the three
experiments did not reveal any further redundancies, we assume that 2,346 is
close to the true number of semantic redundancies in our dataset and that the
proportions just reported are close to the true recall of our approaches.
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Table 2. Analysis of the reported semantic redundancies (Rep.: No. of reported redun-
dancies; Corr.: No. of correct redundancies; P: Precision;

∑
: Total number of correctly

detected semantic redundancies together in Exp. 2 and Exp. 3; PSem.: Detected pro-
portion of correct semantic redundancies; Cont: No. of strict redundancies contained
in Corr.; PStr.: Detected proportion of strict redundancies)

semantic strict
Type Exp. Rep. Corr. P

∑
PSem. Cont. PStr.

Goal Exp. 2 1,913 1,750 0.91 2,346 0.75 565 0.97
Exp. 3 2,329 2,032 0.87 0.87 478 0.82

Benefit Exp. 2 484 322 0.67 446 0.72 35 1.00
Exp. 3 182 158 0.87 0.35 23 0.66

Since the graph-based approach is a direct implementation of the definition
of strict redundancy, we assume that we have found all strict redundancies con-
tained in our dataset in Exp. 1 (completeness) and that all redundancies reported
there are indeed strict redundancies (correctness). Regarding the LLM-based
approaches, the (semantic) redundancies reported in Exp. 2 (annotation-based)
contained 565 of the 582 strict redundancies in the goal (97 %) and 35 of 35
(100 %) in the benefit. In contrast, Exp. 3 (text-based) returned 478 (87 %) and
23 (66 %) of the strict redundancies in goal and benefit.

Our key observations from the quantitative analysis are the following:

1. There are many non-strict redundancies in our dataset (which the graph-
based approach, while fast and correct, is unable to detect).

2. The LLM-based approach using annotations requires slightly more repair
steps but fails significantly less often than the text-based approach.

3. For the LLM-based approaches, the proportion of detected strict redundan-
cies is always higher than the proportion of detected semantic redundancies,
with the exception of the goal redundancies in Exp. 3. This suggests that
both LLM-based approaches detect strict redundancy more easily than se-
mantic redundancy.

4. Both LLM-based approaches perform better for the goal than for the benefit
of USs, both in terms of precision and proportion of detection. In partic-
ular, for the goal, both provide convincing results for both precision and
proportion of detection (and our additional manual checks indicate that the
proportion of detection might be close to the true recall).

5. The LLM-based approach using annotations detects a comparable propor-
tion of strict redundancies in goal and benefit, and both are higher than the
corresponding proportions of the text-based approach. There, additionally,
the proportion decreases significantly from goal to benefit.

6. The annotation-based approach has a higher precision but detects a lower
proportion of semantic redundancies in the goal compared to the text-based
approach and vice versa for the benefit. In addition, the precision of the
annotation-based approach decreases significantly from goal to benefit (from
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0.91 to 0.67), but the detection rate in the benefit clearly exceeds that of the
text-based approach (0.72 to 0.35).

These last observations suggest that the text-based approach has great difficulty
in identifying the benefit of a US (resulting in far fewer redundancies being found
there). However, it can reliably identify the goal, where it trades precision for
recall, compared to the annotation-based approach.

6.3 Discussion

To answer RQ1, we first consider RQ1a: The results presented above indicate
that the LLM-based approach reliably detects semantic redundancies with rea-
sonably high precision, especially in the goal. The manual assessment of 1, 600
randomly selected US pairs that were not detected as redundant by any ex-
periment suggests that Exp. 2 and 3 found most of the semantic redundancies
contained in the dataset. For RQ1b, even though strict redundancy is defined
without any fuzziness (as we are looking for equality of words), the results show
that the LLM-based approaches achieve good results in identifying them with
coverages of 0.97 and 0.82 for the goal and 1.00 and 0.66 for the benefit in Exp. 2
and 3. Overall, the LLM-based approach is well suited for finding redundancies,
especially in the goal of a US.

Regarding RQ2, the results presented in Table 2 show that Exp. 3 (text-
based) achieves a lower coverage of strict redundancies. Regarding redundancies
in the goal, the text-based approach trades precision for recall when compared
to the annotation-based approach. In particular, it detects more semantic redun-
dancies than the latter. While the differences are not large, this suggests that the
text-based approach may even have advantages in situations where it is important
to find all redundancies in the goal of USs. The text-based approach, however,
misses a large portion of the existing redundancies in the benefit of USs, prob-
ably by not being able to correctly locating these. Thus, the annotation-based
approach has clear advantages in analysing the benefit of USs.

To answer RQ3: In total, we identified 2,346 US pairs that are semantically
redundant in the goal and 446 semantic redundancies in the benefit, which es-
tablishes a lower bound on the total number of redundancies contained in the
dataset. Therefore, the ratio of strict redundancies is at most 0.25 in the goal
and at most 0.08 in the benefit. This implies that semantic redundancy must be
considered if the redundancies in a set of USs are to be fully investigated.

Threats to Validity. We have identified several potential threats to the validity
of our approaches. The first threat relates to internal validity, as errors in the an-
notation graphs or their (partial) non-existence affect the graph-based approach,
emphasising the need for correctness and completeness of the annotation graph
of each US to ensure reliable detection. To counter this, we used a dataset [5]
whose annotations graphs have been verified correct [1]. The second threat to
validity lies in the inconsistency of LLM models. As Ouyang et al. [16] noted, the
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behaviour of LLM models varies between different runs. This variability threat-
ens reproducibility. Another threat concerns the usability and generalisability of
the approaches, since well-formed USs are required as input. However, recent
research has shown that poorly formed US data can be automatically improved
[11]. Another threat concerns construct validity, as we manually checked the
correctness of the redundancies identified. Possible differences in the perception
of redundancies between the four researchers who carried out this work were
mitigated by discussing them in joint working sessions. To mitigate the risk that
not all US pairs were checked for redundancy, we checked a large subset of US
pairs by randomly selecting the pairs. By doing so, we verified the absence of
redundancies in a subset of 1,600 US pairs. To mitigate the threat of external
validity, we used the datasets of [1,5], which were developed independently of
our work.

Qualitative Observations during Evaluation. Finally, we would like to highlight
some observations made during the manual evaluation of Exp. 2 and 3. As de-
scribed in Section 5, the LLM was asked to provide a redundancy description in
order to gain insight into why the redundancy was detected. When a false redun-
dancy was reported, the descriptions were over-generalised, meaning that most
false redundancies were due to the LLM’s greater scope for interpretation rather
than misidentification of activities and reasons. For example, the description
‘In both stories, someone wants to know something’ was returned for a non-
redundant pair of USs; in the corresponding USs, the personas wanted to know
about timetables and software, respectively. However, when a redundancy was
correctly identified, the redundancy descriptions were mostly appropriate and
correct with respect to the detected redundancy. Further investigation of quality
aspects and how the redundancy descriptions can guide REs and developers is
future work.

7 Conclusion

In this paper, we define two forms of redundancy: strict redundancy, when two
USs contain equal activities or reasons, and semantic redundancy, when two USs
contain semantically equivalent activities or reasons. Both definitions assume the
use of annotated user stories, introduced in [1], to extract and organise the key
information of a US. We present two redundancy detectors: A graph-based ap-
proach for detecting strict redundancy, which relies solely on annotation graphs,
and an LLM-based approach for detecting semantic redundancy. This uses the
natural language capabilities of LLMs (GPT in our implementation) to detect
semantically equivalent activities and reasons. Since annotation graphs are addi-
tional artefacts to be generated, the approach supports (i) annotations only and
(ii) US text only as input. Both redundancy detectors have been evaluated on
a large dataset published by Dalpiaz [5]. The results show that the graph-based
approach achieves significantly faster runtimes and is well suited for detecting
strict redundancies. However, at least 75% of the redundancies contained in the
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analysed dataset are not strict redundancies, which makes the use of seman-
tic analysis necessary to fully investigate a dataset for redundancies. For both
types of input (annotation graphs and US text only), the LLM-based approach
achieves high precision. A manual inspection of 1,600 US pairs that were not
detected by the LLM-based approach indicates that we have found most of the
redundancies contained in the dataset. Although we got slightly better results
when using annotation graphs for the LLM-based approach, it is also works well
for redundancy detection when annotation graphs are not available and can-
not be generated. Overall, our results indicate a great potential for the use of
LLMs in the quality assurance of USs, especially for semantic redundancy de-
tection. Compared to traditional similarity checkers based on natural language
processing, LLMs can structurally separate goal and benefit of the US text by
themselves and provide insight into why a redundancy occurs by generating a
redundancy description.

After finding redundancies between USs, a recommendation engine would be
helpful to resolve redundant USs, e.g., by merging redundant USs and to create a
new US using LLMs. In the future, we plan to further explore how LLMs can be
used to automate the analysis and improvement of USs also for further quality
aspects, such as minimality, conflict-freeness and independence [12]. The LLM-
based quality assurance will then act as an oracle to assist requirement engineers
in analysing and improving the quality of user stories in agile development.
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