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REGULATIONS FOE THE FIFTH INTERNATIONAL 
CONGRESS OF MATHEMATICIANS 

I. At the first General Meeting the Chair shall be taken by the President of 
the Organizing Committee. The Meeting shall proceed to elect the following 
Officers of the Congress : 

A President, 

Vice-Presidents, 

General Secretaries. 

II. The President of the Congress or one of the Vice-Presidents shall preside 
at each of the succeeding General Meetings. 

III. One of the Introducers nominated by the Organizing Committee shall 
preside at the first Meeting of each Section. At such Meeting the Section 
shall appoint a Secretary and one or more Assistant Secretaries. The Secretaries 
shall remain in office for the whole time of the Congress. At each Meeting 
the members present shall elect the President for the next Meeting. 

IV. The Organizing Committee shall settle the order in which the com­
munications to each Section shall be read. This order may however be modified 
by a vote of the Section concerned. 

V. The reading of a Communication shall not occupy more than twenty 
minutes. During a discussion a speaker shall not be allowed more than ten 
minutes, nor shall he speak more than once on the same subject without 
special permission from the President of the Section. 

VI. The speakers are requested to furnish the Secretary of the Section with 
a brief resume of their remarks immediately after the conclusion of the discussion. 
The Sectional Secretary, at the end of each Meeting, shall draw up and send to 
the General Secretary the titles of the papers read for publication in the Journal 
of the following day. A complete report containing the abstracts of the Com­
munications and of the subsequent discussions shall be drawn up by the Secretary 
of the Section before the end of the Congress. 

VII. The Lectures and Communications read at the Congress shall be 
collected in the Volume of Proceedings. Authors should deliver the texts of 
their Lectures and Communications to the General Secretary of the Congress 
not later than the end of the Congress. Those Lectures or Communications 
which are written in French, German, or Italian should be type-written (except 
formulae). 



3 0 REGULATIONS 

CINQUIEME CONGRES INTERNATIONAL DES 
MATHÉMATICIENS 

EEGLEMENT DU CONGEES 

I. La première séance générale sera présidée par le Président du Comité 
d'organisation. A cette séance on procédera à la constitution du Bureau définitif, 
qui comprendra : 

Un Président, 

Des Vice-Présidents, 

Des Secrétaires généraux. 

II. Les séances générales successives seront présidées par le Président du 
Congrès ou par un des Vice-Présidents. 

III . La première réunion de chaque Section sera présidée par un des 
Introducteurs désigné par le Comité d'organisation. A cette séance, la Section 
nommera un Secrétaire et un ou plusieurs Secrétaires adjoints. Les Secrétaires 
resteront en charge pendant toute la durée du Congrès. A chaque séance, les 
membres présents éliront le Président de la séance suivante. 

IV. Le Comité d'organisation établira l'ordre des lectures de chaque Section. 
Cet ordre pourra, toutefois, être modifié par le vote des Sections respectives. 

V. L'exposé d'un Mémoire ne pourra pas dépasser la durée de vingt minutes. 
Pendant la discussion, un orateur ne pourra pas parler plus de dix minutes, ni 
prendre la parole plus d'une fois sur le même sujet, sans autorisation spéciale 
du Président. 

VI. Les orateurs sont priés de transmettre au Secrétaire de la Section, 
aussitôt après l'exposé, un résumé succinct des sujets traités. Le Secrétaire de la 
Section, après la clôture de la séance, rédigera et remettra au Secrétaire général 
un extrait du procès-verbal, qui sera imprimé dans le Bulletin du jour suivant. 
Le procès-verbal complet, contenant le résumé des exposés et des discussions, 
devra être rédigé par le Secrétaire de la Section avant la fin du Congrès. 

VII. Les Conférences et les Communications faites au Congrès seront réunies 
dans le volume des comptes rendus. MM. les auteurs sont priés de bien vouloir 
remettre le texte de leurs Communications au Secrétaire Général du Congrès, 
au plus tard à la fin du Congrès. Les Conférences et les Communications en 
français, allemand, ou italien, devront être écrites (sauf les formules) à la machine 
à écrire. 
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V INTERNATIONALER MATHEMATIKER-KONGRESS 

REGLEMENT FÜR DEN KONGRESS 

I. Die erste Generalversammlung wird von dem Präsidenten des Organisa­
tions-Komitees geleitet werden. In derselben wird die Zusammensetzung des 
Leitungs-Komitees festgesetzt werden, welches bestehen wird aus : 

Einem Präsidenten, 

Den Vice-Präsidenten, 

Den Generalsekretären. 

IL Die folgenden Generalversammlungen werden von dem Präsidenten des 
Kongresses oder von einem der Vice-Präsidenten geleitet werden. 

III. In der ersten Sitzung von jeder Sektion wird ein vom Organisations­
komitee ernannter Einführender den Vorsitz führen. In dieser Sitzung wird 
die Section einen Sekretär und einen oder mehrere Hülfssekretäre ernennen. 
Die ernannten Sekretäre werden während der ganzen Dauer des Kongresses 
im Amt bleiben. An jeder Sitzung werden die anwesenden Mitglieder den 
Präsidenten der folgenden Sitzung erwählen. 

IV. Das Organisations-Komitee wird die Reihenfolge der Vorträge in jeder 
Sektion festsetzen ; dieselbe kann aber durch die Abstimmung der respektiven 
Sectionen geändert werden. 

V. Der Vortrag eines Referates darf nicht länger als zwanzig Minuten dauern. 
Während der Discussion darf ein Redner nicht länger als zehn Minuten sprechen. 
Er darf auch ohne besondere Erlaubniss des Präsidenten nicht mehr als einmal 
über denselben Gegenstand reden. 

VI. Die Redner werden gebeten, dem Sectionssekretär, sogleich nach Schluss 
des Vortrages, einen kurzen Auszug ihrer Ausführungen zu überreichen. Nach 
Schluss der Sitzung soll der Sekretär der Section einen Auszug des Sitzungs-
protokolles abfassen und ihn dem Generalsekretär überreichen, damit dieser 
Auszug im Journal des folgenden Tages erscheint. Das vollständige Protokoll, 
mit dem Auszug der gehaltenen Vorträge und der Diskussionen, soll vom Sekretär 
vor dem Schluss des Kongresses abgefasst werden. 

VII. Die Vorträge und Mitteilungen an den Kongress werden im Band der 
Verhandlungen zusammengefasst. Die Verfasser werden gebeten das Manuskript 
ihrer Vorträge spätestens bis Ende des Kongresses dem Generalsekretär zu 
übergeben. Die Vorträge und Mitteilungen in französischer, deutscher, oder 
italienischer Sprache sollten (mit Ausnahme der Formeln) mit der Schreib­
maschine geschrieben sein. 
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V CONGRESSO INTERNAZIONALE DEI MATEMATICI 

REGOLAMENTO DEL CONGRESSO 

I. La prima seduta plenaria sarà presieduta dal Presidente del Comitato 
organizzatore. In essa si procederà alla costituzione del Seggio, il quale com­
prenderà : 

Un Presidente, 

Alcuni Vice-Presidenti, 

Alcuni Segretari generali. 

IL Le sedute plenarie successive saranno presiedute dal Presidente del 
Congresso o da uno dei Vice-Presidenti. 

III . La prima adunanza di ciascuna Sezione sarà presieduta da uno degli 
Introduttori designato dal Comitato organizzatore. In questa seduta la Sezione 
nominerà un Segretario ed uno o più Segretari aggiunti. I Segretari resteranno 
in carica per tutta la durata del Congresso. All' ogni adunanza i membri presenti 
eleggeranno il Presidente della seduta successiva. 

IV. Il Comitato organizzatore stabilirà 1' ordine delle letture di ciascuna 
Sezione ; questo però potrà esser modificato dal voto delle Sezioni rispettive. 

V. La lettura di una comunicazione non potrà durare più di venti minuti. 
Durante la discussione gli oratori non potranno tener la parola più di dieci 
minuti, né potranno prenderla più di una volta sullo stesso argomento senza 
speciale permesso del Presidente. 

VI. Gli oratori sono pregati di trasmettere al Segretario della Sezione, 
appena compiuta la lettura, un breve sunto degli argomenti trattati. Il Segre­
tario della Sezione, terminata la seduta, redigerà e consegnerà al Segretario 
generale un estratto del processo verbale destinato alla stampa nel Bollettino 
del giorno successivo. Il processo verbale completo, continente il sunto delle 
letture fatte e delle discussioni avvenute, dovrà esser redatto dal Segretario 
della Sezione avanti la fine del Congresso. 

VII. Le Conferenze e le Comunicazioni lette al Congresso saranno raccolte 
nel Volume degli Atti. Si pregano gli Autori di voler consegnare il testo delle 
loro letture al Segretario generale del Congresso, non più tardi della fine del 
Congresso. Per gli scritti in lingue francese, tedesco, o italiano, è richiesto 
T uso della machina da scrivere (tranne che per le formole). 
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Wednesday, August 21 

At 9.30 p.m. the Members of the Congress were received by Sir G. H. Darwin, 
President of the Cambridge Philosophical Society, and were presented to Mr R. F. 
Scott, Vice-Chancellor of the University, at a conversazione held in the Combination 
Room and Hall of St John's College. 

Thursday, August 22 

The opening meeting of the Congress was held at 10.0 a.m. 

Sir G. H. Darwin, President of the Cambridge Philosophical Society, spoke 
as follows : 

Four years ago at our Conference at Rome the Cambridge Philosophical Society 
did itself the honour of inviting the International Congress of Mathematicians to 
hold its next meeting at Cambridge. And now I, as President of the Society, have 
the pleasure of making you welcome here. I shall leave it to the Vice-Chancellor, 
who will speak after me, to express the feeling of the University as a whole on this 
occasion, and I shall confine myself to my proper duty as the representative of our 
Scientific Society. 

The Science of Mathematics is now so wide and is already so much specialised 
that it may be doubted whether there exists to-day any man fully competent to 
understand mathematical research in all its many diverse branches. I, at least, 
feel how profoundly ill-equipped I am to represent our Society as regards all that 
vast field of knowledge which we classify as pure mathematics. I must tell you 
frankly that when I gaze on some of the papers written by men in this room I feel 
myself much in the same position as if they were written in Sanskrit. 

But if there is any place in the world in which so one-sided a President of 
the body which has the honour to bid you welcome is not wholly out of place it is 
perhaps Cambridge. It is true that there have been in the past at Cambridge 
great pure mathematicians such as Cayley and Sylvester, but we surely may claim 
without undue boasting that our University has played a conspicuous part in the 
advance of applied mathematics. Newton wras a glory to all mankind, yet we 
Cambridge men are proud that fate ordained that he should have been Lucasian 
Professor here. But as regards the part played by Cambridge I refer rather to the 
men of the last hundred years, such as Airy, Adams, Maxwell, Stokes, Kelvin, 
and other lesser lights, who have marked out the lines of research in applied 
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mathematics as studied in this University. Then too there are others such as our 
Chancellor, Lord Rayleigh, who are happily still with us. 

Up to a few weeks ago there was one man who alone of all mathematicians 
might have occupied the place which I hold without misgivings as to his fitness; 
I mean Henri Poincaré. I t was at Rome just four years ago that the first dark 
shadow fell on us of that illness which has now terminated so fatally. You all 
remember the dismay which fell on us when the word passed from man to man 
"Poincaré is ill." We had hoped that we might again have heard from his mouth 
some such luminous address as that which he gave at Rome ; but it was not to be, 
and the loss of France in his death affects the whole world. 

I t was in 1900 that, as president of the Royal Astronomical Society, I had the 
privilege of handing to Poincaré the medal of the Society, and I then attempted to 
give an appreciation of his work on the theory of the tides, on figures of equilibrium 
of rotating fluid and on the problem of the three bodies. Again in the preface to the 
third volume of my collected papers I ventured to describe him as my patron Saint as 
regards the papers contained in that volume. It brings vividly home to me how great 
a man he was when I reflect that to one incompetent to appreciate fully one half of 
his work yet he appears as a star of the first magnitude. 

I t affords an interesting study to attempt to analyze the difference in the 
textures of the minds of pure and applied mathematicians. I think that I shall 
not be doing wrong to the reputation of the psychologists of half a century ago 
when I say that they thought that when they had successfully analyzed the way in 
which their own minds work they had solved the problem before them. But it was 
Sir Francis Galton who showed that such a view is erroneous. He pointed out 
that for many men visual images form the most potent apparatus of thought, but 
that for others this is not the case. Such visual images are often quaint and illogical, 
being probably often founded on infantile impressions, but they form the wheels 
of the clockwork of many minds. The pure geometrician must be a man who 
is endowed with great powers of visualisation, and this view is confirmed by my 
recollection of the difficulty of attaining to clear conceptions of the geometry of space 
until practice in the art of visualisation had enabled one to picture clearly the 
relationship of lines and surfaces to one another. The pure analyst probably relies 
far less on visual images, or at least his pictures are not of a geometrical character. 
I suspect that the mathematician will drift naturally to one branch or another of our 
science according to the texture of his mind and the nature of the mechanism by 
which he works. 

I wish Galton, who died but recently, could have been here to collect from the 
great mathematicians now assembled an introspective account of the way in which 
their minds work. One would like to know whether students of the theory of 
groups picture to themselves little groups of dots ; or are they sheep grazing in a 
field ? Do those who work at the theory of numbers associate colour, or good or 
bad characters with the lower ordinal numbers, and what are the shapes of the 
curves in which the successive numbers are arranged ? What I have just said will 
appear pure nonsense to some in this room, others will be recalling what they see, 
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and perhaps some will now for the first time be conscious of their own visual 
images. 

The minds of pure and applied mathematicians probably also tend to differ from 
one another in the sense of aesthetic beauty. Poincaré has well remarked in his 
Science et Méthode (p. 57) : 

"On peut s'étonner de voir invoquer la sensibilité à propos de démonstrations 
mathématiques qui, semble-t-il, ne peuvent intéresser que l'intelligence. Ce serait 
oublier le sentiment de la beauté mathématique, de l'harmonie des nombres et des 
formes, de l'élégance géométrique. C'est un vrai sentiment esthétique que tous les 
vrais mathématiciens connaissent. Et c'est bien là de la sensibilité." 

And again he writes : 

" Les combinaisons utiles, ce sont précisément les plus belles, je veux dire celles 
qui peuvent le mieux charmer cette sensibilité spéciale que tous les mathématiciens 
connaissent, mais que les profanes ignorent au point qu'ils sont souvent tentés d'en 
sourire." 

Of course there is every gradation from one class of mind to the other, and in 
some the aesthetic sense is dominant and in others subordinate. 

In this connection I would remark on the extraordinary psychological interest 
of Poincaré's account, in the chapter from which I have already quoted, of the manner 
in which he proceeded in attacking a mathematical problem. He describes the 
unconscious working of the mind, so that his conclusions appeared to his conscious 
self as revelations from another world. I suspect that we have all been aware of 
something of the same sort, and like Poincaré have also found that the revelations 
were not always to be trusted. 

Both the pure and the applied mathematician are in search of truth, but the 
former seeks truth in itself and the latter truths about the universe in which we 
live. To some men abstract truth has the greater charm, to others the interest 
in our universe is dominant. In both fields there is room for indefinite advance; 
but while in pure mathematics every new discovery is a gain, in applied mathe­
matics it is not always easy to find the direction in which progress can be made, 
because the selection of the conditions essential to the problem presents a preliminary 
task, and afterwards there arise the purely mathematical difficulties. Thus it appears 
to me at least, that it is easier to find a field for advantageous research in pure than 
in applied mathematics. Of course if we regard an investigation in applied mathe­
matics as an exercise in analysis, the correct selection of the essential conditions is 
immaterial ; but if the choice has been wrong the results lose almost all their interest. 
I may illustrate what I mean by reference to Lord Kelvin's celebrated investigation 
as to the cooling of the earth. He was not and could not be aware of the radio­
activity of the materials of which the earth is formed, and I think it is now generally 
acknowledged that the conclusions which he deduced as to the age of the earth 
cannot be maintained ; yet the mathematical investigation remains intact. 

The appropriate formulation of the problem to be solved is one of the greatest 
difficulties which beset the applied mathematician, and when he has attained to a 
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true insight but too often there remains the fact that his problem is beyond the reach 
of mathematical solution. To the layman the problem of the three bodies seems so 
simple that he is surprised to learn that it cannot be solved completely, and yet we 
know what prodigies of mathematical skill have been bestowed on it. My own work 
on the subject cannot be said to involve any such skill at all, unless indeed you 
describe as skill the procedure of a housebreaker who blows in a safe-door with 
dynamite instead of picking the lock. I t is thus by brute force that this tantalising 
problem has been compelled to give up some few of its secrets, and great as has been 
the labour involved I think it has been worth while. Perhaps this work too has done 
something to encourage others such as Stürmer1 to similar tasks as in the com­
putation of the orbits of electrons in the neighbourhood of the earth, thus affording 
an explanation of some of the phenomena of the aurora borealis. To put at their 
lowest the claims of this clumsy method, which may almost excite the derision of the 
pure mathematician, it has served to throw light on the celebrated generalisations of 
Hill and Poincaré. 

I appeal then for mercy to the applied mathematician and would ask you to 
consider in a kindly spirit the difficulties under which he labours. If our methods are 
often wanting in elegance and do but little to satisfy that aesthetic sense of which I 
spoke before, yet they are honest attempts to unravel the secrets of the universe in 
which we live. 

We are met here to consider mathematical science in all its branches. 
Specialisation has become a necessity of modern work and the intercourse which 
will take place between us in the course of this week will serve to promote some 
measure of comprehension of the work which is being carried on in other fields 
than our own. The papers and lectures which you will hear will serve towards 
this end, but perhaps the personal conversations outside the regular meetings may 
prove even more useful. 

Mr R. F. Scott, Vice-Chancellor of the University of Cambridge, spoke as 
follows : 

GENTLEMEN, It is my privilege to-day on behalf of the University of 
Cambridge and its Colleges to offer to Members of the Congress a hearty welcome 
from the resident body. 

Sir George Darwin has dwelt on the more serious aspects of the meeting and 
work of the Congress, may I express the hope that it will also have its lighter and 
more personal side ? That we shall all have the privilege and pleasure of making 
the personal acquaintance of many well known to us both by name and by fame, 
and that those of our visitors who are not familiar with the College life of Oxford 
and Cambridge will learn something of a feature so distinctive of the two ancient 
English Universities. If the Congress comes at a time when it is not possible to 
see the great body of our students either at work or at play, the choice of date at 
least renders it possible that many of our visitors may enjoy for a time that 
Collegiate life which has so many attractions. 

I see that one of the Sections of the Congress deals with historical and 
1 Videnskabs Selskab, Christiania, 1904. 
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didactical questions. Those members of the Congress who are interested in these 
subjects will have an opportunity of learning on the spot something of our methods 
in Cambridge, and of the history of our chief Mathematical Examination, the 
Mathematical Tripos, and of its influence on the study and progress of Mathematics 
both in Cambridge and Great Britain. 

The researches of Dr Venn seem to point to the fact that until it was altered 
at a very recent date the Mathematical Tripos represented something like the oldest 
example in Europe of a competitive Examination with an order of merit. Those 
who are interested in such matters of history will find much to interest them in 
Mr Rouse Ball's History of the Study of Mathematics at Cambridge. 

The subject is to me and I hope to others an interesting one. There can 
be no doubt that the Examination and the preparation for it has had a profound 
influence on Mathematical studies at Cambridge. 

Many Cambridge mathematicians, as the names given by Sir George Darwin 
testify, studied mathematics for its own sake and with the view of extending the 
boundaries of knowledge. Many others, probably the great majority, studied 
mathematics with their eyes fixed upon the Mathematical Tripos, with the view 
in the first place of being examined and afterwards of acting as examiner in it. 

The tendency at Cambridge has been to give great minuteness to the study of 
any particular branch of mathematics. To stimulate the invention of what we call 
" Problems," examples of more general theories. If I may borrow a simile from 
the study of Literature the tendency was to produce critics and editors rather than 
authors or men of letters, followers rather than investigators. The effect must 
I think be obvious to any one who compares Cambridge Text Books and Treatises 
with those of the Continental Schools of Mathematics. I may illustrate what 
I mean by referring to the Mathematical Problems of the late Mr Joseph 
Wolstenholme, a form of work I believe without a parallel in the mathematical 
literature of other nations. The fashion is fading away, but while you are in 
Cambridge I commend it to your notice. 

Professor E. W. Hobson, Senior Secretary of the Organizing Committee, stated 
that the number of persons who had joined the Congress up to 10.0 p.m. on 
Wednesday, August 21st, was 670, the number of representatives of different 
countries being as follows : Argentine 4, Austria 19, Belgium 4, Bulgaria 1, Canada 4, 
Chili 1, Denmark 5, Egypt 2, France 42, Germany 70, Great Britain 250, Greece 5, 
Holland 9, Hungary 19, India 3, Italy 38, Japan 3, Mexico 1, Norway 4, Portugal 3, 
Roumania 5, Russia 38, Servia 1, Spain 25, Sweden 13, Switzerland 9, United 
States 82. He also called the attention of the Members of the Congress to the 
exhibition of books, models and machines (chiefly calculating machines) arranged in 
two rooms of the Cavendish Laboratory. 

The first general meeting of the Congress was held at 2.30 p.m. 

On the motion of Prof. Mittag-Leffler, seconded by Professor Enriques, 
Sir G. H. Darwin was elected President of the Congress. 
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On the motion of the President it was agreed that Lord Rayleigh be made 
Honorary President of the Congress (Président d'honneur). 

On the motion of the President, Vice-Presidents of the Congress were elected 
as follows :—W. von Dyck, L. Fejér, R. Fujisawa, J. Hadamard, J. L. W. V. Jensen, 
P. A. MacMahon, G. Mittag-Leffler, E. H. Moore, F. Rudio, P. H. Schoute, 
M. S. Smoluchowski, V. A. Steklov, V. Volterra. 

On the motion of the President, General Secretaries of the Congress were 
elected as follows:—E. W. Hobson, A. E. H. Love. 

Sir G. Greenhill made the following statement in regard to the work of the 
International Commission on the teaching of mathematics: 

The statement I have to make, Sir, to the Congress, is given in the formal 
words following: 

1. The International Commission on the Teaching of Mathematics was 
appointed at the Rome Congress, on the recommendation of the Members of 
Section IV. 

2. The several countries, in one way or another, have recognised officially 
the work, and have contributed financial support. 

3. About 150 reports have been published, and about 50 more will appear 
later. 

4. The Commission will report in certain Sessions of Section IV. 

5. The Commission hopes to be continued in power, in order that the work 
now in progress may be brought to completion. A Resolution to this effect will be 
offered at the final Meeting of the Congress. 

At 3.30 p.m. Prof. F. Enriques delivered his lecture " Il significato della critica 
dei principii nello sviluppo delle matematiche." 

At 5.0 p.m. Prof. E. W. Brown delivered his lecture "Periodicities in the Solar 
System." 

At 9 p.m. Section IV met. 

Friday, August 23 

The various Sections met at 9.30 a.m. 

At 3.30 p.m. Prof. E. Landau delivered his lecture " Gelöste und ungelöste 
Probleme aus der Theorie der Primzahl Verteilung und der Riemannschen Zeta-
funktion." 

At 5 p.m. Prince B. Galitzin delivered his lecture " The principles of instrumental 
seismology." 

At 9 p.m. the Members of the Congress were received at a conversazione in 
the Fitzwilliam Museum by the Chancellor of the University, The Rt. Hon. 
Lord Rayleigh, O.M. 
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Saturday, August 24 

The various Sections met at 9.30 a.m. 

At 3.30p.m. Prof. E. Borei delivered his lecture "Définition et domaine 
d'existence des fonctions monogènes uniformes." 

At 5 p.m. Sir W. H. White delivered his lecture "The place of mathematics in 
engineering practice." 

Sunday, August 25 
At 3 p.m. the Members of the Congress were received at an afternoon party in 

the Garden of Christ's College by the President of the Congress, Sir G. H. Darwin. 

At 9 p.m. the Members of the Congress were invited to be present at an Organ 
Recital in the Chapel of King's College. 

Monday, August 26 
The various Sections met at 9.30 a.m. 

A meeting of Section IV (b) was held at 3 p.m. 

A meeting of Section I was held at 3.30 p.m. 

In the afternoon Members of the Congress made an excursion to Ely and visited 
the Cathedral. Other Members visited the works of the Cambridge Scientific 
Instrument Company and the University Observatory. 

At 9 p.m. the Members of the Congress were entertained in the Hall and 
Cloisters of Trinity College by the Master and Fellows of the College. 

Tuesday, August 27 

The various Sections met at 9.30 a.m. 

At 3.30 p.m. Professor Bôcher delivered his lecture " Boundary problems in one 
dimension." 

At 5 p.m. Sir J. Larmor delivered his lecture " The dynamics of radiation." 

In the afternoon a number of Members of the Congress proceeded to the Mill 
Road Cemetery for the purpose of depositing a wreath upon the grave of the late 
Professor A. Cay ley. An address was delivered by Professor S. Dickstein. Other 
Members visited the works of the Cambridge Scientific Instrument Company. 

At 9 p.m. the final meeting of the Congress was held. 

The President read a telegram from Prof. V. Volterra regretting that family 
reasons prevented his attending the Congress, and proceeded to speak as follows : 

LADIES AND GENTLEMEN, 

We meet to-night for the final Conference of the present Congress. The 
majority of those present in the room will have been aware that a procession was 
formed to-day to lay a wreath on the tomb of Cayley. This has touched the 



40 PROCEEDINGS OF THE CONGRESS 

hearts of our University. I t had, I believe, been suggested that a more permanent 
wreath should have been deposited; but no such things can be obtained at short 
notice, and the final arrangement adopted is that a silver wreath shall be made and 
presented to the University, whose authorities will I am sure gratefully accept it and 
deposit it in some appropriate place, where it will remain as a permanent memorial 
of the recognition accorded by the mathematicians of all nations to our great 
investigator. The subscribers have entrusted the carrying out of this to our 
Organizing Committee in Cambridge. 

I will now explain the order in which we think that it will be convenient for us 
to carry out our business of to-night. At the last meeting at Rome various resolu­
tions were adopted, and I shall draw your attention to all of them which may give 
rise to any further discussion to-night, and I shall then successively call on speakers 
who may have resolutions to propose. In doing this the order of subjects will be 
followed as I find them in the procès-verbal of the Roman Congress. After these 
matters are decided, opportunity will of course be afforded to any of our members 
who may have new subjects on which they have proposals to make. 

The first resolution at Rome concerned the work of the International Commission 
on the Teaching of Mathematics, and a resolution will be proposed as to this. 

The second resolution was one as to the unification of vectorial notations. 
I learn from M. Hadamard that exchange of views has taken place on this subject 
during the last four years, but that it has not been found possible to arrive at any 
definite conclusions. No resolution will be proposed on the present occasion, but it 
is hoped that by the time the next Congress takes place something may have been 
achieved and that the matter will be brought forward again. 

I t was proposed at Rome that a constitution should be formed for an Inter­
national Association of Mathematicians. I have not heard that any proposal will be 
made to-night and I do not hesitate to express my own opinion that our existing 
arrangements for periodical Congresses meet the requirements of the case better than 
would a permanent organisation of the kind suggested. 

There has been a resolution as to the improvement and unification of the 
methods of pure and applied mathematics. This subject seems to be sufficiently 
taken cognisance of as part of the work of the Commission on Teaching, and I cannot 
think that any further action on our part is needed. 

Next there followed a resolution as to the publication of the works of Euler, and 
a resolution as to this will be proposed to-night. 

In this connection I would remark that a complete edition of the works of the 
immortal Herschel is in course of publication by the Royal Society. 

An important matter has to be determined to-night, namely the choice of the 
place and of the time of the next Congress, and I shall call on Professor Mittag-
Leffler to speak to this subject, and of course others may also speak if they desire. 

Opportunity will then be afforded to any others who may have proposals to 
bring forward. When these matters of business are decided I shall say a few 
words as to the Congress which is now terminating. 
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The following resolution was moved by Mr C. Godfrey, seconded by Prof. W. v. 
Dyck and carried nem. con. : 

That the Congress expresses its appreciation of the support given to 
its Commission on the Teaching of Mathematics by various governments, 
institutions, and individuals; that the Central Committee composed of F. Klein 
(Göttingen), Sir G. Greenhill (London) and H. Fehr (Geneva) be continued 
in power and that, at its request, David Eugene Smith of New York be 
added to its number; that the Delegates be requested to continue their 
good offices in securing the cooperation of their respective governments, 
and in carrying on the work ; and that the Commission be requested to 
make such further report at the Sixth International Congress, and to hold 
such conferences in the meantime, as the circumstances warrant. 

A French translation of the resolution was read to the meeting by M. Bloche. 

In seconding the resolution Prof. v. Dyck spoke as follows : 

I wish to second the motion, but in doing so you will allow me to insist with a 
few words upon the prominent work done by the International Committee on 
Teaching of Mathematics during these last four years. None of us who were present 
in Rome could even imagine what an immense labour was to be undertaken when 
Dr D. E. Smith proposed a comparative investigation on mathematical teaching. 

Now, by the activity of the splendid organisation of the Central Committee, 
under the guidance of Klein, Greenhill, and Fehr, with the worthy help of D. E. Smith, 
every country in nearly every part of the world has contributed in its own department 
to the Reports for Cambridge—so that there were about 150 different volumes with 
about 300 articles brought before the Congress—papers which were not all read but 
were aptly spoken about by the collaborators. 

So we will congratulate the Committee upon the work already done, and we 
have to express our most hearty thanks both to the Central and Local Committees 
and the collaborators. 

But furthermore we have to congratulate ourselves that this Committee will 
remain still in charge and will continue and finish the work. 

For us, the outsiders, the series of reports is like a series of a very large number 
of coefficients to be calculated. And the problem arises now to find the principles 
under which they may be grouped and compared with each other according to their 
individuality and their quality. Whom could we better entrust with that problem 
than this acting committee, which has been at work all this time, and to whom we are 
even now so deeply obliged ? 

The following resolution was moved by Prof. E. Gutzmer and carried : 

In accordance with a wash that has been repeatedly expressed by 
successive International Congresses of Mathematicians, and in particular, in 
accordance with the resolution adopted at Rome, concerning the publication 
of the collected works of Leonhard Euler, the fifth International Congress 
of Mathematicians, assembled at Cambridge, expresses its warmest thanks 
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to the Schweizerische Naturforschende Gesellschaft for their efforts in 
inaugurating the great work, and for the magnificent style in which the 
five volumes already published have been completed. The Congress expresses 
the hope that the scientific world will continue to exhibit that sustained 
interest in the undertaking which it has hitherto shewn. 

Im Anschluss an die Verhandlungen der früheren Internationalen Mathe­
matiker Kongresse, insbesondere an den Beschluss des 4. Kongresses in Rom, 
betreffend die Herausgabe der sämtlichen Werke Leonhard Eulers bringt 
der 5. Internationale Kongress zu Cambridge der Schweizerischen Naturfor­
schenden Gesellschaft seinen wärmsten Dank für die tatkräftige Inangriffnahme 
des grossen Unternehmens zum Ausdruck und verbindet damit zugleich 
seine hohe Anerkennung für die monumentale Ausgestaltung, die sie dem 
Werke in den bereits vorliegenden fünf Bänden hat angedeihen lassen. 
Der Kongress spricht die Erwartung aus, dass der Euler-Ausgabe auch 
fernerhin die Unterstützung nicht fehlen werde, die ihn bisher schon in so 
dankenswerter Weise von der ganzen wissenschaftlichen Welt, insbesondere 
von den grossen Akademien, zu teil geworden ist. 

Prof. G. Mittag-Leffler presented an invitation to the Congress to hold its next 
meeting at Stockholm in 1916. The following is the text of the invitation: 

Au nom des membres de la l ière classe de l'Académie royale des sciences de 
Suède, au nom de la rédaction suédoise du journal Acta Mathematica ainsi que de 
tous les géomètres suédois, j 'ai l'honneur d'inviter le congrès international des mathé­
maticiens à se réunir à Stockholm en l'année 1916. 

Notre august souverain le roi Gustave m'a gracieusement confié la charge 
d'exprimer au congrès qu'il lui souhaiterait avec plaisir la bienvenue dans sa capi­
tale et qu'il serait prêt à le prendre sous son haut patronage pendant son séjour à 
Stockholm. 

Nous autres nous nous estimerions très heureux si le congrès voulait accepter 
notre invitation, et nous ferons tout ce qui est en notre pouvoir pour rendre le séjour 
des membres dans notre pays aussi agréable et aussi instructif que possible. 

Prof. E. Beke presented an invitation to the Congress to hold its meeting of 
1920 at Budapest. The following is the text of the invitation : 

Au nom des mathématiciens hongrois, j 'ai l'honneur d'inviter le septième 
Congrès International à venir siéger en 1920 dans la capitale de la Hongrie— 
Budapest. 

Tout en sachant que c'est le Congrès de Stockholm qui aura à décider de notre 
invitation, nous la présentons déjà ici, conformément à un excellent usage adopté par 
les Congrès précédents. 

Je suis autorisé à vous annoncer que les institutions scientifiques compétentes 
ainsi que le gouvernement royal hongrois nous donneront leur concours effectif et 
tout leur appui. 

La patrie des Bolyai et sa belle capitale seront fières de pouvoir offrir leur 
hospitalité aux savants représentants des sciences mathématiques, qui voudront nous 
honorer de leur présence. 
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On the motion of the President the invitation to Stockholm was accepted nem. con. 

The President stated that the Congress noted with gratitude the invitation to 
Budapest, but the decision as to the place of the next meeting after that of 1916 
would properly be made at Stockholm. 

Prof. C. Stephanos expressed the hope that the Congress would meet in Athens 
in 1920 or 1924. 

It was resolved that the following telegram be sent to Lord Rayleigh : 
Le cinquième congrès international des mathématiciens en terminant ses 

travaux adresse à l'illustre Chancelier de l'Université de Cambridge, au grand 
créateur dans le domaine des sciences mathématiques et des sciences physiques, 
l'expression respectueuse de ses hommages et de son admiration. 

The President then spoke as follows : 

We have come to the end of a busy week, and I have the impression that the 
papers and lectures which you have heard have been worthy of the occasion. I trust 
too that you will look back on the meeting as a week of varied interests. The 
weather has been such that in a more superstitious age we should surely have con­
cluded that heaven did not approve of our efforts ; but fortunately to-day wTe regard 
it rather as a matter for the consideration of Section I I I (a) to decide why it is that 
solar radiation acting on a layer of compressible fluid on the planet should have selected 
England as the seat of its most unkindly efforts in the way of precipitation. Not­
withstanding this I cannot think that I have wholly misinterpreted the looks and 
the words of those of whom I have seen so much during these latter days, when 
I express the conviction that you have enjoyed yourselves. There is much of the 
middle ages in our old Colleges at Cambridge, and it is only at Oxford that you can 
find any parallel to what you have seen here. Many of you will have the opportunity 
to-morrow under the guidance of Professor Love of seeing the wonderful beauties 
of Oxford, and I express the hope that the weather may be such as to make us 
Cambridge men jealous of the good fortune of Oxford. 

I feel assured that all of you must realise how long and arduous are the pre­
parations for such a Congress as this. I believe that the arrangements made for your 
reception have been on the whole satisfactory, and I wish to tell you how much you 
owe in this respect to Professor Hobson. For months past he has been endeavouring 
to do all that was in his power to render this meeting both efficient and agreeable. 
During the last few weeks he has been joined by Professor Love from Oxford, and 
they have both been busy from morning to night at countless matters which needed 
decision. You are perhaps aware that our Parliament in its wisdom has decided 
that coal-miners shall not be allowed to work for more than eight hours a day. 
There has been no eight hours bill for the Secretaries of this Congress, and if I were 
to specify a time for the work of Hobson and Love I should put it at sixteen hours 
a day. As President of the Organizing Committee and subsequently of the Congress 
I wish to express my warm thanks to them for all that they have done. Before 
closing the meeting I shall ask them to say a few words, and Professor Hobson 
will take this opportunity of telling you something as to the final numbers of those 
attending. 
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Sir Joseph Larmor has undertaken the financial side of our work. His wTork 
although less arduous than that of the Secretaries has been not less responsible. 

Each department of the social arrangements has been in the charge of some one 
man, and I want to thank them all for wThat they have done. Mr Hinks kindly 
served me as my special aide-de-camp, and has also been of inestimable service to 
Lady Darwin and the Committee of Ladies in entertaining the ladies who are present 
here. May I be pardoned if I say that I think the reception by the Chancellor and 
Lady Rayleigh at the Fitzwilliam Museum was a brilliant one, and I think you 
should know that every detail was carried out at the suggestion and under the care 
of Mr Hinks. His work was not facilitated by thé fact that a number of things had 
to be changed at the last minute on account of the bad weather, but I doubt whether 
any traces of the changes made will have struck you. 

Then I desire also to express our warm thanks to Mr A. W. Smith who was in 
charge of the reception room which has proved so convenient an institution. He 
had, as Assistant Secretary, countless other matters to which to attend and he has 
carried out all these with the highest success. 

Finally I am sure that I may take on myself as your President to express to 
the Authorities of the University our gratitude for the use of these rooms for the 
meeting, and to the Committee (called by us the Syndicate) of the Fitzwilliam 
Museum, responsible for many valuable collections, for the loan to the Chancellor of 
the Museum for our reception. We also desire to acknowledge the pleasure we had 
in the beautiful reception given to us by the Master and Fellows of Trinity College, 
to the Master in person for the interesting lecture which he gave to the ladies, and 
to Colonel Harding and Sir G Waldstein for their kindness in receiving the ladies at 
their country houses. 

Prof. Hobson stated the number of Members of the Congress as follows : 

Number of Members of the Congress 708 
Number of effective Members 574 

He also thanked the Members of the Congress of all nations for their courtesy 
in their correspondence with the General Secretaries during the time of preparation 
for the Congress. 

Prof. G. Mittag-Leffler then spoke as follows : 

MESDAMES ET MESSIEURS, 

Les étrangers qui ont pris part à ce cinquième congrès international des 
mathématiciens qui vient d'être clos m'ont chargé d'être auprès de nos collègues et 
hôtes anglais l'interprète de leur vive et chaleureuse reconnaissance pour l'accueil 
charmant que nous avons reçu. C'est avec un plaisir particulier que nous avons 
séjourné en cette ville remplie de grands souvenirs scientifiques, berceau de cette 
illustre université où les anciennes coutumes et la pensée moderne ont pu s'unir 
comme nulle part ailleurs. Grâce à l'excellente direction du comité d'organisation 
les forces scientifiques variées et puissantes qui ont été réunies ici ont pu se faire 
valoir de la manière la plus féconde. Nous tous qui avons pris part aux travaux du 
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congrès en avons reçu des suggestions nouvelles et abondantes pour nos propres 
travaux à venir. 

Pour les mathématiques les congrès sont d'une importance peut-être plus grande 
que pour les autres sciences. La mathématique, la science du nombre, la science des 
sciences même lorsque elle prend en aide la représentation géométrique, ou lorsqu'elle 
tache de s'adapter à l'expérience extérieure, ne traite pourtant au fond que d'abstrac­
tions pures. Voilà ce qui rend l'étude des idées communiquées seulement par 
l'imprimé bien plus laborieuse que dans les autres sciences dont l'objet est plutôt 
concret. Il s'en suit que l'étude de la littérature dans les mathématiques, plus encore 
peut-être que dans ces autres sciences, trouve un complément précieux dans l'échange 
verbal des idées. Je crois donc interpréter nos vœux unanimes en exprimant l'espoir 
que le cinquième congrès international des mathématiciens ne soit qu'un terme dans 
une série jamais interrompue de congrès pareils, renouvelés touts les quatre ans. 

Je crois de même exprimer la pensée commune en affirmant que la manière si 
admirable dont le comité d'organisation du congrès de Cambridge a su préparer nos 
réunions nous sera à l'avenir un modèle à suivre. C'est à notre illustre président 
Sir George Darwin, à nos secrétaires infatigables et doués de ce sens pratique qu'on 
reconnaît chez les anglais les professeurs Hobson et Love, au trésorier Sir J. Larmor 
et aux autres membres du comité que nous devons ce résultat. Nous les remercions 
de plein cœur en leur affirmant que notre séjour ici sera pour chacun de nous un 
souvenir inoubliable. 

Wednesday, August 28 

Members of the Congress took part in an excursion to Oxford, and a reception 
at Hatfield House, on the invitation of Lord Salisbury. 
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Thursday, August 22 

Section IV 

The Section met at 9 p.m. when the following lecture was delivered and 
illustrated by lantern slides : 

P. J. HARDING: The history and evolution of arithmetic division. 

Friday, August 23 

Section I. (Arithmetic, Algebra, Analysis.) 

The Section met at 9.30 a.m. Professor E. B. Elliott was in the Chair. 
Dr T. J. I'A. Bromwich was elected Secretary, and Prof. I. Bendixson and Prof. J. C. 
Fields were elected Assistant Secretaries. Prof. E. Landau was elected Chairman 
for Saturday, August 24. 

The Chairman addressed the Section as follows : 

LADIES AND GENTLEMEN, 

It is a great honour to be asked to preside to-day over this Section I 
of the Fifth International Congress of Mathematicians. My first pleasant duty is 
to address a few wTords of welcome to the Section. The many distinguished 
Analysts and Arithmeticians who are now honouring their fellow-workers in 
Cambridge by their presence will I trust carry back to their own countries 
pleasant memories of their stay in this famous university town, and a strong 
sense of the vitality of Mathematical investigation in its English home. On the 
other side they will I am sure leave here lasting memories of good work done in 
promoting combined effort for the advancement of Mathematics. There was a 
time not long ago when British Mathematicians may have been thought too self-
centred. If the judgment were ever correct, it is so no longer. We are alive to 
what is being done elsewhere, and now aim at cooperation. Our Academical 
methods are being modified. The severity of examination competition has been 
relaxed. We shall not give it up entirely : for we have to think not only of 
providing proficient mathematicians, but also of using mathematical training for 
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the development of men, for the cultivation of exactness of thought, and the 
power of grasping situations and dealing with problems that arise in life. But 
the furtherance of mathematical thought is no longer secondary. Perhaps in times 
past we were too much occupied with exercises of skill and ingenuity, too much, 
some of us, engrossed with the struggle for absolute perfection in the mastery of 
limited curricula, too serenely contented with the older analysis. But our slowness 
in assimilating new ideas by adequate study of the writings of the great masters 
of the newer analysis is over. Here as elsewhere a younger mathematician now 
realises that, after grounding himself in common knowledge, he must choose his 
department of higher study, must acquaint himself by prolonged effort with original 
authorities, and then produce for himself. A Congress like this will, I feel sure, 
greatly assist those who are inculcating the sound doctrine. 

There is one special reason why I value the opportunity which has been given 
me of saying these few words of welcome. Like yourselves, ladies and gentlemen 
from abroad, I am a guest at Cambridge. Not being a Cambridge man, I can let 
myself say that," while Cambridge has had the honour of inviting you and has the 
pleasure of entertaining you, the welcome is extended to you by all the mathe­
maticians of the United Kingdom. Our other universities, and my own of Oxford 
in particular, have Mathematical Faculties of which they are proud, and they do 
not sink their individualities in their consciousness of the greatness of that of 
Cambridge. But we owe many times more to Cambridge in the domain of 
mathematics than Cambridge owes to us. We come here for inspiration, and not 
infrequently for men. The small band of Oxonians here now will go back grateful 
to their Cambridge hosts, and yours, for one more benefit conferred in the opportunity 
of meeting you. 

I will delay you no longer, ladies and gentlemen, except to refer in one word 
to the unspeakable loss sustained in the death of Henri Poincaré, whom in this 
Section we think of as the prince of analysts, and whom we had hoped to see here 
to-day. A higher power has ordered otherwise. 

Papers were read as follows : 

DRACH, J. : Sur l'intégration logique des équations différentielles. 
HARDY, G. H. and LITTLEWOOD, J. E. : Some problems of diophantine 

approximation. 
Prof. E. Landau spoke on this paper. 

MOORE, E. H. : On the fundamental functional operation of a general theory 
of linear integral equations. 

Prof. J. Hadamard spoke on this paper. 
BERNSTEIN, S. : Sur les recherches récentes relatives à la meilleure ap­

proximation des fonctions continues par des polynômes. 
MACFARLANE, A.: On vector-analysis as generalized algebra. 
JOURDAIN, P. E. B. : The values that certain analytic functions can take. 

In the absence of the author this paper was presented by Mr G. H. 
Hardy. 
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KüRSCHAK, J. : Limesbildung und allgemeine Körpertheorie. 
Prof. J. Hadamard spoke on this paper. 

In the absence of the author, Prof. L. Silberstein, his paper " Some 
applications of Quaternions " was taken as read. 

Section II . (Geometry.) 

This Section met at 9.30 a.m. Dr H. F. Baker was in the Chair. Mr A. L. 
Dixon was elected Secretary, and Dr W. Blaschke and Dr E. Bompiani were elected 
Assistant Secretaries. Prof. F. Severi was elected Chairman for Saturday, August 24. 

The Chairman addressed the Section as follows: 

LADIES AND GENTLEMEN, 

We are met here this morning to begin the work of the Section of 
Geometry. I believe it has been the custom that the President of the first meeting 
of a Section should be named by the Organizing Committee, and I have been asked 
to undertake the duty. I beg you to permit me to make a few introductory remarks. 

I t will be the duty of the meeting, before we break up, to choose a President for 
the meeting of to-morrow of this Section of Geometry. It will also be necessary to 
elect a secretary for the Section of Geometry, and one or more assistant secretaries ; 
the secretaries will hold their offices until the end of the Congress. Before I sit 
down I will suggest to you names for your consideration; and my remarks are to 
some extent directed to giving reasons for the name I intend to suggest for President 
to-morrow. 

We in England have known geometers. Here Cayley lived and worked; and 
all of you know the name of Cayley, as you know the name of Salmon, who lived in 
Dublin, but was in close relation with Cayley. To-day we have Sir Robert Ball, who 
has written a large book on the theory of linear complexes. I desire to express our 
regret that he is prevented by illness from being present. We have also many 
younger geometers, working in various directions. I am sure that these all join with 
me in saying how much honoured we in this country feel by the presence at the 
Congress of so many distinguished geometers from other lands. I t is in order that 
we may express our gratification at their presence that I wish to say some words 
before the papers are communicated. 

Of the recent progress of geometry in several directions you will hear from 
those who will present papers in this Section. There is, however, one side of 
geometry with which my own studies in the theory of algebraic functions have 
brought me into contact—the Theory of Algebraic Curves and Surfaces. I should 
like to say to you that I think extraordinary advances have recently been made in 
this regard, and to mention in a few words some of the more striking results. The 
history of the matter seems to me extremely interesting and, as has often happened 
before, the success has been achieved by the union of two streams of thought, which, 
though having a common origin, had for some time flowed apart. 
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It is a commonplace that the general theory of Higher Plane Curves, as we now 
understand it, would be impossible without the notion of the genus of a curve. The 
investigation by Abel of the number of independent integrals in terms of which his 
integral sums can be expressed may thus be held to be of paramount importance for 
the general theory. This was further emphasized by Riemann's consideration of the 
notion of birational transformation as a fundamental principle. 

After this two streams of thought were to be seen. 

First Clebsch remarked on the existence of an invariant for surfaces, analogous 
to the genus of a plane curve. This number he defined by a double integral; it was 
to be unaltered by birational transformation of the surface. Clebsch's idea was 
carried on and developed by Noether. But also Brill and Noether elaborated 
in a geometrical form the results for plane curves which had been obtained with 
transcendental considerations by Abel and Riemann. Then the geometers of Italy 
took up Noether's work with very remarkable genius, and carried it to a high pitch 
of perfection and clearness as a geometrical theory. In connexion therewith there 
arose the important fact, which does not occur in Noether's papers, that it is 
necessary to consider a surface as possessing two genera ; and the names of Cayley 
and Zeuthen should be referred to at this stage. 

But at this time another stream was running in France. Picard was developing 
the theory of Riemann integrals—single integrals, not double integrals—upon a 
surface. How long and laborious was the task may be judged from the fact that the 
publication of Picard's book occupied ten years—and may even then have seemed 
to many to be an artificial and unproductive imitation of the theory of algebraic 
integrals for a curve. In the light of subsequent events, Picard's book appears likely 
to remain a permanent landmark in the history of geometry. 

For now the two streams, the purely geometrical in Italy, the transcendental 
in France, have united. The results appear to me at least to be of the greatest 
importance. 

Will you allow me to refer to some of the individual results—though with 
the time at my disposal I must give them roughly and without defining the 
technical terms? 

Castelnuovo has shewn that the deficiency of the characteristic series of a linear 
system of curves upon a surface cannot exceed the difference of the two genera of the 
surface, Enriques has completed this result by shewing that for an algebraic system 
of curves the characteristic series is complete. Upon this result, and upon Picard's 
theory of integrals of the second kind, Severi has constructed a proof that the number 
of Picard integrals of the first kind upon a surface is equal to the difference of the 
genera. The names of Humbert and of Castelnuovo also arise here. Picard's theory 
of integrals of the third kind has given rise in Seven's hands to the expression of any 
curve lying on a surface linearly in terms of a finite number of fundamental curves. 
Enriques shewed that the system of curves cut upon a plane by adjoint surfaces of 
order n — 3, when n is the order of the fundamental surface, if not complete, has a 
deficiency not exceeding the difference of the genera of the surface. Severi has given 
a geometrical proof that this deficiency is equal to the difference of the genera, a 

M. c. 4 
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result previously deduced by Picard, with transcendental considerations, from the 
assumption of the number of Picard integrals of the first kind. The whole theory 
originally arose, as has been said, with Clebsch's remark of a numerical invariant of 
birational transformation; conversely it is a matter of the profoundest geometrical 
interest to state in terms of invariants the sufficient conditions for the birational 
transformation of one surface into another. I might make reference to the Zeuthen-
Segre invariant, which has been extended by Castelnuovo to the case of an algebraic 
system of curves. I will allow myself to mention, out of a vast number of results, 
one striking theorem. Enriques and Castelnuovo have shewn that a surface which 
possesses a system of curves for which what may be called the canonical number, 
27T — 2 — n, where ir is the genus of a curve and n the number of intersections of 
two curves of the system, is negative, can be transformed birationally to a ruled 
surface. There is one other result I will refer to. On the analogy of the case of 
plane curves, and of surfaces in three dimensions, it appears very natural to conclude 
that if a rational relation, connecting, say, m + 1 variables, can be resolved by 
substituting for the variables rational functions of m others, then these m others 
can be so chosen as to be rational functions of the m +1 original variables. Enriques 
has recently given a case, with m = 3, for which this is not so. 

These results, here stated so roughly, are, you see, of a very remarkable kind. 
They mean, I believe, that the theory of surfaces is beginning a vast new development. 
I have referred to them to emphasize the welcome which we in England wish to 
express to our distinguished foreign guests, whose presence here will, we believe, 
stimulate English geometry to a new activity. In particular we are very glad to have 
Professor Severi present with us in this room this morning. I will venture to propose 
to you that he be asked to act as President of this Section of Geometry to-morrow, 
Saturday. 

I will also propose that for Secretaries you appoint Mr A. L. Dixon of Oxford, 
Herr Blaschke of Vienna, and Signor Bompiani of Rome. 

[These proposals were adopted.] 

Papers were read as follows : 

BROUWER, L. E. J. : Sur la notion de " classe " de transformations d'une 
multiplicité. 

MORLEY, F. : On the extension of a theorem of W. STAHL. 

EISENHART, L. P. : Certain continuous deformations of surfaces applicable to 

the quadrics. 

BOMPIANI, E. : Recent progress in projective differential geometry. 

NEVILLE, E. H. : The general theory of moving axes. 

BRÜCKNER, M. : Ueber Raumteilung durch 6 Ebenen und die Sechsflache. 

STEPHANOS, C. : Sur l'équivalent analytique du problème des principes de 
la géométrie. 

A paper by Dr A. Martin "On rational right-angled triangles" was taken 
as read. 
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Section III (a). (Mechanics, Physical Mathematics, Astronomy.) 

The subsection met at 9.30 a.m. Prof. H. Lamb was in the Chair. Mr F. J. M. 
Stratton was elected Secretary, and Prof. G. Andreoli and Dr L. Föppl were elected 
Assistant Secretaries. Prince B. Galitzin was elected Chairman for Saturday, 
August 24. 

The Chairman addressed the subsection as follows : 

You will not expect that I should say more than a few words before we enter 
on the business of the meeting. But as I have the privilege of being, like most of 
those present, a visitor and a guest, I may be allowed, or rather you will wish me, to 
give expression to a thought which is doubtless present to the minds of those who 
have followed the migrations of the Congress from place to place. The University of 
Cambridge has a long and glorious record in connection with our special subject 
of Mechanics. I need not repeat the words which fell from our President yesterday ; 
but it must be a matter of peculiar interest and satisfaction to the members of our 
Section that they are at length assembled in a place so intimately associated with 
the names of illustrious leaders in our science. 

One other point I would ask leave to touch upon. In spite of the process of 
subdivision which has been carried out, the field covered by our Section is still a very 
wide one. I t has been said that there are two distinct classes of applied mathe­
maticians ; viz. those whose interest lies mainly in the purely mathematical aspect 
of the problems suggested by experience, and those to whom on the other hand 
analysis is only a means to an end, the interpretation and coordination of the 
phenomena of the world. May I suggest that there is at least one other and an 
intermediate class, of which the Cambridge school has furnished many examples, who 
find a kind of aesthetic interest in the reciprocal play of theory and experience, who 
delight to see the results of analysis verified in the flash of ripples over a pool, as 
well as in the stately evolutions of the planetary bodies, and who find a satisfaction, 
again, in the continual improvement and refinement of the analytical methods which 
physical problems have suggested and evoked ? All these classes are represented in 
force here to-day ; and we trust that by mutual intercourse, and by the discussions 
in this Section, this Congress may contribute something to the advancement of that 
Science of Mechanics, in its widest sense, which we all have at heart. 

Papers were read as follows : 

TURNER, H. H. : On double lines in periodograms. 
Professors R. A. Sampson and Sir Joseph Larmor took part in the 

discussion. 
MOULTON, F. R. : Relations among families of periodic orbits in the restricted 

problem of three bodies. 
Professors T. Levi-Civita, Sir George Darwin and E. W. Brown took 

part in the discussion*. 
FöPPL, L. : Stabile Anordnungen von Elektronen im Atom. 

Professors Abraham, v. Karman and Lamb took part in the 
discussion. 

4—2 



52 PROCEEDINGS OF T H E SECTIONS 

SMOLUCHOWSKI, M. S. : On the practical applicability of Stokes's law of 
resistance and the modifications of it required in certain cases. 

Professors Lamb, Sampson and Webster and Mr Cunningham took 
part in the discussion. 

LOVE, A. E. H. : The application of the method of W. Ritz to the theory 
of the tides. 

Professors Turner, Sampson and Lamb took part in the discussion. 
In the absence of Prof. A. O. Leuschner his paper on " The Laplacian orbit 

methods" was taken as read. 

Section III (b). (Economics, Actuarial Science, Statistics.) 

The subsection met at 9.30 a.m. Prof. F. T. Edgeworth was in the Chair. 
Prof. A. L. Bowley was elected Secretary. Dr W. F. Sheppard was elected Chairman 
for Saturday, August 24. 

The Chairman addressed the subsection as follows : 

The first duty of the Chairman is, on behalf of English members of the 
Congress, to welcome visitors from foreign countries. There is a particular propriety 
in the expression of such a welcome by our subsection. For we are particularly 
benefited by the presence of visitors from distant countries. The advantage which is 
obtained by exchange of ideas with original minds educated in different ways'is at 
a maximum when the subjects dealt with, like most of ours, are somewhat dialectical 
and speculative. Speaking of visitors, I cannot forget that many of the English 
members of the Congress, like myself, are visitors to Cambridge. Visitors of all. 
nationalities will be unanimous in expressing their appreciation of Cambridge 
hospitality. Towards our subsection this hospitality has a peculiar delicacy. I t 
is not merely that we are admitted to the privileges of Hall and Common-room. We 
have received an invitation even more grateful to some of us. There are some classes 
of us who have hitherto, so to speak, " sat below the salt " at the feast of reason. 
Economic Science is now in the position of that humble but deserving one who was 
invited to " go up higher." I t is a proud day for Mathematical Economics, the day 
on which it enters the Congress of Mathematicians pari passu with other mathe­
matical subjects. There is a propriety in this recognition being made at Cambridge, 
in which University Dr Marshall has shown that mathematical reasoning in Economics 
may be not only brilliant but fruitful. The cultivators of our second branch, Mathe­
matical Statistics, have also reason to be satisfied with their reception. Cambridge 
has indeed lately shown her appreciation of their work in a very solid fashion by 
establishing a lectureship in Statistics. I trust that the designated lecturer will 
take part in our debates. 

As for the Actuarial branch of our subsection the Science founded by Halley, 
like the sun, does not require recognition. Still even in the midst of rigid actuarial 
formulae there is an element of the calculus of probabilities. Thus even with respect 
to this department what may be described as the more human side of mathematics 
is now recognised. The Calculus of Probabilities has been described by purists of old 
as the opprobrium of mathematics. I t will be the part of this subsection, with the 
valuable cooperation of foreign statisticians, to dispel this prejudice. 
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Papers were read as follows : 

LEHFELDT, R. A. : Equilibrium and disturbance in the distribution of wealth. 
The Chairman spoke on the subject. 

AMOROSO, L. : I caratteri matematici della scienza economica. 
The paper was read by the Chairman, and Professors G. C. Evans 

and Bowley and the Chairman took part in the discussion. 
SHEPPARD, W. F. : Reduction of errors by means of negligible differences. 

Dr Sòs and Dr H. L. Rietz took part in the discussion. 

Section IV (a). (Philosophy and History.) 

The subsection met at 9.30 a.m. The Hon. B. A. W. Russell was in the Chair. 
Prof. E. V. Huntington and Prof. M. Fréchet were elected Secretaries. Prof. A. 
Gutzmer was elected Chairman for Saturday, August 24. 

The Chairman addressed the subsection as follows : 

LADIES AND GENTLEMEN, 

In opening the meetings of this Section, I desire to say one word of 
welcome to the distinguished visitors whom we are glad to see amongst us. The 
philosophy of mathematics has made extraordinarily rapid advances in recent times, 
and I am happy to see that many of those to whom these advances owe most are 
taking part in our meetings. Some unavoidable absences are to be deplored ; among 
these, the illustrious name of Georg Cantor will occur to all. I had hoped, but in 
vain, that we might have been honoured by the presence of Frege, who, after many 
years of indomitable perseverance, is now beginning to receive the recognition which 
is his due. In common with other sections, we cannot but feel how great a loss we 
have sustained by the death of Henri Poincaré, whose comprehensive knowledge, 
trenchant wit, and almost miraculous lucidity gave to his writings on mathematical 
philosophy certain great qualities hardly to be found elsewhere. The work of the 
pioneers has been great, not only through its actual achievement, but through the 
promise of an exact method and a security of progress of which, I am convinced, 
the papers and discussions which we are to hear will afford renewed evidence. 

I will now no longer stand between you and the proper business of the 
meeting. 

Papers were read as follows: 

ITELSON, G. : Bemerkungen über das Wesen der Mathematik. 
Prof. S. Dickstein and the Chairman took part in the discussion of 

this paper. 
In the absence of Prof. G. Vacca his paper " Sul valore della ideografia 

nella espressione del pensiero ; differenze caratteristiche tra ideografia 
e linguaggio ordinario" was taken as read. 

ZERMELO, E. : Ueber axiomatische und genetische Methoden bei der Grund­
legung mathematischer Disciplinen. 
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BLUMBERG, H. : A set of postulates for arithmetic and algebra. 
Prof. A. Padoa, Dr A. N. Whitehead and Dr A. A. Robb took part 

in the discussion of this paper. 
HUNTINGTON, E. V. : A set of postulates for abstract geometry, expressed in 

terms of the simple relation of inclusion. 
Prof. G. Peano, Prof. M. Fréchet, Prof. A. Padoa, the Chairman and 

Dr A. N. Whitehead took part in the discussion of this paper. 
PADOA, A. : La valeur et les rôles du principe d'induction mathématique. 

The Chairman and Dr G. Itelson took part in the discussion of 
this paper. 

Section IV (b). (Didactics.) 
The subsection met at 9.30 a.m. Mr C. Godfrey was in the Chair. Prof. G. A. 

Gibson was elected Secretary, and Messrs J. Franklin and E. A. Price were elected 
Assistant Secretaries. Prof. A. Gutzmer was elected Chairman for the joint meeting 
of Sections IV (a) and IV (b), and Prof. E. Czuber for the subsequent meeting. 

The Chairman addressed the subsection as follows: 

GENTLEMEN, 

This is the opening meeting of Subsection IV (b), the subsection engaged 
in the discussion of didactical questions. The subsection will hold five meetings. Three 
of these meetings will be taken up by proceedings arising out of the activities of the 
International Commission on Mathematical Teaching—namely the meetings of this 
morning, of Monday afternoon, and of Tuesday morning. Two meetings remain, those 
of Saturday morning and Monday morning. On Saturday morning this subsection 
will join with the subsection for philosophical questions to discuss the very important 
question—how far it is expedient to introduce into school teaching the consideration 
of the fundamentals of mathematics. 

After the words of welcome spoken by Sir George Darwin yesterday, no further 
words of mine should be needed to make our visitors from abroad feel that they are 
' at home ' among us. But it is fitting that I should avail myself of this occasion to 
offer to our visitors a very special welcome on behalf of the Mathematical teachers of 
this country. We Mathematical teachers welcome you, first because we are glad to 
have you with us and because we are glad to have the opportunity of making new 
friendships. We welcome you for another reason—because there is much that we 
can learn from you in the exercise of our craft. M. Bourlet has expressed the opinion 
that it is futile to transplant the teaching methods of one country into another, and 
to expect that these methods will always flourish in a new environment. I agree 
with his remarks ; but I repeat that we have much to learn from you, and I assure 
you that many of us propose so to learn. 

I t is a matter of deep regret to all of us that our natural leader, Professor Klein, 
is unable to be present at this Congress. I will not anticipate the resolution of regret 
that Sir George Darwin will submit to you. For myself, I have done my best to 
acquaint myself with Professor Klein's views on Mathematical teaching, with which 
I am strongly in sympathy. If I may try to characterize in mathematical language 
the leading motif of the movement of which Professor Klein is the leader, it is this— 
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that mathematical teaching is a function of two variables : the one variable is the 
subject-matter of mathematics, the other variable is the boy or girl to whom the 
teaching is addressed ; the neglect of this second variable is at the root of most of 
the errors that Professor Klein combats. 

I learn from a letter addressed to Sir George Darwin that there is one matter 
which interests Professor Klein greatly and that he would have desired to call the 
attention of the subsection to it. I t is the publication of the Encyclopaedic work 
Die Kultur der Gegenwart which is in course of compilation under his direction. 
This work will consist of a series of volumes in which every branch of culture is 
explained by experts in non-technical language, so that the articles will be within 
the reach of the reader of general education. This undertaking does not, it is true, 
appertain to education in the narrower sense of the word, but it does not seem too 
great an extension of the word to regard it as belonging to our special division. 
Dr Klein remarks in his letter that it was a matter of much difficulty to determine 
how so specialised a subject as mathematics could be made a suitable one for 
memoirs of the general character described, but he is glad to say that a good 
beginning has been made by Dr Zeuthen of Copenhagen in an article on the 
Mathematics of Classical Times and of the Middle Ages. Those who are interested 
in this will be able to see copies of the article in the Exhibition. 

The meeting will now be asked to receive the report of the International 
Commission, and I hope that I shall be allowed to delegate my duties as Chairman 
to Professor D. E. Smith, to whose initiative the creation of the International Com­
mission is due. 

At the suggestion of the President of the Congress a telegram was despatched 
to Prof. F. Klein to express on behalf of the International Commission on the 
Teaching of Mathematics their regret at his absence and their best wishes for his 
recovery. 

Prof. D. E. Smith was called to the Chair. 

Prof. H. Fehr presented the printed report on the work of the International 
Commission. 

The Reports from the participating countries were presented with a few 
explanatory remarks by the delegates mentioned below. 

Germany Prof. A. Gutzmer (Halle) 

Austria Prof. E. Czuber (Vienna) 

Belgium Principal E. Clevers (Ghent) 

Denmark Prof. H. Fehr 

Spain Prof. Toledo (Madrid) 

United States Prof. J. W. A. Young (Chicago) 

France Prof. C. Bourlet (Paris) 

Greece Prof. H. Fehr 

Holland Prof. J. Cardinaal (Delft) 

Hungary Prof. E. Beke (Budapest) 
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British Isles Mr C. S. Jackson (Woolwich) 

Italy Prof. G. Castelnuovo (Rome) 

Japan Prof. R. Fujisawa (Tokyo) 

Norway Prof. M. Alfsen (Christiania) 

Portugal Prof. F. J. Teixeira (Oporto) 

Roumania Prof. G. Tzitzeica (Bucharest) 

Russia Prof. H. Fehr 

Sweden Prof. H. Fehr 

Switzerland Prof. H. Fehr (Geneva). 

Also the following associated Countries : 

Brazil Prof. E. de B. R. Gabaglia (Rio de Janeiro) 

Servia Prof. M. Petrovitch (Belgrade). 

These Reports are printed in the Publications of the Central Committee of 
the International Committee on Mathematical Instruction. 2nd Series, fase. I. 
November 1912. 

Saturday, August 24 
Section I. (Arithmetic, Algebra, Analysis.) 

Prof. E. Landau in the Chair :—Dr M. Riesz was elected an Additional Assistant 
Secretary. Prof. E. Borei was elected Chairman for Monday, August 26. 

Papers were read as follows : 

BATEMAN, H. : Some equations of mixed differences occurring in the theory 
of probability and the related expansions in series of Bessel's functions. 

PETROVITCH, M. : Fonctions implicites oscillantes. 
HADAMARD, J. : Sur la série de STIRLING. 

SCHLESINGER, L. : Ueber eine Aufgabe von HERMITE aus der Theorie der 
Modulfunktionen. 

FIELDS, J. C. : Direct derivation of the Complementary Theorem from 
elementary properties of rational functions. 

FRIZELL, A. B.: Axioms of ordinal magnitudes. 
PADOA, A. : Une question de maximum ou de minimum. 
STERNECK, R. VON: Neue empirische Daten über die zahlentheoretische 

Funktion œ (n). 
The Chairman spoke on this paper. 

Section II . (Geometry.) 

Prof. F. Severi in the Chair :—Prof. F. Morley was elected Chairman for Monday, 
August 26. 

Papers were read as follows : 

ESSON, W. : The characters of plane curves. 
DRACH, J. : Résumé de recherches géométriques. 
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GROSSMANN, M. : Die Zentral projection in der absoluten Geometrie. 
SCHOUTE, P. H.: On the characteristic numbers of the polytopes exe<>t..-

en-2en-.!S(n+1) and exe2... cn^2en^Mn of space Sn-
KASNER, E. : Conformai geometry. 

TZITZEICA, G. : Sur les surfaces isothermiques. 

Section I I I (a). (Mechanics, Physical Mathematics, Astronomy.) 

Prince Galitzin in the Chair :—Prof. T. Levi-Civita was elected Chairman for 
the meeting on Monday, August 26. 

Papers were read as follows : 

BENNETT, G. T. : The balancing of the four-crank engine. 
Prof. F. Morley and Sir W. H. White took part in the discussion. 

KARMAN, TH. VON : Luftwiderstand und Wirbelbewegung. 

Professors H. Lamb, G. Runge and M. S. Smoluchowski took part 
in the discussion. 

BROMWICH, T. J. I'A. : Some theorems relating to the resistance of com­
pound conductors. 

Prof. H. M. Macdonald took part in the discussion. 
EWALD, P. P.: Dispersion and double-refraction of electrons in rectangular 

grouping (crystals). 
Dr T. H. Havelock and Prof. W. Peddie took part in the discussion. 

MILLER, D. C. : The graphical recording of sound waves ; effect of free periods 
of the recording apparatus. 

Prof. A. G. Webster took part in the discussion. 
TERRADAS, E. : On the motion of a chain. 

Section I I I (b). (Economics, Actuarial Science, Statistics.) 

Dr W. F. Sheppard in the Chair :—Dr J. F. Steffensen was elected Chairman 
for Monday, August 26. 

Papers were read as follows : 

QuiQUET, A. : Sur une méthode d'interpolation exposée par Henri Poincaré, 
et sur une application possible aux fonctions de survie d'ordre n. 

Questions were asked by Dr Sòs and Dr Goldziher. 
STEFFENSEN, J. F. : On the fitting of MAKEHAM'S curve to mortality 

observations. 
Dr Sheppard, Dr Goldziher, Prof. Edgeworth, Prof. Bowley and 

Dr Sòs took part in the discussion. 

In the absence of Mr J. H. Peek, his paper "Application of the Calculus 
of Probabilities in calculating the amount of securities &c. in practice 
of the Dutch State Insurance Office " was taken as read. 

In the absence of Mr R. R. Brodie, his paper "Curves of certain functions 
involving compound interest and mortality" was summarized by Prof. 
Edgeworth. 
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Sections IV (a) and IV (b). JOINT MEETING. (Philosophy, History, Didactics.) 

Prof. A. Gutzmer in the Chair. 

Papers were read as follows : 

WHITEHEAD, A. N. : The principles of mathematics in relation to elementary 
teaching. 

SUPPANTSCHITSCH, R. : Le raisonnement logique dans l'enseignement mathé­
matique secondaire et universitaire. 

Prof. C. Bourlet and Prof. A. Padoa took part in the discussion of 
this paper. 

Section IV (a). (Philosophy and History.) 

Prof. A. Gutzmer in the Chair:—Prof. A. Padoa was elected Chairman for 
Monday, August 26. 

In the absence of Prof. E. Burali-Forti, his paper " Sur les lois générales de 
l'algorithme des symboles de fonction et d'opération" was taken as read. 

In the absence of Mr P. E. B. Jourdain, his paper "Isoid relations and 
theories of irrational number " was taken as read. 

Papers were read as follows : 

PEANO, G. : Proposizioni esistenziale. 
Prof. E. Zermelo and Dr G. Itelson took part in the discussion of 

this paper. 
ZERMELO, E. : Ueber eine Anwendung der Mengenlehre auf die Theorie 

des Schachspiels. 
MuiRHEAD, R. F. : Superposition as a basis for geometry ; its logic, and its 

relation to the doctrine of continuous quantity. 
Prof. E. V. Huntington spoke on the subject of the paper. 

Section IV (b). (Didactics.) 

Professor E. Czuber in the Chair :—Professors C. Bourlet and J. W. A. Young 
were elected Chairmen for the meeting to be held in the morning of Monday, 
August 26. 

Papers were read as follows : 

HILL, M. J. M. : The teaching of the theory of proportion. 
Mr C. Godfrey, Mr G. St L. Carson, Mr TV J. Garstang and 

Mr W. G. Bell took part in the discussion of this paper. 
HATZIDAKIS, N. : Systematische Recreationsmathematik in den mittleren 

Schulen. 
Prof. C. Bourlet spoke on the subject of the paper. 
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Monday, August 26 

Section I. (Arithmetic, Algebra, Analysis.) 

Prof. E. Borei in the Chair :—The Section agreed to adjourn at noon and to 
meet again at 3.30 p.m. Prof. E. H. Moore was elected Chairman for the afternoon 
meeting. 

Papers were read as follows: 

ELLIOTT, E. B. : Some uses in the theory of forms of the fundamental 
partial fraction identity. 

KOCH, H. VON : On regular and irregular solutions of some infinite systems of 
linear equations. 

Prof. Borei asked a question on this paper. 
WHITTAKER, E. T. : On the functions associated with the elliptic cylinder 

in harmonic analysis. 
SALTYKOW, N. : Sur l'intégration des equations partielles. 
RéMOUNDOS, G. : Sur les singularités des équations différentielles. 

Afternoon meeting. 

Prof. E. H. Moore in the Chair :—Prof. H. von Koch was elected Chairman for 
Tuesday, August 27. 

Papers were read as follows : 

HILL, M. J. M. : The continuation of the hypergeometric series. 
CUNNINGHAM, A. : On MERSENNE'S numbers. 

Prof. A. Gérard in spoke on the subject. 
The papers by Prof. J. Drach and Prof. S. Bernstein which were read on 

Friday, August 23, were further discussed. 

Section II. (Geometry.) 

Prof. F. Morley in the Chair :—Prof. J. Drach was elected Chairman for 
Tuesday, August 27. 

Papers were read as follows : 

SOMMERVILLE, D. M. Y. : The pedal line of the triangle in non-Euclidean 
geometry. 

Professors Coolidge and Schoute took part in the discussion. 
HOSTINSKY, B. : Sur les Hessiennes successives d'une courbe du troisième 

degré. 
FINSTERBUSCH, J. : Geometrische Maxima und Minima mit Anwendung auf 

die Optik. 
Prof. Schoute took part in the discussion. 

HUDSON, Miss H. P. : On binodes and nodal curves. 
Mr Berry spoke on this paper. 

STUDY, E. : The conformai representation of convex domains. 



6 0 P R O C E E D I N G S ó F T H E S E C T I O N S 

Section III (a). (Mechanics, Physical Mathematics, Astronomy.) 

Prof. T. Levi-Oivita in the Chair:—Prof. P. Stäckel was elected Chairman for 
Tuesday, August 27. 

Papers were read as follows : 

ABRAHAM, M. : Das Gravitationsfeld. 
Prof. L. Silberstein took part in the discussion. 

MCLAREN, S. B. : Aether, matter and gravity. 
Professors Abraham and Webster took part in the discussion. 

SOMIGLIANA, G: Sopra un criterio di classificazione dei massimi e dei minimi 
delle .funzioni di più variabili. 

ESSON, W. : On a law of connection between two phenomena which influence 
each other. 

In order to allow more time for discussion of other papers, the paper of 
Prof. L. Silberstein " Self-contained electromagnetic vibrations of a 
sphere as a possible model of the atomic store of latent energy " was, 
at the request of the author, taken as read. 

The Section adjourned to the Cavendish Laboratory where the following paper 
was read : 

THOMSON, SIR J. J.: Multiply-charged atoms. 

Section III (b). (Economics, Actuarial Science, Statistics.) 

Dr J. F. Steffensen in the Chair. 

Papers were read as follows: 

SHEPPARD, W. F. : The calculation of moments of an abrupt frequency dis­
tribution. 

Prof. A. L. Bowley and Dr H. L. Rietz took part in the discussion. 
EDGEWORTH, F. Y. : A method of representing statistics by analytic geometry. 

Mr Stott and Dr Sheppard took part in the discussion. 
ARANY, D. : Contribution to Laplace's theory of the generating function. 

Dr Steffensen took part in the discussion. 
GÉRARDIN, A. : Statistique des vingt séries parues du Répertoire Biblio­

graphique des Sciences Mathématiques. 

Section IV (a). (Philosophy and History.) 

Prof. A. Padoa in the Chair :—Prof. F. Rudio was elected Chairman for Tuesday, 
August 27. 

In the absence of Le Vicomte R. du Boberil, his paper entitled " Réflexions 
sur la loi de l'attraction " was briefly presented by Mr W. W. Rouse Ball. 

In the absence of Prof. G. Loria, his paper "Intorno ai metodi usati dagli 
antichi greci per estrarre le radici quadrate " was taken as read. 
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In the absence of Mr P. E. B. Jourdain, his paper " Fourier's influence on the 

Conceptions of mathemat ics" was taken as read. 

Papers were read as follows : 

DYCK, W. VON. Ueber den Mechaniker und Ingenieur GEORG VON R E I C H E N ­

BACH. 

ITELSON, G. : THOMAS SOLLY of Cambridge als Logistiker. 

Mr W. W. Rouse Ball presented communications from Prof. H. G. Zeuthen 
and Sir Thomas L. Heath , announcing that an edition of the collected 
works of Paul Tannery is in preparation. 

The discussion of Prof. G. Peano's paper read on Saturday, August 24, was 
continued by Prof. E. H. Moore, with a reply by Prof. Peano. 

The discussion of Prof. A. Padoa's paper read on Friday, August 23, was 
continued by Hon. B. A. W. Russell, with a reply by Prof. Padoa. 

Sect ion IV (b). (Didactics.) 

Prof. C. Bourlet in the Chair. 

The following paper was read : 

GÉRARDIN, A. : Sur quelques nouvelles machines algébriques. 
Lt.-Col. Cunningham spoke on the subject of the paper. 

In the absence of Prof. B. Lagos Campos, his paper " De l'importance de la 

Cosmographie et de son enseignement aux écoles secondaires" was taken 

as read. 

In the absence of M. H. le Chatelier, his paper " L'enseignement des mathé­
matiques à l'usage des ingénieurs" was taken as read. 

Prof. J. W. A. Young in the Chair. 

The following papers were read : 

CARSON, G. S T L. : The place of deduction in elementary Mechanics. 
Miss Punnet t read Dr Nunn 's paper on " T h e Calculus as a subject of 

School instruction." 

The following speakers took part in the discussion on the paper :— 
Mr P. J . Harding, Mr G. St L. Carson, Dr P. Riebesell, 
Prof. Gibson, Prof. C. Bioche. 

Afternoon session. 

Sir J . J . Thomson in the Chair:—Prof. R. Fujisawa and Mr C. Godfrey were 

elected Chairmen for Tuesday, August 27. 

The Report of Sub-Commission B of the International Commission on the 

Teaching of Mathematics was presented by Prof. C. Runge, Subject : The mathe­

matical education of the physicist in the university. 
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The following speakers took part in the discussion on the report :—-Prof. P. 
Stäckel, Prof. G Bourlet, Prof. F. Enriques, Sir G. Greenhill, Prof. A. G. Webster, 
Prof. E. Borei, Sir J. Larmor, Prof. G Bioche, Prof. A. E. H. Love, Prof. E. W. Hobson, 
Prof. G. A. Gibson, and Sir J. J. Thomson. Prof. Runge replied on the discussion. 

Tuesday, August 27 
Section I. (Arithmetic, Algebra, Analysis) 

Prof. H. von Koch in the Chair. 

Papers were read as follows : 

EVANS, G. G : Some general types of functional equations. 
BECKH-WIDMANSTETTER, H. A. VON: Eine neue Randwertaufgabe für das 

logarithmische Potential. 
PEDDIE, W. : A mechanism for the solution of an equation of the nth degree. 
WILKINSON, M. M. U. : Elliptic and allied functions ; suggestions for reform 

in notation and didactical method. 
ZERVOS, P. : Sur les équations aux dérivées partielles du premier ordre à 

quatre variables. 
RABINOVITCH, G. : Eindeutigkeit der Zerlegung in Primzahlfaktoren in 

quadratischen Zahlkörpern. 

In the absence of their authors the following papers were taken as read : 
VOLTERRA, V. : Sopra equazioni di tipo integrale. 
PEEK, J. H. : On an elementary method of deducing the characteristics 

of the partial differential equation of the second order. 
MARTIN, A. : On powers of numbers whose sum is the same power of some 

number. 

Section II. (Geometry.) 

Prof. J. Drach in the Chair. 

Papers were read as follows: 

JANISZEWSKI, Z. : Ueber die Begriffe " Linie " und " Fläche." 
KöNIG, D. : Zur analysis situs der Doppelmannigfaltigkeiten und der pro­

jektiven Räume. 
SlNZOV, D. : On the theory of connexes. 
HATZIDAKIS, N. : On pairs of Frenetian trihedra. 
WEITZENBöCK, R. : Ueber das sechs-Ebenenproblem im R4. 

Sections I I I (a) and I I I (b). JOINT MEETING. (Astronomy and Statistics.) 

Prof. P. Stäckel in the Chair. 

The following paper was read : 

SAMPSON, R. A. : On the Law of Distribution of Errors, 
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Section III (a). (Mechanics, Physical Mathematics, Astronomy.) 

Prof. P. Stäckel in the Chair. 

The following papers were read : 

LAMB, H. : On wave-trains due to a single impulse. 

H A G E N , J . G. : How the At wood machine proves the rotation of the earth 

even quantitatively. 

BLASCHKE, W. : Reziproke Kräftepläne zu den Spannungen in einer bieg­

samen Haut . 

BOULAD, F. : Extension de la notion des valeurs critiques aux équations 

à quatre variables d'ordre nomographique supérieur (Nomographic). 

BRODETSKY, S. : Integrals in Dynamics and the problem of three bodies. 

D E N I Z O T , A. : Contribution à la théorie de la chute des corps, en ayant égard 

à la rotation de la Terre. 

BLUMENTHAL, O. : Ueber asymptotische Integration von Differentialgleich­

ungen mit Anwendung auf die Berechnung von Spannungen in 

Kugelschalen. 

I n the absence of the author the following paper was taken as read : 

DoUGALL, J. : The method of transitory and permanent modes of equilibrium 

in the theory of th in elastic bodies. 

Section IV (a). (Philosophy and History.) 

Prof. F . Rudio in the Chair. 

The following papers were read : 

R U D I O , F . : Mitteilungen über die Eulerausgabe. 

H A R D I N G , P. J . : The geometry of Thaïes. 

GÉRARDIN, A. : Note historique sur la théorie des nombres. 

E N E S T R ö M , G. : Resolution relating to the publication of G. Valentin's general 

Bibliography of mathematics. 

J O U R D A I N , P. E. B. : The ideas of the " fonctions analytiques " in LAGRANGE'S 

early work. 

VACCA, G. : On some points in the history of the infinitesimal calculus ; 

relations between English and Ital ian mathematicians. 

Sec t ion I V (b). (Didactics.) 

Prof. R. Fujisawa and Mr C. Godfrey in the Chair. 

The following papers were read: 

GOLDZIHER, G : Remarks on a bibliography on the teaching of mathematics. 
S M I T H , D. E. : Report of Sub-Commission A of the International Commission 

on the Teaching of Mathematics :—Intuit ion and experiment in mathe­
matical teaching in secondary schools. 

GODFREY, G : Report on Methods of intuit ion and experiment in English 
secondary schools. 

International recommendations as to future work of the Commission on the teaching 
of Mathematics were discussed. 
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IL SIGNIFICATO DELLA CRITICA DEI PRINCIPII NELLO 
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SOMMARIO.—I : Introduzione.—Il : Il continuo e i procedimenti infinitesimali nell'antichità.— 
I I I : La fondazione del calcolo infinitesimale.—IV : La critica dei concetti infinitesimali e i 
nuovi sviluppi sul calcolo delle variazioni.—V : Le funzioni arbitrarie e la moderna elaborazione 
del concetto del continuo.—VI : Lo sviluppo intensivo delle Matematiche : le equazioni e i 
numeri immaginarii.—VII : La teoria delle funzioni algebriche secondo Riemann e la critica dei 
principii della Geometria.—Vili : Nuovi sviluppi dell'algebra.—IX : Conclusioni ; pragmatismo 
e naturalismo matematico.—X : Le Matematiche come istrumento e come modello della 
scienza. 

I. Introduzione. 

La critica dei principii è all'ordine del giorno fra i matematici contemporanei. 
L'analisi approfondita dei concetti di limite e di funzione, le ricerche che hanno come 
punto di partenza la teoria delle parallele e la geometria non-euclidea, quelle più. 
recenti che si riattaccano alla fondazione della geometria proiettiva e all'Analysis 
situs, gli sviluppi sulle varietà a più dimensioni, sulle trasformazioni e sui loro 
gruppi; finalmente la teoria degl'insiemi e le speculazioni sull'infinito e l'infinite­
simo attuale, cui si connettono le geometrie non-archimedee, hanno sollevato tanti 
problemi che toccano le profonde radici dell'edifizio matematico e attraggono, per 
diversi motivi, gli spiriti filosofici. 

Nell'ambito di una scienza eminentemente conservatrice, che, da duemila anni, 
offre lo spettacolo di una continuità ininterrotta di costruzioni progredienti senza 
demolizione, le critiche innovatrici, di colore rivoluzionario, svegliano forse un inter­
esse emotivo più forte che in qualsiasi altro campo dello scibile, ove le crisi si 
succedono visibilmente in modo periodico. A questo interesse emotivo si deve non 
soltanto la resistenza che le nuove idee incontrano presso il pubblico non preparato a 
comprenderle, ma più ancora la seduzione che esse esercitano su tanti spiriti, pronti a 
passare, per naturale reazione psicologica, dalla meraviglia e dallo sbigottimento alla 
fede e all'entusiasmo, per il mondo nuovo che si dischiude ai loro occhi. 

Di qui il fenomeno singolare, a cui abbiamo più volte assistito : la propagazione 
delle idee critiche attraverso piccole cerchie di lavoratori e d'interpreti, che, svilup­
pandone fino agli estremi le conseguenze logiche, compiono intorno a se un vero 
apostolato, illusi forse che la nuova verità ad essi scoperta debba segnare un radicale 
rivolgimento del pensiero matematico, e instaurare una nuova era nella sua storia. 

5—2 
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Dobbiamo ringraziare la moltiplicata delle Chiese se la propaganda che si svolge 
fervidamente intorno a noi non ci toglie il senso della relatività e ci permette di 
conservare qualche fede anche nella vecchia matematica. 

Ora le discussioni più vive suscitate dai nuovi campi di indagine e soprattutto i 
nuovi atteggiamenti dello spirito critico, pongono naturalmente un problema d'ordine 
filosofico e storico : quale sia il valore proprio della critica dei principii e quale posto 
le spetti nell'ordine dei progressi della nostra scienza. Tutte le questioni particolari 
di valutazione, per riguardo a diversi indirizzi di analisi e di ricerca, sembrano do­
minate da quel problema generale che, sia pure in diversi modi, ogni lavoratore, 
riflettendo sul proprio lavoro, è indotto a porre a se stesso. 

II. Il continuo e i procedimenti infinitesimali nell'antichità. 

La storia ci offre a questo riguardo un primo insegnamento istruttivo : la critica 
dei principii non è affatto un fenomeno nuovo che caratterizzi la produzione mate­
matica dei tempi nostri; all'opposto essa è parte essenziale dell'elaborazione dei 
concetti che in ogni tempo prepara o accompagna il progresso della scienza e la sua 
più estesa applicazione. 

La perfezione universalmente ammirata della opera d'Euclide si rivela appunto 
allo storico come il frutto maturo di una lunga critica, che si svolge durante il periodo 
costruttivo della geometria razionale da Pitagora ad Eudosso. Tanta finezza e pro­
fondità d'idee si dispiega in quel movimento critico, che talune vedute non poterono 
essere comprese se non in tempi recentissimi, quando gli sviluppi della nostra stessa 
critica ci condussero a superare veramente, anche in questa direzione, il pensiero 
greco. 

Allora in particolare ha cominciato a palesarsi nella sua propria luce il significato 
dei metodi e dei principii mercè cui i Greci stessi riuscirono a vincere i paradossi che 
sembra incontrare naturalmente chi riflette sull'infinito; giacche le difficoltà che a 
questo riguardo travagliarono lungamente i matematici e i filosofi dell'antichità, sono 
le medesime che ebbe a sperimentare il Rinascimento nel periodo costruttivo dell' 
analisi infinitesimale, ed anche dopo la costituzione sua fino alla critica più recente. 

La fondazione di una teoria della misura per opera della scuola pitagorica sollevò 
per la prima volta la questione del continuo geometrico. I pitagorici ponevano a 
fondamento di quella teoria un elemento indivisibile dello spazio, il punto dotato di 
estensione finita ; intanto il rapporto incommensurabile della diagonale al lato del 
quadrato suscitava sui loro passi una insuperabile contraddizione. 

Tuttavia P. Tannery ha mostrato che soltanto la critica degli Eleati riuscì a 
vincere definitivamente l'erroneo concetto dei pitagorici. Come generalmente avviene 
per riguardo a certe costruzioni astratte, il paradossale aspetto negativo degli argo­
menti di Zenone (Achille e la tartaruga !) dovette colpire l'immaginazione del gran 
pubblico, e questa impressione è passata nella corrente della tradizione letteraria ov' 
è tuttora dominante. Ma il valore positivo di codesta critica è di avere schiuso 
la via ad una esatta veduta del continuo e ad una teoria delle grandezze incom­
mensurabili. . 
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La quale viene fondata da Eudosso di Cnido mercè l'introduzione del postulato, 
comunemente citato col nome di Archimede, che serve di base alla trattazione 
generale delle proporzioni, esposta nel V libro d'Euclide. 

La critica di Eudosso permetteva in pari tempo di dare una base rigorosa ai 
procedimenti infinitesimali impiegati dagli antichi per la misura delle aree e dei 
volumi. Infatti sul suo postulato, Eudosso stesso fondava il processo d'esaustione, 
e se ne serviva per dimostrare i resultati sui volumi della piramide e del cono, già 
trovati da Democrito. 

Il pubblico matematico, assetato di rigore, plaudì all'opera di Eudosso, e la 
testimonianza di Archimede (nell'opera ritrovata da Heiberg) ci fa noto che, appunto 
in omaggio al rigore, non era lecito citare altro autore di tali dottrine fuori di colui 
che era riuscito a rimuovere ogni obbiezione stabilendo il resultato con logica im­
peccabile. Tanto varrebbe, nota argutamente lo Zeuthen, attribuire la scoperta del 
calcolo infinitesimale a Cauchy, che dette l'ultima risposta ai dubbi sollevati dall'uso 
degl'infinitesimi ! 

Il metodo d'esaustione fu dunque il termine consapevole a cui si arrestò lo 
sviluppo dei procedimenti infinitesimali presso i Greci, ma i concetti che ad esso 
soggiaciono e che erano volontariamente banditi per l'esigenza del rigore, vengono 
alla luce ad ogni passo nell'opera d'Archimede. E la lettera che questi scrisse ad 
Eratostene ci rivela come appunto i metodi dell'analisi infinitesimale, la riduzione 
del continuo ad una somma d'un numero finito di termini, gli servissero di guida 
nella scoperta, mentre l'esposizione dei risultati, condotta col processo d'esaustione, 
gli permetteva di soddisfare alle esigenze del pubblico scientifico. 

III . La fondazione del calcolo infinitesimale. 

Le idee d'Archimede sono riprese e approfondite nel Rinascimento da Galileo 
e da Keplero, ai quali si riattacca la prima sistemazione organica di esse che è la 
geometria degli indivisibili di Bonaventura Cavalieri. 

Il grande geometra italiano pone il fecondo principio che le superficie e i 
volumi si possono riguardare come somme di un numero infinito d'elementi indi­
visibili, che sono rispettivamente linee o superficie, e ne trae conseguenze assai 
generali ed importanti. Attaccato da Guidino nel 1640, mostra che il suo metodo 
si riduce all'esaustione degli antichi ; esso non è che una finzione, utile per la rapida 
soluzione dei problemi, e non involge alcuna ipotesi contraria al concetto tradizionale 
del continuo. 

Frattanto i metodi infinitesimali vengono alla luce secondo diversi aspetti; la 
difficoltà fondamentale di coglierne il vero significato filosofico determina appunto le 
divergenze di questi conati, che vanno di pari passo cogli acquisti positivi. 

Torricelli e Roberval ottengono la tangente colla composizione dei movimenti ; e 
questi decompono le superficie e i solidi in una moltiplicità indefinita di rettangoli o 
di prismi decrescenti secondo una certa legge. 

I nuovi procedimenti investigati da Cavalieri, Fermât, Descartes, Roberval, 
ricevono un più alto sviluppo nell'Aritmetica degli infiniti di Wallis, da cui segue il 
primo esempio di rettificazione d'una curva, e poi per opera di Mercator che determina 
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mediante una serie l'area compresa fra l'iperbole e i suoi asintoti ; infine Barrow, il 
maestro di Newton che si riattacca specialmente a Galileo e a Torricelli, pone in 
piena luce il carattere inverso delle operazioni relative alla determinazione dell'area e 
della tangente d'una curva. 

Occorreva ancora scoprire che quest'ultima è un'operazione diretta che può 
essere semplicemente compiuta. Si giunge così alla costituzione organica dell'analisi 
infinitesimale moderna, cioè al metodo delle flussioni e fluenti di Newton e al calcolo 
differenziale e integrale di Leibniz. 

Una grande elaborazione concettuale, che profonda le sue radici nel più antico 
pensiero dei Greci, presiedette dunque all'acquisto che rimarrà come titolo d'onore 
dello spirito umano ; il concetto dell'infinito e dell'infinitesimo potenziale che, liberato 
più tardi da ogni oscurità, diverrà la solida base del calcolo, rappresenta per così dire 
la sintesi dell'ipotesi pitagorica, ripresa come finzione da Cavalieri, e della critica 
negativa di Zenone convertita in un procedimento rigoroso di dimostrazione mercè il 
postulato di Eudosso. La sintesi diverrà logicamente perfetta quando Cauchy sarà 
riuscito a conciliare le divergenze di vedute separanti ancora per lungo tempo i new­
toniani e i leibniziani, come diremo più avanti. Frattanto per apprezzare in tutta la 
sua vastità il lavoro d'analisi compiuto, occorre tener presente l'elaborazione dei 
principii della Meccanica che vi si accompagna. La stessa idea fondamentale, che 
costituisce il passaggio dal finito all' infinito e dal discreto al continuo determina il 
disegno generale della scienza moderna, cioè il principio di un determinismo universale 
che scompone i processi naturali in una serie continua di cause elementari, e ritrova 
così nella forma delle equazioni differenziali gl'invarianti che costituiscono l'oggetto di 
una rappresentazione razionale della realtà. La metafisica razionalistica delle scuole 
di Descartes e di Leibniz appare, da questo punto di vista, come un ramo grandioso 
della stessa critica dei principii ond'è uscito il calcolo infinitesimale. 

IV. La critica dei concetti infinitesimali e i nuovi sviluppi sul calcolo delle 
variazioni. 

Ho detto che lungamente, dopo Newton e Leibniz, proseguì la critica tendente a 
dare una base logica all'analisi infinitesimale, la cui fecondità si mostrava ogni giorno 
più meravigliosa. 

Il metodo di Newton, che introduce le flussioni conie velocità, toccò primo ad un 
assetto rigoroso mercè la critica di Maclaurin e di D'Alembert ; i quali, eliminando il 
concetto dinamico per svolgere puramente i principii analitici, riconobbero il suo 
fondamento logico nella teoria dei limiti. La fondazione newtoniana riesce così 
all'ordinario calcolo delle derivate. Tuttavia la rapidità consentita dall'uso dell'infini­
tesimo, a cui si conformano le notazioni leibniziane più generalmente adottate, faceva 
ancora desiderare una giustificazione piena della ipotesi fondamentale che s'incontra 
per questa via, cioè, del principio di Leibniz, che " si possono trascurare gl'infinitesimi 
di fronte alle quantità finite e gl'infinitesimi d'ordine superiore di fronte a quelle 
d'ordine inferiore." 

La difficoltà di comprendere logicamente questo principio, che sembra rompere 
collo spirito d'esattezza delle Matematiche, travagliava ancora Lagrange, per cui 
impulso l'Accademia di Berlino nel 1784 bandiva un concorso volto ad ottenere una 
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sistemazione rigorosa dell'analisi infinitesimale, e premiava poi la memoria di Lhuilier 
tendente in sostanza ad eliminare la caratteristica feconda del calcolo di Leibniz. 

C'era da temere che gli scrupoli logici ancora una volta, come nel mondo antico, 
prendessero il disopra sulla fecondità dei metodi. Ma questi avevano ormai una 
base troppo larga nella coscienza matura dei progressi acquisiti. Nacque tosto un 
movimento di reazione che produsse le Réflexions sur la métaphysique du calcul in­
finitésimal di S. Carnot ; qui è contenuta l'idea che il principio di Leibniz trovi la sua 
giustificazione, come regola practica, nella considerazione dell'arbitrarietà dell'infini­
tesimo ; e più tardi Cauchy dimostrava che codesta considerazione, a prescindere da 
altre riflessioni meno chiare di Carnot, basta da sola a legittimare il Calcolo di 
Leibniz, e a stabilirne l'identità colla teoria dei limiti. 

Se ora vuoisi convenientemente apprezzare il valore della nuova critica che riesce 
a fondare logicamente le basi del calcolo infinitesimale, occorre riflettere all'intima 
connessione che lega codesta critica ad altri positivi sviluppi nella mente dei nominati 
matematici, ricordando che, appunto dal tentativo di definire rigorosamente i principii 
del calcolo, Lagrange fu condotto all'introduzione delle funzioni analitiche che, per 
opera di Cauchy, Riemann, Weierstrass, ricevettero organica trattazione. 

Ancora è da menzionare il legame della critica dei principii con un'altra grande 
scoperta di Lagrange, il calcolo delle variazioni, che è appunto un'estensione dei 
concetti infinitesimali allo studio delle funzioni dipendenti da altre funzioni e dei 
loro massimi e minimi. 

In una serie di conferenze, tenute recentemente a Parigi, Vito Volterra* ha 
illustrato i progressi della teoria di queste funzioni di linee, mostrando come l'evolu­
zione delle idee fondamentali del calcolo infinitesimale si prosegua qui nella fiorente 
costruzione della dottrina delle equazioni integrali e integro-differenziali ; onde questa 
mirabile estensione di concetti si palesa come un frutto maturo di quella stessa 
critica che riconoscemmo come fermento attivo dei progressi delle Matematiche 
durante due millennii di storia. 

V. Le funzioni arbitrarie e la moderna elaborazione del concetto del continuo. 

Ad allargare il campo della critica nel secolo decimonono interviene l'estensione 
del concetto di funzione, guadagnata per una parte attraverso il problema delle corde 
vibranti e gli studi di D'Alembert e di Fourier, d'altra parte mercè la considerazione 
qualitativa degli algoritmi d'integrazione. 

La prima via suggerisce il concetto di Dirichlet della funzione arbitraria, la 
seconda, con Abel e Jacobi, porta alla introduzione effettiva di funzioni più generali 
nell'Analisi. 

Appunto la considerazione di queste, ed in genere la veduta più larga degli 
algoritmi analitici come operazioni, porge un interesse positivo alle ricerche critiche 
concernenti la convergenza delle serie, la continuità e la derivabilità delle funzioni, 
ecc. ; cioè a quelle speculazioni sui principii della teoria delle funzioni arbitrarie che 
furono spinte innanzi da Riemann, Weierstrass, Dini, ecc. 

* Cfr. Revue da Mois, 10 mars 1912. 



72 FEDERIGO ENRIQUES 

Il vedere tra i fondatori di questa critica quegli stessi matematici che hanno 
constituito l'organismo della teoria delle funzioni analitiche, ci fa comprendere il 
nesso profondo fra due campi di studio che taluno ama talora contrapporre come 
due indirizzi delle Matematiche. 

In realtà se le funzioni analitiche sono nate nella mente di Lagrange per rispon­
dere ai dubbi intorno ai fondamenti del calcolo infinitesimale, il loro progresso appare 
sempre legato a preoccupazioni critiche della medesima specie ; basti rammentare che 
il più bel resultato della teoria delle funzioni analitiche è la determinazione di esse 
per. mezzo dei loro punti singolari nel piano, e che a base dei teoremi d'esistenza che 
le concernono si trova il principio di Riemann-Dirichlet. 

Ora per approfondire in generale le questioni d'esistenza in rapporto al concetto 
esteso delle funzioni, delle serie, ecc., occorre una nuova analisi del continuo che 
conduce ad un complemento essenziale della critica antica. Alludo al postulato della 
continuità e al nuovo assetto della dottrina dei numeri irrazionali considerati nella 
loro integrità. Questa dottrina si confonde infatti per Weierstrass colla teoria 
generale della convergenza delle serie, per Cantor e per Dedekind colla determi­
nazione delle condizioni d'esistenza dei limiti. L'intimo rapporto ond'essa è legata 
al concetto dell'arbitrarietà delle funzioni si palesa negli sviluppi critici di Cantor 
sugli insiemi e sulla loro potenza. 

Per questi sviluppi e per le speculazioni più recenti (di Veronese, Hilbert, ecc.) 
sul considetto continuo non-archimedeo, il pensiero moderno sembra avere svolto fino 
alle sue estreme conseguenze l'analisi iniziata quasi duemilacinquecent'anni or sono 
coll'ipotesi pitagorica. Certo il concetto del continuo rimane per noi quello stesso 
che Eudosso ed Archimede ponevano a base delle loro costruzioni, ma arricchito di un 
nuovo principio esistenziale che è in rapporto all'estensione dei concetti delle Mate­
matiche ; e il significato di questo principio viene messo in tutta la sua luce grazie ai 
suddetti sviluppi non-archimedei, divenuti parte integrante dell'esplorazione critica 
del continuo. 

VI. Lo sviluppo intensivo delle Matematiche : le equazioni e i numeri immaginami. 

Le considerazioni precedenti mirano sopratutto al progresso estensivo delle 
Matematiche, mostrando in ordine ad esso l'ufficio della critica dei principii. Le idee 
suggerite primitivamente da un'intuizione ristretta si affinano coll'analisi delle 
condizioni di validità e diventano atte a fecondare un campo di problemi sempre più 
vasto. A questa estensione che è un aspetto del progresso scientifico presiede appunto 
il pensiero critico, inteso come strumento di sapere positivo. 

Ma lo sviluppo delle Matematiche non avviene soltanto nel senso estensivo, bensì 
anche secondo una direzione che può dirsi intensiva. 

Allargare la posizione dei problemi riuscendo a sottomettere all'analisi un campo 
ognor più vasto di rapporti reali, non dispensa dall'approfondire i problemi antichi, 
proseguendone una risoluzione effettiva con mezzi determinati. 

Così la considerazione più generale dei numeri irrazionali lascia posto ad una 
teoria dei numeri razionali od interi o di particolari specie d'irrazionali ; e mentre le 
equazioni algebriche trovano la loro naturale estensione nelle equazioni differenziali, 
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e queste nelle equazioni a derivate parziali, nelle equazioni integrali ed integro-
differenziali, ciascuna di tali classi di problemi dà luogo ad uno sviluppo intensivo 
proprio. 

La veduta estesa porge a questo stesso sviluppo un criterio fondamentale, cioè il 
principio di relatività, per cui la risoluzione cercata viene messa in rapporto con dati 
mezzi, e si converte in una classificazione gerarchica dei varii tipi di problemi secondo 
un ordine di difficoltà crescente. 

Ora la Matematica, considerata da tale punto di vista, tocca il suo punto culminante 
nello sviluppo dell'Algebra, intesa—in modo ampio—come teoria generale dei problemi 
qualitativi che sorgono in rapporto al gruppo delle operazioni razionali (equazioni 
e funzioni algebriche, funzioni ellittiche e abeliane, equazioni algebrico-differenziali, 
ecc.), o come primo ramo di una teoria qualitativa delle funzioni. 

L'ufficio della critica dei principii che abbiamo riconosciuto nella estensione dei 
concetti e dei problemi, si discopre non meno essenziale per riguardo a questo indirizzo 
delle Matematiche, dove—a primo aspetto—potrebbe apparire meno evidente. 

Riportiamoci col pensiero alle origini della teoria delle equazioni algebriche. Le 
equazioni di 2° grado trovansi risolute in veste geometrica nel libro I I d'Euclide e la 
loro risoluzione si connette alla scoperta degli incommensurabili, cui si è già innanzi 
accennato. Attraverso gli Arabi quella dottrina assunse la forma propriamente 
algebrica, che mette in evidenza il problema generale delle equazioni di grado 
superiore. 

E da questa rappresentazione sorgono i numeri negativi (già incontrati dall'Indiano 
Bhâskara nel 1114); i quali saranno ripresi dai matematici dei secoli xv e xvi, 
Pacioli, Cardano, Stiefel ; e, dopo Harriot e Descartes, adottati come numeri ordinali 
o ascisse d'una retta. 

L'uso dei simboli non era ancora familiare ai matematici italiani del secolo 
decimosesto, i quali—volgendosi alla trattazione delle equazioni cubiche—vedono in 
esse il soggiacente problema geometrico. Scipione dal Ferro e Niccolò Tartaglia 
scoprono le regole per la risoluzione delle equazioni stesse, distinte allora in tre 
classi* ; e quelle regole sono riprese e svolte da Girolamo Cardano e Raffaele 
Bombelli. 

Orbene il caso irriducibile delle equazioni di terzo grado apre la via alla con­
siderazione dell'immaginario, cioè al problema critico del. valore e del significato che si 
può conferire alla radice quadrata d'un numero negativo ed al suo uso nei calcoli. Il 
progresso ulteriore dell'Algebra esige che piena luce sia fatta su questo delicato 
concetto ; la profonda elaborazione che primo ne ha data il Bombelli resta pressoché 
incompresa fino a Leibniz e a Wallis, e—ripigliata da questi matematici—riceve uno 
sviluppo pieno coll'interpretazione trigonometrica del De Moivre ; tuttavia la critica 
si affatica ancora a cercare un significato concreto dei numeri complessi, e vi riesce 
colla nota rappresentazione geometrica di Wessel, Argand, Gauss. 

Allora soltanto, sulla base della critica compiuta, si asside la dimostrazione del 
teorema fondamentale che un'equazione di grado n ha n radici ; teorema ricercato dai 

* x^+px — Q, x?=px + <è, x3-\-$=px. Cfr. D. Gigli, Dei numeri complessi..., in F. Enriques, Questioni 
riguardanti le Matematiche elementari, Zanichelli, Bologna, 1912. 
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matematici del secolo decimottavo e segnatamente dal D'Alembert (1746), rigoro­
samente stabilito da Gauss nel 1789. 

Se ora si riflette al posto che l'immaginario riceve nella teoria delle funzioni, si 
è condotti a comprendere in tutta la sua larghezza il valore della critica iniziata colle 
speculazioni del Bombelli, e suscitata da un problema determinato come quello delle 
equazioni cubiche. 

VII. La teoria delle funzioni algebriche secondo Riemann e la 
critica dei principii della Geometria. 

Procediamo a considerare la storia degli sviluppi dell'Algebra, e riscontriamo che 
ogni passo innanzi si lega ugualmente con una critica toccante i concetti fondamentali 
della scienza matematica. 

Mentre le equazioni del 4° grado si riconducono a quelle del 3°, lo studio delle 
equazioni di grado superiore al 4° conduce, con Ruffini et Abel, alla dimostrazione 
della impossibilità di risolvere per radicali l'equazione del 5° grado e quindi alla 
dottrina generale della risolubilità algebrica secondo Galois. Ebbene questa dottrina 
che—estesa poi in vari sensi—ha fecondato tutti i rami delle Matematiche, e con Lie 
è riuscita a porgere la base di una classificazione razionale delle equazioni differenziali, 
è finalmente una critica di taluni elementari concetti : ordine, operazione o corri­
spondenza, gruppo di operazioni. 

Il posto di questi concetti per riguardo ai principii delle Matematiche, ed in 
ispecie della Geometria, appare chiaramente nell'opera che—per diversi riguardi— 
può riconoscersi come centrale nello sviluppo delle Matematiche del secolo de­
cimonono : dico l'opera di Bernardo Riemann. 

La straordinaria attività creatrice di questo pensatore s'illumina di una più viva 
luce a chi investighi il legame profondo fra le ricerche onde uscì la dottrina generale 
delle funzioni algebriche e dei loro integrali, la sua critica dei concetti del Calcolo 
e quella—di carattere più largamente filosofico—che tocca i principii della Geometria 
e pone le basi di essa nell'Analysis situs. Appunto il rapporto fra le proprietà 
invarianti per trasformazioni birazionali delle funzioni algebriche e la connessione 
delle corrispondenti superficie riemanniane costituisce la scoperta dominante in quel 
campo di studii. 

Inoltre si deve alla sintesi di Riemann, che le pure speculazioni dei geometri non­
euclidei vengano riattaccate all'organismo della realtà matematica, formante oggetto 
della storia (forme differenziali quadratiche). Quindi innanzi il rapporto fra la critica 
dei principii della Geometria e lo sviluppo delle dottrine matematiche apparirà più 
chiaramente sotto molteplici aspetti. Il nodo di questo rapporto sta nella Geometria 
proiettiva che da Poncelet a Möbius, a Steiner, a Staudt, si svolge, non solo come 
dottrina delle proiezioni e come metodo di riduzione, ma anche come critica dei 
concetti e dei rapporti spaziali, riuscendo ad una trattazione qualitativa di questi 
indipendente dalle nozioni metriche. Il valore di tale sviluppo per riguardo ai 
problemi filosofici concernenti i principii risulta chiaro dall'opera di Beltrami, Schiarii, 
Cayley, Klein, ecc. Quanto alla sua importanza in ordine al progresso costruttivo 
delle Matematiche, basti additare la nuova forma data ai problemi concernenti le 
funzioni algebriche, e i resultati che ne conseguono. 
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Infatti i continuatori di questo indirizzo riemanniano (e segnatamente Clebsch 
e Noether) hanno rinnovato la dottrina mercè una considerazione più astratta della 
Geometria proiettiva delle curve e delle superficie algebriche, dalla quale è scaturita 
finalmente una posizione più generale degli stessi problemi dell'Algebra. Così per es. 
un sistema d'equazioni soddisfatto da un numero finito di soluzioni, viene ad essere 
riguardato come avente un grado invariante per un cambiamento continuo dei 
parametri, in forza della convenzione geometrica che estende lo spazio coi punti 
impropri, e porta quindi ad annoverare fra le soluzioni effettive anche le soluzioni 
asintotiche ed in particolare anche ad eliminare taluni casi d'incompatibilità. 

Ora è essenziale avvertire che non soltanto la Geometria proiettiva come edilìzio 
costruito, ma appunto le indagini sulla sua fondazione debbono essere ritenute come 
elemento essenziale della nuova teoria delle funzioni algebriche. Infatti uno dei 
concetti metodologici principali appare qui la considerazione astratta della Geometria 
proiettiva come sistema ipotetico-deduttivo caratterizzato dai postulati, cioè il fecondo 
principio che, generalizzando la dualità scoperta da Gergonne, permette di considerare 
certi sistemi di enti o di funzioni come diverse interpretazioni di quella Geometria. 

Trattisi p. es. di ricercare i gruppi finiti di sostituzioni lineari sopra una variabile. 
Sotto l'aspetto geometrico si ha dunque a fare coi gruppi di omografie sulla retta. 
Ma la totalità oo 3 delle omografie sulla retta forma un sistema lineare che può essere 
ritenuto in senso astratto come uno spazio proiettivo ordinario ; basta perciò chiamare 
" punti " le omografie stesse e " rette " i " fasci d'omografie." La rappresentazione che 
così risulta, studiata da Stephanos, mette in evidenza una quadrica immagine delle 
omografie degeneri 'e un punto che corrisponde all'identità. Il nostro problema si 
riduce a determinare i gruppi d'omografie che lasciano ferma una quadrica e un punto 
non appartenente ad essa. Con una trasformazione lineare immaginaria la quadrica 
si muterà in una sfera e il punto nel suo centro. I gruppi cercati corrisponderanno 
ai gruppi di rotazioni della sfera, cioè (com'è noto) ai gruppi dei poliedri regolari ! 

Ora il principio generale della Geometria proiettiva astratta assume tutta la sua 
estensione grazie al concetto degli spazi a più dimensioni, e così diventa possibile di 
trattare come " spazi," cioè di tradurre nei termini della Geometria proiettiva generale, 
le serie g* di gruppi di punti sopra una curva, i sistemi lineari di curve sopra una 
superficie, ecc. 

Vi l i . I nuovi sviluppi dell' Algebra moderna. 

Ho accennato all'Algebra in veste geometrica, che contempla le equazioni e i 
sistemi d'equazioni a più incognite, di fronte alle trasformazioni birazionali ; e credo 
di non cedere ad una predilezione individuale, affermando che essa si trova oggi 
al posto più avanzato sulla linea del progresso intensivo delle Matematiche, come 
continuatrice legittima della grande tradizione dei problemi algebrici, di cui ho porto 
innanzi una rapida veduta. Tanto più che quasi tutti i rami della Matematica 
qualitativa, dalle funzioni abeliane alle funzioni automorfe e alle equazioni algebrico-
differenziali (secondo gli sviluppi di Poincaré e Painlevé) vi si riattaccano in­
timamente. 

Si consideri dunque un teorema pertinente a quella teoria, p. es. il teorema che 
l'annullamento del genere porge la condizione per la risoluzione d'un'equazione 

/ (*y) = o, 
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mediante funzioni razionali d'un parametro : 

x = <j> (t), y = ty(t) 

(Clebsch), e che la risoluzione effettiva si ottiene con operazioni razionali e tutt'al più 
coll'estrazione di una radice quadrata a partire dai coefficienti di / (Noether). Un 
siffatto enunciato porge una risposta pienamente determinata a una questione del 
pari determinata; nulla sembra più remoto dal campo proprio della critica dei 
principii ; eppure la storia di quell'acquisto suppone—come abbiamo accennato—una 
lunga elaborazione di concetti : dal numero irrazionale all'immaginario, dalle per­
mutazioni alle superficie più volte connesse, dalla Geometria proiettiva al principio 
di dualità generalizzato quale scaturisce dalla contemplazione logica dell'edilìzio 
geometrico ! 

Se ora taluno stimasse che l'elaborazione critica dei concetti s'incontri in quelle 
dottrine algebriche soltanto per fondare una base, su cui la costruzione proseguirà poi 
senz'altro rapporto colla critica stessa, ch'ei rifletta su altri ulteriori sviluppi ; e così 
sarà tratto a riconoscere come la teoria invariantiva della superficie esiga un'analisi 
delicata, tendente allo stesso scopo per cui s'introducono nella Geometria proiettiva i 
punti impropri, cioè a rimuovere casi eccezionali d'invarianza (convenzioni sui buchi 
delle curve o sui punti-base dei sistemi lineari, sulla riducibilità o irriducibilità, ecc.) ; 
e d'altra parte vedrà che le stesse idee dominanti l'estensione del campo dei numeri, 
cioè l'introduzione dei numeri fratti, negativi o immaginarli, trovano una feconda 
applicazione nel concetto più largo delle funzioni <£ di grado n — 4, aggiunte ad 
un'equazione di grado n 

/(*y*) = 0, 
le quali sono invarianti di / rispetto alle trasformazioni birazionali (Clebsch-Noether). 
Infatti l'estensione della teoria degl'invarianti di Clebsch-Noether si è fatta appunto 
nel senso di considerare per così dire le <p virtuali che—nel caso del genere p = 0— 
porgono talora funzioni <\>n effettivamente esistenti, le quali (almeno per n — 2, 3, 4, 6) 
costituiscono dei nuovi invarianti di fi E mi sia lecito ricordare che mercè questi 
invarianti si è potuta assegnare in forma semplice e determinata la condizione per la 
risoluzione razionale eli / (ocyz) — 0, la condizione per la trasformazione di / (ocyz) = 0 
in un'equazione fra due variabili F (xy) = 0, la condizione perchè / (ocyz) = 0 possegga 
un gruppo continuo di trasformazioni birazionali in se stessa, ecc. 

Infine lo studio delle trascendenti connesse con un campo algebrico a due 
dimensioni, ha messo Picard e Poincaré in faccia alle difficoltà concernenti la con­
nessione delle varietà a quattro dimensioni ; e deve ritenersi che talune difficoltà non 
ancora superate verranno sciolte il giorno che la critica dei principii della Geometria 
avrà approfondito il più alto problema che ancora appaia insoluto nel suo campo, 
dando una base geometrica pura all'edifizio dell' Analysis situs. 

IX. Conclusioni: pragmatismo e naturalismo matematico. 

La tesi enunciata in principio mi sembra ormai sufficientemente dimostrata : la 
critica dei principii fa parte integrante della storia degli sviluppi delle Matematiche, 
così dal punto di vista estensivo come dal punto di vista intensivo ; essa è il processo 
di elaborazione e di definizione dei concetti che tende ad estendere i dati dell'intuizione 
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a campi sempre più vasti e così ad allargare la posizione dei problemi e a preparare 
strumenti più penetranti per recare risposta determinata a più profonde questioni. 

Ora questa veduta storica suppone in qualche modo una legge di sviluppo delle 
Matematiche, rispetto a cui assegna—per così dire—un fine naturale alla critica dei 
principii. Ed intanto il progresso di questa critica stessa sembra all'opposto far 
scaturire l'illimitata arbitrarietà della costruzione matematica. 

Già vedemmo che le funzioni, assunte altra volta come dato di una realtà 
naturale (la potenza, la radice, l'esponenziale, il logaritmo, il seno, ecc.), cedono il posto 
alle funzioni generali nel senso di Dirichlet, che sono corrispondenze arbitrarie. Le 
proprietà fondamentali dei numeri non appaiono più l'espressione eli assiomi necessarii, 
ma—sopratutto per l'analisi di Cantor e di Peano—divengono condizioni arbitrarie 
con cui si definiscono certi insiemi ordinati ; p. es. il principio d'induzione matematica 
perde il suo valore di canone logico per rappresentare solo una condizione costruttiva 
della serie ben ordinata di oggetti cui corrispondono i numeri interi, tantoché la 
negazione del principio dà luogo—in quella serie—all'esistenza di punti-limiti cui 
corrispondono numeri ordinali transfiniti. 

La Geometria, che aveva visto allargare il campo delle sue possibilità colla 
trattazione delle ipotesi non euclidee e cogli spazi a più dimensioni, diventa ormai 
suscettibile di un'estensione illimitata, sicché non vi è più gruppo di oggetti dotato di 
proprietà qualsiasi che non possa rivendicare il nome di " spazio." 

La scuola logica non ha mancato di lumeggiare il significato delle rivoluzione 
compiuta. Si sono detronizzati gli assiomi ; rotto l'incantesimo della loro investitura 
per diritto divino, cioè il loro fondamento in una evidenza o necessità naturale dello 
spirito umano, essi sono divenuti dei semplici postulati, non più principi o membri 
d'un'aristocrazia gentilizia, ma funzionari elettivi di una repubblica democratica, che 
possono essere revocati o sostituiti per motivi di economia o di semplice rinnovamento. 

Un Aristofane potrebbe anche trovare che l'arbitrio illimitato di scelta rischia di 
convertire questa democrazia in una vera demagogia; che le funzioni disoneste 
prendono troppo spesso il posto delle semplici ma oneste funzioni soddisfacenti ai 
teoremi del Calcolo infinitesimale, che talune costruzioni di Geometrie bizzarre 
(giustificate dapprima come mezzo per investigare certi rapporti di subordinazione) 
affermano la libertà dell'idea ispiratrice al modo stesso che le forme di governo 
succedentisi nel Principato di Monaco, auspice Rabagas. 

Eppure anche le esagerazioni un po'barocche a cui conduce l'odierna critica dei 
principii sono servite a diffondere una giusta idea del valore della Logica e per 
contrapposto lasciano indovinare il valore che altri elementi non logici assumono nella 
conoscenza matematica. L'importanza della veduta della Logica così messa in luce 
risulta già dal fatto che quell'indirizzo critico ha suscitato un vasto movimento 
filosofico, propagatosi—ai nostri giorni—sotto il nome di pragmatismo. Infatti di 
padre di quel pragmatismo filosofico che è riuscito finalmente ad una reazione 
antiscientifica, è proprio il pragmatismo dei logici matematici che, armati della critica 
dei principii, rivendicano il carattere di definizioni dei postulati e ne desumono 
l'arbitrarietà della costruzione matematica, contro una concezione che potrebbe 
chiamarsi naturalistica, secondo la quale gli enti delle Matematiche esistono fuori di 
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noi, al pari delle specie viventi delle scienze naturali, come oggetto di scoperta e di 
osservazione. 

Ebbene se il pragmatismo logico-matematico riesce a combattere vittoriosamente 
il naturalismo ed il realismo ingenuo che vi soggiace, quel pragmatismo a sua volta 
viene vinto dalla storia. La storia degli sviluppi delle Matematiche ci ha mostrato 
appunto il lavoro della critica logica in una elaborazione secolare di concetti. 

Pertanto alle conseguenze che si vorrebbero trarre dalla veduta dei postulati come 
definizioni implicite, la storia oppone che le definizioni stesse degli enti matematici 
non sono arbitrarie poiché appariscono come frutto di un lungo processo d'acquisto e 
di uno sforzo assiduo rivelante alcuni motivi generali della ricerca. 

Vi è una tradizione di problemi e vi è un ordine che presiede ai progressi 
estensivi ed intensivi della scienza; perciò solo vi è una materia propria delle 
Matematiche, che le definizioni mirano a rispecchiare ; onde l'arbitrio del definitore 
non sembra diverso da quello dell'architetto che dispone le pietre di un edilizio 
elevantesi secondo un armonico disegno. 

Opera d'Architettura è infatti la scienza matematica ; non realtà che si offra allo 
sguardo di un osservatore esterno come qualcosa di dato, ma processo che si fa dallo 
spirito umano, e pur rivela la realtà stessa dello spirito creatore. 

Così dunque l'atto di volontà che il matematico rivendica ognora più libero nella 
posizione dei problemi, o nella definizione dei concetti o nell'assunzione delle ipotesi, 
non può mai significare arbitrio, ma solo facoltà di avvicinarsi da più lati, per 
approssimazioni successive, a non so che ideale implicito nel pensiero umano, cioè ad 
un ordine e ad un'armonia che ne riflette le intime leggi. 

Se questa è la conclusione che emerge da una veduta storica della scienza e della 
critica, il pragmatismo logico matematico, lungi dall'aprire un'era di costruzioni 
fantastiche moltiplicantisi all'infinito quasi per giuoco o per bizzarria, avrà dato alla 
ricerca una coscienza più elevata dei suoi scopi ; e d'altra parte, purificando la Logica, 
avrà dimostrato l'insufficienza di essa e la necessità di approfondire gli altri elementi 
psicologici che conferiscono significato e valore alla costruzione matematica. 

X. Le Matematiche come istrumento e come modello della scienza. 

Alla nostra veduta idealistica, che sembra nascere da una considerazione esclusiva 
delle Matematiche pure, altri potrebbe contrapporre una veduta apparentemente più 
larga in cui le Matematiche stesse sieno ritenute, non più come un oggetto di per sé 
stante, ma come strumento della scienza naturale. Senonchè questo concetto (che a 
taluno può essere suggerito, per reazione, dalle esagerazioni del pragmatismo logico) 
porterebbe ad impoverire singolarmente il campo dell'attività matematica. Esso ci 
ricondurrebbe alla veduta di Fourier che rimproverava Abel e Jacobi di studiare 
le equazioni e funzioni algebriche anziché volgersi di preferenza al movimento del 
calore ; rimprovero cui bene rispose lo Jacobi che scopo della scienza è unicamente 
l'onore dello spirito umano e che a questo titolo una questione di numeri non vale 
meno che una questione relativa all'ordine dell'universo. 

Se è necessario portare argomenti in appoggio alla veduta di Jacobi, basta—io 
credo—riflettere come appunto le difficoltà della teoria dei numeri abbiano attratto in 
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ogni tempo gl'intelletti più alti, compresi i fondatori del sistema del mondo e della 
Meccanica. 

Ma la ristrettezza dell'anzidetta considerazione delle Matematiche si rivela meglio 
sul suo proprio terreno, mercè una veduta approfondita del posto che alle Matematiche 
spetta nell'ordine dello scibile. 

Se la larghezza delle applicazioni del calcolo ha potuto avvalorare l'idea che 
le Matematiche sieno soltanto uno strumento della cognizione fisica, in ogni tempo 
i più alti pensatori riconobbero in esse un modello della scienza. 

Questo concetto porge una più giusta veduta del rapporto che intercede fra il 
progresso dello spirito matematico e il progresso scientifico in generale. Bene avverte 
il Poincaré che appunto lo spirito matematico, indipendente dalla potenza* degli 
algoritmi, è attivo nelle feconda intuizione delle analogie di Faraday, che guida 
Maxwell alle sue memorabili scoperte. E nello stesso senso può dirsi p. es. che la 
Termodinamica è tutta intera un'opera matematica, sebbene si svolga in gran parte 
indipendentemente, non dai concetti, ma dai resultati del calcolo. 

L'ispirazione matematica si rivela del pari più largamente in altri rami di scienza, 
che pure non toccano propriamente ad una fase di sviluppo matematico. 

Per tal modo si può dire che il progresso tenda a realizzare l'ideale scientifico di 
Platone, di Descartes e di Leibniz, che pone le Matematiche modello della scienza. 

Questa veduta, allargante il valore delle Matematiche nell'ordine universale dello 
scibile, restituisce anche tutto il suo valore al libero sviluppo della teoria pura, 
rivendicato dal secolo decimonono. 

Ora al lume della concezione idealistica delle Matematiche, quella veduta acquista 
un significato nuovo rispetto alla posizione realistica dei nominati filosofi. 

Quando Platone costruiva il mondo delle Idee ad immagine della classificazione 
delle forme geometriche; quando Galileo, Descartes, Leibniz, foggiavano una nuova 
realtà dinamica, i cui invarianti sono rapporti di successione, cioè leggi naturali; 
questi filosofi proiettavano nel mondo esterno il processo interiore del loro spirito, ed 
in quel mondo credevano di riconoscere le cause elementari, come dato semplice della 
realtà stessa. 

Oggi la critica gnoseologica, connessa all'investigazione dei principii di cui si 
è innanzi discorso, ci avverte che il modello matematico della scienza ha un significato 
diverso; non si tratta di scoprire la profonda struttura metafisica del reale, ma di 
riconoscere le forme dell'attività spirituale che atteggia la realtà sensibile nella 
costruzione scientifica, secondo le intime leggi dello spirito umano. 

Così le Matematiche, che per Platone, Descartes, Leibniz offrivano il fondamento 
di una filosofia della natura, elevantesi ad una grandiosa metafisica razionalistica, oggi, 
mercè il possente risveglio della critica contemporanea, suscitano una nuova filosofia 
dello spirito, cioè una gnoseologia che deve rivelare il pensiero a se stesso indagando 
le profonde armonie psicologiche ond'esso si atteggia nella continuità della storia. 

E da questo lato la critica dei principii promette di recare nuovi resultati 
importanti ; dopo avere illuminato il carattere proprio della Logica, essa riuscirà ad 
approfondire lo studio degli elementi intuitivi di diverso ordine che conferiscono alle 
Matematiche il loro inesauribile valore. 





PERIODICITIES IN THE SOLAR SYSTEM 

BY ERNEST W. BROWN. 

The treatment of problems in celestial mechanics has undergone a variety of 
phases since the history of the subject opened with the discoveries of Isaac Newton. 
He and his immediate successors regarded them almost entirely from one point of 
view. They desired to know the motions and positions of the members of the 
solar system at any time in the past or future. The numerical treatment of the 
problems of gravitation was thus the first and chief consideration. 

All attempts to find expressions for the coordinates in terms of a finite number 
of functions whose numerical values had been tabulated, ended in failure. We now 
know that, in general, no such expressions exist. I t is necessary to make use of 
infinite series. In the majority of cases these series consist solely of harmonic terms 
—the only form, since it was taken as an axiom deduced from observations in the 
past, that all the motions of the bodies must be recurrent. Exceptions to this rule 
were allowed in the cases of those motions whose periods were so long that a few 
terms of their development in powers of the time gave results sufficiently accurate 
for the purposes required. These series consist, therefore, of development by harmonic 
terms for the shorter periods and by powers of the time for the longer ones. 

The methods used were constructed mainly with a view of obtaining the 
harmonic or partly harmonic series to the required degree of accuracy. The best 
method was that which demanded the least calculation, algebraic and numerical. 
This was soon found to differ with different bodies. For the motions of the planets 
certain methods came to be employed ; for those of the satellites, and in particular 
for that of the moon, other methods. All of them depended to a greater or less 
extent on knowledge, obtained in various ways, of what should be the final form of 
the expressions. 

Since infinite series are employed, the question of their convergence arises. By 
the astronomer who is mainly concerned with the numerical applications this question 
is usually left aside. For him the series are either possible or impossible according 
as they give correct numerical values of the functions for certain values of the 
variables or not. In this he is guided by observation and past experience. We now 
know that the convergence of a series is not a necessary condition for obtaining a 
good approximation to the function it replaces. To demand that a series shall be 
convergent is to limit unnecessarily the range of its application. 

M. c. 6 
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We thus come to a second stage in the development of the subject, namely, 
the examination from the logical point of view of the series and expressions used 
by the astronomer. In order to make such an examination it does not follow that 
one must use his methods. What is chiefly needed is the examination of the 
expressions finally obtained rather than that of the methods by which they are 
obtained. The older methods are frequently not well adapted for such an exami­
nation ; hence the necessity for devising new ones. Are these new methods of no 
interest whatever to the student who has in view only the numerical solution of the 
special problems presented by the solar system ? As far as historic time is concerned 
they have perhaps but little bearing from the astronomical point of view. They 
have not so far assisted materially in gaining better methods of calculation; but 
if one tries to penetrate into the remote past and future, it is seen that the 
numerical methods fail to give any certain information, and the failure arises mainly 
because there is no indication as to whether the expressions obtained are possible 
for great values of the time as well as for small values. In other words, we do not 
know whether the expressions lie between finite limits for all values of the argument. 
Connected with this is the question of stability. If we could prove that our series 
were convergent the stability would be proved, but the fact that they are divergent 
tells us nothing about the stability. The divergence may be a mathematical defect 
only. 

A third line of investigation is the discovery of possible modes of motion under 
the law of gravitation. I t is somewhat remarkable that while most of the investi­
gations in this direction have been made independently of the applications, these 
applications have arisen about the same time. The numerical knowledge of stellar 
systems from the new applications of the spectroscope, certain photo-metric deter­
minations and accurate direct measurements, is furnishing material for this new 
branch of stellar mechanics. One very remarkable case, that of Laplace's three 
particles, has found its application in the Trojan group of asteroids in the solar 
system within the last decade. 

A fourth branch of the subject is the investigation of the properties of the 
differential equations which occur in the problems of celestial mechanics. While 
many portions of this branch have direct applications to physical problems, the 
point of view is rather that of the pure mathematician. I t may be regarded as the 
theory of a certain class of differential equations. 

The methods used in these four branches are in most cases devised each for a 
particular purpose, and in approaching the study of any problem one naturally 
chooses the one best adapted for the purpose. This is more particularly the case 
with a specific problem in which a fixed degree of accuracy is required. Devices 
which give formulas admitting of a simple theoretical treatment are frequently not 
well adapted for the purposes of computation; and the converse is true. In a 
problem which must require much computation, it is advisable to use any useful 
resources provided by theory; formulae for numerical calculation which will also 
permit of the consideration of theoretical questions will generally involve much more 
computation than formulae devised for numerical calculation only. One may even 
be justified in using processes, the logic of which is doubtful, if the object in view 



PERIODICITIES IN THE SOLAR SYSTEM 8 3 

is the discovery of hidden phenomena. The justification of such processes may be 
regarded as another problem for which different devices should be employed. 

The methods used for the numerical solution of the problems presented by the 
solar system illustrate what has just been said. For comparison with observation 
the numerical results deduced from the Newtonian law are satisfactory. But the 
time-range of the observations is limited and the theoretical examination of the 
methods makes it doubtful whether we may deduce phenomena in the remote past 
or the remote future from expressions which serve for a limited period. In this 
examination the periodicity of the expressions is important. Nearly all the diffi­
culties, both numerical and theoretical, originate in the attempt to use expressions 
the arguments of which depend on two or more periods. In order to set forth these 
difficulties it is necessary to go somewhat more into detail. 

It has been mentioned that the usual mode of expression of the coordinates 
is by infinite series of harmonic terms. Each of these terms will have a different 
period. The periods of the various terms may be related or not related to one 
another, but practically all the arguments are linear combinations, with integral 
coefficients, of a finite number of angles. Hence the periods connected with the 
motion of any one body are reduced to the consideration of a finite number of them, 
this number varying from one upwards according to the number of bodies that are 
under consideration. 

Astronomers have also been accustomed to recognize several different kinds of 
oscillations in the motions of the celestial bodies:—those of shor period, of long 
period, librations, and the somewhat misleading secular changes. These are in 
reality relative and not absolute terms, and there is no sharp line of division between 
them. In the applications to the motion of any one body, we have one principal 
period, that of the revolution of the body about some centre, and this is usually 
taken as the basis of comparison. If the motion be expressed as a sum of harmonic 
terms, we have a number of periods which are nearly the same or are less than this 
principal period. These are called short. Those periods which are much longer 
than the principal period are classified as long period terms. Some of them are, 
however, so long that it is more convenient in the calculations to expand the cor­
responding sines or cosines in powers of the time. This is allowed in a comparison 
of the results with observation when but few terms of the expansion are needed ; 
they are then called secular. These terms are frequently mingled with terms which 
are really secular, that is, with terms which are not properly expressible by harmonic 
series ; but as we have no certain knowledge of any real secular terms occurring in 
the motions of the bodies of the solar system, and arising solely from gravitational 
action, these secular terms constitute a form of mathematical expression available 
only for a limited time. Finally, we have a class of terms denoted as librational. 
Properly speaking these are not different from the harmonic terms. Their presence 
depends mainly on the mode of representation of the motion. In the ordinary mode 
the argument of a harmonic term varies directly with the time, and it makes 
complete angular revolutions. In certain exceptional cases it is more convenient 
to use arguments which oscillate about a mean value. The terms are then called 
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librations. In reality the motion can in general still be expressed by harmonic 
terms, but there is a discontinuity in passing from the harmonic form to the libra­
tional form : a discontinuity, not only in the mathematical representation, but also, 
from certain points of view, in the motion itself. 

Long period terms in the motion of any body arise from several sources. With 
given forces depending only on the distances there will be a number of so-called 
natural periods in the motion. If one of these is long or if two of them are nearly 
equal or are nearly in the ratio of two integers so that their combination will 
produce a long period term, the integrations will generally produce a small divisor 
which will raise the magnitude of the corresponding coefficients. It is usual, 
however, to consider the motions of all the bodies but one as known. In this case 
the periods of the known motions are to be considered as forced; but the effect 
under consideration is practically the same whether the oscillation periods are forced 
or free. 

If one of the forced and one of the natural periods are so nearly equal that the 
divisor becomes very large, the numerical processes used may cease to be convergent. 
In this case the representation has to be changed. It is assumed that they are 
exactly equal 'on the average and that oscillations about this average value take 
place. The oscillations become librational. 

Let us return to the general problem in which the motions of all the bodies 
are supposed to be unknown. The periods then depend on the masses and the 
initial conditions : all of these may have any values whatever and may vary 
continuously. If we have a function expanded into a sum of harmonic terms 
containing all multiples of, say, two periods, we may always find one term whose 
period may be made as long as we please by choosing a convergent for the ratio of 
the two periods which are measured to a certain degree of accuracy only. If before 
integration the coefficient is not so related to this ratio that it vanishes when the 
period is infinite, we have either terms which are not harmonic or else there is 
a libration. In any case an arbitrarily small change in the masses or the initial 
conditions will alter the representation. In other words, the convergence, if it exists, 
is not uniform with respect to the masses and the initial conditions. 

This is the case with the usual mathematical representation, but it does not 
follow that there is a discontinuity or instability in the actual motion. For example, 
in certain cases where we proceed by continued approximation it is found that in 
the earlier steps, the radius vector of the body is but little affected by a certain 
long period force, while the longitude may be greatly changed after the expiration 
of a long interval. Such changes are not unstable from the physical point of view, 
but the position of a celestial body based on a given degree of accuracy at the 
start becomes less accurate with the increase of the time. If purely periodic con­
vergent expressions could be obtained, the accuracy of the positions would only 
depend on the accuracy with which the measurement of the initial conditions could 
be made. Since the actual theories of the motions of the planets and satellites 
possess these defects, it is necessary to examine how far they represent the motions 
of the bodies. 
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Short period terms simply produce rapid oscillations. A long-period term has 
a similar effect provided the interval over which our observations range is not 
short compared with the period of the term. If this interval is short the term is 
usually expanded in powers of the time, and the expansion may give rise to 
apparently secular motions. If the term is present in the longitude of a body, 
the first two powers of the time are absorbed in the arbitrary constants determined 
by observation. If we can neglect the second and higher powers of the time this 
is practically equivalent to neglecting the term altogether. In the case of the 
radius vector we can only neglect the term provided the portions dependent on the 
first and higher powers of the time are insensible. The advantage of this mode of 
treatment lies in the fact that in general the small divisors which give rise to the 
large coefficients in a long period term disappear when expansion is made in powers 
of the time. The extent to which calculations should be carried depends therefore, 
first, on the degree of accuracy required at any given interval from the epoch of the 
observations, and secondly, on the interval of time for which the expressions are to 
be used. Hence we can always neglect terms which have coefficients smaller than 
a certain limit and also terms whose periods are longer than a certain interval, and 
these limits can be determined beforehand. 

The problem of the motion of the moon regarded from these points of view 
is sufficiently simple. If we consider the attractions of the sun and earth alone 
there are four principal periods : the month and the year, which are obtained directly 
from observation, and two other periods (deduced from theory) which are known as 
the period of revolution of the apse—about nine years—and that of the revolution 
of the node—about nineteen years. All other periods in the motion arise from 
linear integral combinations of the motions of the angles which have these four 
periods. They are approximately in the ratio : 

1 : 13£ : 118 : 210. 

The month may be regarded as a natural period. The year in the motion of the 
moon is a forced period and the other two may be regarded as natural periods 
belonging to the system of three bodies*. 

In the integration of the equations it is necessary to consider the cases where 
large coefficients arise from the presence of small divisors. These small divisors 
occur mainly through the forced period being long and through two of the three 
natural periods being also long. As we have to proceed to numerous approximations, 
we have a variety of combinations of the four periods that are possible. Fortunately 
the two principal periods, the month and the year, are far from being nearly equal 
and at least thirteen multiples of the mean solar motion are required to produce one 
multiple of the mean lunar motion. In this problem high multiples of any motion 
are accompanied by correspondingly small coefficients before integration. The only 
case arising from near commensurability of two periods which is likely to produce a 
large coefficient is that formed from a combination of the two latter periods. The 
motion of the perigee plus twice the motion of the node gives a term whose period 
is 180 years or nearly 2400 months. This term, however, has such a small coefficient 

* In this statement the motion of the solar apse is neglected. 
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before integration that it is insensible to observation with even the most modern 
refinements. 

The moon is also affected by the attractions of the planets and each planet 
introduces a new angle depending upon its average period. With the five planets 
which produce observable effects there are altogether nine angles whose combinations 
have to be considered. The difficulties chiefly arise from the fact that the periods 
of these planets are all of the same order of magnitude and that the series which 
express their attractions converge quite slowly. Nevertheless the examination of 
the possible combinations is much less troublesome than one might expect. By the 
use of certain theoretical properties of the motion, it is not difficult to carry the 
examination sufficiently far to make certain that no combinations giving long periods 
will sensibly effect the motion beyond those known. What has been said concerning 
an assumed degree of accuracy at a given interval of time from the epoch, will make 
it clear that there will be a certain stage at which we can definitely say that no 
further combinations can effect the motion to an observable degree within the 
interval of time for which observations exist. I t is on this basis that the statement 
may be made with considerable confidence that no well-recognized gravitational 
cause can explain any observed deviation of the moon from its computed theoretical 
orbit. 

The motions of the planets are treated in the same manner. In considering 
the actions of two planets and the sun only, we have two principal periods which 
are in general of the same order of magnitude, namely, their periods of revolution 
round the sun. These are measured by a few years or by a not very small fraction 
of a year, while the periods of revolution of their perihelia and nodes are measured 
by tens or hundreds of thousands of years. For observational purposes it is 
sufficient to express the latter in powers of the time, the short period deviations 
being retained in the harmonic form. 

Let us express the ratio of the two principal periods by a series of convergents 
to their mean motions n, n : namely 

ri <2i' & ' & " * ' 

There will then be a series of terms with the motions 

nq1-npl, nq2-n
fp%... ; 

such terms will be of long period in comparison with the two principal periods but 
the earlier convergents will in general give periods short in comparison with those 
of the perihelia and nodes. For large values of p, q, the coefficients are small before 
integration so that we can proceed to find all the possible terms which can sensibly 
affect the motion within a given interval of time. The matter is not quite so simple 
as it is in the motion of the moon with the attractions of the planets neglected. 
The series of harmonic terms before integration have coefficients which converge 
quite slowly and we have practically to deal with a quintuply infinite series expanded 
in powers of five parameters. The rates of convergence along powers of these 
parameters differ considerably with different bodies. Along powers of one parameter,— 
the ratio of the mass of the disturbing planet to that of the sun,—the convergence 
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is very rapid: along powers of another, the ratio of the distances from the sun, 
it is correspondingly slow ; the known expansions of elliptic motion furnish the other 
parameters. As a result, we have a large number of terms with coefficients of 
observable magnitude and consequently a large number of combinations of angles 
to be considered. 

In the majority of cases the ratio of qn—pri to n or ri is not so small for small 
values of p and q that we get a very large term of long period. The principal 
exception to this occurs in the theory of Jupiter and Saturn, the periods of which 
are nearly twelve and thirty years respectively ; the values p = 5 and q = 2 produce 
an inequality of period 880 years with coefficients in longitude amounting to nearly 
half a degree in the motion of Jupiter and to four-fifths of a degree in the motion 
of Saturn. While a case of this kind is troublesome the search for other long periods 
is much more simple ; for, whenever a close early convergent exists, the next 
convergent requires such large values of p and q that it becomes a simple matter 
to examine the few possible cases. 

These considerations indicate that while the theoretical solution of these problems 
leaves much to be desired, numerical expressions, deduced from the law of gravitation 
and the observed initial conditions, can be obtained which shall satisfy all observational 
needs. The existing theories for the planets and the moon appear to fulfil the 
demands of astronomers in this respect. Thus any well-marked differences between 
the theories and the observations may with good reason be put down, not to defects 
in the theories, but to forces, gravitational or otherwise, which are either unknown or 
are known only in a speculative sense. I refer for example, to the ring of small 
bodies inside the orbit of Mercury, assumed by Newcomb and Seeliger to explain the 
outstanding motion of the perihelion of Mercury, or to the doubtful hypothesis of 
a resisting medium, sometimes assumed to account for certain apparently secular 
changes. The problems presented by the deviations of the moon from its theoretical 
orbit will be mentioned below. 

The gravitational theories for the seven to eight hundred known asteroids are far 
more difficult. Most of these small bodies lie between the orbits of Mars and Jupiter 
and are subject to large perturbations by the latter planet ; Saturn may under certain 
circumstances also produce considerable changes in the orbits. The great majority of 
the periods of revolution round the sun are between two and four times that of 
Jupiter. The ratios of the mean distances to that of Jupiter lie between f and f, so 
that the series in powers of this ratio converge slowly. Moreover many of the 
asteroids have large eccentricities and inclinations, thus requiring expansions in 
powers of parameters whose mean values may approach \. 

Many of the bodies have periods whose ratios to that of Jupiter approach quite 
closely to commensurability. The most important of the fractions thus arising are 
h h f' h f > i ' t ' f' f • ^n t h e s e cases we obtain large perturbations of long period. 
These periods are generally not long enough to permit of expansions in powers of the 
time but are sufficiently long to give rise to large coefficients. 

The calculation of tables for so many bodies under these circumstances, even for 
a quite rough degree of accuracy, would be an enormous task and such tables exist 



8 8 ERNEST W. BROWN 

only for a limited number of the bodies. The usual method is to take the elliptic 
elements which satisfy the motion of the asteroid for a given date and then to find 
by mechanical quadratures the changes for succeeding dates as they may be required. 
This method, while satisfactory for observational purposes, is of little value from the 
theoretical point of view. It enables the observer to pick up and identify the 
asteroid from time to time and thus to accumulate a store of observations. At 
present it appears that the material thus accumulated has not a value which is 
commensurate with the labour of obtaining it. Nevertheless it would seem that our 
generation has the obligation of providing for the possible needs of the future even if 
those needs may be, to a certain extent, doubtful, since we ourselves are profiting 
greatly by the observations of those of bygone generations. One may, m certain 
directions, see uses to which these observations may be put. Individually they 
furnish many cases of the three and four-body problem not presented elsewhere in 
the solar system. Collectively, they form a stream for statistical investigations, and 
in this direction the rings of Saturn may assist in a consideration of any hypotheses 
which may be brought forward. For both purposes observations extending over 
a long period are needed. In a word these bodies constitute the laboratory of the 
gravitational astronomer, the very variety of the opportunities for experiment con­
stituting, perhaps, their chief value. 

To return to the theory. As long as the period of revolution of the asteroid and 
that of Jupiter have not a ratio which is very near a proper fraction whose terms are 
small, the work is not very different from that necessary for the planets. A near 
approach to commensurability between these periods produces in time large dis­
turbances. Suppose we follow a set of asteroids whose periods gradually approach 
nearer and nearer to one of the principal commensurable ratios. The principal long 
period inequalities become larger and larger but as long as we confine our work 
to a limited interval of time the disturbance does not tend to become infinite. I t 
appears to reach a maximum value. At this point the ratio becomes exact and an 
oscillation about the exact ratio commences. As we follow the series further, these 
libratory oscillations diminish in extent and appear, so far as we know, to reach a case 
of motion in which the librations are small. I t is to be remarked however that 
the observations of the asteroids do not show any certain case of libration ; the well-
known gaps in the distribution are precisely at those places where librations should 
exist. 

In the mathematical investigation of these critical cases it is found that, in the 
first approximation, the radius vector lies between limits which are small and are 
never crossed. The disturbance of the longitude may vary to any extent. In the 
limiting case between libration and non-libration it would seem that the longitude 
becomes practically indeterminate but at this place the radius vector takes its mean 
value. The case is analogous to that of a rod which can just make complete 
revolutions in a vertical circle. At the highest point it comes theoretically to rest 
but as there are° other forces continually acting to produce small disturbances the 
actual effect will be an apparent absence of regular periodicity. Whether the first 
approximation on which these results depend gives a sufficiently close idea of the 
motion of a librating asteroid is not certain but it appears probable that it should do 
so. The theory of the question is difficult. 
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If the motions are commensurable the period of the asteroid and the period of 
Jupiter must be both multiples of one period. I t therefore appears as if one of our 
periodicities had disappeared. The period of the asteroid, however, is replaced by 
that of the libration. The analogy of the libration to that of an oscillating pendulum, 
while not complete, is sufficient to show the nature of the motion. One point is of 
importance. When the ratio is near that of the fraction \ the libration can never be 
indefinitely small and consequently this second oscillation must always exist. Now 
we know that when the arc through which a pendulum oscillates is not very small the 
period of oscillation depends on the length of the arc. The same is true in libration. 
The amplitude of the oscillation is an arbitrary constant and if we neglect its square 
the period is dependent only on the forces. If, however, there are forces which cause 
the amplitude to increase, the period will increase also. The period of a libration is 
very sensitive to any change in the forces. 

Let us now introduce the action of Saturn. I t has already been mentioned that 
the periods of Jupiter and Saturn are nearly in the ratio of 5 to 2. Thus, every 
asteroid which has a period nearly commensurable with that of Jupiter will also have 
one nearly commensurable with that of Saturn. In every case of libration or 
approximate commensurability, there will be a long period term due to the action of 
Saturn. If the ratio of the periods of Jupiter and Saturn had been exact the problem 
would perhaps be more simple. The theoretical difficulties arise owing to the slight 
difference from a commensurable ratio. The period due to this difference is about 
880 years. I t seems certain that this must largely increase the extent of a libration. 

There is another feature. A large libration has a long period and if this period 
becomes commensurable with 880 years we may get a secondary inequality of much 
longer period and this may be so large as to produce a secondary libration. That 
this is likely to happen may be gathered from the fact that the period of the principal 
libration can so easily vary when it is not very small. This secondary libration may 
attain very large values. The question arises as to whether two such independent 
librations can exist. Even if this secondary libration does not exist we shall get 
a long period inequality with a very large coefficient and this may tend to make the 
primary libration unstable or impossible. I t is a well-known fact that there are no 
asteroids yet discovered which librate about this particular ratio. All attempts 
hitherto made seem to show that there is no instability when the action of the planet 
Jupiter alone is considered. I t is possible that the action of the planet Saturn may 
be responsible partly for the gap in the distribution. Another way of putting this 
question consists in the statement that commensurability between the periods of 
Jupiter and the asteroid limits the range of cases of stable motion. The action 
of Saturn seems to cause a further limitation. 

How do these principles apply to other cases of libration in the solar system ? 
Three of the satellites of Jupiter have exact integral relations between their periods 
of revolution around the planet. I t might seem then that the theory is not verified 
in the case of the satellites of Jupiter. The matter is, however, different. The 
masses of these three bodies are of similar order of magnitude and their influence on 
one another is not very different. Thus a near approach to commensurability can be 
effective in causing librations in the motions of each of them. In the case of Jupiter, 
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Saturn and an asteroid moving round the Sun, the mass of the asteroid is so minute 
compared with those of Jupiter and Saturn that it probably cannot compel those two 
planets to librate and thus possibly to render its own orbit stable. On the other 
hand, if we consider two of the satellites of Saturn, Titan and Hyperion, we find 
there a libration. The fourth body may be taken to be one of the particles 
constituting the ring. The mass of the latter must be supposed to be very small 
compared with those of the two satellites. Here then we have a case of a four-body 
problem in which there might be libration periods between three of them. Observa­
tions of Saturn's ring show dark spaces at the places where librational phenomena 
occur, and we conclude from this fact that there are few or no particles in the ring 
which can perform this libration. The question, if analogous to the case of the three 
satellites of Jupiter, would differ only in the magnitude of the actions. Is there 
a complete absence of such particles in the dark spaces or is the range of stable 
orbits very small so that these portions of the ring have few particles and hence that 
their aggregate reflecting power is too minute for our limited powers of observation ? 
It seems certain that the action of Hyperion alone is sufficient to produce a difference 
in the illumination round a libration region by means of the large perturbations which 
it must produce in the individual particles of the ring, but it does not seem quite 
sufficient on gravitational grounds to explain completely the observed differences of 
illumination exhibited by the divisions of the ring. 

The consideration of the stability of systems of three or more bodies is involved. 
Although it is possible and indeed probable that we have a wide range of stable cases 
of motion of the three-body problem it would seem as if the addition of a fourth 
body must limit the range of stability. This refers not only to the so-called secular 
stability but stability within periods which are comparable with that of our 
observational data. The whole question needs a full examination from the gravi­
tational point of view. Until this has been given it is inadvisable to introduce 
hypotheses which may after all not be necessary. I t has happened not infrequently, 
that the law of gravitation has been modified or some new force assumed in order to 
explain an observed anomaly in the motion of a body and that finally gravitation was 
found to be a sufficient cause. We can be justified in thinking that such may prove 
to be the case in the statistical problems of the asteroids and of the ring of Saturn. 

Certain of the anomalies in the motion of the moon are still unexplained. Briefly 
stated they belong to three classes. First, the unexplained secular changes in the 
mean period and possibly in the periods of the apse and node. With reference to 
these it may be noted that, under certain circumstances, a gravitational cause 
producing a secular change in the mean period will also produce secular changes in 
the periods of the apse and node of the same order of magnitude. Hence, if we find 
from observation changes in the latter a clue may be furnished as to the cause of the 
changes in the former. For the mean motion alone, tidal friction is possibly a 
sufficient explanation of the difference between observation and gravitational theory. 

Secondly, two inequalities in the longitude, one with a period of some 300 years 
and a coefficient of about fifteen seconds of arc; another with a period of some 60 
years and a coefficient of about three seconds of arc; a number of inequalities of 
shorter period and with smaller coefficients. With reference to these latter it is 
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quite possible that many of them may disappear when the observations are compared 
with more accurate tables; their irregularity indicates this and a number of small 
terms to be included may account for them. With reference to the two larger 
observed terms, if one looks at them apart from the theory they do not seem to be 
very great ; but it is to be remembered that in the last investigation into the motion 
of the moon an attempt was made to take into account every known gravitational 
force and to find every coefficient greater than T ^ of a second of arc attached to 
terms with periods of less than 4000 years. The great unknown periodic term is 
therefore more than a thousand times the magnitude of the greatest term not 
included in the theory. The work was moreover carried, in the great majority of 
cases, so far as to include coefficients greater than one-thousandth of a second of arc 
in longitude. Further, the largest inequality produced by planetary action is of 
about the same size and period as the large empirical term and several hundred due 
to this cause, most of them very small, are included in the theory. No indication of 
a new large term appeared, nor does it seem likely that omissions or errors of this 
magnitude have been made by all those who have investigated the subject. 

In searching for causes, it is first necessary to notice that the 60-year term is 
probably more important than the 300-year term since it will require a larger force. 
The period of the force is probably short. I t is natural to look for a minute force and 
this will be much smaller if it has a period of nearly a month than if it be of long 
period. Information on this point may be obtainable from an analysis of differences 
between theory and observation of the short period terms in the moon's motion. If, 
for example, the force has a period of a few years, the short period terms in the 
moon's motion are likely to be of the same order of magnitude as the long period 
terms. Hence the importance of including in the lunar tables all short period terms 
which may separately or collectively influence the motion. This carries with it the 
necessity of continuing the daily observations of the moon with the greatest possible 
accuracy. These short period terms constitute the third class of unexplained 
differences between theory and observation ; they will probably disappear when the 
terms of the second class can be properly included in the theory. 

There are certain tests which should always be made in discussing the effect of 
any assumed force. In nearly all cases the mean value of an assumed force is not 
zero—its effect is usually sensible when the effect of the variable portion is so. The 
mean value causes additions to the mean motions of the perigee and node. Now 
nearly within the limits of the errors of observation, these theoretical and observed 
mean motions agree. Hence any assumed force which produces motions of the 
perigee and node much greater than the errors of observation must be rejected. 

The effect of the assumed force on the motion of the earth round the sun must 
also be computed. Unless the large coefficients in the moon's motion are due to near 
commensurability of the period of the force with one of the natural lunar periods, the 
effect on the earth's motion will be as great or greater than that on the moon's 
motion. These facts indicate that the large empirical terms are either due to forces 
with periods having near commensurability with one of the lunar periods or forces 
which have their origin within the earth-moon system. 
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While the effect of approximate or exact commensurability between two periods 
has far reaching effects from the point of view of the theory, the practical advantages 
to be gained from it are also great. Dr Cowell's success in his analysis of the observa­
tions of the moon has largely arisen from the use which he has made of the numerical 
relations between the lunar periods. An equally extensive use of the same principle 
is being made in the construction of new tables of the moon's motion. We 
adopt in fact, an expression for a number of harmonic terms which is periodic after 
many revolutions, and correct it only at long intervals. Another view of the process 
is the separation of the short period changes from those of long period, a separation 
which is the more effective whenever we use a convergent to the ratio of the two 
periods whose terms are small compared with those of the succeeding convergent. 
This idea, already found to be of advantage in purely numerical problems, is also 
applicable to problems which are partly theoretical. One of the disadvantages of the 
osculating ellipse is the presence of periods of different orders of magnitude in the 
perturbations. Expressions for the coordinates in which the short period terms are 
separated from those of long period have many advantages in the numerical tabula­
tion of the orbit, and these advantages are increased if the separation be made at the 
outset, namely, in the expressions assumed for the solution of the differential equa­
tions of motion. I t is not supposed that we may get convergent series in this way 
but that series may be found which can be used over longer intervals of time than 
those, for example, which are ordinarily employed in the calculation of special 
perturbations. 

The President has spoken of the achievements of Henri Poincaré but I cannot 
conclude without laying my personal tribute to his memory. Although he con­
tributed greatly to the advance of almost every department of mathematics, I shall 
not, perhaps, be accused of undue prejudice if I say that the impression he has left on 
Celestial Mechanics is the greatest of all. His insight, his wide knowledge and the 
fertility of his resources were brought together in a massed attack on the problems of 
the subject. "Les Méthodes Nouvelles de la Mécanique Céleste" must re main a 
classic for many succeeding generations. We deplore his departure while we hope to 
build on the foundations laid down by so sure a hand. 



GELOSTE UND UNGELÖSTE PROBLEME AUS DER THEORIE 
DER PRIMZAHLVERTEILUNG UND DER RIEMANN-
SCHEN ZETAFUNKTION 

VON EDMUND LANDAU. 

Das Organisationskomitee dieses Kongresses war so freundlich, mich vor einigen 
Monaten aufzufordern, in einer allgemeinen Sitzung einen Vortrag über die Ent­
wicklung eines Kapitels der Mathematik zu halten, dessen Auswahl mir vorbehalten 
blieb. Ich glaubte, im Sinne dieser ehrenvollen Aufforderung zu handeln, wenn 
ich das Gebiet wählte, dem die Mehrzahl, ungefähr zwei Drittel, meiner bisherigen 
eigenen Publikationen angehört, und in dem ich daher neben dem Bericht über 
die Leistungen anderer auch einige eigene Gedanken entwickeln kann: die Lehre 
von der Verteilung der Primzahlen und die damit in engem Zusammenhang stehende 
Theorie der Riemannschen Zetafunktion. Der Vortrag wird sich jedoch nicht auf 
diese Probleme allein beschränken, sondern gleichzeitig zu verwandten Fragen der 
analytischen Zahlentheorie und der speziellen Funktionentheorie Bezug nehmen. 

Ich weiss, dass die Kenntnis der Zahlentheorie wenig verbreitet unter den 
Mathematikern ist, und dass speziell die Schwierigkeit der Methoden der analy­
tischen Zahlentheorie nicht viele Fachgenossen angelockt hat, sich mit den schönen 
Ergebnissen dieser Disziplin vertraut zu machen. Ich werde daher in diesem Vortrag 
keine Kenntnisse aus diesem Gebiet voraussetzen und so sprechen, als ob ich vor 
einer Korona stände, welche von diesen Dingen noch nichts weiss. Natürlich er­
wartete ich von vornherein unter Ihnen manchen Meister gerade dieses Gebietes, 
von dem ich früher nur zu lernen hatte. 

Was eine Primzahl ist, weiss jeder; es sind die Zahlen 2, 3, 5, 7 u. s. w., 
welche genau zwei Teiler besitzen, nämlich die Zahl 1 und sich selbst. Aus ihnen 
lassen sich alle Zahlen > 1 durch Multiplikation zusammensetzen, sogar eindeutig. 
Das ist der Fundamentalsatz der Zahlentheorie und auch jedem aus dem Elemen­
tarunterricht bekannt. Daraus allein folgt noch nicht, dass es unendlich viele 
Primzahlen gibt; denn schon die eine Primzahl 2 erzeugt durch Multiplikation 
mit sich unendlich viele Zahlen, und es wäre daher nicht ausgeschlossen, dass 
endlich viele Primzahlen genügen, um alle Zahlen zu erzeugen. Aber bereits 
Euklid hat vor mehr als zwei Jahrtausenden bewiesen, dass es unendlich viele Prim­
zahlen gibt. Wenn also pn die nie Primzahl bezeichnet, so hat dies für jedes positive 
ganze n eine Bedeutung, und pn wächst natürlich mit n ins Unendliche. Es wäre 
vom Standpunkte der heutigen Zahlentheorie aus ein unbescheidenes Verlangen, 
pn durch n mit Hilfe eines geschlossenen Ausdrucks darstellen zu wollen, der etwa 
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nur aus denjenigen Funktionen zusammengesetzt ist, mit denen die Mathematik 
üblicherweise operiert, und der noch dazu einfache Bauart hätte. Vielmehr ging 
die Fragestellung dahin, pn für grosse n näherungsweise durch eine der einfachen 
Funktionen von n darzustellen. Näherungsweise in dem präzisen Sinn, dass der 
Quotient für n = oo den Limes 1 hat. Diese Fragestellung ist gleichwertig mit 
der folgenden, x sei eine positive Grösse, ganz oder nicht ; ir (x) bezeichne die 
Anzahl der Primzahlen è x. Nach Euklid wächst TT (X) mit x ins Unendliche. 
Das Problem lautet, ir (x) mit einer einfachen Funktion so in Beziehung zu setzen, 
dass der Quotient den Limes 1 hat, d. h. dass er wirklich einen Limes besitzt und 
dieser gleich 1 ist. Gauss, Legendre und Dirichlet vermuteten, dass 

TT (x) ~ 
logo) 

ist. Das Zeichen ~ (sprich : asymptotisch gleich) bedeutet eben, dass der Quotient 
für x = oo gegen 1 strebt. Diese höchst bemerkenswerte Vermutung ist völlig 
identisch mit der anderen, die sich an meine ursprüngliche Fragestellung anlehnt : 

pn~ n log n. 

Es wäre also lim ^ —•= 1, 
n=oo nlogn 

folglich lim ^ = 1. 
n = cc J/n 

Letzteres ist natürlich nur ein Korollar und sagt weniger aus; ist es doch 
z. B. auch für die Menge der Zahlen n2 statt der pn erfüllt. Ich bemerke aber 
gleich, dass mir für dies Korollar kein Beweis bekannt ist, der nicht zugleich auch 
den schärferen Satz liefert. Gauss, Legendre und Dirichlet gelang es nicht, den 
Satz über ir (x) zu beweisen, den ich den Primzahlsatz nennen will. Und doch 
hat Gauss ihn schon als ungefähr fünfzehnjähriger Knabe vermutet, wie er in 
einem Briefe berichtet, den er als 72-jähriger Mann über diese Dinge an Encke 
geschrieben hat. 

Was aber Dirichlet betrifft, so liegt eine. seiner berühmtesten Leistungen im 
Primzahlgebiet. Er hat im Jahre 1837 für die Primzahlen einer beliebigen arith­
metischen Progression unter Überwindung grosser Schwierigkeiten das geleistet, was 
für die Primzahlen überhaupt schon durch Euklid bekannt war. Es seien k und l 
positive ganze Zahlen, aber ohne gemeinsamen Teiler; man betrachte alle Zahlen 
% + £, wo y die Werte 0, 1, 2, 3, ... durchläuft; also z. B. (Je = 100, 1 = 19) die 
Zahlen 19, 119, 219, 319, — Dirichlet hat bewiesen, dass in jeder solchen arith­
metischen Reihe unendlich viele Primzahlen vorkommen. Die Hauptschwierigkeit 
bei seinem Beweise bestand darin zu zeigen, dass gewisse unendliche Reihen, deren 
Konvergenz trivial ist, eine von 0 verschiedene Summe besitzen. Diese Klippe über­
wand er auf genialem Umwege durch Heranziehung der Theorie der Klassenzahl 
quadratischer Formen. Heute kann man dies Nichtverschwinden allerdings nach 
Herrn Mertens direkt auf wenigen Zeilen beweisen ; aber sonst ist Dirichlets Beweis 
in keinem wesentlichen Punkte vereinfacht worden. 

Schon Legendre hatte den Dirichletschen Satz vermutet und zugleich einen 
weitergehenden, den auch Dirichlet nennt, ohne ihn beweisen zu können. Es 
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seien zwei solche arithmetische Reihen mit derselben Differenz, aber mit verschie­
denen Anfangsgliedern gegeben, nämlich z. B. die oben genannte und 77, 177, 277, 
377, . . . . ,JT1(X) sei die Anzahl der Primzahlen der ersten Progression bis x, wird 
also nach dem Dirichletschen Satz mit x unendlich ; rr2 (x) sei das entsprechende 
für die zweite. Dann vermuten Legendre und Dirichlet, dass 

TT1 (X) ~ 7T2 (x) 

sei. 
Ich kehre nun zunächst zum allgemeinen Primzahlproblem zurück. Ein engli­

scher Gelehrter, Hargreave, hat zuerst eine heuristische Plausibelmachung des 
Primzahlsatzes publiziert, die er selbst nicht etwa als Beweis angesehen wissen 
wollte. Der berühmte russische Mathematiker Tschebyschef hat bald danach be­
wiesen, dass der Quotient 

ir (x) : -, 
log x 

von einem gewissen x an grösser ist als eine positive Konstante und kleiner als 
eine gewisse endliche Konstante. Man vermutete also, dass er den Limes 1 hat, 
und Tschebyschef hat bewiesen, dass sein lim sup endlich, ausserdem, dass er ^ 1 ist, 

und er hat bewiesen, dass der lim inf > 0, und ausserdem, dass er ^ 1 ist. Bei 
& = oo 

Tschebyschefs Untersuchungen spielen neben ir (x) noch zwei andere Funktionen S- (x) 
und -vjr (x) eine Rolle, die folgendermassen erklärt sind : *à- (x) ist die Summe 

ò(x)= 2 logp 
p < X 

der natürlichen Logarithmen aller Primzahlen bis x ; ^ (x) ist die Summe 
ty(x) = 2 logp, 

Pm£x 

erstreckt über alle Primzahlpotenzen bis x, wo also für jede Ite, 2te, ... Primzahl­
potenz der Logarithmus ihrer Basis in die Summe aufgenommen wird. Für die 

^ (x) y]r (x) 
Quotienten und y bewies Tschebyschef genau dasselbe, was ich oben über 

den Quotienten ir (x) : -, gesagt habe ; er bewies es sogar zuerst für diese 

handlicheren Ausdrücke; daraus folgt aber jenes ohne Schwierigkeit. Überhaupt 
ist der damals vermutete Primzahlsatz ein unmittelbares Korollar jeder der beiden 
Vermutungen 

ä" (x) ~ x 
und yfr (x) ~ x, 
wie man leicht einsehen kann, und wie übrigens in einer Abhandlung Ihres be­
rühmten Landsmanns Sylvester vom Jahre 1891 besonders hervorgehoben worden 
ist. Sie können aus dieser Andeutung entnehmen, dass auch im Jahre 1891 das 
Problem noch nicht gelöst war; und doch bin ich in meiner historischen Auseinan­
dersetzung erst bei Tschebyschef, d. h. in der Mitte des 19ten Jahrhunderts. 

Ich gehe jetzt zu meinem grossen Landsmann und Göttinger Vorgänger 
Riemann über, dem wir im Primzahlgebiete eine kurze, keines der darin ent­
haltenen Hauptprobleme lösende und doch bahnbrechende Arbeit aus dem Jahre 
1859 verdanken. Wir würden alle nichts im Primzahlgebiete erreicht haben, wenn 
uns Riemann nicht den Weg gewiesen hätte. Übrigens stellte sich Riemann ein 
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anderes Ziel als den Beweis jener asymptotischen Relation, die ich Primzahlsatz 
nannte. Es handelt sich bei ihm um einen gewissen expliziten ^Ausdruck für eine 
mit IT (x) eng verwandte Funktion ; nämlich eine unendliche Reihe von Integralen, 
bei der in jedem Glied eine nicht reelle Nullstelle einer von Riemann neu in die 
Analysis eingeführten Funktion vorkommt, der sog. Zetafunktion. Weder bewies 
Riemann, dass diese Nullstellen existieren ; noch—ihre Existenz vorausgesetzt—dass 
seine unendliche Reihe konvergiert; noch—die Richtigkeit seiner Formel voraus­
gesetzt—dass daraus der Primzahlsatz folgt ; ein anderes Problem, welches in seiner 
Arbeit gestellt ist, ist bis heute ungelöst. Und doch hat Riemann den späteren 
Forschern durch die Einführung der Zetafunktion und durch das, was er in seiner 
Abhandlung bewiesen und nicht bewiesen hat, das Werkzeug in die Hand gegeben, 
mit dem später der Primzahlsatz und vieles andere dem mathematischen Wissen 
hinzuerobert wurde. Daher ist es sehr wichtig, etwas genauer bei der Riemannschen 
Abhandlung zu verweilen, Riemann betrachtet die unendliche Reihe 

00 1 

wo s eine komplexe Variable ist, deren Abszisse ich stets er, deren Ordinate ich 
stets t nennen werde: s = a + ti. Es bedeutet xs dabei esloëx, wo der reelle Wert 
des Logarithmus gemeint ist. Es ist leicht zu zeigen, dass die unendliche Reihe 
in der Halbebene a > 1 konvergiert, sogar absolut konvergiert und dort eine reguläre 
analytische Funktion von.s darstellt. Das ist uns heute nach dem Weierstrassschen 
Doppelreihensatz trivial ; Riemann begründete es direkt. Es entsteht nun die Frage, 
ob £ (s) über die Gerade a = 1 fortgesetzt werden kann. Riemann bewies, dass die 
Funktion f (s) in der ganzen Ebene bis auf den Punkt s = 1 regulär ist, und dass 

s = 1 Pol erster Ordnung mit dem Residuum 1 ist. Ç (s) =- ist also eine ganze 
s J. 

transzendente Funktion. Riemann bewies ferner die Funktionalgleichung 

£(i-«) = —iCosÇrooa«), 
welche uns lehrt, dass wir die Funktion in der ganzen Ebene beherrschen, wenn wir 
sie in der Halbebene er ~ -| gut genug studiert haben. Für a > 1 besteht die leicht 
beweisbare Identität 

£(s) = n-J— 
Vs 

wo p alle Primzahlen in beliebiger Reihenfolge durchläuft. Sie sagt nichts anderes 
aus als die Tatsache der eindeutigen Zerlegbarkeit der zusammengesetzten Zahlen in 
Primfaktoren ; wenn nämlich der auf p bezügliche Faktor in die (sogar für a > 0 
konvergente) geometrische Reihe 

1 - 1 . 1 1 
1 p s p2s p 

p s 

entwickelt wird und alle diese Reihen multipliziert werden, so kommt für er > 1 
(wie formal klar und auch leicht zu rechtfertigen ist) genau die Reihe 

00 1 
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heraus, da ja jedes n eindeutig 2 a3&5 c . . . ist, wo alle Exponenten ganze Zahlen 
^ 0 sind. Diese Produktdarstellung, welche natürlich für Riemann die Veranlassung 
war, f(s) als Hilfsmittel in die Primzahltheorie einzuführen, lehrt, dass f(s) rechts 
von (7 = 1 keine Nullstelle besitzt. Die Funktionalgleichung transformiert diese 
Halbebene in cr<0, und Riemann konnte leicht aus ihr ablesen, dass Ç(s) zwar in 
den Punkten - 2 , - 4 , - 6, ..., - 2g, ... je eine Nullstelle erster Ordnung besitzt (ich 
will diese die trivialen Nullstellen nennen), dass aber sonst in der Halbebene er < 0 
keine Nullstelle gelegen ist. Jede sonst noch etwa vorhandene Nullstelle gehört 
daher dem Streifen 0 ^ er è 1 an. Dass auf der reellen Strecke 0 bis 1 keine Wurzel 
liegt, ist leicht einzusehen. Auf Grund der Tatsache, dass die Funktion für reelle s 
reell ist, in Verbindung mit der Riemannschen Funktionalgleichung ist ersichtlich, 
dass alle etwa im Streifen vorhandenen Nullstellen symmetrisch zur reellen Achse 
und symmetrisch zur Geraden <r = \ liegen. Riemann sprach nun, ohne irgend eine 
derselben beweisen zu können, folgende 6 Vermutungen aus; sie sind nicht un­
abhängig, und ich wähle diese Formulierung, weil die nachfolgenden historischen 
Erörterungen dann verständlicher sind. 

(I) Es gibt unendlich viele Nullstellen von £(s) im Streifen 0 ^ <r ^ 1. 

(II) Wenn für T > 0 unter N (T) die Anzahl der Nullstellen des Rechtecks 

O ^ o - ^ l , 0£t£T 

verstanden wird, die natürlich endlich ist und nach (I) mit T unendlich 

wird, so ist 

F(T)=~TlogT-^llg{27r)-T+0(logT)-, 
LTT &TT 

unter 0(g(T)) verstehe ich immer eine Funktion, deren Quotient 
durch g (T) für alle hinreichend grossen T absolut genommen unterhalb 
einer endlichen Schranke liegt. 

(III) [was übrigens aus I I reichlich folgt] Wenn p alle nicht trivialen Wurzeln 
von f (s) durchläuft, so ist 

konvergent. 

Hieraus folgt in heutiger Bezeichnungsweise, dass die Weierstrasssche Produktdar­

stellung der ganzen Funktion (s —l) f ( s ) die Gestalt 

>w («-iK(*) = e*«n(i-£Jtf 
hat, wo w alle Wurzeln von Ç(s) durchläuft und K (s) eine ganze transzendente 
Funktion ist. 

Riemann vermutete weiter : 

(IV) K(s) ist eine lineare Funktion von s ; in heutiger Bezeichnungsweise : die 
ganze Funktion hat endliches Geschlecht und zwar das Geschlecht 1. 

(V) Die Wurzeln von £(«) im Streifen O ä ö - ä l haben alle den reellen 
Teil i . 

M. c. 7 
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(VI) Es besteht eine gewisse Identität für ir (x), die ich oben schon erwähnt 
habe, aber hier nicht aufschreiben will, zumal sie nur das Ende eines 
Seitenweges darstellt und für die anderen Fortschritte der Primzahl­
theorie nicht von Bedeutung ist. 

Die Riemannschen Anregungen lagen 34 Jahre brach. Erst im Jahre 1893 
gelang es Herrn Hadamard, nachdem er zu diesem Zwecke uns als Abschluss 
früherer Ansätze von Poincaré und Laguerre die Theorie der ganzen Funktionen 
endlichen Geschlechtes geschenkt hatte, die Riemannschen Vermutungen (I), (III) 
und (IV) zu beweisen, also die Existenz jener geheimnisvollen Nullstellen, die 
Konvergenz der Summe der absoluten Werte ihrer reziproken Quadrate, und dass 
die Funktion (s — 1) Ç(s) das Geschlecht 1 hat. Herr Hadamard betont besonders, 
dass er die Riemannsche Vermutung (II) nicht beweisen konnte, nicht einmal die 
Existenz des Limes 

Des weiteren hat sich Herr von Mangoldt zwei grosse Verdienste um die 
Primzahltheorie erworben. Erstens bewies er im Jahre 1895, von den Hadamard -
schen Resultaten ausgehend, durch Hinzufügung einer langen Reihe weiterer 
Schlüsse die Riemannsche Primzahlformel (VI), und zweitens bewies Herr von Man­
goldt im Jahre 1905 die Riemannsche Vermutung (II) über N(T). Für beide von 
Mangoldtschen Resultate habe ich übrigens später viel kürzere Beweise angegeben. 

Von den 6 Riemannschen Vermutungen blieb also allein (V) offen; und diese 
Frage, ob wirklich die nicht trivialen Nullstellen ß + yi von Ç(s) alle den reellen Teil 
J haben, ist bis heute ungelöst. Bewiesen wurde nur 1896 durch die Herren 
Hadamard und de la Vallée Poussin, dass ß< 1, also wegen der Funktionalgleichung 
0 < / 3 < l ist, und 1899 durch Herrn de la Vallée Poussin, dass bei passender Wahl 
einer absoluten positiven Konstanten c stets 

1 
ß<l e l o g | 7 | 

1 
ist, also —ï—j—; < ß < 1 — , , , 

c log | 7 | ^ c log | 71 
ist. Von dem Streifen 0 Û, a ^ 1 ist also auf beiden Seiten ein bestimmtes Flächen­
stück, das oben und unten immer dünner wird, aber doch unendlichen Flächeninhalt 
hat, herausgeschnitten, so dass dort £(s)=j=0 ist. Für die ersten Nullstellen hat 
allerdings Herr de la Vallée Poussin 1899 bewiesen, dass sie auf der Geraden o- = i 
liegen. In besonders geschickter Weise hat kürzlich, 1912, Herr Backlund diesen 
Beweis für die ersten 58 Nullstellen, nämlich alle zwischen den Ordinaten — 100 und 
100 gelegenen, geführt; diese Wurzeln ergeben sich ausserdem als einfache Wurzeln. 
Mehr weiss man nicht über die Nullstellen der Zetafunktion. 

Nun zurück zur Primzahltheorie ! Auf die Hadamardschen Resultate gestützt 
haben unabhängig und gleichzeitig im Jahre 1896 Herr Hadamard und Herr de la 
Vallée Poussin den Primzahlsatz bewiesen, auf ganz verschiedenen Wegen abgesehen 
von der gemeinsamen Grundlage. Einen dritten, auch hierauf basierenden Beweis 
gab Herr von Koch 1901. Ich habe später,, im Jahre 1903, einen vierten Beweis 
abgegeben, welcher nicht nur viel kürzer ist, sondern von jener heute klassisch 
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gewordenen Hadamardschen Theorie der ganzen Funktionen keinen Gebrauch 
macht. Dieser letztere Umstand war von grösster Bedeutung für die Theorie der 
Primideale eines algebraischen Zahlkörpers, welche die Primzahl théorie als Spezialfall 
enthält. Hier weiss man von der zugehörigen verallgemeinerten Zetafunktion bis 
heute nicht, ob sie in der ganzen Ebene existiert, und meine Methode war daher 
die erste und bis heute einzige, welche zum Beweise des sogenannten Primideal­
satzes führt, den ich 1903 entdeckt habe, mit dem Wortlaut : In jedem algebraischen 
Körper gibt es asymptotisch gleich viele Primideale, deren Norm ^ x ist, indem eben 

^ x 
diese Anzahl für jeden Körper~-, ist; doch will ich in diesem Vortrag nur von 

Primzahlen reden und nicht weiter auf Körper und Ideale abschweifen. Ich erwähnte 
vorhin Herrn de la Vallée Poussin als einen der beiden Forscher, denen unabhängig 
die Lösung des klassischen Gauss-Legendre-Dirichletschen Problems geglückt ist ; 
der Primzahlsatz lässt sich auch 

TT (x) ** Li (x) 

(sprich: Integrallogarithmus von x) schreiben, indem bekanntlich 

du 
log x } 2 log u 

und dies Integral plus einer additiven Konstanten = Li (x) ist. Das folgende Resultat, 
welches den Primzahlsatz enthält, hat Herr de la Vallée Poussin allein entdeckt, 
nämlich den Satz 

»(«)-2ü(«) + 0 ( ^ 

wo q eine beliebig grosse Konstante ist. Er bewies sogar 

TT (x) = Li (x) + 0 (xe ~ « N / ï ^ ) , 

wo OL eine bestimmte positive Konstante ist. 
Nun kehre ich zur arithmetischen Reihe zurück. Die Herren Hadamard und 

de la Vallée Poussin bewiesen 1896 unabhängig für die Anzahl irx (x) der Primzahlen 
in der Progression ky + 1 

I x 
TTx (X) ~ —ry- r , , 

V J (j)(k)logx 
woraus durch Division die Richtigkeit der Legendre-Dirichletschen Vermutung folgt, 
dass die Anzahlen für zwei Progressionen mit der Differenz k asymptotisch gleich 
sind. Herr de la Vallée Poussin konnte, ohne es besonders anzuführen, sogar 

TT, (x) = - ~ - L i (x) + 0 (xe - a V I ^ ) 

beweisen, wo et eine nur von k und l abhängige oder, was auf dasselbe hinauskommt, 
nur von k abhängige Konstante bezeichnet ; ich bewies dies später kürzer und sogar 
mit absolut konstantem a. 

Nun sei noch von einem anderen analogen Problem die Rede, das ich bisher 
nicht gestreift habe. Es sei eine quadratische Form au2 + buv -f cv2 gegeben und 
dabei a, b, c teilerfremd, ferner a > 0 im Falle ò2 — 4ac < 0. Es sind dabei u, v 
ganzzahlige Variable. Dirichlet hat einen Beweis dafür skizziert, dass die qua­
dratische Form unendlich viele Primzahlen darstellt, ohne den Hauptpunkt, das 
Nicht verschwinden gewisser Reihen, genauer auszuführen. Das tat erst Herr Weber 

7—2 
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1882 ; aus einem 1909 herausgegebenen Manuskripte E. Scherings ist ersichtlich, 
dass auch dieser einen vollständigen Beweis besessen hat. Herr de la Vallée Poussin 
bewies nun 1897 durch eine lange und scharfsinnige Schlusskette sogar das Analogon 
zum Primzahlsatz, und meine allgemeinen Untersuchungen über Primideale in 
sogenannten Idealklassen lieferten 1907 durch passende Spezialisierung den de la 
Vallée Poussinschen Satz und sogar einen schärferen, nämlich als Anzahl der durch 
die Form darstellbaren Primzahlen ^ x 

^Li(x) + 0(xe-$^x)9 

wo 7 eine positive Konstante ist und h die Klassenzahl oder (für sog. zweiseitige 
Klassen) ihr Doppeltes bezeichnet. 

Nun habe ich bisher in diesem Vortrag abwechselnd von zwei ganz getrennten 
Forschungsobjekten gesprochen, einerseits von" den Primzahlen, andererseits von der 
Riemannschen Zetafunktion; allgemeiner ausgedrückt: einerseits von gewissen 
zahlentheoretischen Funktionen, andererseits von gewissen analytischen Funktionen. 
Welches ist die Brücke ? Wieso hat speziell das Studium der Zetafunktion zum 
Beweise des Primzahlsatzes geführt? 

Es sei an eine beliebige zahlentheoretische Funktion; dann kann ich formal 
ohne Rücksicht auf Konvergenz die unendliche Reihe 

n=ins 

aufschreiben. Es besteht nun ein gewisser Zusammenhang zwischen den Eigen­
schaften dieser Reihe als analytischer Funktion von s und dem Verhalten der Summe 

M 
2 an 

für grosse x ; [x] bezeichnet die grösste ganze Zahl è x. Ehe ich diesen Zusammen­
hang andeute, will ich an einem Beispiel zeigen, welche Zahlenmenge an für das 
Primzahlproblem ausschlaggebend ist. Ich sagte schon, dass alles auf das Studium 
der Funktion -xjr (x), d. h. der Funktion 

M 
^ (x) — [x] = 2 log p — 2 1, 

pm<x n = l 

ankommt ; da habe ich also zu setzen : 

_ P°gP ""1 für Ti =pm (m ^ 1), 

{ — 1 sonst. 

Die zugehörige Funktion ist nun aber, wie leicht aus der Produktdarstellung von f(s) 
folgt, für a > 1 

n==l IV p,m P n=l u S \s) 

Nun denken wir uns an wieder allgemein. Über das Konvergenzgebiet einer 
solchen sog. Dirichletschen Reihe 

n=ins 
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hat Herr Jensen im Jahre 1884 den fundamentalen Satz entdeckt, dass es eine 
Halbebene 

er > 7 

ist, ganz analog, wie das Konvergenzgebiet einer Potenzreihe 
00 

2 anx
11 

n=l 

ein Kreis ist ; nämlich Konvergenz rechts von <x = y, Divergenz links von <r = y, 
wobei zwei extreme Fälle möglich sind: Konvergenz überall, d. h. 7 = —oo, und 
Konvergenz nirgends, d. h. 7 = -f 00. Potenzreihen und Dirichletsche Reihen sind 
beides Spezialfälle einer allgemeineren Reihenkategorie 

00 A 

2 ane
 n , 

n=l 

wo À,! < X2 < ..., lim \ n = 00 
n—co 

ist, und bei der Herr Jensen die Existenz einer Konvergenzhalbebene gleichfalls 
bewies; nämlich die Dirichletsche Reihe der Spezialfall \ n = logn, die Potenzreihe 
der Spezialfall \ n = n, e~s = x als Variable angesehen; ich will aber hier nicht von 
diesem allgemeinen Typus \ n sprechen. In der Konvergenzhalbebene stellt, wie 
Herr Cahen 1894 als leichte Anwendung der Sätze über gleichmässige Konvergenz 
zeigen konnte, die Dirichletsche Reihe eine reguläre analytische Funktion dar; 
Herr Cahen konstatierte auch, analog zur bekannten Cauchyschen Darstellung des 
Konvergenzradius einer Potenzreihe, dass hier im Falle 7 ~ 0 die sog. Konvergenz­
abszisse 7 die untere Grenze aller c ist, für welche die Relation 

M 
2 an=0(x°) 

richtig ist. Die Konvergenzabszisse der Dirichletschen Reihe gibt uns also Auf-
schluss über das Anwachsen der summatorischen Funktion 

M 
2 an 

n=l 

in Bezug auf Potenzen von x als Vergleich. Zum Beweise des Primzahlsatzes 
mussten allerdings feinere Vergleichsskalen hinzugenommen werden. Denn die 
blosse Tatsache, dass die Dirichletsche Reihe für 

ihre Konvergenzabszisse ^ 1 hat (und mehr weiss man bis heute nicht über diese 
Zahl !) besagt nur, dass yjr(x) — x=0 (occ) für jedes O l ist, was trivial ist ; man will 
aber 

i im±Mrf=o 
x=<x> OC 

beweisen. 
Da ich einmal von der Analogie der Dirichletschen Reihen mit den Potenzreihen 

gesprochen habe, so möchte ich nicht unterlassen, auch zweier Unterschiede Er­
wähnung zu tun. 

Erstens: Aus der Konvergenz einer Potenzreihe in einem Punkte folgt be­
kanntlich ihre absolute Konvergenz in jedem Punkte, welcher näher am Mittelpunkt 
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liegt. Die Potenzreihe konvergiert also absolut im Innern ihres Konvergenzkreises. 
Bei Dirichletschen Reihen ist dies nicht der Fall; sondern es folgen—allgemein 
gesprochen—von links nach rechts drei Gebiete auf einander: Eine Halbebene der 
Divergenz, ein Streifen bedingter Konvergenz, dessen Dicke übrigens höchstens 1 
ist, und eine Halbebene absoluter Konvergenz. Beispiel : 

co ( - X)n+i _ 1 j _1__1 

.= i " ns ~ l s 2S + 3S 4* + "" 
divergiert für <r < 0, konvergiert bedingt für 0 < cr< 1, absolut für a > 1. Übrigens 
ist diese Funktion =» ( 1 - 21"6') £ (s). 

Zweiter Unterschied: Auf dem Konvergenzkreis einer Potenzreihe muss min­
destens eine singulare Stelle der Funktion liegen. Bei Dirichletschen Reihen braucht 
dies nicht einmal in beliebiger Nähe der Konvergenzgeraden der Fall zu sein. Das 
soeben genannte Beispiel stellt sogar eine ganze Funktion dar. 

Um nun von meinem Beweise des Primzahlsatzes einen skizzenhaften Begriff 
zu geben, so will ich nur folgendes sagen : Wenn eine Dirichletsche Reihe 

oo n 

% ^ = / ( s ) 
rv)S t/ \ / 

72, = 1 10 

für G > 1 absolut konvergiert, so ist es ganz leicht, für x ~ 1 bei jedem b > 1 und 
Integration über die unendliche Gerade a = b die Identität 

ix] x \ rb + ooi xs 

2 an log - = jr—. — f(s) ds 
%==1

 ö n 2iriJb-.<x>i s2/ w 

nachzuweisen, welche einen genauen Ausdruck für eine mit der zu untersuchenden 
Funktion 

2 an = A (x) 
n=l 

eng zusammenhängende summatorische Funktion liefert. Die linke Seite jener 
[x A (u) 

Identität ist nämlich I —±-^du. Unter dem Integral rechts kommt x als Para­
meter vor; wenn es gelingt, den Integrationsweg auf Grund des Cauchyschen 
Satzes durch einen links von der Geraden a = 1 verlaufenden Integrationsweg zu 
ersetzen, so ist der Integrand in jedem festen Punkt des neuen Weges o (x), d. h. 
so beschaffen, dass der Quotient durch x für x — oo gegen Null strebt ; unter 
Umständen, die eben beim Primzahlproblem und Primidealproblem glücklicher­
weise eintreten, kann man aber zeigen, dass das ganze Integral o (x) ist ; so erhalte 
ich z. B., wenn ich den Ansatz auf die oben genannte Funktion 

/<•>—£§-*<•> 
anwende, auf Grund gewisser Hilfssätze von mir über die Zetafunktion 

>A(u)j 
, ——^ du=o (x), 

1 tv 

woraus noan leicht durch elementare Schlüsse zu 

A(x)~ o (x), 

d. h. hier f (x) - [x] = o (x), 

yfr (x) ~ X 
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übergehen kann und somit den Primzahlsatz erhält. Man kann übrigens allgemein 
rx A (u) 

auch A (x) statt —-— du : w Ji u 
ganze x > 1 giltige Identität 

rx A (u\ 
auch A (x) statt I — — d u mit f(s) in Verbindung bringen, durch die für nicht 

1 fb + coi ™s 

A(x) = 7f-. - /(*) 
v J 2mJb-vi sJ w 

Wegen der nur bedingten Konvergenz des Integrals ist es schwieriger, diese Identität 
den asymptotischen Schlüssen zu Grunde zu legen. Aber in diesem Jahre 1912 ist 
es mir gelungen, auch auf diesem Weg zum Ziel zu gelangen. 

Ich kehre zurück zu der vorher angedeuteten Beziehung zwischen der Grössen-
ordnung der Summe und der Konvergenz der zugehörigen Dirichletschen Reihe. 
Ich erinnere nochmals daran, dass das Konvergenzgebiet der Reihe, welches für 
das Studium der Summe ausschlaggebend ist, nicht durch die obere Grenze der 
Abszissen der singulären Punkte bestimmt ist, wenn es auch natürlich nicht weiter 
reichen kann. Es fragt sich also, welche Bedingungen zur Regularität hinzukommen 
müssen, damit man mit Sicherheit schliessen kann : eine Dirichletsche Reihe, deren 
Konvergenz sagen wir für a > 1 bekannt ist, konvergiert sogar sagen wir für a > r, 
wo T eine bestimmte Zahl < 1 ist. 

In dieser Richtung habe ich die erste Entdeckung gemacht. Es war schon 
bekannt, dass, wenn <rQ grösser ist als die Konvergenzabszisse einer Dirichletschen 
Reihe f(s), in der Halbebene a>a0 bei positiv oder negativ ins Unendliche rücken­
dem t gleichmässig 

f(a + ti) = 0{\t\) 

ist. Ich habe nun den Satz bewiesen : " Es sei an = 0 (n€) für jedes e > 0, also die 
Reihe 

für a > 1 absolut konvergent. Die analytische Funktion, welche durch/(s) definiert 
ist, sei für a ^w regulär, wo n eine bestimmte Zahl des Intervalls 0<v< 1 ist, und 
in der Halbebene a ^ n sei gleichmässig 

/00 = o(l*lfl). 
wo a eine Konstante ist. Dann ist die Dirichletsche Reihe über er = 1 hinaus kon­
vergent." Herr Schnee ging dann weiter und bewies : Wenn 0 ^ a < 1 ist, so ist die 

Reihe sicher für a > -y konvergent ; übrigens habe ich hier später die Ein­

schränkung a < 1 ohne Modifikation der Behauptung fortgebracht. Der Schneesche 

Satz enthält speziell : Falls für a ^ TJ 

/(«) = 0(|«|°) 
bei jedem noch so kleinen positiven a richtig ist, so ist die Reihe für a >n konvergent. 
Wendet man die Schneesche Beweismethode auf die (in s = 1 einen Pol besitzende) 
Funktion 

an, so erhält man auf Grund gewisser Eigenschaften der Zetafunktion einen Beweis 
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des Satzes, den zuerst Herr von Koch 1901 auf anderem Wege bewiesen hatte : 
Unter der Annahme der Richtigkeit der Riemannschen Vermutung (V) ist 

\}r(x) = x + 0(xi + €) 

mit jedem e > 0, und ir (x) = Li (x) + 0 (oc* + e) 

mit jedem e > 0. Mutatis mutandis, falls die obere Grenze der reellen Teile 
der Nullstellen von f(s) zwischen \ exkl. und 1 exkl. liegen sollte. Übrigens 
wäre, wie Herr von Koch damals zuerst und ich später mit meinen Methoden kürzer 
bewies, das x* in den beiden letzten Formeln auch durch log2 x bezw. log x ersetzbar. 

Ich benutze diese Gelegenheit, um über eine andere spezielle Dirichletsche Reihe 
ein paar Worte zu sagen : Für a > 1 ist 

Ç(S) n=l ri ' 

wo fjL (ri) die sog. Möbiussche Funktion bezeichnet : 

M i ) = l ; 
fi(n) = 0 für Zahlen, die mindestens eine Primzahl öfter als einmal enthalten ; 

/x (n) = (— 1)P für quadratfreie Zahlen > 1, die aus genau p verschiedenen Prim­

faktoren bestehen. 

Stieltjes sprach 1885 die Behauptung 

| ^ (n) = O (Va?) 
n—l 

aus, ohne seinen vermeintlichen Beweis mitzuteilen. Ob Stieltjes' Behauptung richtig 
ist, weiss ich nicht. Mit ihr wäre auch die Riemannsche Vermutung bewiesen, indem 
aus Stieltjes' Behauptung a fortiori die Konvergenz von 

für <r>\, also die Riemannsche Behauptung und noch mehr—z. B. dass alle Null­
stellen von Ç(s) einfache seien—folgen würde. Ich habe aus meinem oben genannten 

Satz über Dirichletsche Reihen, dessen Voraussetzungen bei y^-r verifiziert werden 

können, folgern können, dass umgekehrt aus der Richtigkeit der Riemannschen Ver­
mutung die Konvergenz der Reihe 

über s = l hinaus folgen würde. Aber es blieb einem jüngeren englischen Forscher 
aus dieser Stadt Cambridge, Herrn Littlewood, vorbehalten, in diesem Jahre 1912 zu 
beweisen, dass diese Reihe dann sogar für er > -| konvergieren würde. Es gelang ihm 
nämlich durch scharfsinnige Schlüsse, für jedes S > 0 und jedes e > 0 zu beweisen, 
dass unter der Annahme der Richtigkeit der Riemannschen Vermutung für <r ^ J 4- S 

wäre ; daraus folgt nach dem Satz von Schnee ohne weiteres die Behauptung. 

Nun will ich wieder von der Riemannschen Vermutung absehen und mich auf 
den festen Boden der mathematischen Wahrheiten zurückbegeben. Was weiss man 
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über die /^-Reihe ? Euler vermutete 1748, ohne es beweisen zu können, und Herr 
von Mangoldt bewies 1897, dass 

n=l n 

konvergiert; Möbius vermutete 1832, ohne es beweisen zu können, und ich bewies 
1899, dass sogar 

£ fjb (n) log n 
n=i n 

konvergiert. Ich bewies 1903, dass 

£ /*(w) 
n- i *>* 

auf der ganzen Geraden a — 1 konvergiert und natürlich TJT-T darstellt, ja sogar, dass 

S ii(ri)\og*n 
n = l ri 

für jedes noch so grosse feste q auf der Geraden er = 1 konvergiert ; viel mehr weiss 
man über diese Frage nicht. Ich habe aber 1905 die Konvergenz der soeben ge­
nannten Reihe auch mit der Modifikation bewiesen, dass n nicht alle ganzen Zahlen, 
sondern nur. die einer arithmetischen Progression durchläuft. Desgleichen, wenn 
statt jjb(ri) die Liouvillesche Funktion X(ri) steht, die stets + 1 oder — 1 ist, je 
nachdem die Anzahl der Primfaktoren von n, mehrfache mehrfach gezählt, gerade 
oder ungerade ist. Hieraus ergab sich das Korollar: In jeder arithmetischen 
Progression gibt es asymptotisch ebensoviele Zahlen, die aus einer geraden, 
als solche, die aus einer ungeraden Anzahl von Primfaktoren zusammenge­
setzt sind. 

Übrigens ist es nicht ohne Interesse zu untersuchen, ob die genannten aus 
denselben transzendenten Quellen geschöpften Sätze über TT (X) und //, (ri) aus 
einander direkt durch elementare Schlüsse hergeleitet werden können. Erst 1911 
gelang es mir zu beweisen, dass der Primzahlsatz und der von Mangoldtsche Satz 

in diesem Sinne äquivalent sind; die eine Hälfte hiervon hatte ich schon 1899 in 
meiner Dissertation bewiesen. 

Über Primzahlen möchte ich nur noch weniges sagen, um mich dann etwas 
in die Theorie der Zetafunktion zu vertiefen, deren Studium auch ohne Rücksicht 
auf vorläufige Anwendbarkeit in einer Reihe hervorragender Arbeiten der neueren 
Zeit, insbesondere meines Freundes Bohr in Kopenhagen, zum Selbstzweck ge­
worden ist. 

Die Primzahlen will ich verlassen, nachdem ich einige Fragen genannt haben 
werde, welche ich für unangreifbar beim gegenwärtigen Stande der Wissenschaft 
halte. Ich wähle Fragen mit präzisem Wortlaut, nicht so verschwommene wie : 
" Das Gesetz der Primzahlen zu finden " oder " ir (x) für grosse x möglichst gut 
abzuschätzen." Ich nenne vier Fragen und wähle in ihnen spezielle Konstanten, 
um den Kern deutlicher hervortreten zu lassen. 
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(1) Stellt die Funktion ^2 + l für ganzzahliges u unendlich viele Primzahlen 
dar? 

(2) Hat die Gleichung m=p-\-p für jedes gerade m>2 eine Lösung in 
Primzahlen ? 

(3) Hat die Gleichung 2 =p —p' unendlich viele Lösungen in Primzahlen ? 

(4) Liegt zwischen ri und (n-\-lf für alle positiven ganzen n mindestens eine 
Primzahl? 

Nun zur Zetafunktion zurück : Für jedes feste er verstehe ich unter v (er) die 
untere Grenze der Konstanten c, für welche bei unendlich wachsendem t 

C(cr + ti) = 0(tc) 

ist. Leicht beweisbar ist, dass dies v endlich ist, und dass 

v(a) = 0 für c r ^ l 

ist; auch folgt aus der Riemannschen Funktionalgleichung und einer Stieltjesschen 

Abschätzung der Gammafunktion leicht 

v (1 — er)— v(er) + er — | 

für jedes reelle er ; für er è 0 ist also 

v (er) = \ - er. 
Wie verläuft nun die Kurve v = v(er) auf der Strecke O^c r^ l ? Herr.Lindelöf hat 
auf Grund eines allgemeinen funktionentheoretischen Satzes von ihm selbst und 
Herrn Phragmén bewiesen, dass die Kurve stetig und konvex ist ; daraus folgt ins­
besondere, dass für 0 ̂  er£k 1 

ist. Das Lindelöfsche Endresultat ist, dass das Kurvenstück fürs Intervall 
O^cr^ l dem Dreieck mit den Ecken (0, i ) , .(i> 0), (1, 0) angehört. Mehr weiss 
ich darüber nicht. Aber Herr Littlewood hat bewiesen, dass unter der Annahme 
der Richtigkeit der Riemannschen Vermutung für ^ o - ^ l 

v(*)=0, 
also für 0 è er ̂  \ . v (er) = \ — er 

wäre. Da ich wieder einmal den festen Boden verlassen habe, füge ich hinzu, dass 
ich 1911 aus der Richtigkeit der Riemannschen Vermutung die Folgerung ziehen 
konnte, dass dann die Differenz 

jv (r)- i y io gr- 1 + 1°g(27r>r, 
V y 27T & 2?T 

die nach Herrn von Mangoldt 0 (log T) ist, nicht 0(1) sein könnte. 

Und indem ich zur Wirklichkeit zurückkehre, erwähne ich noch, dass es mir 
zwar nicht gelungen ist, Licht über die geheimnisvollen Zetanullstellen zu verbreiten, 
wohl aber ein neues Rätsel durch die Entdeckung der folgenden Tatsache (1912) 
aufzugeben, welche auf einen geheimnisvollen unbekannten Zusammenhang der 
Nullstellen mit den Primzahlen deutet. Es sei x > 0, und p durchlaufe alle Null­
stellen, die der oberen Halbebene angehören, nach wachsender Ordinate geordnet. 
Dann ist die Reihe 

0 P 
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divergent für x — 1, x = pm, # = — ; konvergent für alle anderen x > 0 ; gleichmässig 
p 

konvergent in jedem Intervall x0< x< x1} welches innen und an den Enden von jenen 
Divergenzpunkten frei ist ; ungleichmässig konvergent in jedem Intervall x0<x<xlt 

welches innen keinen Divergenzpunkt enthält, aber an mindestens einen solchen 
angrenzt. 

Ich komme jetzt zu einigen anderen Untersuchungen über f(s). Es sind bei 
einer analytischen Funktion die Punkte, an denen sie 0 ist, zwar sehr wichtig; 
ebenso interessant sind, aber die Punkte, an denen sie einen bestimmten Wert a 
annimmt. Zu beweisen, dass f(s) jeden Wert a annimmt, ist ein leichtes. Wo 
liegen aber die Wurzeln von £(s) = a ? Die erste Frage ist, welche Werte £(s) in der 
Halbebene er > 1 annimmt, aus der eine Umgebung des Poles s = l, z. B. durch einen 
Halbkreis mit dem Radius 1, herausgeschnitten ist. Herr Bohr hat 1910 die—für 
mich wenigstens—ganz unerwartete Tatsache bewiesen, dass f(s) in diesem Gebiet 
nicht beschränkt ist. D. h. die Ungleichung 

\Ç(s)\>g 
hat bei gegebenem g > 0 und gegebenem t0 > 0 in der Viertelebene a > 1, t > t0 eine 
Lösung. Daraus schlössen Bohr und ich 1910 in einer gemeinsamen Arbeit, einen 
Lindelöfschen Ansatz und die Arbeiten von Herrn Schottky und mir über gewisse 
Verallgemeinerungen des Picardschen Satzes uns zu Nutze machend : Wenn 8 > 0 
beliebig gegeben ist, so nimmt Ç(s) im Streifen 1 — S < er < 1 + S alle Werte mit 
höchstens einer Ausnahme an. 

Dadurch entstand Hoffnung, die Riemannsche Vermutung zu widerlegen, indem 
es z. B. gelingen könnte nachzuweisen, dass £ (s) in der Halbebene er > f den Wert 1 
nicht annimmt; dann müsste ja £(s) daselbst alle übrigen Werte, insbesondere also 
den Wert 0 annehmen, während die Riemannsche Vermutung offenbar mit der 
Behauptung f(s) + 0 für <r>\ identisch ist. Die Möglichkeit, auf diesem Wege das 
Riemannsche Problem zu lösen, verschwand aber dadurch, dass Herr Bohr 1911 die 
erstaunliche Tatsache nachwies, dass Ç(s) bereits im Streifen 1 < a < 1 -f S jeden von 
0 verschiedenen Wert annimmt, sogar unendlich oft. 

Nun bewies Herr Littlewood in der schon mehrfach erwähnten Arbeit aus 
diesem Jahre noch den Satz: Für jedes S > 0 hat in der Halbebene er > 1 — 8 
mindestens eine der beiden Funktionen f(s) und Ç'(s) eine Nullstelle. Danach 
wäre also die Riemannsche Vermutung widerlegt, wenn man das Nicht verschwinden 
von f (s) z. B. in der Halbebene or > T

9
ÏÏ beweisen könnte. Die Untersuchung der 

Nullstellen in Ç (s) ist ein schwieriges Problem, indem für £" (s) die schöne Produkt­
darstellung fehlt, welche das Studium von Ç(s) erleichtert. Aber auch hier wusste 
Herr Bohr Rat, und es gelang ihm in einer am 4. Juni dieses Jahres erschienenen 
Arbeit zu beweisen : Ç' (s) hat sogar in der Halbebene er > 1 eine Nullstelle, übrigens 
unendlich viele, so dass also der Littlewoodsche Satz zu keiner Lösung des Riemann­
schen Problems führen kann. Das fand Bohr mit dem Umwege über 

m pf-r 
er stellte fest, dass diese Funktion in der Halbebene a > 1 den Wert 0 und sogar 
jeden Wert annimmt; übrigens sogar im festen Streifen 1 < er < 1 + 8, und zwar 
unendlich oft. 



108 EDMUND LANDAU 

Zum Schluss meines Vortrags will ich erwähnen, dass meine für die Primzahl­
theorie geschaffenen Hilfsmittel sich auch kürzlich als geeignet erwiesen haben, 
andere Probleme aus der analytischen Zahlentheorie und über Abzahlung von 
Gitterpunkten in gewissen mehrdimensionalen Bereichen zu lösen, welche vordem 
unerledigt geblieben waren. Ich habe dies in einer kürzlich erschienenen Abhand­
lung auseinandergesetzt und will hier nur einen ganz speziellen Satz daraus 
erwähnen. Die beiden Dirichletschen Reihen 

/ W - A - 3 . + ß . - 7, + 9 , - j j , + ••• 

J / N i ! ! 1 1 1 
und q (s) = 1 — ^ + =— TT- -r- T ^ — TST + .. • 

J/ W 5 s T tp l l s T 1 3 s 1 7 s -r 
konvergieren offenbar für er > 0. Ihr formal gebildetes Produkt ist wieder eine 
Dirichletsche Reihe 

oo r 

%=i / 6 

dieselbe konvergiert natürlich für er > 1, wo ja die gegebenen Reihen absolut 
konvergieren; nach einem leicht beweisbaren Satze von Stieltjes (1885) über 
Dirichletsche Reihen konvergiert das formale Produkt sogar für er > \ . Andererseits 
hat Herr Bohr (1910) ein Beispiel zweier Dirichletscher Reihen 

y ^ 

co Zj 

und 2 ^ 

gebildet, die für er > 0 konvergieren, während ihr formales Produkt 
CO n 

n=lri 

nicht über die durch den Stieltj esschen Satz gelieferte Gerade <r — \ hinaus konvergiert. 
Für mein obiges Beispiel f(s) g(s) kann ich aber Konvergenz für a >^ beweisen. 
Dies spezielle Beispiel repräsentiert natürlich zwei Reihen vom Typus 

n=\ ri ' 

wo x (ri) ein sogenannter Charakter nach einem Modul k ist. Diese Reihen waren 
durch Dirichlet beim Beweise des Satzes von der arithmetischen Progression einge­
führt, und für jedes Paar solcher Reihen, wenn nur keiner der beiden Charaktere 
Hauptcharakter ist (sonst konvergiert bekanntlich das Produkt überhaupt nicht 
einmal für s = 1) kann ich Konvergenz für er >•£ beweisen. 

Ich bitte um Entschuldigung für die Länge meines Vortrags; aber ich habe 
ohnehin zahlreiche unter mein Thema fallende Dinge nicht berührt. Umfasst doch 
allein das Litteraturverzeichnis meines 1909 erschienenen Handbuchs der Lehre von 
der Verteilung der Primzahlen mehr als 600 Abhandlungen. Und habe ich doch 
durch dies Handbuch erreicht, dass zahlreiche Forscher sich diesem interessanten 
Gebiet zuwandten, so dass seitdem viele weitere Arbeiten darüber erschienen sind. 
Ich würde mich freuen, wenn es mir durch diesen Vortrag gelungen sein sollte, den 
einen oder anderen Mitarbeiter noch hinzuzugewinnen. 



THE PRINCIPLES OF INSTRUMENTAL SEISMOLOGY 

BY PRINCE B. GALITZIN. 

Although the accounts of great earthquakes, accompanied by severe loss of 
human life and property, can be traced back to the most remote historical times, it 
is only perhaps about 20 years that the science of earthquakes or seismology, con­
sidered as an exact and independent scientific discipline, exists. Former investigations 
concerning earthquakes, of which there were certainly no lack, and which were 
mainly due to the work of geologists and possessed of course their intrinsic scientific 
value, treated the question more from a descriptive or statistical point of view. The 
speedy advance and development of seismology in the last 10—20 years, of which we 
all are witnesses, is nearly exclusively due to the fact that seismology has seated 
itself down upon a sound scientific basis in adopting purely physical methods of 
research, based upon instrumental observations. This branch of seismology, i.e. 
instrumental seismology or so-called seismometry, in devising its instruments of 
research, stands in close connection with theoretical mechanics, so intimately linked 
with pure mathematics. In this evolution of modern seismology the lead has 
gradually been handed over from geologists to astronomers and physicists, who 
are more familiar with the wielding of the mathematical apparatus. 

Pure mathematics has had such a predominant and benevolent influence in the 
development of all branches of natural philosophy, that it may be perhaps quite 
appropriate to bring forth at this mathematical congress a brief outline of the 
principles of instrumental seismology. 

The study of the movements of the earth's surface brings forth a whole set of 
purely mathematical problems, to some of them I shall allude in the course of my 
address, and in the resolving of which seismologists are highly in need of the scientific 
help of pure mathematicians. 

According to modern views concerning the constitution of the planet we live 
upon, the earth consists of an outer shell made up of more or less heterogeneous 
rocks under which at a depth of say 30 or 50 kilometers lies a layer of plastic magma, 
which forms the material that feeds volcanoes during their periodical outbursts. 
What lies underneath we are not very sure about. Evidently there is an interior 
core, which, although at a very high temperature, is subjected to such enormous 
pressures, quite inaccessible in our laboratory investigations, that matter in that 
state possesses for us as it were the properties of a solid body. According to 
Wiechert's investigations, based upon the velocity of propagation of seismic rays, 
the physical properties of this interior core, partly formed of nickel and iron, which 
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would well account for the mean density of the earth as a whole, vary as we go 
deeper and deeper down, but this variation is not always a continuous one. Wiechert's 
latest investigations lead to the conclusion, that there are three layers, seated 
respectively at the depths of 1200, 1650 and 2450 kilometers, where a sudden, 
discontinuous change in the physical properties of the inner core takes place. 

So much for the inner constitution of the earth. 

As regards the causes of earthquake outbreaks, these are traced back at present 
to three different origins. 

The first class of earthquakes is intimately connected with the activity of 
volcanoes ; the second class is due to the yielding of underground hollows. Both 
types of earthquakes have mainly a local importance and are seldom felt at a great 
distance from their respective epicentres. 

By far the most important and devastating earthquakes are the so-called 
tectonic earthquakes, which are due to the relative shifting of underground layers 
of rocks. Some of these layers exhibit a most intense folding, brought into being 
by the gradual cooling and shrinking of the earth and where therefore the conditions 
of elastic equilibrium are very unstable. This unstability is sometimes so high, that 
it needs only a small exterior impulse in order that the limits of elasticity should be 
exceeded. Then a sudden shifting of the layers takes place, accompanied by the 
outburst of a tectonic earthquake. As the focus or hypocentre of a tectonic earth­
quake lies usually comparatively deep, say 10—20 kilometers, the shock is felt at 
very great distances from the epicentre and sensitive seismographs record the quake 
all over the earth's surface. In this case we have the so-called world-recorded 
earthquakes, a great many of which, more or less intense, occur every year. 

The original displacements engendered at the focus are transmitted through the 
earth's body according to the laws of propagation of elastic waves, which on reaching 
the earth's surface set in motion the respective seismographs installed there. These, 
when the problem of modern seismology is rightly understood, are always meant to 
give, after a shrewd analysis of the curves obtained, the true movement of a particle 
of the earth's surface at the given point. 

To simplify matters the focus and epicentre are usually considered for not too 
small epicentral distances as being located in a point. This is certainly only a first 
approximation, but, considering the great dimensions of the earth, this approximation 
in most cases holds good. 

The problem of propagation of seismic waves is therefore nothing else than 
a problem of the theory of elasticity, according to which in an isotropic medium two 
distinct types of waves are propagated independently one from another, viz. longi­
tudinal or condensational and transverse or distortional ones. 

The respective velocities of these waves V1 and V2 are given by the following 
well-known formulae: 

1 V (l + <r)(l-2<r)> 
i\ r E 

V 2-1 + 
V, ... „ . _ . 

•f cr p 
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where E denotes Young s modulus, a Poissons coefficient and p the density of the 
medium. 

Taking, according to Poisson, er equal to \, we obtain 

^ = A/3 = 1-732. 
* 2 

Neither of these velocities is constant, but depends upon the depth of the 
corresponding layer. 

For the upper strata of the earth's crust these mean velocities can be easily 
deduced from seismometric observations in the vicinity of the epicentre of an earth­
quake. The observations give 

V1 = 7-17 kil./sec. 

and V2 = 4*01 kil./sec, 

therefore ^ = 1*788 
* 2 

or cr = 0*27, 

which is very near the number adopted by Poisson for the majority of isotropic 
bodies. 

The longitudinal waves, travelling the quickest from the focus to the station 
of observation, mark on their arrival the beginning of the first preliminary phase of 
an earthquake, usually denoted by the symbol P (undae primae). After an interval 
of time, usually a few seconds, the seismograms show a sudden deviation of the 
seismographic record. This moment corresponds to the arrival of the first transverse 
waves and is denoted by the symbol S (undae secundae). 

The greater the distance A to the epicentre, reckoned along the great circle 
joining the epicentre with the station of observation, the greater will be the difference 
between S and P. 

From observations made during several known earthquakes, with well-located 
epicentres, special tables have been computed, which give the possibility of deter­
mining the epicentral distance to a given station from the difference of time of 
arrival of the first longitudinal and distortional waves. 

Besides these two characteristic types of seismic disturbances, which can be 
deduced theoretically and whose existence is confirmed by direct observation, there 
exists another class of waves, the so-called gravitational, long or surface waves (undae 
longae), which travel along the surface of the earth with a constant mean velocity V 
of about 3'53 kil./sec. 

On searching for particular integrals of the general equations of the theory of 
elasticity and taking into consideration the boundary conditions for the earth's surface, 
Lord Rayleigh and H. Lamb have shown that the existence of these long waves can 
be proved theoretically. A remarkable result of this investigation is, that the velocity 
of these surface waves forms quite a definite fraction of the velocity V2 of propagation 
of the distortional waves in the uppermost layers of the earth's crust, namely 

F = 0 ' 9 1 9 4 K . 
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Taking F2=4*01, this would give V =3*69 kil./sec, which differs only slightly 
from the above given number, deduced from observations a/t Pulkovo during the 
great Messina earthquake on December 28, 1908. 

The arrival of the long surface waves at a given station constitutes the beginning 
of the real maximal phase on a seismogram. At its beginning and during both 
preliminary phases the movement of an earth's particle in a given direction is a very 
intricate one, consisting of a superposition of several, rather irregular waves ; but with 
time, in the maximal phase itself, the amplitude gets to be much larger and the 
movement much more regular, displaying often a whole trail of regular harmonic 
vibrations. The corresponding periods of these wave-form movements vary usually 
between 12 and 20 seconds or more. 

After the maximal phase is over, the movement becomes again very irregular, 
but some particular periods, say 12 and 18 seconds, seem to predominate. According 
to Wiechert's views these movements are due to proper vibrations of the earth's outer 
shell or crust, a question which has not as yet been thoroughly investigated and 
where there is ample work for pure mathematical research, which would be most 
welcome to seismology. This latter part of a seismogram is known under the name 
of Coda, but its physical meaning is far from being clear and evident even up to the 
present day. 

On the adjacent plate, giving the reproduction of a seismogram traced at 
Pulkovo by an aperiodic horizontal pendulum, with magnetic damping and galvano-
metric registration, during an earthquake in Asia Minor on February 9, 1909, the 
different above-mentioned phases can easily be traced. 

This is a very typical seismogram in which all the phases are particularly well 
seen. Usually the first phase (P) can be easily detected, but there is sometimes 
much trouble about fixing the beginning of the second phase (S), when the seismo­
graphs are not of a highly sensitive type, and this difficulty may have, as we shall see 
later on, its theoretical reason. 

The determination of the velocity of propagation of the surface waves offers no 
trouble, when it is possible to fix the time of arrival of one and the same maximum 
at stations, situated at different distances from the epicentre. But the same velocity 
can also be deduced during big earthquakes by comparing the times of arrival of 
a certain maximum in the trail of surface waves, which arrive at the point of 
observation by the shortest way from the epicentre (tj and in the trail of waves 
which reach the observatory from the other side, after having travelled round the 
earth's surface (t2). In this case, if we denote with A the epicentral distance, we 
shall have 

TT 40000 - 2A1 .. . 
y — kil./sec 

t2 — t1 

By measuring also the corresponding parts on the seismogram and deducing 
therefrom the amplitudes of the true movement of an earth's particle, it is possible 
to calculate the coefficient of absorption of seismic surface energy. Measurements 
made at Pulkovo give for this coefficient 0*00028 when the distances are measured 
in kilometers. This would mean, that the energy of the surface waves at a point 
situated at 180° from the epicentre, i.e. in the antiepicentre, would be only the - ^ t h 
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part of the original energy in the epicentre itself. I t is not to be forgotten, that in 
the antiepicentre the different seismic surface waves meet again together in one 
and the same point. 

The above-mentioned theory of surface waves, based upon the general differential 
equations of the theory of elasticity, leads to another very important and interesting 
result, and that is, that when a trail of surface seismic waves passes a given place 
each particle of the earth's surface describes an ellipse, whose vertical axis is 
1*47 times the corresponding horizontal one. This curious theoretical relation 
has not been as yet thoroughly tested, but the preliminary calculations based upon 
observations with highly damped, in fact aperiodic, seismographs made at Pulkovo 
show that this ratio is somewhat smaller than the theoretical value 1*47, and it 
varies a little from one trail of waves to another. The greatest value observed up 
till now did not exceed 1*28. 

This fact does not mean in the least that there is a real contradiction between 
theory and observation. This discrepancy may be and is most probably due to the 
fact that the theory does not take into account the damping effect upon the waves 
as they travel along the surface of the earth, and this damping may be totally different 
for vertical and horizontal displacements; except that observations seem to point 
to the fact that the period of seismic surface waves augments with the path traversed 
by the waves along the surface of the earth. This question opens another vast field 
for delicate mathematical enquiry. 

Returning to the two types of waves, which, starting from the focus of an 
earthquake, travel through the interior of the earth, it is more practical and 
convenient to consider, as in optics, not the seismic waves themselves but the 
corresponding seismic rays. 

If the law giving the relationship between velocity and depth weie exactly 
known, there would be no difficulty in calculating the theoretical path traversed 
by the seismic rays. According to Fermat's principle seismic rays must travel along 
brachistochronic paths. Expressing this result in mathematical language one is led 
to two integral expressions, giving in a general form the time T, required for a 
seismic ray to travel from the focus to the point of observation, as wTell as the 
epicentral distance A, as function of the angle of emergency e of the ray and of 
the depth of the focus h. By angle of emergency one understands the angle formed 
between the tangent to the seismic path, where the latter strikes the earth's surface, 
with the horizontal plane at the point of observation. 

If one eliminates e from both these integral expressions, one obtains T as 
a function of A and h, which gives the form of the so-called theoretical hodograph 
for both types of seismic rays : 

T = F(A,h). 
To calculate F one must make certain assumptions concerning the dependence 

of the velocity upon depth. Even very simple assumptions, holding good for only 
small intervals of depths, lead to rather awkward and clumsy mathematical expres­
sions, which nevertheless are fairly adapted for numerical calculations. 

The formula above shows distinctly that the form of the hodograph is dependent 
on the depth of the focus and this dependence makes itself principally evident for 



1 1 4 PRINCE B. GALITZIN 

small epicentral distances, a fact that has not been sufficiently considered as yet by 
seismologists of the day. The corresponding curve has also a particular point of 
inflexion. From observations of the times of arrival of the longitudinal seismic rays 
at stations, situated at different distances A from the epicentre, it is possible to 
deduce the depth of the focus of the corresponding earthquake. This is a very 
delicate problem, which has seldom been treated in a satisfactory manner, the 
observations being usually too faulty, as this method requires very exact absolute 
time-reckoning, considering the comparative great velocity of propagation of the 
longitudinal waves in the upper layers of the earth's crust. 

I have lately applied this method of determining h to the big earthquake felt 
in the south of Germany on November 16, 1911, and for which we have more or less 
reliable observations from a whole set principally of German stations, surrounding 
the epicentre and furnished with damped seismographs. 

As result I obtained 

h= 9'5 klm. 

with a mean error of + 3*8 klm. 

Considering that h is usually small, one can as a first approximation, when A is 
not very small, suppose the focus to coincide with the epicentre ; then one has simply 

T=F(A), 

where T is the difference of times of the arrival of the first seismic waves at a given 
point and the outbreak of the earthquake in the epicentre itself. 

The form of this mean hodograph can be deduced from direct observations of 
earthquakes with well-located epicentres. Seismologists have been very busy lately 
in trying to perfect these mean hodographs, but there is still a lot of work to do. 

I t is even to a certain point doubtful if such a mean hodograph really exists. 
Strictly speaking every earthquake has its own particular hodograph, depending 
upon the depth of the focus ; but even if we admit that h — 0, still T may be 
dependent upon the direction from which the seismic rays reach the observatory 
and in general upon the geological formation of the layers of the earth's crust, 
through which these particular rays have travelled. 

Then it is highly probable, and this fact has been emphasized by Professor Love, 
that there exists, in analogy with optics, a seismic dispersion. In that case the 
velocity of propagation of seismic waves would be dependent on their period and 
each particular trail of waves would have its own hodograph. 

This question of seismic dispersion is of the highest importance for modern 
seismology, but it is a mathematical problem which has not been thoroughly 
investigated as yet. 

When the form of the hodograph for the longitudinal waves is known, it is very 
easy to determine the angle of emergency e for a given seismic ray. 

One has for that the following formula : 

c o s ^ F ^ , 
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where V± is the velocity of the longitudinal waves in the uppermost layers of the 
earth's crust. 

This simple and elegant formula can be deduced from the general integrals, 
giving T and A as functions of e, or through a very simple geometrical process. 
I t holds good for any given depth of focus, if only one takes the corresponding 
hodograph. 

We have just seen that the form of the mean hodograph depends upon the 
law governing the relationship between velocity and depth. This law is not known 
a priori, but plotting out the form of the hodograph from direct observations, it is 
possible to go backwards and deduce conclusions concerning the velocity of pro­
pagation of longitudinal and torsional waves at different depths. This is the method 
followed by Wiechert and his scholars and which has led to many very interesting 
conclusions concerning the interior constitution of the earth, whereby Wiechert has 
applied with success one of Abel's purely mathematical theorems. 

The principal result of this investigation is, that both velocities V1 and V2 

augment with the depth, attaining at the depth of about 1500 kilometers respectively 
the values of 12*7 and 6*9 kil./sec, after which they remain for some time practically 
constant. 

In the very inner core of the earth, from a depth of about 3000 kil. inwards, 
these velocities seem again to diminish. The law of variation of V1 and V2 with 
depth is not, as has been stated before, always a continuous one. 

The study of seismic rays opens as we see a whole new field of enquiry into the 
interior constitution of the earth, and at such depths which are utterly out of reach 
of the investigations of the geologist. These rays, travelling through the mysterious 
and inaccessible regions of the interior realm of our planet, bring with them some 
information of what nature has wrought in those profound depths. Like the optical 
rays, coming from the heavenly bodies, which bring with them some learning 
concerning the chemical constitution of the different stars and by the shifting of 
the spectral lines enable us to determine their translatory velocity in the line 
of vision, the seismic rays, when carefully studied and catalogued, will certainly 
enable us in future to solve the mystery of the earth's interior constitution. 

The knowledge of V1 and V2 at different depths does not allow us to determine 
separately Young's modulus E and the density p. All that we can obtain from our 

F 
theoretical formulae at present is the ratio — and Poisson's coefficient a, but that is 

already a vast achievement. These investigations show in particular that a up to 
very great depths retains its same numerical value as at the earth's surface, i.e. 0*27. 

A remarkable feature revealed by instrumental observations of earthquakes 
concerns the length of time of the earth-crust's shiverings at distant stations and 
near the epicentre itself. Whereas in the interior boundaries of the epicentral area 
nearly every earthquake is characterized by several distinct more or less intense 
shocks, separated by short intervals of utter calm, the whole seldom lasting for more 
than a few minutes, the seismograms obtained at distant stations reveal a continuous 
movement of the earth's surface, without any interruptions, which might correspond 

8—2 
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to the occasional lulls in the epicentral area itself, the wrhole lasting for ever so long, 
sometimes over an hour and more. 

The reason of this expansion of the earth's quiverings in time may be due to 
three different causes. 

Firstly, besides the usual types of seismic waves that reach the point of observa­
tion by brachistochronic paths, there may be a whole set of other waves, which come 
to the same point after having suffered different reflexions and refractions among the 
interior heterogeneous layers of the earth's crust, as well as one or more reflexions 
at the earth's surface. These latter waves have already been studied and discussed. 

Another striking fact in connection with inner refraction and reflexion seems to 
present itself and that is, that for certain big epicentral distances the seismic rays 
seem not to reach the earth's surface at all, throwing on it as it were a seismic 
shadow of the interior core. 

Secondly, it is highly probable that seismic waves of high intensity are able to 
start proper oscillatory movements of the earth's outer shell, characterized by special 
periods of vibration. The fact is known that one severe earthquake can set loose at 
a very considerable distance another twin-earthquake. 

Thirdly, if seismic dispersion exists, and according to the general laws of physical 
phenomena it must exist, different types of waves with different periods would reach 
the point of observation at different times and this reason would also well account 
for the stretching out of seismograms at distant stations. 

Referring to seismic dispersion, it may be stated here, that if one repeats the 
remarkable investigations of Lord Rayleigh and H. Lamb concerning the properties 
of seismic surface waves, introducing into the general equations of elasticity a 
frictional term, one is immediately led to a seismic dispersion, which in comparison 
with optics may be characterized as an anomalous dispersion, for the shorter the 
period is, the greater will the velocity of propagation of the corresponding wave be. 
The equations lead also naturally to a certain damping effect, characterized by the 
fact, that the shorter the period, the greater will the damping be. 

Both facts seem to stand in agreement with the results of direct observations, 
although the question has not been studied out thoroughly as yet for lack of sufficient 
trustworthy and reliable data and on account of the novelty of the problem itself. 

In the different theoretical investigations referred to until now it has always 
been implicitly admitted that the different interior layers of the earth, considered 
in their mean distribution in a particular shell, although varying in their physical 
properties with depth, still retain the properties of an isotropic medium. 

Seismology at the present date, in studying the propagation of seismic waves, 
cannot possibly take into consideration the heterogeneity of different rocks in the 
earth's crust, revealed by accurate geological research, and is necessarily obliged to 
suppose some mean distribution of different layers to get hold of the general outlines 
of the phenomena to study. When these are settled, it will be a further problem to 
take into consideration different discrepancies, caused by various geological anomalies. 
This way of treating the problem seems plausible enough, especially if we go down 
to depths exceeding the surface of isostacy, i.e. 120 kilometers. 
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But are we right, in adopting even such a mean distribution of matter in each 
layer, to consider the corresponding medium as an isotropic body ? 

Rudzki finds that we are certainly wrong and in that respect I suppose he is 
right enough, and it is only the difficulty of the problem that has obliged seismologists 
to have recourse to the equations of the theory of elasticity meant for isotropic bodies. 

The results obtained can be certainly of the highest importance, but nevertheless 
they must be considered as only a first approximation to reality. 

The problem, treated in a general wray for anisotropic bodies, offers certainly 
very great difficulties and here again seismology is very much in need of the friendly 
help of the pure mathematician. 

Notwithstanding the difficulties of the question Rudzki set bravely to work at 
the problem for the case of a medium, which he defined as transverse isotropic 

Starting from the expression of the potential of the elastic forces, as given by 
Professor Love, Rudzki studied the form of the meridian section of the surface of 
a seismic wave, propagated through the interior of the earth, which led him after 
much trouble to a curve of the 12th degree, containing three special branches. One 
branch of elliptical shape corresponds to the longitudinal, whereas the two others 
correspond to distortional waves. One of these latter branches has a most curious 
shape, exhibiting four double points and eight cusps (points de rebroussement). 
When this particular part of the wave surface would come to strike the surface of 
the earth at the point of observation, the second phase 8 on the seismograms could 
not be sharply defined and under certain circumstances would correspond to three 
different shocks, following closely one after the other, 

It would be most desirable that such investigations started by Rudzki should 
be taken up by mathematicians and worked out with a view of application to different 
seismological problems. 

Modern seismology, which has led already to so many interesting and important 
results and which opens a vast field for further theoretical and experimental enquiry, 
is based upon instrumental observations, furnished by self-recording seismographs. 
The latter must be so adjusted as to be able to give after a careful analysis of the 
records the true movement of a particle of the earth's surface. What we want are 
not seismoscopes, which only give relative indications of the earth's quiverings, but 
trustworthy seismographs. 

The problem, considered from a kinematical point of view, stands thus. 

Taking a small element of the earth's surface and placing in it the origin of 
a fixed system of rectangular coordinate axes, this element may experience, as the 
result of a near or distant earthquake, six different movements, viz. three displace­
ments parallel to these axes and three corresponding rotations. The rotations about 
horizontal axes correspond to a tilting of the ground. The complete study of the 
earth's movements at a given point requires therefore six different seismographs, 
each of which is to give the corresponding movement of the earth's surface as a 
function of time and this for the whole duration of the corresponding quake. This 
is the generalized, fundamental problem of modern seismometry which offers so many 



1 1 8 PRINCE B. GALITZIN 

practical difficulties that at the present date it has never been treated in this 
exhaustive way. 

Although direct, non-instrumental observations in localities which have suffered 
much from earthquakes prove undoubtedly that all these six movements do in reality 
exist, still for distant earthquakes the tilting of the ground is comparatively so small, 
seldom exceeding •£$", that at the present date seismologists confine themselves only 
to the study of the three displacements, one in the vertical and the two others in 
horizontal directions at right angles to each other. 

To study the absolute movements of a particle of the earth's surface, which alone 
is of real practical importance for seismological investigations, one requires a fixed 
point not taking part in the movements of the upper layers of the earth's crust. As 
no such point is to be had, seismology is obliged to have recourse to the principle of 
inertia and seek this immovable point in the centre of oscillation of a pendulum in 
its so-called steady point. But this point is only steady for a sudden impulse com­
municated to the ground. After that, the movement of the ground continuing, the 
pendulum begins to sway to and fro and its real movement gets very intricate, being 
a combination of enforced vibrations caused by the real movement of the earth's 
surface together with the proper movement of the pendulum itself, which is usually 
a harmonic, slightly damped oscillation. 

In former times simple vertical pendulums were much used. But as it was 
found necessary, in order to augment the sensitiveness of the record obtained, to 
give the pendulum a very long proper period of oscillation, one passed gradually 
to horizontal pendulums, where the axis of rotation forms a very small angle with 
the vertical line and where the proper period of oscillation can be in consequence 
made very long. A horizontal pendulum is a very handy apparatus which can be 
made highly sensitive and where the movement of the pendulum can be inscribed 
mechanically by a pin on smoked paper fixed upon a revolving drum, or optically by 
means of a beam of light reflected from a small mirror attached to the pendulum and 
concentrated thereafter on a revolving drum covered with sensitive photographic paper. 
In Milne's horizontal pendulum the beam of light passes through two slits at right 
angles to each other, one of which is fixed to the boom of the pendulum itself. To 
study the true horizontal movements of the ground two such pendulums are required 
at right angles to each other. 

There are many types of horizontal pendulums, which, although having various 
outward looks, differ essentially only by the mode of suspension of the heavy mass. 

There are pendulums with two pivots : type Rebeur-Paschwitz ; then pendulums 
with one pivot below and where the boom is upheld by two strings or wires going 
upwards and fixed to the column of the apparatus : type Omori-Bosch, Milne. When 
mechanical registration is used, it is necessary, in order to diminish the perturbating 
influence of the friction of the recording pin on the smoked paper, to use very heavy 
masses. But in this case the pressure sustained by the pivot is very great and it 
easily gets blunt, in consequence of which the sensitiveness of the apparatus will be 
diminished and its position of equilibrium may get shifted. To avoid this fatal effect 
of the blunting of the pivot one can use instead of a steel point an inverted flat steel 
spring ; then there is no more trouble about the blunting and one can use very heavy 
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masses. This arrangement is adopted in Mainka's heavy horizontal pendulums and 
in those horizontal seismographs which have been installed lately at Russian second 
class seismic observatories. 

By far the most delicate and sensitive suspension is the Zöllner suspension, where 
there are no pivots and therefore scarcely any friction at all and where the boom of 
the pendulum with the heavy mass is supported by two inclined wires, the one going 
up and the other down. This type of pendulum is particularly adapted for the study 
of distant earthquakes and the tidal deformations of the earth under the influence of 
the attraction of the sun and moon. Such pendulums are used at the Russian first 
class seismic observatories. 

Simple vertical pendulums with a comparatively short period and where the 
movement is divided by means of a simple mechanical contrivance into two rect­
angular components are still used in Italy : Vicentini's pendulum. 

Another type of horizontal seismograph, installed at many seismic observatories, 
is the Wiechert's inverted, astatic pendulum, where the heavy mass is above and 
rests upon a pivot or rather on cross flat springs fixed below. In this position the 
pendulum is in an unsteady state of equilibrium, but is prevented from toppling over 
by means of crossed springs attached to the heavy mass. 

There are certainly other types of horizontal seismographs, but the principal ones 
have been mentioned above. 

For the study of the vertical component of the movement of the ground special 
vertical seismographs are used, although a systematic study of this component has 
only begun just lately and there are still very few observatories that possess a 
corresponding instrument. These seismographs are based upon the use of a spring. 

The simplest type of a vertical seismograph is Vicentini's instrument, where the 
heavy mass is simply attached to a strong flat spring ; but as the proper period of 
oscillation of such a spring is very short, the sensitiveness of the records is com­
paratively small. 

In Wiechert's seismograph the heavy mass is suspended by several powerful 
vertical spiral springs, whereas in the Russian type of vertical seismograph, a copy 
of which is installed at the observatory of Eskdalemuir in Scotland, the boom carrying 
the heavy mass revolves about a horizontal axis placed at the end and is upheld in 
a horizontal position by only one spiral spring. By fixing the lower point of suspension 
of this spring under the centre of gravity, it is possible to obtain a comparatively long 
proper period of oscillation of the instrument, say 13 to 14 seconds, conserving at the 
same time the necessary stability for continuous seismometric work. 

To augment the sensitiveness of all types of seismographs, especially when 
mechanical registration on smoked paper is used, one has recourse to magnifying 
levers. These latter sometimes cause a good deal of trouble, being much subjected 
to the influence of changes of temperature and introducing special errors in the 
records owing to the inevitable failures in the fixing of the joints. I t is always 
preferable, when seismometric work of a high degree of accuracy is planned, to use 
the optical method of registration, which requires no levers and introduces no friction. 
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I t is true that the sensitiveness of this optical method of registration has a 
certain limit not to be exceeded, as the sensitiveness of photographic paper does not 
admit placing the revolving drum at distances greater than 4 meters from the 
seismograph. In this case, when a high sensitiveness of the records is desired, it 
is very advantageous to use the galvanometric method of registration, which is very 
simple in its theory and practice, requires no levers, introduces no friction and where 
the magnification can be pushed to limits far exceeding those of other practical 
methods of registration. 

This method, which can be easily applied to all types of instruments, consists 
in fixing to the end of the boom of the corresponding seismograph several flat 
induction coils, placed between the poles of a pair of strong horse-shoe magnets. 
Now, when the boom is set in motion, electric inducted currents are generated in the 
spires of the coils, their intensity being proportional to the angular velocity of the 
displacement of the boom. This electric current is led by two wires to a highly 
sensitive dead-beat galvanometer of the Deprez-D'Arson val type, whose movements 
are registered on a revolving drum by the usual optical method by means of a beam 
of light reflected from a small mirror attached to the moveable coil of the galvano­
meter. In this way it is not the amplitudes of the seismograph's movements, but 
the corresponding velocities which are directly recorded, which makes no real 
practical difference for the study of seismic harmonic waves. 

This galvanometric method of registration offers several important advantages. 

First of all, one can place the galvanometer and registering part of the seismo­
graph at any desirable distance from the pendulum itself in a convenient and easily 
accessible place and not disturb the seismograph every day or even twice a day when 
changing the paper on the revolving drum. This possibility of registering at a 
distance is certainly very convenient. 

Secondly, as what one registers corresponds to the velocities and not to the 
amplitudes of the pendulum movement, the normal position of equilibrium of the 
pendulum itself is no longer of such importance ; it may shift a little without causing 
any trouble at all. This is particularly important for the vertical seismograph, where 
the steel springs are so subject to the influence of a change of temperature, that they 
usually require a special adjustment for temperature compensation. With the 
galvanometric registration no such compensation is necessary. 

Thirdly, the magnification obtained with this method is very great ; for certain 
periods of waves it can be easily made to exceed 1000 and this result is attained 
without the use of any levers at all, which gives the possibility of using comparatively 
small masses of only a few kilograms, which makes the instruments compact and 
handy. The sensitiveness of the instrument can thereby be easily changed between 
very large limits by simply changing the distance of the poles of the corresponding 
horse-shoe magnets. 

Lastly, the galvanometer being a most sensitive apparatus, it is possible to place 
the revolving drum comparatively near, say 1 meter from the mirror of the galvano­
meter, which enables one to obtain very sharp and distinct records. In fact the 
curves come out so clearly and of such magnification, that it is nearly always possible 
to fix the different phases on the seismograms. The observations made at Pulkovo 
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show in fact, that very often one is able to locate an epicentre from one station alone 
by a special method, shortly to be described, when other stations fail to give even the 
beginning of different phases. 

This method of registration has been adopted for all Russian first class seismic 
observatories and by some observatories abroad. This method is also used at 
Eskdalemuir. 

I t would seem desirable if possible to go yet a step further and by introducing 
induction currents of the second order to get at the direct registration of the accelera­
tion of the pendulum movement, which would be of the greatest importance for the 
study of the true movement of the ground. This idea was suggested in a paper 
published by Professor Lippmann, but the experiments he and I made show that 
these secondary currents are so feeble that no practicable application of this principle 
is possible at present. 

Let us now consider what conditions a seismograph must fulfil to be able to 
record in the most trustworthy way possible the true motion of the ground. 

The motion of a horizontal or vertical seismograph subjected to displacements 
of the ground in a given direction, say x—f(t), can be represented by a differential 
equation of the following form : 

6,/ + 2e6' + ri6 + jx'/ = 0 (1), 

where 6 is the angle of deviation of the instrument, e a constant, which depends upon 

the rate of damping, T — — the proper period of oscillation for e = 0 and I the reduced 

pendulum length. 

The motion of a dead-beat galvanometer, coupled with the seismograph, is 
governed by the following equation: 

</>" -l-2n10
/ + n1

2ç/) + M = O (2), 

where <£ is the angle of deviation of the galvanometer, 2\ = — its proper normal 

period and k a constant, which characterises the magnification of the record. 

Supposing, to simplify matters, that x corresponds to a trail of harmonic seismic 
waves with the period Tp\ 6 as a function of the time t will be represented by a curve, 
being a superposition of enforced oscillations with the same period Tp and the proper 
movement of the pendulum itself. To get rid as soon as possible of this latter 
movement and obtain a more truthful record of the movement of the ground it is 
indispensable to augment the damping of the instrument, driving it if possible to 
the limit of aperiodicity and making it dead-beat. 

Then one obtains a very simple formula, which enables one to calculate very 
easily the true amplitude of the movement of the ground. The same holds good 
also for galvanometric registration. Special tables, lately published, make all the 
necessary calculations very easy and simple indeed. When damping is introduced 
there is always a small shifting of phase, which can easily be taken into consideration, 
but which unfortunately most seismologists neglect. 
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There is no doubt that aperiodic pendulums give much more faithful records, 
even if x is a complicated function of t. This has been proved by experiments with 
a moveable platform. 

Some seismologists seem to be afraid to use dead-beat pendulums, notwith­
standing all their theoretical and practical advantages, fearing that the sensitiveness 
of the records will be too greatly diminished. But this is, generally speaking, an 
utter error ; all depends on the proper period of oscillation T of the seismograph itself 
and on the period Tp of the corresponding seismic wave. For instance, an aperiodic 
pendulum with a proper, normal period of 25 sec. will be, beginning with periods 
of seismic waves of 16 sec, more sensitive than a 12-second pendulum with a com­
paratively small damping ratio of 5 to 1. For 2^= 40 sec. the sensitiveness will 
be twice as great. 

Therefore there is nothing to fear from aperiodicity, one must only take a 
corresponding longer proper period T. But even if the magnification came to be 
too short for some seismic waves, galvanometric registration would compensate 
tenfold all the possible loss in sensibility. 

On the contrary, what one ought certainly to be afraid of and avoid is the use 
of wholly undamped seismographs, as their records sometimes come out very distorted 
and give quite an erroneous impression of the true movement of the ground. Consider, 
as example, only the case of a faint trail of seismic waves passing the observatory, 
but whose period Tp is very close to the proper period of oscillation of the pendulum 
itself. The corresponding seismogram would show then very large amplitudes of 
oscillation, which would have nevertheless nothing to do with the true motion of the 
ground, being only a casual effect of resonance. Of course with aperiodic instruments 
the magnification is not constant, but depends also on the period of the waves and 
this dependence must be taken into consideration when working out seismograms ; 
but still the general outline of the record is very similar to the true motion of the 
ground, at all events it can be easily deduced therefrom. When undamped seismo­
graphs are nsed it requires a minute and tiring analysis of the curves to eliminate 
the proper motion of the pendulum and get at the true amplitudes and periods of the 
corresponding seismic waves, and no man will ever give himself the immense trouble 
to go over all this work for each earthquake, although the study of the true motion 
of the ground is the most important problem of modern seismology. Simple experi­
ments with a moveable platform show in the most evident way how misleading 
undamped seismographs can be. 

The advantages of damping are theoretically and practically so evident that 
there are few seismologists of the day who would venture to uphold a contrary 
opinion, but this fundamental maxim, i.e. that in order to study the true motion 
of the ground only damped seismographs ought to be used, has not yet found its 
practical realization in all countries. It is to be hoped nevertheless that with time 
all seismographs, of whatever type, will be furnished with some one or other damping 
adjustment; the scientific value of the records obtained thereby will be greatly 
increased. 

I t is also necessary, in order to be able to study the short seismic waves, which 
are sometimes of great importance, that the revolving drum should rotate with a 
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sufficient velocity and as uniformly as possible. As a desirable minimum one might 
propose 15 m./m. in the record to the minute ; in Russia the velocity for all the new 
instruments is double as great. 

There are different means of introducing damping in a seismograph. Some 
instruments have air-, others oil-damping, but one of the simplest means to effect 
the same is to use magnetic damping. One has only to fix to the boom of the 
corresponding seismograph a copper plate placed between the poles of two strong 
horse-shoe magnets. By bringing the poles nearer to each other, the damping ratio 
can be augmented and the instrument easily brought to the limit of aperiodicity. 

The advantages of this kind of damping is its extreme simplicity and the 
possibility of being easily adjusted to any type of seismograph. Moreover, it agrees 
absolutely with the theoretical conditions of equation (1), for according to the physical 
laws of electro-magnetic induction the momentum of these retarding forces is strictly 
proportional to the angular velocity of the corresponding instrument. No other form 
of damping conforms strictly to this law. 

Returning now to the general problem of seismometry, i.e. to the determination 
of a given component of the movement of the ground, say x = f(t), for a given 
interval of time, for instance from P up to the Coda, we meet with considerable 
theoretical and practical difficulties. Poincaré and Lippmann proposed in a general 
way to integrate the equation (1) term by term between 0 and a given interval of 
time t. This would lead to two squarings of the seismographic record and would 
seem simple enough, if only the function x=f(t) had no singular points with two 
tangents (points angulaires). But these singular points do in reality exist and 
correspond to the times when a new trail of waves strikes the point of observation. 
Nevertheless the problem can be solved, although those who, like Pomerantzeff and 
Arnold, have busied themselves with the question have found it a most delicate and 
troublesome problem, requiring immense accuracy and circumspection. 

But supposing that we have found by some means or other x as a function of t and 
this for all three rectangular displacements, there arises a new problem, where the 
aid of pure mathematicians would again be of the greatest importance. 

We have supposed that we have found x =f(t), but what we want to know is 
of what elements this curve is built up. Guided by the general laws of physical 
phenomena we may well admit that / (£) consists of a superposition of waves, having 
their respective amplitudes, periods, initial phase and last but not least special 
damping ratio. But how are we to separate these waves one from another, even if 
we manage to decipher in the curve one or two particular periods ? The methods of 
usual harmonic analysis would fail in this case, as we must necessarily admit that 
all these vibrations are damped. Here is a problem of seismology which will certainly 
stand before us in the future and it would be highly gratifying if pure mathematics 
would clear the way to its solution before the problem itself practically arises. 

If I may allow myself a short digression and if it is not too bold of me to say so 
in such a distinguished assembly of pure mathematicians, I should like to express the 
wish that mathematicians should look down a little more condescendingly on the 
impending necessities of physical research. There are in feet so many different 
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questions and problems brought up by physics and its sister sciences which remain 
at a standstill owing to the mathematical difficulties they involve. Either we 
obtain a differential equation which cannot be integrated, or we meet with some 
clumsy integral which does not admit of evaluation and which we are quite ready 
to throw away. 

When it comes to numerical calculations things go on smoothly enough and 
one is sometimes astonished, what a simple and elegant curve a very awkward and 
intricate formula will give ; evidently it could be expressed with quite sufficient 
accuracy for practical use by a much simpler function. This would be of great 
importance for further investigations, if we only had at the same time a criterion 
for the value of the error thereby involved. What we want are not absolutely strict 
and exhaustive, but practical, approximate solutions, which would enable us to get 
on with our work. If I may venture to say so, we want a whole set of different, well-
tabulated functions, which may be utterly uninteresting to pure mathematicians, 
but may nevertheless be of much importance for physical research. 

I shall quote only a very simple and trivial example. 

A closer study of the proper movement of a horizontal pendulum, inscribing its 
corresponding curve with a pin on smoked paper, shows that the movement is no 
longer a harmonic damped oscillation, but is represented by the following differential 
equation : 

y" + 2ey> + n2 (y + p ) + Çty + vyy = 0, 

where £ and p are two new constants, depending upon the elements of friction, 
whereas v depends upon the revolving velocity of the recording drum. These latter 
must necessarily be taken into consideration if one wants to deduce the true move­
ment of the earth's surface from seismographic records on smoked paper. Now what 
is one to do with such an equation ? In our case the question is simple enough, for 
£ is small and one can use the method of successive approximations, but there are 
corresponding physical problems where this assumption holds no longer. 

Similar problems arise when treating the question of the theoretical form of the 
hodograph and so forth, but I shall not dwell upon this any longer. 

The readings of seismograms obtained by galvanometric registration from 
aperiodic seismographs enable us to attack different problems which are of great 
importance for modern seismology. 

By measuring the first maximal amplitude of the displacement of the recording 
light-spot directly after the arrival of the first longitudinal waves, one can deduce 
therefrom the true displacements of a particle of the earth's surface for two rect­
angular horizontal directions. This enables one to determine directly the azimuth 
from where the first seismic waves have come and combining this result with the 
epicentral distance, deduced from the difference of time of the arrival of S and P, 
locate the epicentre from observations made at one seismological station alone. The 
analysis of the record is certainly more complicated than in the case of the maximal 
phase, for the time separating the beginning of the movement till the first maximum 
is very short, usually 1 or 2 seconds, and one is necessarily obliged to take into 
consideration the influence of the proper motion of the pendulum itself, but the 
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problem can nevertheless be mastered and auxiliary tables facilitate all the necessary 
calculations. If the proper periods of both pendulums are equal to one another and 
to those of the corresponding galvanometers, the problem gets to be exceedingly 
simple and the azimuth can be deduced at once. In this special case one need not 
suppose the presence of a harmonic seismic wave, but the true displacement of a 
particle of the earth's surface can be quite an arbitrary function of time. 

There is only one difficulty in the question which consists in this. 

Observations show that in some cases the first movement of the ground is from 
the epicentre and in some others towards the epicentre, the first corresponding to 
a condensational and the second to a dilatational wave front. There is therefore an 
ambiguity in the azimuth of 180°, but the use of the vertical seismograph settles the 
question at once. If the latter points to the fact that the first movement of the 
ground was upwards, the wave will be a condensational one and vice versa. This 
does away with all ambiguity and the epicentre can be fairly located. 

This method of locating epicentres has the advantage over others, that it does 
not require as usual the observations from several other stations, but is dependent 
only on observations made at one and the same place, but in order to obtain good 
results it requires special highly sensitive and properly adjusted seismographs. This 
method is always used at present at the seismological observatory at Pulkovo ; it has 
also often been tested at Eskdalemuir ; the results have always been most satisfactory, 
if only the first phase on the seismogram is distinct enough. 

This fact, namely the possibility of determining the azimuth of the epicentre by 
the method just described, can be considered as a direct experimental proof that the 
first seismic waves that reach a given point are really due to longitudinal vibrations. 

This same method of determining the true direction of the movement of an 
earth's particle can also be applied to the second phase, where the first transverse 
waves strike the ground. This enables us to find the true plane of oscillation or call 
it plane of polarization of the corresponding waves and opens a new way to the study 
of the geological particularities of the upper layers of the earth's crust. 

By measuring the true vertical and corresponding total horizontal displacement 
of an earth's particle z and h at the very beginning of the first phase of a seismogram 
one can deduce the visible angle of emergence è of the seismic rays : 

, - z 
tge-K. 

This angle differs a little from the true angle of emergence e, as defined above, 
for when a seismic wave strikes the earth's surface a part of the movement is reflected 
inwards towards the interior of the earth. The true relationship between these two 
angles is a very delicate problem of the theory of elasticity, which has been treated 
by Wiechert and in this country by Professor Knott, although perhaps not in quite 
an exhaustive way. The problem I dare say requires yet further consideration being 
of great importance to seismology, as it is the true angle of emergence which is the 
most characteristic element in the study of the path traversed by the seismic rays. 
If Wiechert's formula stands good, the difference between both angles e and e, starting 
from an epicentral distance A = 1500 kil. upwards, never exceeds 2 or 3 degrees of 
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arc For small epicentral distances e is considerably greater than e, and for A = 0 
è would be 22°, whereas e would be 0. 

The study of the angle of emergence for short epicentral distances is of very 
great importance. I t could be conducted by means of artificial quakes, occasioned 
by the springing of underground mines. Such experiments would also tend to 
augment our very scanty knowledge concerning the laws of propagation of different 
types of seismic waves in the uppermost layers of the earth's crust in connection with 
the geological formation of the corresponding rocks. Another question would be the 
study of the propagation of seismic disturbances occasioned by the oscillatory move­
ments of heavy engines and their influence upon the stability of different types of 
buildings. Such investigations have been conducted, but till yet on a very scanty 
scale, and there is still a vast field open for further scientific enquiry. 

A scrupulous and systematic comparative study of records obtained at different 
observatories with highly sensitive instruments of the same type would open the way 
to the knowledge of the laws of propagation (velocity, damping) of different types of 
seismic waves, but all this work is yet to be done. 

Seismology is still in its period of infancy and has not had time to work out all 
the different problems it nearly daily brings forth, some of which are of the highest 
importance for geophysics, but there is no doubt that it will master them with time, 
as it has taken the right line of work, based upon trustworthy instrumental obser­
vations. 

I may just allude here in passing to the part seismology has taken in solving 
the great geodetical problem of the tidal deformations of the earth, about which 
English mathematicians have been so keen and which is so intimately connected 
with this town of Cambridge, owing to the work of our venerated president, Sir 
George Darwin. As these deformations are of the bradiseismical or slow type, they 
do not require damped instruments. 

There are still many discrepancies which have to be explained and which the 
observations undertaken by the care of two international scientific bodies, namely 
the International Geodetical and the International Seismological Associations, will 
certainly clear up. 

I may just mention here a new and important paper on the subject published 
lately by Doctor Schweydar of Potsdam, which tends to throw much light on the 
subject and which is in full agreement with the masterly investigations of Professor 
Love of Oxford. 

As yet we have considered only the tachiseismic displacements of the ground, 
excluding the rotations or tilting, these being for distant earthquakes so very small. 
But when a seismic wave travels along the earth's surface, a certain tilting of the 
ground, however small, must necessarily take place and for comparatively small 
epicentral distances it certainly cannot be neglected. 

But by what means are we to study this tilting ? 

When the tilting is slow the usual horizontal pendulum is the best adapted 
instrument, as it is for studying the tidal deformations of the earth, but what are 
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we to do, when the tilting is quick and combined, as in the case of earthquakes, with 
corresponding displacements ? 

Schlüter proposed for that object a kind of balance with a very long period, 
which he called a klinograph, but the observations made therewith at Göttingen and 
Pulkovo show that it gives very scanty information and has since then been 
abandoned. 

A remarkable instrument for its elegance and simplicity was devised, if I am 
not mistaken, by Mr Horace Darwin and Davison and constructed in this very town 
of Cambridge by the Cambridge Scientific Instrument Company. It consists of a 
heavy mass suspended by two vertical wires of unequal length. When a tilting takes 
place about an axis lying in the normal plane of the wires, the instrument turns 
about a small angle, which can be easily measured with great accuracy. By diminish­
ing the distance and augmenting the difference of length of the two wires it can be 
made most sensitive, detecting even 0*00121' in the tilting of the ground. 

This would stand good if we had only to do with tilting alone, but in the case 
of earthquakes there are simultaneous displacements, which set the apparatus 
swinging to and fro and each such swing engenders a corresponding twisting of the 
instrument, so that there is no possibility of separating the two effects of displacement 
and tilting one from another. The mathematical theory of this instrument offers 
many curious and suggestive peculiarities and leads to a differential equation, also 
found in the theory of celestial mechanics. 

The same difficulty of separating both movements arises with the horizontal 
pendulum. 

If we denote with ty the angle of tilting about an axis parallel to the boom and 
with g the acceleration of gravity, we shall have, instead of equation (1), the following 
generalized equation : 

ff' + 266' +ri0 + j(x"-gylr) = 0 (3). 

Now what we measure directly is 6 or, in the case of galvanometric registration, 
G/> (see equation (2)). Therefore there is no possibility whatever of separating with 
one pendulum x from ^ . 

But a special contrivance can be imagined, which will enable us to eliminate x 
and get at the true tilting of the ground. 

Imagine quite a similar pendulum with the same proper period and same 
damping ratio placed at a distance s above the first. Then its differential equation 
will be 

^ + 2e(91
, + n 2 Ö 1 - f i ( ^ / - f s ^ / / - ^ ) = 0 . . (4). 

Suppose now that both these pendulums are coupled with the same galvano­
meter, but so that the induction currents from each flow in opposite directions. 
Then the motion of the galvanometer will depend only on the difference of the 
angular velocities (61 — 6)' and x" will be fully eliminated. 

Such a double pendulum enables us therefore to study the true tilting of the 
ground, quite undisturbed by any displacements. 
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A similar apparatus has been tested on a moveable platform and has given most 
satisfactory results. The platform was subjected simultaneously to a tilting and 
shifting movement, the latter sometimes of the most irregular kind, but still the 
instrument recorded only the tilting, quite heedless of all displacements. 

This double pendulum can be easily made extraordinarily sensitive, detecting 
angles of tilting down to say 0*0001". 

The practical study of tilting has not as yet been taken up systematically by 
seismology; this problem is reserved for the future. 

We have considered until now only the small movements of the earth's surface 
or so-called microseisms, revealed to us by very sensitive seismographs, which, when 
properly adjusted and damped, enable one to deduce the true movement of the ground. 
The same problem arises for larger or macroseismic movements, experienced in the 
epicentral and surrounding areas. A profound study of the true motion of the ground 
in regions characterized by their seismic activity is of vital importance for elaborating 
practical rules for the construction of aseismic buildings able to resist in a satisfactory 
manner the dangerous quiverings of the ground. Nothing stands in the way of 
adopting for this kind of investigations the same principles of instrumental research 
that have been already discussed with regard to microseismic activity. I t is only 
necessary to diminish considerably the sensitiveness of the seismographs and give 
them a very solid construction ; simple, vertical, damped pendulums could be of great 
use for this kind of study. Very little has been done in this line of work up to the 
present day, as a systematic study of different seismic areas, requiring observations 
at many different points, involves a great expense and requires a trained scientific 
staff of observers not usually to be found. One confines oneself for the present to 
measuring the intensity of the seismic activity by means of purely empirical scales, 
like those of Rossi-Forel, Mercalli or the new scale of Sieberg, based upon personal 
observations, gathered through newspapers or through special enquiry. These data 
serve to draw the isoseists or curves of equal seismic intensity. 

I t is quite evident how defective such a wTay of proceeding is and how little 
dynamical value one can attribute to such experimental data. 

What we require is a simple process of evaluating the intensity of the seismic 
movement by means of a simple, but rational, purely dynamical scale, accessible to 
every untrained observer, and that would give immediately the corresponding 
maximal acceleration of the ground's movement or at least of its two rectangular 
horizontal components. Such a scale can be made on the principle of overturning 
of rectangular blocks, subjected to a swaying movement of the base they rest upon. 

The proper movement of such a block offers many interesting particularities, 
among which I may mention that the half-period of oscillation, when the axis of 
rotation passes from one rib to another, is proportional to the square root of the 
maximal deviation. The study of this movement is intimately connected with the 
problem, which is known, if I am not mistaken, in Cambridge University as the 
Union gate problem. 

The question now arises, What are the conditions of stability of such a block, 
resting on a plane, subjected to harmonic oscillations, when a slipping of the block 
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is prevented ? The dynamical equations of the problem can comparatively easily be 
deduced, but they are not much adapted for further discussion, involving a dis­
continuous function of time, namely the angular velocity of the movement of the 
block, when the motion passes from one rib to another. Here is another case where 
seismology requires a helping hand from the pure mathematician. 

As far as I know this problem has not as yet been mathematically solved in 
a general way, but experimental observations with a small moveable platform have 
settled the matter. 

Observations show that the conditions of stability of such a block on a base, 
oscillating harmonically, does not depend on the period Tp or the amplitude of 
oscillation xm alone, but on a certain combination of both, namely 

^±7T Xm, 
Wm 

±p 

which is nothing else but the maximal acceleration of the movement of the ground. 

There is an extremely simple relationship between the dimensions of this 
homogeneous block and the value of wm which defines the limit of stability. 

If 2h denotes the height and 2c the thickness of the block, we have simply 

!=0*0012wm, 

where wm is expressed in centimeters and seconds. 
When wm is greater than this critical value the block will turn over and fall. 
This equation has been established experimentally; it holds good for a wide 

range of values of wm. Surely it could be deduced mathematically. 

Now here is a means of establishing a rational, dynamical scale for the study 
of the maximal horizontal acceleration of the ground's movement, which is of all-
importance to seismology. 

One only has to prepare a scale of such blocks and judging after a seism which 
of these blocks have fallen down and which have remained upright, one can obtain 
two limits for the maximal acceleration of the earth's true movement. Two sets of 
blocks, placed at right angles to each other, will give an indication of the approximate 
direction of the principal seismic disturbance. 

Convulsive shakings of the ground produced by earthquakes are far from being 
rare phenomena; on the contrary, since^ instrumental observations have been 
established, it is extraordinary what an immense number of earthquakes, large and 
small, have been recorded. I t will not be exaggerating to state that several hundreds 
of earthquakes occur yearly ; in fact there is scarcely a day that passes without the 
earth's surface shaking in some part of the world. But besides these, there is a 
constant pulsatory movement of the earth's surface going on, which is more prominent 
in the winter months and which is characterized by very regular seismic waves with 
short periods, varying from 4 to 10 seconds. These movements can be detected on 
all three components and they produce the impression as if the earth were actually 
breathing. A systematic study of these particular microseisms has begun only lately 
and their real cause is still involved in mystery. According to one hypothesis these 

M.C. 9 
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pulsatory oscillations are due to the shocks of sea waves on steep coasts. To test 
this theory a special wave-counter made here in Cambridge by the Cambridge 
Scientific Instrument Company has been set up in this country at Newcastle-on-
Tyne ; the observations have been confided to Mr Morris Airey, but the results have 
not as yet been published. 

The remarkable fact that these tremors have been detected in the most different 
parts of the world and even at a depth of 1000 meters under the earth's surface would 
seem to indicate that we have to do here with proper vibrations of the earth's outer 
crust. The amplitudes of these periodical movements are in reality very small, but 
they can easily be detected and studied by means of modern seismographs, whose 
sensibility is so great that displacements of the order of 0*1 of a micron can easily 
be measured with accuracy. 

Another striking peculiarity of these oscillations is, that there seems to be a 
marked relation between the amplitudes and periods of oscillation, viz. the longer 
the period the larger will the amplitude be. This feature is not characteristic of 
ordinary harmonic oscillations and well deserves a dynamical and mathematical study. 

Except these regular micro-tremors,-there are other types of oscillatory, although 
less prominent, movements of the ground, with comparatively long periods, produced 
by winds, the shifting of barometric depressions and heat-waves. They all deserve 
to be thoroughly studied. 

There are a great many other problems which modern seismology has brought 
to the front, but I will not dwell upon these questions, for lack of time, any longer. 

One of these problems is of the most vital practical importance and that is, Is 
there any hope of being able in time to foretell the outbreak of a brewing earthquake 
and thereby contribute to the saving of human life and property ? 

The problem offers mighty difficulties, but the case is not so utterly hopeless as 
it might seem, for the investigations of v. Kövesligethy and others show that we may 
still hope in time to get at a practical solution of the question. 

I should like before closing just to mention a curious relationship which has 
been suspected between the frequency of earthquakes and the movement of the 
earth's pole. 

There are ample reasons to believe that some correlation between both pheno­
mena may really exist and it would be of great importance for geophysics if we could 
manage to detect in some way or other the shifting of interior masses of the earth 
produced by severe tectonic earthquakes. Well this seems really practically possible 
by means of Baron Eotvös' gravimeter, an instrument of the highest sensitiveness, 
which enables us to detect the presence or displacements of comparatively very small 
masses. Such observations have been planned in Russia for the Turkestan seismic 
regions and two gravimeters have accordingly been ordered ; one of them has already 
arrived and is being tested. The observations are to be conducted at particular 
points in the vicinity of prominent tectonic lines, indicated by geologists, and repeated 
again after a new, but fairly inevitable earthquake has visited those unhappy, for 
their unstability, but otherwise beautiful regions. 
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I have now come to the close of my address and I feel particularly indebted with 
gratitude to the organizers of this Fifth International Mathematical Congress for their 
kind invitation to give a lecture on the principles of instrumental seismology, the 
basis of all modern seismological work, at this assembly. 

You will have seen during this last hour how many seismological problems 
require further mathematical treatment and it is useless to mention how welcome 
and important the friendly help of the pure mathematician would be to the seismo­
logist, standing bewildered in front of the weird and intricate problems of modern 
geophysics. 

I think that no place like this country and specially Cambridge could have been 
chosen more appropriately for the delivering of such an address, as it is particularly 
England that so often has had the lead in scientific seismological work. Passing over 
the former important work of Mallet, Oldham and others, I should just like to bring 
to your memory all that your countryman John Milne has done for modern seismology. 
He, together with Ewing, can be considered as the father of instrumental seismology ; 
it is he who, through his remarkable activity and energy, has covered the earth's 
surface with a whole net of seismic observatories, gathering useful seismometric 
records, bearing at the same time all the burden of this vast organization nearly 
exclusively on his own shoulders. And not only that. I may fairly say, that there 
are not many questions of modern seismology that have not been attacked by Milne 
long before any other person had thought about them. This remarkable activity has 
not, notwithstanding years, relaxed in the least, a proof of which we see in the very 
important catalogue of earthquakes Milne has lately brought out. 

Then come the theoretical and in many cases most remarkable studies of so 
many Englishmen like Lord Kelvin, Lord Rayleigh, Sir G. Darwin, H. Lamb, Love, 
Larmor, Schuster, Knott and many others on different problems of geophysics, relating 
to questions of the highest importance. 

If is also in England that the fertile idea of creating an international seismo­
logical association was born. Since then this idea has been taken up by Rebeur-
Paschwitz, Gerland and others and this scientific body brought into life, contributing 
by the collected wrork of its members to raise the veil over the mystery, that still 
enshrouds the natural phenomena, connected with the periodical quiverings of the 
earth's crust. 

9—2 





DEFINITION ET DOMAINE D'EXISTENCE DES FONCTIONS 
MONOGÈNES UNIFORMES 

PAR EMILE BOREL. 

L Les origines de Vidée de fonction. 

C'est l'intégration par d'Alembert de l'équation des cordes vibrantes, en 1747, 
qui fut l'origine d'une série de recherches desquelles se dégagea la notion de 
fonction arbitraire. Riemann dans l'introduction d'un mémoire célèbre a résumé 
les discussions auxquelles donna lieu l'importante découverte de d'Alembert: parmi 
les géomètres qui contribuèrent à éclaircir les idées nouvelles, on doit citer au 
premier rang Euler, et aussi Clairaut, Daniel Bernoulli, Lagrange. 

La question qui se posait pour la première fois était celle des rapports entre 
la définition analytique d'une fonction et la définition en quelque sorte physique: 
si on écarte arbitrairement une corde de sa position d'équilibre, existe-t-il une 
formule qui représente exactement l'état initial de cette corde ? 

Il était réservé à Fourier de répondre affirmativement à cette question, en 
faisant connaître le mode de calcul des coefficients de la série trigonométrique 
qui représente une fonction arbitraire. Les vues géniales de Fourier ont été 
entièrement confirmées par l'analyse rigoureuse que Ton doit à Lejeune-Dirichlet. 

Cette découverte de Fourier bouleversait complètement les notions acquises; 
jusque là, on avait cru, avec Euler, qu'à une expression analytique déterminée 
correspondait toujours une courbe dont les portions successives dépendaient mutu­
ellement les unes des autres: c'est pour exprimer cette interdépendance qu'Euler 
avait créé l'expression de fonction continue) le sens de cette expression a été 
entièrement modifié depuis. C'est aussi sous l'influence des mêmes idées que 
Lagrange, dans sa Théorie des fonctions analytiques, avait cherché à démontrer que 
toute fonction continue peut être développée en série de Taylor; ce développement 
en série aurait été la forme tangible de la liaison jusque là un peu mystérieuse 
entre les diverses portions d'une courbe continue; la connaissance d'un petit arc 
aurait ainsi permis de connaître toute la courbe; mais Fourier prouvait précisé­
ment que c'était là un problème illusoire et impossible, puisque le physicien qui 
trace une courbe arbitraire reste à chaque instant libre d'en modifier l'allure à sa 
guise; la courbe une fois tracée, il est toujours possible de la représenter par 
une expression analytique unique. 
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On était ainsi conduit à ce résultat paradoxal qu'il ne subsistait aucune 
raison logique pour regarder deux segments de la même droite ou deux arcs d'un 
même cercle comme correspondant à la même fonction, puisqu'il était tout aussi 
loisible de regarder comme une fonction unique l'ordonnée de la courbe continue 
formée par deux droites différentes ou par deux arcs appartenant à des cercles 
différents. Tout au plus aurait-on pu dire que, dans le cas de deux segments 
d'une même droite, la formule est plus simple que dans le cas de deux segments 
de droites différentes, mais ce criterium de simplicité ne semblait pas pouvoir 
être rendu bien précis, à moins que l'on ne se bornât aux fonctions algébriques, 
ce qui eut été exclure les développements en séries dont l'utilité apparaissait 
cependant chaque jour davantage. 

II . La théorie de Cauchy. 

Le paradoxe fut éclairci par l'extension du champ d'étude des fonctions ; 
Cauchy montra que les propriétés des fonctions réelles les plus simples ne peuvent 
être bien connues que si l'on étudie aussi ces fonctions pour les valeurs imagi­
naires de la variable ; la notion de fonction de variable complexe s'impose comme 
un auxiliaire indispensable. Cauchy basa cette notion sur la définition de la 
monogénéité ; une fonction de la variable complexe z — x + iy est dite monogène 
si elle .'• admet une dérivée unique. Si une fonction est monogène en tous les 
points d'une région, sans aucune exception, c'est à dire si elle n'admet en cette 
région aucun point singulier, elle peut être développée en série de Taylor au 
voisinage d'un point quelconque de cette région ; le rayon de convergence de la 
série de Taylor est d'ailleurs égal à la distance du centre du cercle de conver­
gence au point singulier le plus voisin. C'est de ce théorème fondamental que 
Cauchy déduit le calcul des intégrales des équations différentielles suivant un 
chemin quelconque dans le plan, au moyen de séries de Taylor successives. 

La théorie de Cauchy a été systématisée par Weierstrass et par Riemann. 
Weierstrass définit d'une manière tout à fait précise la fonction analytique au 
moyen d'un ensemble d'éléments ou développements de Taylor se prolongeant 
mutuellement ; il est arrivé ainsi à la notion de domaine d'existence naturel, 
notion renfermée implicitement dans Cauchy, mais non explicitée par lui. Riemann 
a conçu la fonction monogène indépendamment de toute expression analytique a 
priori et a montré tout le parti que l'on pouvait tirer de cette conception géo­
métrique. 

En réalité, les points de vue analytique de Weierstrass et géométrique de 
Riemann trouvent leur synthèse la plus parfaite dans le théorème fondamental 
Cauchy: la monogénéité dans un cercle entraîne l'existence d'un développement 
de Taylor convergent dans ce cercle. C'est ce théorème qui rend si féconde la 
théorie des fonctions d'une variable complexe, il établit une liaison nécessaire 
entre les valeurs d'une même fonction comme simple conséquence de la mono­
généité : il suffit donc de savoir qu'une fonction est monogène à l'intérieur d'un 
cercle pour que sa valeur en un point quelconque intérieur à ce cercle soit 
déterminée par la connaissance de ses valeurs au voisinage d'un autre point. In­
sistons un peu sur les théories de Cauchy-Weierstrass et de Cauchy-Riemann. 
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III . Les limites de la théorie de Gauchy-Weierstrass. 

La théorie du prolongement analytique était renfermée dans les travaux de 
Cauchy; mais c'est à Weierstrass que l'on doit d'avoir précisé d'une manière 
absolument nette les limites de cette théorie. Bornons nous aux fonctions uni­
formes. La théorie de Weierstrass conduit à considérer des domaines que nous 
appellerons domaines weierstrassiens ou domaines W et qui sont caractérisés par 
les propriétés suivantes. Appelons cercle Y tout cercle tel que tous les points 
intérieurs à Y appartiennent à W. Tout point A de W est intérieur à un cercle 
Y; les cercles Y correspondant à deux points A et B de W peuvent être réunis 
par un nombre fini de cercles Y deux à deux sécants. A toute fonction analy­
tique uniforme correspond un domaine W; inversement, M. Runge a montré qu'à 
tout domaine W correspondent une infinité de fonctions analytiques uniformes, 
admettant précisément W comme domaine d'existence. 

Si l'on admet qu'il n'y a pas d'autre procédé de prolongement que le pro­
longement analytique au moyen de la série de Taylor, la frontière du domaine W 
est une limite naturelle d'existence pour la fonction analytique, et les portions du 
plan, s'il en existe, qui n'appartiennent pas à W doivent être considérées comme 
un espace lacunaire dans lequel la fonction ne peut pas être définie. C'est là un 
point sur lequel Weierstrass a insisté à diverses reprises et qui a été mis en 
évidence de la manière la plus nette par M. Henri Poincaré. Considérons un 
domaine D de forme simple, tel que l'intérieur d'un cercle, et définissons une 
fonction F(z) admettant D comme espace lacunaire et une autre fonction F1(z) 
définie seulement à l'intérieur de D et admettant par conséquent tout le reste 
du plan comme espace lacunaire. Divisons le contour de D en deux arcs A et B. 
M. Poincaré démontre qu'il est possible de trouver deux fonctions uniformes <I> 
et <!>! existant dans tout le plan, à l'exception de la ligne singulière A pour <î> 
et de la ligne B pour <&1} et cela de telle sorte que 

<£ + <J>X = F à l'extérieur de D, 

<$> + cf), = F1 à l'intérieur de D. 

Si donc les fonctions <1> et <i>1 sont regardées comme uniformes, la fonction F 
admet comme prolongement Fx qui a été choisie d'une manière entièrement arbi­
traire; c'est donc que Ton doit écarter toute idée de prolongement à l'intérieur 
de l'espace lacunaire. 

Ce paradoxe apparent s'éclaircit si l'on observe que, lorsqu'une fonction telle 
que <& (z) possède une ligne singulière A, supposée infranchissable, cette fonction 
reste uniforme au sens de Weierstrass lorsqu'on lui ajoute une fonction non uni-

z — a 
forme telle que log 7, a et 6 étant deux points de la ligne A. Le résultat 

remarquable dû à M. Poincaré peut donc être interprété par l'hypothèse que ^(z) 
et <I>i(2) ne sont pas véritablement uniformes: mais pour que cette hypothèse ait 
un sens, il est nécessaire de généraliser la définition du prolongement, de manière 
à pouvoir franchir en certains cas des coupures infranchissables au sens de Weier­
strass; nous verrons tout à l'heure comment ce résultat peut être atteint. 
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IV. La théorie de Cauchy-Riemann. 

Mais je voudrais auparavant dire quelques mots des idées de Riemann, bien 
que ce soit surtout dans l'étude des fonctions non uniformes, dont je n'ai pas à 
parler aujourd'hui, que la théorie de Riemann s'est montrée féconde. 

Cauchy avait insisté à diverses reprises sur l'importance de la monogénéité. 
Si l'on considère une fonction élémentaire obtenue par un calcul simple effectué 
sur z (polynômes en z, séries toujours convergentes en z représentant la fonction 
exponentielle, les fonctions circulaires etc.) et si, pour une telle fonction F (z), on 
calcule le rapport 

F(z+&z)-F(z) 
Az 

ce rapport tend vers une limite bien déterminée lorsque Az tend vers zéro, quelle 
que soit la manière dont varie son argument. Cauchy exprime ce fait important 
en disant que la fonction est monogène. 

Si Ton pose 
F(z) = P(x,y) + iQ(x,y), 

la condition de monogénéité se traduit par les deux équations fondamentales 

dP=dQ 
dx dy ' 

dP^^dQ 
dy dx ' 

Cauchy a montré que ces équations, lorsqu'elles sont vérifiées en une région 
du plan, entraînent l'existence de la série de Taylor, c'est à dire de ce que l'on 
peut appeler l'analyticité au sens de Weierstrass. La démonstration de Cauchy 
suppose la continuité de la dérivée ; M. Goursat, dans un travail bien connu, a 
montré que l'existence de la dérivée première suffit, et entraîne par suite la con­
tinuité et l'existence de toutes lés dérivées; M. Paul Montel, suivant une voie 
ouverte par M. Painlevé, a étendu ce résultat aux cas où l'existence de la dérivée 
n'est pas supposée en certains ensembles de points. L'exposition de ces recherches 
est en dehors de mon cadre ; je tenais cependant à les mentionner, car leurs résultats 
sont en quelque sorte complémentaires de ceux que j'exposerai plus loin. Ce qu'il 
nous suffit de retenir, c'est que, dans les domaines W, les fonctions monogènes 
sont analytiques; c'est pour ce motif que l'expression fonction monogène a cessé 
d'être employée par certains géomètres, l'expression fonction analytique étant 
considérée comme équivalente; comme notre but est précisément de définir des 
fonctions monogènes qui ne sont pas analytiques, il importait de distinguer nette­
ment entre les deux expressions. 

Il est difficile de se rendre compte si Cauchy conçut l'existence d'une fonction 
monogène d'une manière indépendante de toute expression analytique. En fait, il 
raisonna toujours sur des fonctions qui étaient définies, implicitement ou explicite­
ment, à partir de fonctions connues, par des équations différentielles ou aux dérivées 
partielles ; mais ses raisonnements s'appliquent sans modification à la fonction définie 
d'une manière purement idéale comme une correspondance entre z et F(z). Cette 
conception fut celle de Riemann, et a certainement rendu de grands services, tant 
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dans le champ des variables réelles que dans le champ des variables complexes, en 
accoutumant les mathématiciens à des raisonnements très généraux, raisonnements 
faits une fois pour toutes et susceptibles d'applications à des cas qui n'étaient pas 
prévus au moment où on faisait le raisonnement. Je dois avouer toutefois que je 
n'aperçois pas une différence réelle entre le point de vue de Cauchy et celui de 
Riemann ; en fait, pour appliquer les considérations du genre de celles de Riemann à 
une fonction déterminée, il faut que cette fonction soit définie, c'est à dire puisse être 
distinguée des autres fonctions ; et si cette définition est effective, elle rentre dans la 
catégorie de celles qu'eut admises Cauchy. Mais je ne veux pas développer ce point, 
qui se rattache aux controverses relatives à l'axiome de Zermelo : le point de vue de 
Riemann est certainement légitime, quelque attitude que l'on adopte dans cette con­
troverse ; pour ceux qui exigent une définition précise, il dispense de penser à tous 
les procédés de définition qui pourront être imaginés ; pour ceux à qui la définition 
idéale suffit, il permet de traiter idéalement même les fonctions qui ne seront jamais 
définies pratiquement. 

C'est à l'aide du théorème fondamental de Cauchy 

2iri J c z — Ç 

que l'on démontre que la monogénéité dans un domaine W entraîne l'analyticité dans 
ce domaine. C'est aussi à ce théorème que l'on devra avoir recours pour étudier les 
fonctions monogènes dans un domaine qui n'est pas W; il sera commode, pour 
raisonner dune manière générale sur tous les procédés de définition possibles de ces 
fonctions, de les considérer comme définies à la manière de Riemann, c'est à dire en 
admettant que l'on ne sait rien sur une telle fonction, sinon qu'elle est monogène. Il 
faudra d'ailleurs montrer que la théorie ainsi construite n'est pas vide, en fournissant 
des exemples effectifs de fonctions définies d'une manière, non plus idéale, mais ex­
plicite. Pour plus de clarté nous donnerons d'abord ces exemples avant de développer 
la théorie générale. 

V. Les domaines de Cauchy. 

J'ai proposé d'appeler domaines de Cauchy, ou domaines C, les domaines les plus 
généraux dans lesquels peut être définie une fonction monogène uniforme, cette 
définition étant assujettie à la condition essentielle suivante : La connaissance de la 
fonction dans une portion de C détermine la fonction dans tout C. Les domaines C 
comprennent comme cas particulier les domaines W ; il faudra en outre, en même 
temps que les domaines C, définir un mode de prolongement ; ce prolongement devra 
coïncider avec le prolongement analytique lorsque le domaine C sera un domaine W. 

Je voudrais indiquer tout d'abord un exemple aussi simple que possible de 
domaine C et de fonction monogène dans ce domaine. Formons la série 

oo n n p~e 

/ (*) = 2 S S . •• 
n=ip=oq=o„ p-rqi z — — 

n 
Il est clair que cette série est convergente à l'extérieur du carré A dont les sommets 
sont les points z = 0, 1, i, l+i. A l'intérieur de ce carré, la série admet une infinité 
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de pôles, à savoir tous les points dont les coordonnées sont des nombres rationnels 

x — -, y = ~ o Mais il est aisé de voir que si l'on considère les cercles ayant pour 

centres ces pôles et pour rayons —, la série est absolument et uniformément conver­

gente en tous les points extérieurs à ces cercles, quelque soit le nombre fixe e. Il en 

est de même si l'on considère les cercles ayant pour centres les points - , - , et pour 

1 —pn2 

rayons ~r e , h étant un nombre entier fixe que nous nous réservons de faire croître 

indéfiniment. J'appellerai Yh l'ensemble de ces derniers cercles et Ch l'ensemble des 
points qui ne sont intérieurs à aucun des cercles Yh. On remarque que, pour 
simplifier, je désigne tous les cercles par Yh au lieu d'écrire Yh

{n). Les propriétés 
élémentaires des nombres quadratiques permettent de prouver très aisément que 
toute droite telle que la suivante, 

2x+3y-*JÏ=0, 

appartient à Ch pour une valeur finie de h. 

La fonction f(z) est évidemment monogène dans le domaine Ch ; elle admet en 
effet en chaque point de ce domaine une dérivée unique bien déterminée, que l'on 
obtient en dérivant la série terme à terme. La valeur de cette dérivée est indé­
pendante de la manière dont l'accroissement Az tend vers zéro, sous la réserve bien 
entendu que z et z + Az soient intérieurs à Ch. 

Nous emploierons la même notation dans la définition générale des domaines C ; 
ces domaines seront obtenus en retranchant d'une région du plan, telle que l'intérieur 
d'un cercle ou d'un carré, une infinité de domaines analogues aux cercles Yh et que 
nous appellerons domaines d'exclusion. Ces domaines d'exclusion forment une série 
qui doit être supposée très rapidement convergente; je n'entre pas ici dans le détail 
de ces conditions de convergence. A chaque entier h on fera correspondre une suite 
illimitée de domaines Yh, dont les aires forment une série très convergente de somme 
crh ; les points qui ne sont intérieurs à aucun des Yh forment le domaine Ch ; lorsque h 
augmente on admettra que chaque Yh+1 est intérieur au domaine Yh correspondant 
et que crh tend vers zéro (je laisse de côté le cas où ah aurait une limite différente 
de zéro), et l'on désignera par C la limite des domaines Ch pour h infini. Chaque 
domaine Ch sera dit intérieur au domaine C. Les domaines Ch seront en général 
parfaits, tandis que le domaine C n'est pas parfait. Il est nécessaire d'observer qu'au 
sens du mot intérieur adopté dans la théorie des domaines W, il n'y a pas de points 
intérieurs à C dans une région où les domaines d'exclusion sont partout denses. 
Nous donnons donc au mot intérieur un sens différent, défini par ce qui précède. 

L'étude des fonctions monogènes dans un domaine tel que C se fait aisément par 
l'extension, au contour qui limite un domaine parfait convenablement choisi Ch, du 
théorème fondamental de Cauchy que nous rappelions tout à l'heure ; mais, bien que 
ne présentant aucune difficulté réelle, l'exposition de cette méthode est trop longue 
pour que je puisse la donner ici; je préfère insister davantage, d'une part sur l'ex­
tension de la notion de prolongement, et d'autre part sur la définition des fonctions 
monogènes au moyen d'intégrales doubles. 
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VI. Le prolongement par les séries divergentes. 

Nous venons de voir que les fonctions monogènes non analytiques se présentent 
naturellement comme sommes de séries dont les termes sont des fonctions analytiques. 
Il est donc naturel de chercher un mode de prolongement associatif applicable à de 
telles sommes. Le problème ainsi posé n'est autre que le problème des séries diver­
gentes : à toute fonction analytique correspond un développement de Taylor convergent 
dans un cercle, mais divergent en dehors de ce cercle ; ce développement est déterminé 
par la connaissance de la valeur des dérivées. Si une série de fonctions analytiques 
est indéfiniment derivable, ses dérivées s'expriment linéairement au moyen des dérivées 
des termes, et la série de Taylor qui correspond à ces dérivées est une fonction linéaire 
des séries de Taylor correspondant aux divers termes de la série. Mais si la fonction 
n'est pas analytique au point où on la développe en série, cette série de Taylor sera la 
somme de séries dont les rayons de convergence décroissent indéfiniment et, dans les 
cas que nous étudions, aura un rayon de convergence nul. Le problème des séries 
divergentes consiste à transformer une telle série en série convergente, de telle 
manière que le résultat coïncide avec le prolongement analytique dans les cas ou ce 
prolongement est possible. C'est grâce aux beaux travaux de M. Mittag Leffler que 
ce problème a pu être résolu pour la première fois d'une manière entièrement satis­
faisante; ces travaux et leurs relations avec les recherches antérieures ont été 
magistralement exposés par M. Mittag Leffler dans sa conférence du Congrès de 
Rome et je n'ai pas à y revenir. Je dois cependant observer que, si l'on veut utiliser 
ces résultats pour le prolongement des fonctions monogènes non analytiques, il est 
nécessaire de les interpréter, soit dans le langage des séries divergentes comme je l'ai 
proposé, soit dans un langage équivalent si l'on préfère ne pas parler de séries 
divergentes ; mais en tous cas dans un langage nouveau, spécialement approprié à la 
nouveauté réelle des résultats, et non pas dans le langage ancien du prolongement 
analytique de Weierstrass; c'est là le seul langage qu'il ne soit pas permis d'employer, 
car il a un sens absolument précis, qui ne peut être modifié: la théorie de Weierstrass 
est, en quelque manière, tellement parfaite qu'on ne peut en sortir qu'en créant un 
langage nouveau ; si, comme le proposait M. Mittag Leffler, l'on adoptait le langage 
de Weierstrass, la théorie des séries de M. Mittag Leffler serait un simple mode de 
calcul simplifié, ne renfermant rien de plus au point de vue théorique que la théorie 
de Weierstrass. 

Je rappelle comment les résultats fondamentaux de M. Mittag Leffler peuvent 
être interprétés dans le langage des séries divergentes. 

Appelons sommation (M) d'une série de puissances divergente l'opération qui 
consiste à transformer cette série en une certaine série de polynômes, dont M. Mittag 
Leffler a donné l'expression, expression qui est linéaire par rapport aux coefficients de 
la série donnée. Dans une région où cette série de polynômes est absolument et 
uniformément convergente la série donnée sera dite sommable (M). Il est clair que 
la sommation (M) est une opération distributive. 

Cela posé, considérons une série de fonctions analytiques, dont chaque terme 
admet un seul point singulier, l'ensemble de ces points singuliers étant dense dans 
une certaine aire. Sous des conditions de rapidité de convergence analogues à celles 
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dont on a déjà parlé et à celles dont il sera question plus loin, on peut tracer dans la 
région où les points singuliers sont denses une infinité de droites, dites droites de 
convergence, telles que, en chaque point de chacune de ces droites, on puisse former la 
série de Taylor, qui est divergente, mais sommable (M) sur les droites de convergence 
qui passent par ce point, et qui représente la fonction sur ces droites. On peut ainsi, 
les droites de convergence formant un ensemble de droites partout dense (ensemble 
dont le corrélatif est partout dense), arriver aussi près que l'on veut de tout point 
du domaine d'existence de la fonction monogène définie par la série. Il résulte 
manifestement de la formation même des séries (M) que si la fonction est nulle en un 
point, ainsi que toutes ses dérivées, elle est nulle dans tout le domaine d'existence. 

Ces résultats sont déjà anciens; ils ne constituaient pas une théorie entièrement 
satisfaisante des fonctions monogènes non analytiques, parce qu'ils étaient établis 
seulement pour des fonctions définies par des séries d'une forme déterminée; il restait 
à prouver qu'il n'était pas possible de définir autrement d'autres fonctions monogènes 
coïncidant avec les premières dans une partie seulement du domaine commun 
d'existence, mais différentes dans d'autres parties de ce domaine. Bien évidem­
ment, ce résultat fondamental ne pouvait être obtenu qu'en imposant à ce domaine 
certaines conditions, conditions comprenant comme cas particulier la définition des 
domaines W, mais plus larges. En d'autres termes, la définition des fonctions 
monogènes uniformes doit comprendre comme cas particulier la définition des 
fonctions analytiques. 

L'étude de la question à ce point de vue exige une étude préalable de la 
classification des ensembles de mesure nulle, étude suivie de l'emploi de l'intégrale 
de Cauchy, comme je l'indiquais tout à l'heure. Je vais esquisser, en terminant, 
une méthode différente, dans laquelle on n'a à utiliser que des fonctions partout 
continues et bornées, ce qui évite beaucoup de difficultés formelles. 

VII. Les intégrales doubles analogues à l'intégrale de Cauchy. 

Considérons une fonction analytique uniforme, régulière et nulle à l'infini. Si 
C est un cercle tel que tous les points singuliers de la fonction soient intérieurs 
à C, on a, £ étant un point quelconque extérieur à C, 

JKÇ) 2iTr)c Ç-z > 

l'intégration étant effectuée dans le sens direct. 

Soient C1 et C2 deux cercles concentriques extérieurs à O, a le centre de ces 
cercles, rY et r2 leurs rayons. On a évidemment, r étant compris entre rx et r2, 

f2îr/ (a + reie) reiô d6 1 Ç' 

o £ - a - re( ào 

Multiplions cette égalité par (r2 — r)m (r — r^f1 et intégrons entre les limites rx 

et r2 ; il vient 

*<*\ [r% / \m ( \nj 1 [2lT [r*f (a + reiB) (r2 - r)m (r - r,)n eid rdrdO 

Çr% 1 
Posons I (r2 — r)m (r — rx)n dr = - — , 

J rx ^7T Aïïl}n 

a + reid = x + iy, 
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d'où : rdrdO = dxdy, 

il viendra / ( £ ) = l( ^ r t « + fr) ( * - ^ ( r - r j » *<to<fr 

ce que l'on peut écrire, en posant Ç=% + ir), 

le domaine d'intégration étant la couronne comprise entre les cercles C1 et C2. 

Nous définirons la fonction <£ (x, y) à l'extérieur de cette couronne en lui 
attribuant la valeur zéro; on peut alors prendre comme domaine d'intégration 
tout le plan. La fonction <£ (x, y) est bornée et continue dans tout le plan ; ses 
dérivées sont aussi bornées, du moins jusqu'à l'ordre m sur C1 et jusqu'à l'ordre n 
sur (72; par un artifice analogue à celui que nous allons employer, il serait aisé 
de. s'arranger pour que toutes les dérivées soient continues; il suffit généralement 
de savoir que les dérivées sont continues jusqu'à un ordre fixé d'avance. 

Si la fonction f(z) admet un seul point singulier a, on peut faire tendre rx 

vers zéro et si, de plus, le produit rmf(z) reste fini pour z = a, la formule subsiste 
pour r-j = 0 ; si ce produit ne restait pas fini, on remplacerait dans la formule (r — r^)m 

* 
par e r ou par e~~e , etc. De plus, dans le cas d'un point singulier unique, le 
cercle C2 peut être pris de rayon aussi petit que Ton veut, après que le cercle Cx 

a été réduit à zéro. 

On déduit aisément de là que toute fonction analytique, uniforme, régulière 
et nulle à l'infini peut être représentée, en tout domaine D intérieur à son domaine 
d'existence W, et aussi voisin que l'on veut de W, par une expression de la forme 

^--^<x:m^k <» £ + in — x — iy 
la fonction </> (x, y) étant bornée et, de plus, nulle en tous les points de D (cette 
hypothèse entraîne que la fonction (j) (x, y) est nulle à l'infini, puisque le point à l'infini 
appartient à D). 

Inversement, toute expression de la forme (1) dans laquelle <£> (x, y) est une 
fonction bornée, nulle à l'infini, continue dans tout le plan, ainsi que ses dérivées 
(au moins jusqu'à l'ordre m) représente une fonction qui est monogène en tout point 
où (f) (x, y) est nul ; car on a, par un calcul facile, 

Si les points où $(x,y) est nul forment un domaine W, la théorie des fonctions 
analytiques nous apprend que la fonction 6 (f, n) est déterminée en tout point 
de W par la connaissance de ses valeurs au voisinage d'un point particulier quel­
conque de W. Le problème de la détermination générale du domaine d'existence 
des fonctions monogènes peut donc être posé comme il suit: déterminer les con­
ditions auxquelles- doit satisfaire cj> (x, y) pour que cette propriété fondamentale de 
6 (£, rj) subsiste, c'est à dire pour que la connaissance de cette fonction sur un arc 
de courbe où elle est monogène permette de calculer sa valeur dans tout son domaine 
de monogénéité. 
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Avant d'aborder le problème dans sa généralité, revenons pendant quelques 
instants sur les séries de fractions rationnelles que nous avons considérées. On a, 
en désignant par (70 un cercle de centre z0 et de rayon p, en supposant f extérieur à ce 
cercle, et posant j z — z01 = r, 

1 _ f f 8(/9 — r) dxdy 
'-Zo~~ JJ C Ç-Zo JJc0 Trp* Ç-Z* 

Lorsque le point f est intérieur au cercle C0, l'intégrale se calcule aisément ; si l'on 
' I K — Zo I 

pose = X, sa valeur est 
,. I P I 

(3V-2\ 8 ) - 1 Ç-z0' 

La fonction 0. (f,„) = f f ^ f i _ ^ L 
JJc0 7T/>3 Ç+iv-x-iy 

est donc bornée dans tout le plan ; à l'extérieur de C0 elle est monogène et coïncide 

avec la fonction analytique y-.—. On peut évidemment définir d'une manière 
b ~ Z0 

analogue une infinité de fonctions 6n(%, 77), telles que l'égalité 

ait lieu pour tout point Ç= C + irj extérieur au cercle Gn de centre an et de rayon pn, 
ces fonctions étant de plus bornées et continues dans tout le plan; si les \an\ sont 
bornés et si les coefficients An sont tels que la série 

1-4 1 

Pn 

soit convergente, la série 

sera absolument et uniformément convergente dans tout le plan, et représentée par 
une intégrale de la forme 

^f.^.r-r-.ii^i^^L (2), 
J _oo J -oo Ç 4- irj — x — %y 

la fonc t ionnas / ) étant la somme d'une série partout convergente, dont les termes 
respectifs sont nuls à l'extérieur des divers cercles Cn; cette fonction (j>(x,y) est 
donc nulle en tous les points extérieurs à tous ces cercles et la fonction 6 (£, n) 
est monogène en ces points. Si les rayons pn sont remplacés par epn, e étant aussi 
petit qu'on veut, la fonction $(x,y) est nulle dans une région de plus en plus 
étendue; elle reste bornée, mais sa borne augmente indéfiniment lorsque e tend 
vers zéro. On est ainsi conduit à considérer a priori une intégrale telle que (2), 
et à l'étudier dans les régions où <j>(x9y)est nul. Il faut évidemment partir d'une 
région C d'un seul tenant ; nous nous bornerons au cas où cette région C se compose 
de domaines W (ces domaines pouvant comme cas limite se réduire à zéro) et d'un 
nombre fini ou d'une infinité de droites A, de telle manière que deux points quel­
conques puissent être réunis par une ligne polygonale d'un nombre fini de côtés. 

Une notion importante est celle de l'ordre d'infinitude de la fonction §(x,y) 
au voisinage des droites À. J'ai pu démontrer la convergence des développe­
ments (M) en faisant l'hypothèse que cette fonction $(x,y) non seulement est 
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nulle sur les droites A (ce qui est la condition indispensable de monogénéité), mais 
tend très rapidement vers zéro dans le voisinage de chaque droite. Plus précisément, 
er désignant la distance du point (x, y) à la droite A considérée, on suppose que le 
produit 

. i_ 

ee i>(oo,y) 
tend uniformément vers zéro lorsque er tend vers zéro. Moyennant cette hypothèse, 
on peut affirmer que la fonction d (f, n) est déterminée dans tout son domaine 
d'existence par la connaissance de ses valeurs en un point quelconque de ce domaine. 
Cette hypothèse comprend comme cas particulier la condition vérifiée par les fonctions 
analytiques dans les domaines W, car si une droite est intérieure à un domaine W, la 
fonction </> (x, y) est identiquement nulle en tous les points dont la distance à la droite 
est inférieure à un nombre a convenablement choisi. 

Le domaine G peut se réduire à l'axe réel ; tel est le cas pour la fonction 

e <H.„/_ 
eV dxdy 

(x2 + y2) (£ — x — iy) ' 

Le développement de Taylor 

* (?) = * (fi>) + (Ç^ f.) 0'(f.) + 
diverge quelque soit £0, mais est, quelque soit £0, sommable (M) pour toute valeur 
de £, sa somme étant bien égale à la fonction 6 (£). 

VIII. Les propriétés des fonctions monogènes. 

Les fonctions monogènes non analytiques possèdent les propriétés les plus 
importantes des fonctions analytiques ; en particulier, pour les domaines C que 
j 'ai considérés jusqu'ici, l'existence de la dérivée première entraîne l'existence des 
dérivées de tous les ordres. Il n'est pas absolument évident que cette condition 
doive être nécessairement imposée aux généralisations ultérieures de la théorie: 
il est aisé de construire des fonctions monogènes dans certains domaines H, ces 
fonctions n'admettant pas de dérivées au delà du premier ordre ; ces domaines H 
ne sont pas des domaines de Cauchy, au sens que nous avons donné à ce terme ; 
pourront-ils être regardés comme tels grâce à une extension nouvelle de la théorie ? 
c'est un point que je dois laisser en suspens. 

Les calculs sur les intégrales doubles de la forme que nous avons considérée 
conduisent aisément à des expressions de même forme; il en est ainsi pour la 
dérivation, comme on le voit en transformant l'intégrale double au moyen de 
l'intégration par parties ; il est seulement nécessaire de supposer l'existence des 
dérivées de la fonction <f>(x,y) précisément jusqu'à l'ordre des dérivées de 6(^,n) 
que l'on veut calculer. Pour calculer le produit on remarque que, si l'on pose : 
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il vient, les limites étant toujours — oo et -f co, 

e (f, v) o, (f,,) = //// tS^AM^^^fiÉMi. 

or, on a 

si donc on pose : >fr(x,y) = il 
j>(x1,y1)dxldyl 

z — zx 

_ [[$i(xi,yi)dx1dy1 

z — zx 

on obtient : 0 (f, „) 0, (f, ,,) = f [ O W ^ ^ ^ . 

Il est donc aisé de mettre sous la forme d'une intégrale double tout polynôme P 
par rapport à une ou plusieurs fonctions 0 (f, rj) et leurs dérivées ; si les domaines 
d'existence que nous avons définis ont des parties communes d'un seul tenant 
l'équation différentielle obtenue en égalant P à zéro ne peut être vérifiée en une 
portion de ce domaine sans être vérifiée partout. 

IX. Conclusion. 

Je dois m'excuser d'avoir été à la fois long et incomplet: le sujet que j'avais 
choisi était peut-être trop vaste pour une conférence. Je voudrais cependant dire 
au moins quelques mots des analogies, depuis longtemps remarquées, entre la théorie 
des fonctions d'une variable complexe et la théorie du potentiel. La transformation 
de l'intégrale de Cauchy en intégrale double correspond à l'hypothèse, physiquement 
assez naturelle, qu'il n'y a pas de masses infinies mais seulement des régions singu­
lières dans lesquelles la densité peut être très élevée, ou, si l'on préfère, des "sphères" 
d'action finies attachées à chaque point singulier. Les fonctions monogènes non 
analytiques correspondent au cas où ces régions singulières sont à la fois extrêmement 
petites et extrêmement nombreuses. J'ai déjà fait observer, il y a longtemps, qu'avec 
certaines dispositions arithmétiquement simples de telles régions singulières, les 
lignes de continuité qui passent à côté de ces régions sans y pénétrer peuvent 
être telles que leurs propriétés soient liées très intimement avec la simplicité 
numérique de leurs coefficients de direction. Je ne sais si quelque analyste plus 
habile que moi tirera un jour de ces considérations un peu vagues des conséquences 
dignes d'intérêt pour les physiciens ; mais il ne m'était pas possible de passer sous 
silence le fait que j 'ai été souvent guidé par les analogies de la nouvelle théorie avec 
les théories de physique moléculaire aux progrès desquelles on a si puissamment 
contribué dans cette ville et dans ce pays. 



THE PLACE OF MATHEMATICS IN ENGINEERING 
PRACTICE 

BY SIR W. H. WHITE. 

The foundations of modern engineering have been laid on mathematical and 
physical science; the practice of engineering is now governed by scientific methods 
applied to the analyses of experience and the results of experimental research. The 
Charter of the Institution of Civil Engineers defines engineering as the "ar t of 
directing the great sources of power in Nature for the use and convenience of man." 
Obviously such direction can only be accomplished by engineers who possess an 
adequate acquaintance with " natural knowledge "—with the laws which govern these 
great sources of power. Obedience to natural laws is a condition essential to the full 
utilisation of the great sources of power. I t is true, no doubt, that notable achieve­
ments in engineering were accomplished during the last century by men whose 
education was imperfect, whose mathematical and scientific knowledge was small, 
whose appeal to past experience gave little assistance in the solution of new problems. 
Their successors now enjoy greatly superior educational advantages; they can profit 
by enormous advances made in all departments of science and manufacture ; they can 
study and criticise works done by their predecessors in the light of long subsequent 
experience; but even now there is room for surprise, if not for wonder, when one 
realises the great success attained by these early engineers. 

The advantages obtainable by the combination of scientific training with practical 
experience are, however, in no way depreciated because, through force of circum­
stances, the pioneers of engineering had to do their work as best they could. Not a 
few of these men recognised the serious disadvantages resulting from their lack of 
scientific training and gave valuable assistance to a movement which ultimately led 
to the existing methods of training. George Stephenson, for example, who grew to 
full manhood practically uneducated, took care to secure for his son Robert Stephen­
son the advantages of a good elementary education which was followed by a period of 
practical training and then by a course of scientific study at Edinburgh University. 
The careers of both father and son were greatly influenced by this action, and it is of 
interest to note that the scheme which Stephenson framed and carried out for the 
professional training of his son—including the alternation of scholastic and engineer­
ing work—was, in its essential features, identical with -that recommended in the 
Report of a representative Committee of British Engineers over which I had the 
honour to preside eight years ago. That Report has been approved by the leading 
Engineering Institutions of the united Kingdom and is now largely influencing the 
education of engineers. 

M.C. 10 
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The fundamental idea underlying the accepted system of training engineers 
consists in the combination of an adequate knowledge of the sciences which bear 
upon engineering with a thorough practical training on actual engineering works. 
No man is now entitled to admission as a Corporate Member of the Institution of 
Civil Engineers unless and until he has given proof of the possession of both these 
qualifications. Neither kind of training standing alone, or when developed dispro­
portionately, can be regarded as satisfactory, or as meeting the needs of engineering 
practice. Formerly undue prominence was given to practical training and experi­
ence; while the facilities for scientific training were at first non-existent and for 
a long period were inadequate. Then came a better appreciation of scientific method 
and a great development of technical education, departments being established for 
the teaching of engineering science in Universities and University Colleges. The 
utilisation of these opportunities for instruction by considerable numbers of young 
men not unnaturally brought about a swing of the pendulum which went beyond 
reasonable limits. For a time there was a tendency to exalt unduly scientific 
education, and to depreciate the value of practical training. The hard pressure of 
experience has done much to adjust that disproportion. University graduates when 
they enter upon actual work soon discover that degrees in engineering, valuable as 
they undoubtedly are, require to be supplemented by thorough practical training. 
On the other hand, men who begin their engineering careers as pupils or assistants to 
practising engineers or as members of engineering office-staffs, become convinced that 
their limit of possible attainment must be low, unless scientific knowledge is added 
to practical experience. Under existing conditions new and difficult problems con­
tinually arise in all branches of engineering practice, and satisfactory solutions can 
only be found by bringing to bear upon these problems all the resources furnished by 
natural knowledge, accumulated experience and experimental research. 

The full equipment of an engineer must include knowledge of other sciences 
besides the mathematical, but our present concern is exclusively with the latter. An 
adequate knowledge of mathematics must be possessed by every educated engineer, 
because he thus acquires valuable tools, by the use of which he can overcome diffi­
culties that would otherwise be insuperable, as well as habits of thought and methods 
of rigorous investigation which are invaluable when he has to deal with novel and 
difficult undertakings. Apart from the employment of mathematics it would not be 
possible for the engineer to carry out designs and construction of engineering works, 
of structures and machines, capable of fulfilling their intended purposes and possessing 
both sufficient strength and durability. The days of blind reliance upon engineering 
formulae and " rules of thumb " are over. Syllabuses of instruction for the guidance 
of engineering students, standards established for degrees and diplomas in engineer­
ing science, conditions laid down as necessary qualifications for membership of great 
Engineering Societies, all furnish full recognition of the fact that an adequate 
knowledge of mathematics is essential to the successful practice of engineering. 

I t may be asked what range and character of mathematical knowledge can be 
described as adequate ? Answers to this question are to be found in Calendars of 
Schools of Engineering which set forth detailed courses of study considered necessary 
for the attainment of degrees or diplomas. Identity of conditions does not exist in 
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these Regulations, but a closer approach to uniformity has been reached as greater 
experience has been gained, and it is obviously desirable that further progress should 
be made in that direction. Engineering Degrees ought to be based on a common 
standard and to represent an equal attainment. These degrees, of course, should be 
regarded simply as certificates of knowledge of the fundamentals of engineering 
science ; they do not cover all the mathematical knowledge requisite for the practice 
of particular branches of engineering, and in most branches a greater range of mathe­
matics is necessary. Moreover a degree-course in engineering requires to be supple­
mented in all cases by subsequent practical training and experience, and in many 
cases by advanced or specialised courses of mathematical study going beyond the 
standards associated with degrees. In the settlement of these advanced courses the 
needs of each branch of engineering must be determined on the basis of experience ; 
and the subject is one to be dealt with satisfactorily only on the basis of conference 
between practising engineers and mathematicians. The former know the needs which 
must be met : the latter can advise as to the best methods of meeting requirements. 

Differences of opinion have always prevailed, and still exist, in regard to the 
methods by which mathematics should be taught to engineering students. Some 
authorities favour the arrangement of specialised courses of instruction—"mathe­
matics for engineers" or "practical mathematics"—and advocate the creation of 
separate mathematical sections for engineering schools, even when these schools form 
departments of Universities or Institutions which possess well-organised mathematical 
Departments. Other persons, whose opinions are entitled to equal respect, believe 
that purely mathematical instruction is best given to engineering students by 
mathematicians, and that a similar rule should apply to instruction in other branches 
of science ; because that method must lead to a broader view of science and a greater 
capacity for original and independent investigation than can be obtained by special­
ised teaching narrowed down to the known requirements of previous engineering 
practice. Personal experience and observation—as student, teacher and practical 
engineer—lead me to rank myself with the supporters of the latter method of 
teaching mathematics. No doubt, in the actual practice of engineers, there is room 
for "short cuts" and special methods in the use of mathematics; but I am convinced 
that during the period of education it is advantageous to follow ordinary methods of 
teaching and to leave specialisation for the time when the performance of actual 
work will almost inevitably lead each individual to make his choice of the branch of 
engineering to be followed, and of the methods which will best economise his labour 
and time in doing the work of calculation. The trend of professional opinion certainly 
lies in the direction of utilising, as far as possible, existing mathematical departments 
for the instruction of engineers. During the last year the subject has been exhaust­
ively considered by the Governors of the Imperial College of Science and Technology, 
a special Committee having been appointed for that purpose. The Imperial College, 
as is well known, has been formed by bringing together the Royal College of Science, 
the Royal School of Mines, and the Engineering College founded and maintained by 
the City and Guilds of London Institute, The last-mentioned College at the outset 
had to be necessarily self-contained, and had its own Mathematical Department which 
was admirably organised and conducted by Professor Henrici over a very long period. 
The College of Science and Royal School of Mines also included a Department of 
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Mathematics and Mechanics of which Professor Perry has been the distinguished 
Director for many years. Both these Departments have justified their existence and 
done admirable work : but the development of the scheme of the Imperial College 
rendered it necessary to reconsider the subject of future mathematical instruction in 
the College as a whole. Alternatives taken into consideration were (1) the continu­
ance of separate provision for engineering students; (2) the creation of a single 
department to be presided over by a mathematician of distinction, in which engineer­
ing students would receive their fundamental instruction in mathematics. After 
thorough investigation the latter course was preferred and will be carried into effect. 
Its adoption will in no way interfere with the teaching of special applications of 
mathematics as parts of the courses of instruction given by professors of engineering ; 
and no one familiar with the training of engineers would consider such a change 
desirable. 

A second example of the opinion which now prevails respecting the teaching 
of mathematics to engineers may be found in a valuable Paper by Professor Hop-
kinson of Cambridge University, published this year as one of a Series of Special 
Reports to the Board of Education on the teaching of Mathematics in the United 
Kingdom. Professor Hopkinson states that for good reasons, and during a, con­
siderable period after the Engineering Department was established at Cambridge, 
its students with few exceptions " got the whole of their instruction within the 
walls of the Engineering Laboratory," and "had not the full advantage of their 
position as students of Engineering Science in a centre of mathematical learning 
and research." In recent years, however, " the establishment of closer relations 
between the two studies (Mathematics and Engineering) has made great progress, 
and at the present time the students of Engineering get their foundation of Mathe­
matics and of Elementary Mechanics from College Teachers, many of whom have 
graduated in the Mathematical Tripos." 

I t may be interesting to add that in a recent "Summary Report of the Teaching 
of Mathematics in Japan," Mr Fujisawa has discussed the "teaching of mathematics 
in technical education " in a brief but interesting fashion. While advocating the 
" practical " method of instruction, he is careful to explain that the form of utili­
tarianism which he recommends " has the potentiality of manifesting its usefulness 
wherever there is a necessity"—a condition which obviously cannot exist unless 
the engineer is endowed with a good knowledge of the principles and processes 
of mathematics. 

More than seventy years ago, men who had received a mathematical and 
scientific training in the first British School of Naval Architecture, wrote as 
follows in vindication of the necessity for the liberal education of those engaged 
in the designing of ships:—"The study of naval architecture brings early con­
viction to the mind of the constructor that he can trust little or nothing to 
a priori reasoning. He uses the exact sciences it is true, but uses them only as 
a means of tracing the connection between cause and effects, in order to deduce 
principles that may be applied to his future works, with a certainty of producing 
the results he contemplates." This utterance may be applied with equal force 
to the practice of other branches of engineering; and, amongst the exact sciences 
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which play so important a part in successful achievement, mathematics certainly 
hold the first place. The "complete engineer" of the earlier and simpler periods 
can exist no longer under modern conditions. Even the ablest men are driven 
to specialise in practice: but whatever branch of engineering may be selected, 
the worker will need that fundamental training in mathematics to which allusion 
has been made. Few engineers engaged in professional work have opportunities 
of prosecuting mathematical studies systematically, although they are continually 
using mathematical tools provided during their college careers, and not infre­
quently have occasion to add to their mathematical equipment in order to meet 
new demands, or to go beyond precedent and experience. When one considers 
the great responsibilities which practising engineers have to bear, it is not sur­
prising to find that they, as a class, have made comparatively few contributions 
to the advancement of mathematical science, although they have been well trained 
in mathematics and continually apply that knowledge. There are, of course, ex­
ceptions to this rule ; indeed, I have known engineers who turned to mathematics 
as a recreation, but these men are exceptional. Another group whose members 
have done notable work of a mathematical nature have been trained as engineers, 
but have either passed out of practice to an extent which left them ample leisure 
or have become professors of engineering. The names and work of engineers like 
Rankine, Froude and John Hopkinson will always be held in honour by mathe­
maticians as well as by members of the profession which they adorned. The labours 
of many mathematicians who have devoted themselves to the tuition of engineers, 
and after becoming acquainted with the problems of engineering have done splendid 
work in the formulation of mathematical theories on which have been based valuable 
rules of a practical nature, also deserve and always receive the grateful appreciation 
of engineers. But, speaking broadly, there is a real and abiding distinction between 
the engineer, however accomplished he may be in mathematical science, and the 
mathematician however well informed he may be in regard to engineering practice. 
The mathematician necessarily regards engineering chiefly from the scientific point 
of view, and although he may aim at advancing engineering science, he is primarily 
concerned with the bearing of mathematics thereon. The engineer, being charged 
with actual design and construction of efficient and permanent works in the most 
economical manner possible, must put considerations of a practical and utilitarian 
character in the forefront; and while he seeks to utilise the aids which mathe­
matical and physical science can render, his chief aim must always be to achieve 
practical and commercial success. There is obviously room for both classes, and 
their close and friendly collaboration in modern times has produced wonderful 
results. Fortunately the conditions which formerly prevailed have ceased to exist. 
Much less is said about the alleged distinction between pure and applied science, 
or about the comparative untrustworthiness of theory as compared with practical 
experience. Fuller knowledge has led to a better understanding of what is needed 
to secure complete success in carrying out great engineering works on which the 
comfort, safety, economical transport and easy communications of the civilized world 
so largely depend. The true place of mathematics in engineering practice is now 
better understood, and it is recognised to be an important place, although not so 
important as was formerly claimed for it by mathematicians. 
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The character of the change which has taken place in the use of mathematics 
in connection with engineering practice may be illustrated by reference to that 
branch of engineering with which my life-work has been connected. I t is probably 
true to say that no branch of engineering has benefited more from mathematical 
assistance than naval architecture has done, and naval architects undoubtedly re­
quire to have at least as intimate a knowledge of mathematics as any other class 
of engineers. Moreover it was one of the first branches of engineering for which 
the foundation of a mathematical theory was attempted in modern times ; and these 
attempts were made by men who in their day and generation were recognised to be 
in the first rank of mathematicians. The work which they did is now almost for­
gotten, but it laid the foundation for the science of naval architecture as it exists 
to-day. To France belongs the honour of having given most encouragement to 
men of science to attack these problems, and the Academy of Sciences aided the 
movement greatly by offering prizes which brought into the field not a few of 
the ablest European mathematicians during the latter half of the eighteenth 
century. Few of these mathematicians had personal knowledge of the sea or 
ships, and their investigations were influenced by these limitations. Others had 
made long voyages; like Bouguer, who (in 1735) proceeded to Peru pour la mesure 
de la Terre, and as a consequence of that experience a very practical tone was given 
to his famous Traité du Navire, which was published in 1745. It would be in­
teresting to sketch the valuable work done by this single mathematician, but 
time does not allow me to do so. My main purpose at present is to illustrate 
the change that has since taken place in the use of mathematics in attacking 
engineering problems; and this may be done better by taking a single problem 
and showing how it was dealt with in the eighteenth and the nineteenth centuries. 

Daniel Bernoulli in 1757 won the prize offered for the second time by the 
Académie Royale des Sciences for an answer to the question:—What is the best 
means of diminishing the rolling and pitching of a ship without thereby sensibly 
depriving her of any of the good qualities which she should possess ? His Mémoire 
was published subsequently ; it is an admirable piece of work, and deals thoroughly 
with the stability of ships; but here Bernoulli had been anticipated by Bouguer 
and made acknowledgment of the fact. Greater originality was shown in a mathe­
matical investigation of the behaviour of ships in a seaway ; and in a consideration 
of the influence of wave-motion upon the conditions of fluid pressure, as well as the 
determination of the instantaneous position of equilibrium for a ship floating amongst 
waves. Bernoulli recognised that the particles of water in a wave must be subjected 
to horizontal as well as vertical accelerations, although in his mathematical ex­
pressions he took account of the latter only. He emphasised the important influence 
which the relative sizes of waves and ships must have upon rolling and pitching 
motions, and advised that attention should be mainly devoted to cases where ships 
were small in proportion to the waves they encountered. In this particular he 
departed from assumptions usually made by his contemporaries and anticipated 
modern views. Bernoulli also dwelt upon the critical case wherein ocean waves, 
forming a regular series, have a period synchronising with the period of still-water 
rolling of the ship which they meet. A gradual accumulation of angular motion 
was shown to be inevitable in such circumstances, and it was remarked that the 
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consequent rolling motions must be considerable and might possibly become dan­
gerous in their extent. Bernoulli recommended the conduct of experiments to 
determine the periods of oscillation of ships in still water, and described methods 
of conducting these experiments. He also insisted upon the necessity for making 
accurate observations of the rolling of ships when amongst waves, and made other 
suggestions of much practical value, which have since been repeated by writers 
unfamiliar with Bernoulli's work and have been practically applied. Unfortunately 
the neglect by Bernoulli in his mathematical investigations of the horizontal accelera­
tions of particles of water, which he recognised as existing in waves, led to erroneous 
conclusions in regard to the instantaneous position of equilibrium for a ship when 
floating amongst large waves and the best means for securing steadiness. Bernoulli 
considered that when a ship was in instantaneous equilibrium, her centre of gravity 
and the centre of buoyancy—i.e. the centre of gravity of the volume of water in­
stantaneously displaced by the ship—must lie in the same vertical line. This 
condition of course holds good for a ship floating at rest in still water, but not 
for a ship floating amongst waves of large relative dimensions. Bernoulli deduced 
from his investigations a practical rule for the guidance of naval architects: viz. 
that in order to minimise rolling, ships should be designed so that their centres 
of buoyancy when they were upright and at rest should be made to coincide with 
the centre of gravity. He considered that ships should be made deep, that large 
quantities of ballast should be used, and that the cross-sections should be approxi­
mately triangular in form. This practical rule was misleading, and if applied in 
a design might be exceedingly mischievous in its effect on the behaviour of ships. 
Bernoulli himself foresaw that, in certain cases, his rule would work badly, but he 
considered that these would but rarely occur. I t is now known that this view was 
mistaken. 

The detailed mathematical investigations contained in Bernoulli's Mémoire are 
still of much interest ; they included the examination of cases in which were assumed 
widely differing ratios of the natural periods of ships to the period of the waves 
producing rolling motion. Throughout, the motions of ships were supposed to be 
unaffected by the resistance of the surrounding water, but Bernoulli did not over­
look the steadying effect which water-resistance would exercise on a ship in a 
seaway; on the contrary he recognised the influence which changes in the under­
water forms of ships must have upon the amount and steadying effect of that 
resistance, and he recommended the use of side-keels in order to minimise rolling. 
Having regard to the state of knowledge at the time this Mémoire appeared, it was 
undoubtedly a remarkable piece of work and it well deserved the reward bestowed 
by the Academy. It contained many practical suggestions for experimental enquiry 
and for guidance in the preparation of designs for ships ; but it was essentially a 
mathematical study and had little influence on the work of naval architects. 

A century later the same problems were attacked by William Froude, a graduate 
of Oxford University and an engineer of experience in constructional work. As an 
assistant to Isambard Brunei, the attention of Froude had been directed to these 
subjects in connection with the design and construction of the Great Eastern, a ship 
of relatively enormous dimensions and novel type, respecting whose safety, manage-
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ability and behaviour in heavy seas serious doubts had been expressed. Like 
Bernoulli, of whose work I feel confident Froude had no knowledge, the modern 
investigator perceived that, amongst waves, there must be considerable variations 
in the direction and magnitude of the pressure delivered by the surrounding water 
on the surface of a ship's bottom ; and that the instantaneous position of equilibrium 
for a ship exposed to the action of waves of large relative dimensions must be dis­
covered if a theory of rolling was to be framed. Froude worked out a complete 
theory of trochoidal wave-motion and enunciated the principle of an "effective 
wave-slope." In his investigations it was assumed that the resultant water-pres­
sure on the ship at each instant acted through the centre of buoyancy and normally 
to the effective wave-slope. In the differential equation framed for unresisted rolling, 
Froudë took a curve of sines for the effective wave-slope instead of a trochoid. 
Having obtained the general solution of that equation, he proceeded to consider 
the behaviour of ships as influenced by variations in the ratios of their still-water 
periods of rolling oscillation to the relative periods of the waves encountered. In 
this manner the particular cases considered by Bernoulli were readily investigated, 
and many of the broad deductions made a century before were amended. The critical 
case of synchronism of ship-period and wave-period which Bernoulli had brought into 
prominence was shown to be that requiring most consideration. For that case the 
increment of oscillation produced by the passage of each wave of a regular series 
was determined on the hypothesis of unresisted rolling, and was shown to be about 
three times as great as the maximum inclination to the horizontal of the effective 
wave-slope. I t was also made clear that apart from the influence of water-resistance, 
such synchronism of periods must lead to a ship being capsized by the passage of 
comparatively few waves. Up to this point, the investigation made by Froude was 
strictly mathematical, and the modern engineer who had received a thorough mathe­
matical training had reached results superior to those obtained by the famous 
mathematician a century before; becoming, in fact, the founder of a theory for 
the oscillations of ships amongst waves which has been universally accepted. Like 
Bernoulli, Froude became impressed with the necessity for experiments which would 
determine the periods of still-water rolling for ships; and with the desirability for 
making observations of the rolling of ships in a seaway. In addition he emphasised 
the necessity for more extensive observations on the dimensions and periods of sea-
waves, a subject which had been investigated to some extent by Dr Scoresby and 
other observers, but had been left in an incomplete state. One great generalisation 
was made by Froude at an early period in this important work, and it has since 
become a fundamental rule in the practice of naval architects; viz. that freedom 
from heavy rolling under the conditions usually met with at sea was likely to be 
favoured by making the period of still-water rolling of ships as large as was possible 
under the conditions governing the designs. This rule was the exact converse of 
that laid down by Bernoulli, as the effect of the latter rule by increasing the stability 
would have lessened the period. The explanation of this simple rule is to be found 
in the consideration that the longer the natural period of a ship is, the less likely is 
she to encounter waves whose period will synchronise with her own. 

Purely mathematical treatment of the subject did not satisfy the mind of a 
trained engineer like Froude. For practical purposes it was essential that the effect 
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of water-resistance to rolling should be determined and brought into the account. 
Here purely mathematical investigation could not possibly provide solutions; ex­
perimental research, conducted in accordance with scientific methods, became 
necessary. Aided by the Admiralty, Froude embarked upon a series of experi­
ments which extended over several years. Most of these experiments were made 
on actual ships, but models were employed in special cases. In the analysis of 
experimental results, mathematics necessarily played a great part; indeed without 
their employment, the proper deductions could not have been made. On the basis 
of these analyses, Froude obtained valuable data and determined experimentally 
" coefficients " of resistance to rolling experienced respectively by the flat and curved 
portions of the immersed surfaces of ships. Furthermore he demonstrated the 
fact that the surface disturbance produced by the rolling of ships in still-water 
accounted for a large part of the extinctive effect which was produced when a ship 
which had been set rolling in still water was allowed to come to rest. In this way, 
and step by step, Froude devised methods by means of which naval architects can 
now calculate with close approximation the extinctive effect of water-resistance for 
a new design. Finally, Froude produced a method of "graphic integration," the 
application of which in association with the calculation of the effect of water-
resistance, enables a graphic record to be constructed showing the probable 
behaviour of a ship when exposed to the action of successive waves, not merely 
when they form a regular series, but when they are parts of an irregular sea. 
Subsequent investigators have devised amendments or extensions of Froude's 
methods, but in all essentials they stand to-day as he left them—a monument 
of his conspicuous ability, and an illustration of the modern method in which 
mathematics and experimental research are associated in the solution of engineering 
problems which would otherwise remain unsolved. 

In tracing as has been done the contrast between the methods of Bernoulli 
and Froude, an indirect answer has been given to the question—What is the true 
place of mathematics in engineering practice ? It has been shown that even in 
the hands of a great mathematician, purely mathematical investigation cannot 
suffice, and that Bernoulli became convinced, in the course of his study of the 
behaviour of ships in a seaway, that no complete or trustworthy solution could 
be found apart from experimental research, as well as careful observations of ocean 
waves and the rolling of actual ships. Bernoulli was not in a position to undertake, 
or to lead others to undertake, these experiments and observations. In his mathe­
matical investigations he made, and necessarily made, certain assumptions which are 
now known to have been incorrect. Even the most accurate mathematical processes, 
when applied to equations which were framed on imperfect or incorrect assumptions, 
could not produce trustworthy results ; and consequently the main deductions made 
by Bernoulli, and the rules recommended by him for the guidance of naval architects, 
would have led to disappointment if they had been applied in practice. On the 
other hand, Froude, himself a great experimentalist, was fortunately able to impress 
upon the British Admiralty through the Constructive Staff the importance of making 
experiments and extensive observations of wave-phenomena and the behaviour of 
ships. Not merely did Froude devote many years of personal attention to these 
subjects, but he was aided over a long period by the large resources of the Royal 
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Navy. Similar work on a very large scale was also done simultaneously by the 
French Navy. Some of my earliest experiences at the Admiralty forty-five years 
ago were gained in connection with these observations and experiments, so that 
I speak from personal knowledge of the influence which Froude exercised, the 
inspiration of his great devotion and wonderful initiative. As a result of all these 
efforts, a great mass of experimental data was accumulated ; the results of a large 
number of observations were summarised and analysed; and, in the end, the 
soundness of the modern theory was established, and the future practice of naval 
architects was made more certain in their attempts to produce designs for ships 
which should be steady and well-behaved at sea. 

At the risk of making this lecture appear to be chiefly a notice of work done 
by William Froude, or a summary of the advances made in the science of naval 
architecture, another illustration will be given of the general principle laid down in 
regard to the place of mathematics in engineering practice. 

Mathematicians, from an early date, were attracted by the subject of the 
resistance offered by water to the motion of ships and made many attempts to frame 
satisfactory theories. The earliest investigations were based upon the assumption 
that the immersed surface of a ship's skin could be treated as if it consisted of an 
aggregation of elements, each of which was a very small plane area, set at a known 
angle of obliquity to the direction of motion through the water. For each elementary 
plane area it was proposed to estimate the resistance independently of the others, 
and as if it were a small isolated flat plate. The integration of such resistances over 
the whole surface was supposed to represent the total resistance of the water to the 
motion of the ship at a given speed. Certain further assumptions were made in 
regard to the laws connecting the resistance of each unit of area with its angle of 
obliquity to the direction of motion and with the speed of advance. The effect 
of friction was, in most cases, neglected ; nor was any account taken of surface 
disturbance produced by the motion of the ship. I t is unnecessary to dwell upon 
the errors and incompleteness of these assumptions. So long as ships were propelled 
by sails little practical importance attached to an exact determination of the 
resistance experienced at a certain speed. When steamships came into use it was 
of primary importance to have the power of making close approximations to that 
resistance because estimates for the engine-power required to attain a given speed 
had to be based thereon. The subject received great consideration, as the result of 
which certain simple rules were framed and commonly employed in making estimates 
for the engine-power to be provided in new ships. These rules were mainly based 
on the results obtained by trials of existing vessels ; and these trial-results, of course, 
included not merely the effect of water-resistance—as influenced by the form and 
condition of the immersed surface of a ship—but were also affected by the varying 
efficiency of the propelling apparatus and propellers. Many attempts were made to 
separate these items of performance and to determine the actual amount of the 
resistance for a ship and the separate efficiencies of her propellers and machinery. 
Little progress was secured until 1868. Mathematical theories were framed, it is true, 
for estimating the efficiency of propellers; but while these theories were accurate 
enough if the assumptions underlying them had been complete and representative of 
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actual phenomena, there was no possibility of fulfilling those conditions since the 
phenomena were neither fully known nor understood. 

In 1868 a special and representative Committee—including Rankine and 
Kelvin—appointed by the British Association, made a Report on this subject and 
recommended that towing experiments should be made on full-sized ships. The 
Committee was almost unanimously of opinion that the only method which would 
give trustworthy information in regard to the resistances experienced at various 
speeds was to tow actual ships and not to depend upon models. William Froude 
dissented from this conclusion and recommended model experiments. Accepting the 
stream-line theory of resistance which Rankine had introduced, Froude based upon it 
a system of experiment which dealt separately with frictional resistance and applied 
to the residual resistance—after friction had been allowed for and deducted—a law of 
"corresponding speeds" between models and full-sized ships which he had worked out 
independently. That law had been previously recognised in a more general form by 
mathematicians, and had been investigated for this particular case by a French 
mathematician, M. Reech, of whose work Froude was then ignorant. By this happy 
association of mathematical theory with experimental research, Froude placed in the 
hands of naval architects the means of solving problems which could not be dealt 
with either by purely mathematical investigation, or by experience with actual ships. 
Experimental tanks of the character devised by Froude have now been multiplied in 
all maritime countries. The latest and in many respects the best of these tanks, 
which is due to the generosity of Mr Alfred Yarrow, is a Department of the British 
National Physical Laboratory. The operations of these tanks have resulted in a 
great addition to natural knowledge and have secured enormous economies of fuel. 
The success achieved in connection with modern developments of steam navigation 
and the attainment of very high speeds is chiefly due to tank experiments which have 
involved relatively small cost, and enabled naval architects to choose for every design 
the form which gives the least resistance possible under the conditions laid down 
for a new ship, even when the size or speed required go beyond all precedent. 
Considerations of stability, carrying capacity, available depths of water, dimensions of 
dock entrances and other matters, as well as speed and fuel consumption, may limit 
the designer and narrow the alternatives at his disposal; but ordinarily there is 
room for considerable variations of form in a new design, and in making the final 
selection of form it is essential that the designer should know how the resistances of 
these permissible alternatives compare. Naval architects throughout the world enjoy 
great advantages in this respect over their predecessors, and owe their position 
entirely to the genius and persistence of William Froude. 

Since the work of Froude in this direction was done, model experiments have 
become the rule in many departments of engineering and the scientific interpretation 
of the results has greatly influenced the designs of structures and machines. 
Prominent amongst these recent applications of experimental research on models 
stand those relating to air-resistance and wind-pressure on bridges and other 
structures. In regard to the laws of wind-pressure much has been discovered in recent 
years, and in connection with the effects of wind-pressure on engineering structures 
especial reference ought to be made to the work done by Dr Stanton at the National 
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Physical Laboratory. All engineers owe a debt of gratitude to that distinguished 
experimentalist and to the Institution where he works ; and they recognise the fact 
that he has demonstrated the trustworthiness of deductions made from tests with 
small models exposed to the action of air-currents when applied on the full scale to 
complicated structures for which independent mathematical calculations of the effect 
of wind-pressure could not be made. The late Sir Benjamin Baker, who was chiefly 
responsible for the design of the Forth Bridge, was one of the first to appreciate and 
make use of this experimental system, and no engineer of his time more frankly 
admitted than he did what a debt engineering practice owed to mathematics when 
used in the proper manner. 

The proper use of mathematics in engineering is now generally admitted to 
include the following steps. First comes the development of a mathematical theory, 
based on assumptions which are thought to represent and embody known conditions 
disclosed by past practice and observation. From these theoretical investigations 
there originate valuable suggestions for experimental enquiries or for careful and 
extensive investigations. The results obtained by experimental research or from 
observation and experience must be subjected to mathematical analysis : and the 
deductions made therefrom usually lead to amendments or extensions of the original 
theory and to the device of useful rules for guidance in practice. Purely mathematical 
theories have served and still serve a useful purpose in engineering ; but it is now 
universally agreed that the chief services of mathematics to engineering are rendered 
in framing schemes for experimental research, in analysing results, in directing the 
conduct of observations on the behaviour of existing engineering works, and in the 
establishment of general principles and practical rules which engineers can utilise in 
their daily professional employment. 

One of the most recent examples of this procedure is to be found in the 
constitution and proceedings of the Advisory Committee appointed in 1909 by the 
British Government in connection with the study of Aeronautics. Its membership 
includes distinguished mathematicians, physicists, engineers and officers of the army 
and navy, and its President is Lord Rayleigh, Chancellor of the University of 
Cambridge. The declared intention in establishing this Committee was to bring 
the highest scientific talent " to bear on the problems which have to be solved " in 
order to endow the military and naval forces of the British Empire with efficient 
aerial machines. The Reports published during the last two years are of great 
value ; the work done by the Committee—described as " the scientific study of the 
problems of flight with a view to their practical solution "—has been accompanied 
and supplemented by research and experiment carried out by the Director of the 
National Physical Laboratory (Dr Glazebrook) and his staff in accordance with a 
definite programme approved by the Committee. These investigations necessarily 
cover a very wide field in which there is ample room for the operations of all the 
branches of science and engineering represented on the Committee, and there can be 
no doubt that already the influence of the work done has been felt in practice. No 
one who has followed the progress made in aerial navigation, however, can fail to be 
convinced that although a considerable amount of purely mathematical investigation 
has been devoted to the problems of flight, it has hitherto had but little influence on 
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practice, in comparison with that exercised by improvements due to mechanical 
engineering—tending to greater lightness of the engines in relation to their power— 
and by actual experiments made with models and full-sized flying machines. A stage 
has been reached, no doubt, where the interpretation by mathematicians of the 
experimental results available and their suggestions as to the direction in which 
fuller experimental research can best be carried out are of great importance, and that 
fact is universally recognised by engineers. 

Even when the fullest use has been made of mathematical science applied in 
the best way and of experimental research there still remain problems which have 
hitherto defied all efforts at their complete solution, and engineers have to be content 
with provisional hypotheses. Of the James Forrest Lectures given annually at the 
Institution of Civil Engineers a long series has been devoted to the description of 
"Unsolved Problems in Engineering." Mathematicians seeking fresh fields to 
conquer might profitably study these utterances of practising engineers of repute. 
On this occasion it must suffice to mention two classes of subjects on which additional 
light is still needed, although they are now less obscure than they have been in the 
past, thanks to long years of work and experiment. 

The first group has relation to the laws which govern the efficiency of screw-
propellers when applied to steamships, and has long engaged the attention of a 
multitude of writers in all maritime countries. Many mathematical theories have 
been published, which are of interest and value as mathematics, and are sound if the 
fundamental assumptions made could be accepted. I t is, however, no exaggeration 
to say that at the present time there exists no mathematical theory which has any 
considerable influence on the design of screw-propellers and the determination of the 
form, area and pitch. Experience and experiment are still mainly depended upon 
when work of that kind has to be undertaken. Of course certain mathematical 
principles underlie all propeller designs, but the phenomena attending the operation 
of a screw-propeller at the stern of a ship in motion are too variable and complex to 
be represented by any mathematical equation even if they were fully known and 
understood—which they are not. The water in which a propeller works has already 
been set in motion by the ship before it reaches the propeller, and the " wake " of a 
ship in motion is in a very confused state. The action of a propeller upon the water 
"passing through i t " and the manner in which its effective thrust is obtained 
still remain subjects for discussion and for wide differences of opinion between 
mathematicians and experimentalists who have seriously studied them. Froude 
initiated a system of model-experiments for propellers, both when working in open 
water and when attached to and propelling ships or developing an equivalent thrust. 
His son, Mr R. E. Froude, has done remarkable work in the same direction, and many 
other experimentalists have engaged in the task : but after more than seventy years 
of experience in the practical use of screw-propellers we remain without complete or 
accurate knowledge which would enable the designs of propellers for new ships, of 
novel types, or of very high speed, to be prepared with a certainty of success. On 
the whole, naval architects and marine engineers depend largely upon the results of 
experience with other ships. Although model-experiments are also utilised, there is 
not the same confidence in passing from results obtained with model propellers to 
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full-sized propellers as there is in passing from model ships to full-sized ships. 
Probably this fact is chiefly due to essential differences in the reactions between the 
water and the surfaces of models and the surfaces of full-sized screws moving at 
the rates of revolution appropriate to each. These matters are receiving and have 
already received careful study not merely by the Superintendents of Experimental 
Tanks, but by practising engineers like Sir Charles Parsons and Sir John Thornycroft. 
The phenomenon of " cavitation "—which has been described as the breaking-away 
of water from the screw surfaces when the rate of revolution of the screw exceeds 
certain limits, and when the thrust per unit of area on the screw exceeds certain 
values—is one which has given much trouble in the cases of vessels of exceedingly 
high speed such as destroyers and swift cruisers. It is being investigated experi­
mentally, but up to the present time no general solution has been found. In 
existing conditions surprising differences in the efficiency of propellers have been 
produced by what appeared to be small changes in design. On the whole the largest 
improvements have been obtained as the result of full-scale trials made in ships, 
although model-experiments have been of service in suggesting the direction in which 
improvements were probable. In my own experience very remarkable cases have 
occurred, and not infrequently it lias been difficult even after the event to explain 
the results obtained. One such case may be mentioned as an illustration. A. large 
cruiser obtained the guaranteed speed of 23 knots on trial with a development of 
about 30,000 horse-power. I had anticipated a higher speed. Progressive trials 
made at various speeds showed that the " slip " of the propellers became excessive as 
the maximum speed was approached, although the blade area given to the propellers 
on the basis of past experience was adequate for the power and thrust. The blade-
area was increased about 20 per cent., the diameter and pitch of the screw-propellers 
being but little changed. With these new propellers the maximum speed became 
24 knots and 23 knots was obtained with a development of 27,000 horse-power, as 
against 30,000 horse-power required with the original screws. The increase of blade 
area necessarily involved greater frictional losses on the screws, yet the effective 
thrust was increased, a higher maximum speed was attained, and the power required 
at all speeds became less than in the earlier trials down to 15 knots. This incident 
could be paralleled from the experience of many naval architects, and it illustrates the 
uncertainties which still have to be faced in steamship-design when unprecedented 
speeds have to be guaranteed. 

This open confession of lack of complete knowledge, made in the presence of the 
professors of an exact science such as mathematics, may be thought singular. I t is 
the fashion to criticise, if not to condemn, designers of ships and their propelling 
apparatus on the ground that after long experience there ought to be a complete 
mastery of these problems. That criticism, however, is hardly fair; because it 
overlooks the fact that throughout the period of steam navigation there has been 
incessant change in the dimensions, forms and speeds of ships and in the character of 
the propelling apparatus. 

Knowledge is also still incomplete, and possibly complete knowledge will never 
be attained, in regard to the stresses experienced by the structures of ships at sea, 
when driven through waves and made to perform rolling, pitching and heaving 
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movements simultaneously. The subject has long engaged the attention of 
mathematicians and naval architects. Early in the last century Dr Young made 
a study of the causes of longitudinal bending in wood-built ships, and presented a 
Memoir to the Royal Society. The eminent French geometrician Charles Dupin 
also dealt with the subject; which had great practical interest at a date when serious 
" hogging " or " arching " of ships was a common occurrence. Since iron and steel 
have been available for ship-construction—and as a consequence the dimensions, 
speeds and carrying powers of ships have been enormously increased—questions of 
a similar character have arisen on a larger scale, and have been carefully studied. 
There is much in common between ship construction and bridge construction under 
modern conditions ; and because of this resemblance engineers practising in works of 
a constructional nature on land have been brought into close relation with the 
structural arrangements of ships. Sir William Fairbairn, who was associated with 
the younger Stephenson in the construction of the Menai and Conway tubular 
bridges, and Isambard Brunei, whose chief work was on railways, but who designed 
the famous steamships Great Western, Great Britain and Great Eastern, are amongst 
the men of this class who have most influenced shipbuilding. There are, however, 
obvious and fundamental differences between the conditions of even the greatest 
bridge founded on the solid earth, and those holding good in the case of self-contained 
floating structures carrying great loads across the sea, containing powerful propelling 
apparatus, and necessarily exposed to the action of winds and waves. In the former 
case bending moments and shearing stresses which must be provided against can be 
closely estimated, and ample strength can be secured by adopting proper " factors of 
safety." In the case of ships no similar approximations are possible ; because their 
structures are stressed not only by the unequal distribution of weight and buoyancy, 
but have to bear rapidly varying and compound stresses produced by rolling and 
pitching motions, by external water-pressure and by the action of the propelling 
apparatus, as well as to resist heavy blows of the sea. Inevitably, therefore, the 
naval architect has to face the unknown when deciding on the "scantlings" 
of various parts of the structure of a new ship the design of which goes beyond 
precedent. 

Mathematicians have had the courage to attack these problems and to propound 
theories respecting them. Professor Kriloff of the Imperial University, St Petersburg, 
has been one of the latest workers in this field, and has probably carried the 
mathematical theory furthest : but his work, like that of his predecessors, has had 
little effect on the practice of naval architects. Indeed it seems too much to expect 
that even the most accomplished mathematician can deal satisfactorily with the 
complex conditions which influence the variable stresses acting, from moment to 
moment, on the structure of a ship at sea. In these circumstances naval architects 
have been compelled to fall back upon experience with ships which have been long in 
service at sea, and to obtain the best guidance possible from the application of 
mathematics to the analysis of that experience and to the device of rules of a 
comparative nature. In general this procedure has led to the construction of ships 
which have possessed ample strength, although the actual margin of strength in 
excess of the permissible minimum has not been ascertained. In the comparatively 
few cases wherein weaknesses have been brought to light on service, scientific 
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analysis has enabled even more valuable lessons to be deduced. But it cannot be 
said that purely mathematical investigation has been of great service to this branch 
of engineering. 

Rankine many years ago proposed to base comparisons of the longitudinal 
bending moments and shearing stresses of ships amongst waves on the hypothesis 
that the distribution of weight and buoyancy should be determined for two extreme 
cases : first when a ship was momentarily resting in equilibrium on the crest of a 
wave having a length equal to her own length, and a height (hollow to crest) as great 
as was likely to occur in a seaway—say one-twentieth of the length of the wave. 
Second when she was momentarily floating astride a hollow of such waves. I t was 
recognised, of course, that these cases were purely hypothetical, but the hypothesis 
has proved of great value in practice. Attempts have been made to carry the 
calculations further, and to take account of the effects of rolling, pitching and heaving 
motions, and of variations in the direction and amount of water-pressure consequent 
on wave-motion. Practice has been influenced but little by these attempts, which 
have necessarily been based on more or less arbitrary assumptions themselves not 
free from doubt. On the other hand Rankine's method has been widely used by 
naval architects ; and the accumulated results of calculations obtained for ships whose 
reputations for strength and seaworthiness were good, are now available for reference. 
For new designs calculations of a similar character are made, and by comparison of 
results with those obtained for completed ships, most closely approaching the new 
design in type and dimensions, the principal scantlings are determined for various 
parts of the structure. In calculating the strengths of ships, they are usually treated 
as hollow girders exposed to the action of forces tending to cause longitudinal 
bending. The bending moments and shearing stresses calculated for the two 
extreme hypothetical conditions above described, are used in order to estimate the 
maximum stresses corresponding thereto in any members of the new ship's structure. 
A comparison of these maximum stresses (per unit of area of material) with the 
corresponding figures for successful ships is taken as a guide for determining the 
sufficiency or insufficiency of the scantlings proposed for the new vessel. In providing 
for adequate transverse strength and for margins of strength to meet local require­
ments, naval architects make separate calculations, but in these cases also are guided 
chiefly by comparisons based on actual experience with other ships. Mathematicians 
may regard this procedure as unsatisfactory: but they may be assured that any 
suggestions for improved or more exact methods which may be made will be 
welcomed by naval architects provided they command confidence and are capable 
of practical application. 

In considering the relation of mathematics to engineering practice one important 
fact should always be borne in mind. The mission of engineers as a class is to 
produce results, " to do things," which shall be of practical service to humanity, and 
shall ensure safety of life and property. Complete solutions of problems, in the 
mathematical sense, are not usually to be found by engineers; they have to be 
content, in many cases, with partial solutions and fairly close approximations. I t 
may be taken for granted that engineers desire to perform efficiently the duties laid 
upon them and that they are ready to avail themselves of all assistance which can be 
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rendered by contemporary science, and by mathematicians in particular. On their 
behalf it has been my endeavour on this occasion to make suitable acknowledgment 
of the debt which engineering already owes to mathematics, and to indicate a few 
of the many problems in which further assistance is needed. All members of the 
engineering profession will endorse my expression of the hope that the close and 
friendly relations which have long existed between mathematicians and engineers, 
and which have yielded excellent results during the past century, will always continue 
and in future be productive of even greater benefits. 

M. c 11 





BOUNDARY PROBLEMS IN ONE DIMENSION 

B Y M A X I M E B ô C H E R . 

§ 1. Introduction. 

By a boundary problem in one dimension I understand primarily the following 
question : 

To determine whether an ordinary differential equation has one or more solutions 
which satisfy certain terminal or boundary conditions, and, if so, what the character 
of these solutions is and how their character changes when the differential equation 
or the boundary conditions change*. This is the central problem, of which various 
modifications are possible. In its simplest forms this question is as old as the subject 
of differential equations itself. By the end of the nineteenth century it already had a 
considerable literature, which since that time has expanded rapidly. I shall try 
during the present hour to indicate some of the greatest advances made both as to 
results attained and methods used. In thus trying to get a brief and yet compre­
hensive survey of a large subject, the desirability of a thorough correlation of the 
parts becomes doubly apparent, and I trust that you will find that in this respect 
I have succeeded at a few points in adding something to what was to be found in 
the literature. The older results will be discussed in detail only so far as may seem 
necessary to make the scope and importance of the more recent ones intelligible. 

The subject is so large that I must limit myself to certain central aspects of it 
by leaving out of consideration almost entirely 

(1) Non-linear boundary problems, that is cases in which the differential equation 
or the boundary conditions or both are non-linear. 

(2) Cases in which two or more parameters enter. (Klein's theorem of oscillation 
with its extensions.) 

(3) Cases where we have to deal not with a single differential equation but 
with systems of differential equations. 

(4) Cases in which the differential equation has singular points in or at the 
ends of the interval with which we deal, or, what is essentially the same thing, cases 
in which this interval extends to infinity. 

All of these cases are of the highest importance. 

* The question of finding effective means for computing the solutions in question is also one which 

might well be considered here. 

11—2 
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An even more sweeping restriction than any of these is indicated by the very 
title of the lecture. This restriction to one dimension, i.e. to ordinary rather than 
partial differential equations, is made absolutely necessary by the time at my disposal 
if we are actually to reach the deeper lying parts of the subject. Fortunately the 
one-dimensional case may be regarded to a very large extent as the prototype of the 
higher cases ; but in this simple case methods are available which enable us to go 
far beyond the point which we can hope at present to reach for partial differential 
equations. 

The problem with which we deal is, then, this : 

A linear differential equation which, for the sake of simplicity, I write as of the 
second order, 

CM U fil J 

P(-U^d^ + ^Ta>+^U = r (1)' 
has coefficients ply p2,r which are continuous functions of the real variable x in the 
finite interval 

a£x£b .(X). 

We wish to solve this equation subject to the linear boundary conditions 

W1 (u) = «!% (a) + a/ ri (a) + ft u (b) + ftV (b) = ^ ) 
. (2), 

Tf2 (u) = a2u (a) + a2V (a) + ß2u (b) -f ß2ri(b) = y2 ) 
where the a's, /3's, 7's are constants. 

Why is this problem an important one ? The most obvious answer is that it is 
one of which special cases come up constantly in applied mathematics ; that even its 
special cases are of sufficient difficulty to have demanded the serious attention of the 
best mathematicians for nearly two hundred years; that in connection with this 
problem methods and results of large scope have been developed. From another 
and more abstract point of view also this problem may claim importance : it is one 
of the simplest and most natural generalizations of that most central of all subjects, 
the theory of a system of linear algebraic equations. This is a fact which has been 
known ever since John and Daniel Bernoulli in their treatment of vibrating strings 
replaced the uniform string by a massless one weighted at equal intervals by heavy 
particles. The effect of this was to replace the differential equation for determining 
the simple harmonic vibrations of the string, which is a special case of (1), and the 
boundary conditions, which come under (2), by a system of linear algebraic equations. 

The idea involved in this physical example may be formulated more generally 
as follows : 

We may replace (1) by a difference equation of the second order : 

Lm+j + MiUi + NiUi-^Ri (i = l, 2,...n-l) (Ï), 

and the boundary conditions by 

AxuQ -f AiUi 4- A^n-i + BlUn = Cx 

A2u0 4- A2ux + B2unn.1 + B2u, 

- f t , 
•(2). 

The equations (1) and (2) taken together form a system of n + 1 linear algebraic 
equations for determining u0, u1}...un. If now we allow n to become infinite, 



BOUNDARY PROBLEMS IN ONE DIMENSION 1 6 5 

causing the coefficients of (1) and (2) to vary in the proper way, we easily obtain 
the system (1), (2) as the limiting form. 

In the same way the linear boundary problem for a differential equation of the 
nth order may be regarded as the limit of a linear boundary problem for a difference 
equation of the nth. order, that is, again, of a system of linear algebraic equations. 

I t goes without saying that this relation yields a fertile source of suggestions 
both as to the facts in the transcendental case and as to possible methods of proof. 
I t was indeed the unpublished method which Sturm originally used in his funda­
mental investigations*. On the other hand, the passage to the limit may be 
rigorously carried through, as was done by Cauchy in his proof of the fundamental 
existence-theorem for differential equations (not merely in the linear case). This 
proof was completed in 1899 by Picard and Painlevé by showing that the solution 
of the difference equation approaches that of the differential equation uniformly not 
only in a certain small neighbourhood of the point where the initial conditions are 
given, but throughout any closed interval about this point in which the solution 
in question of the differential equation is continuous. With this fact at our disposal 
there is no longer any difficulty in carrying through rigorously the passage to the 
limit from the difference equation to the differential equation in other cases of 
boundary problems, as was shown in a sufficiently general case by Porter-f- more 
than ten years ago. Thus we may regard this method of passage to the limit as 
one of the well-established methods, both heuristic and otherwise, of approaching 
boundary problems. 

This linear boundary problem for difference equations has, however, also distinct 
interest in itself apart from any assistance it may give us in the transcendental case. 
During the last few years great interest has been awakened in the theory of difference 
equations from a very different side by the remarkable work of Galbrun, Birkhoff, 
and Nörlund. It seems therefore an opportune time that this side of the subject 
should be also further developed. I shall return to this matter presently. 

§ 2. Generalities. Greens Function. 

A special case of the general linear boundary problem (1), (2) is the homogeneous 
boundary problem in which r = 0, yx — <y2 = 0 : 

PW=o (io, 
1 ^ ( ^ = 0, W2(u) = 0 (2'). 

This system we shall call the reduced system of (1), (2). If this system has no 
solution except the trivial solution ^=0,1 call it incompatible. If it has essentially only 
one solution, I call it simply compatible ; if it has two linearly independent solutions, 
I call it doubly compatible. If we have to deal with a differential equation of the 
nth order, we may have compatibility of order as high as n. One of the most funda­
mental theorems here, and yet one which, I believe, has been enunciated and proved 

* For a reconstruction of this work see the paper by Porter cited below and Bôcher, Bull. Amer. Math. 
Hoc. vol. 18 (1911), p. 1. 

f Annals of Mathematics, 2nd series, vol. 3 (1902), p. 55. This was more than two years before Hilbert, 
in 1904, took a similar step for integral equations. 
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only within the last few years*, is that a necessary and sufficient condition that the 
general boundary problem (1), (2) have one and only one solution is that the reduced 
problem be incompatible. I t should be noticed that this is the direct analogue of a 
familiar theorem concerning linear algebraic equations. 

I t is readily seen that the general case is that in which the reduced system is 
incompatible. The case in which the reduced system is compatible, so that the 
complete system has either no solution or an infinite number of solutions, we may 
therefore speak of, for brevity, simply as the exceptional case. This exceptional case 
will always occur when the boundary conditions (2') are linearly dependent. I t may 
however occur in other cases too, and it is from this fact that the most interesting 
and important questions relating to boundary problems arise. 

Of all the boundary problems by far the simplest and most important is what 
we may call the one-point problem in which all the fts or all the a's are zero, so that 
the boundary conditions (2) involve only one of the end-points of (X). If in this case 
conditions (2') are linearly independent, equations (2) may be solved for u (a) and 
uf (a) (we assume for definiteness that the fts are zero) and thus be written in the 
form 

u(a)=^è1, u(a)=$2. 

Now the most fundamental existence-theorem in the theory of differential equations 
tells us that there always exists one and only one solution of (1) which satisfies these 
conditions. This existence-theorem may then be regarded as the answer to our 
boundary problem in this case, and phrased as follows : In the one-point boundary 
problem the exceptional case can occur only when conditions (2f) are linearly dependent 

So far as we have yet gone there is no necessity for the two points which enter 
the boundary conditions (2) to be precisely the end-points a, b of (X) ; they may 
instead be any two points xly x2 of this interval. Moreover, we may make a further 
generalization by considering in place of (2) conditions of the form 

CLiU '(Xj) + OL^U (Xx) + Oi2U (X2) -f OL2U
f (x2) + . . . + ClkU (xk) + 0Lk U (xk) = 7 , 

which involve not two points but k\ and we may at the same time consider 
differential equations of the nth order. This is a subject which has hardly been 
touched upon in the literature so far, but which seems likely to become of 
importance. The one result which I find in the literature is that if the boundary 
conditions consist in giving at each of the k points the value of u and of a certain 
number of its earliest derivatives, and if the k points are sufficiently near together the 
problem always has one and only one solution. This fact was established (not merely 
in the linear case) by Niccolettif as a generalization of some methods and results of 
Picard for certain non-linear differential equations of the second order. 

Still another direction in which we may generalize the boundary problem, either 
in connection with the generalization last mentioned or independently of it, is to 
admit in connection with the equation of the ?ith order more than n boundary 
conditions. We shall have occasion to mention some cases of this sort later. 

* Cf. Mason, Math. Ann. vol. 58 (1904), p. 532 ; Trans. Amer. Math. Soc. vol. 7 (1906), p. 340; and 
Bôcher, Annals of Math. ser. 2, vol. 13 (1911), p. 71. 

t Turin Atti, vol. 33 (1898), p. 746. 
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One occasionally finds the boundary conditions (2) replaced by conditions which 
involve definite integrals and which, on their face, are not boundary conditions at 
all*. Such conditions may however often be reduced to precisely the form (2). As 
an example of this we mention the problem of solving the equation 

d2u „ 

subject to the condition | <Ê> (x) u (x) dx = C, 

J a 

where <I> is a given continuous function, and G a given constant. 

Let </> (x) be any solution of the equation 
%-**-*• 

By combining this with the equation for u we readily find the formula 
rb ~ ~\b rb 

I &udx= fiu — ucj) + I r<f)dx. 
Ja |_ Ja J a 

The above integral condition may therefore be replaced by 

- </>' (a) u(a) + <j> (a) v! (a) + </>' (b) u(b)-<j> (b) u'(b) = C-l r$dx, 
J a 

a condition of precisely the form (2). 
If we approach the subject from the point of view of difference equations, this 

simply means that if we have in place of the boundary conditions general linear 
equations between u0, uly... un, these conditions can by using the difference equation 
be reduced to the ordinary four (or if we prefer three) term boundary condition form, 
—an obvious algebraic fact. 

Let us leave these generalizations, however, and return to the case in which the 
conditions (2) involve merely two points, the end-points of the interval (X). While 
what I am about to say may readily be extended to equations of the nth order, I will 
again, for the sake of simplicity, speak merely of the equation of the second order, 
i.e. of the system (1), (2) in precisely the form in which we wrote it at first. 

If, as is in general the case, the reduced system (1'), (2') is incompatible^ we are 
led to the important conception of the Green's Function by trying to find a function 
not identically zero satisfying (2') and which comes as near as possible to being a 
solution of (1')—it is to fail in this only through a finite jump of magnitude 1 at a 
point £ of (X) in its first (or in the case of equations of the nth order in its (n — l)th) 
derivative. Such a function, G (x, £), always exists and is uniquely determined when 
(1') and (2') are incompatible. A characteristic property of this function and one 
upon which its importance depends is that when (V), (2') are incompatible, the 
solution of the semi-homogeneous problem (1), (2'), which then exists and is uniquely 
determined, is given by the formula 

«-PötefMDdg (3), 
J a 

* Cf Picone, Annali della R. Scuola Normale Superiore di Pisa, voi. 11 (1909), p. 8 ; and v. Mises, 
Heinrich Weber Festschrift (1912), p. 252. 
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which, as we mention in passing, includes as a special case (viz. when conditions (2) 
involve only one of the points a or b) the formula for the solution of (1) obtained by 
the method of variation of constants. 

These Green's Functions may also be regarded, if we wish, as the limits of the 
Green's Functions for the difference equation, i.e. the solution of the reduced system 
corresponding to (1), (2), except that for a single value of i the second member of (1 ) 
is to be taken not as zero but as 1 *. The formula (3) then becomes a special case 
of the obvious one for building up the solution of a general system of non-homogeneous 
linear algebraic equations of non-vanishing determinant from the solutions of the 
special non-homogeneous system obtained by replacing one of the second members 
by 1 while all the other second members are replaced by zero. 

So far we have demanded merely the continuity of the coefficients of (1). If in 
addition we demand the existence and continuity of the first derivative of p^, we 
can add considerably to the properties of the Green's function. When regarded as a 
function of £, it then satisfies the differential equation adjoint to (1') 

n/ . d2v d(pxv) / v , x 

except when f = x. Moreover, still regarding it as a function of £, we find that it 
satisfies a system of homogeneous boundary conditions precisely analogous to (2') 
but with different coefficients, these coefficients being however independent of the 
parameter x just as the coefficients of (2') are independent of f : 

W, (v) = a,v (a) 4- *!v* (a) + &v (b) + ftV (b) = 0 \ 

W2(v) = a2v(a) + ä2
/v\a) + ß2v(b) + ß2

/v,(b)^0) ( 2 )-

The system (1"), (2") is of fundamental importance in the whole theory of 
linear boundary problems and is called the system adjoint to (1'), (2'). A special 
case of it was used by Liou ville J but the general formulation and application of the 
conception was made for the first time by Birkhoff§ less than five years ago. The 
reason why even now this conception is not as well known as it deserves to be is 
that the special cases which have almost exclusively absorbed the attention of 
mathematicians belong to the class of self-adjoint systems where not only the equation 
(V) is self-adjoint but the boundary conditions (2") are also identical with (2'). I t 
is true that a somewhat more general case than this has received a little attention 
from Hilbert and his pupils |j, namely the case which they call that of " Greenian 
boundary conditions "1f where (2') and (2") are identical without (V) being self-

* Cf. Bôcher, Annals of Math. 2nd series, vol. 13 (1911), p. 71, where other references for the literature 
of Green's Functions will be found. 

t For the equation of the wth order 

dnu dn~H 

the requirement would be the existence and continuity of the first n-i derivatives of pi. 
% Liouville's Journal, vol. 3 (1838), p. 604. 
§ Trans. Amer. Math. Soc. vol. 9 (1908), p. 373. See also for the relation to Green's functions, Bôcher, 

Bull. Amer. Math. Soc. vol. 7 (1901), p. 297 and Annals of Math. vol. 13 (1911), p. 81. 
II See for instance Westfall, Zur Theorie der Integralgleichungen (dissertation), Göttingen, 1905, p. 19. 
IF It remains to be seen whether this case is really of sufficient importance to deserve a name. 
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adjoint. The general case, however, in which (2') and (2") are different is, apart 
from Birkhoff's fundamental paper, only just beginning to receive attention. 

Here too the analogies for difference equations are interesting and simple. In 
place of the adjoint system (differential equation and boundary conditions) we now 
have the system of homogeneous linear algebraic equations whose matrix is the 
conjugate (transposed) of the original system ; it is this system which the Green's 
function of the difference equation satisfies when regarded as a function of its second 
argument. The self-adjoint case now becomes the case in which the matrix of the 
system of linear equations is symmetric or can be made symmetric by a combination 
of rows and columns. Such expressions as 

rb 
vP (u) dx f 

J a which occur in Green's Theorem 

jb\vP(u)-uQ(v)^dx=\T(u,v)\b (4) 
Ja L J L J» 

(where T is a homogeneous bilinear differential expression of order one less than P), 
have as their analogues, in the case of difference equations, bilinear forms. I shall not 
go into these analogies in detail, since they have become very familiar during the last 
eight years in the similar case of linear integral equations as developed by Hilbert 
and his pupils. I wished however to say enough to make it clear that we can get 
to a large extent the satisfaction and the benefit of these analogies in the case of 
linear differential equations, without going to the subject of integral equations, by 
simply regarding the differential equation (of any order) as the limit of a difference 
equation. This same remark applies equally well to those parts of the subject 
upon which I have not yet touched, and I shall not in general think it necessary 
to repeat it. 

| 3. Small Variations of the Coefficients. 

All the deeper lying parts of the theory of boundary problems depend directly 
or indirectly on the effect produced by changes in the coefficients of the differential 
equation or of the boundary conditions or of both. Such changes are frequently, 
indeed usually as the literature of the subject now stands, produced by supposing 
these coefficients to depend on one or more parameters. The more general point 
of view, however, is to consider arbitrary variations in these coefficients ; and here, 
before coming to the deeper lying questions, it is essential to know under what 
conditions small variations of this sort will produce a small variation in the solution 
of the problem. The fundamental fact here is * 

I. If the reduced system (V), (2') is incompatible, it remains incompatible after 
a variation of the coefficients of (1) and (2) which is uniformly sufficiently small ; and 

* I have not found this fact in the literature. In the special case in which only one of the end-points 
appears in the boundary conditions I proved it in Trans. Amer. Math. Soc. vol. 3 (1902), p. 208 and 
Amer. Journ. of Math. vol. 24 (1902), p. 315. The general theorem may be deduced from this special case 
by following the general lines of the reasoning given by me in Annals of Math. vol. 13 (1911), p. 74. Indeed 
the case of the equation of the nth order where the boundary conditions involve k points (cf. § 2) presents 
no difficulty here. 
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such a variation produces a variation in the solution of (1), (2) and in its first two 
derivatives which is uniformly small throughout (X). 

I t is merely a special case of this if we assume the coefficients of (1) to be 
continuous functions of (x, X) when x is in (X) and the parameter X lies in any one or 
two dimensional region A of the complex X-plane. The coefficients of (2) we then 
also assume to be continuous functions of X in A. An immediate corollary of the 
above theorem is then : 

II. If for a certain point X0 of A the system (V), (2') is incompatible, the same 
will be true throughout a certain neighbourhood ofX0, and throughout this neighbourhood 
the solution of (I), (2) and its first two derivatives are continuous functions of ' (x, X). 

Something essentially new is, however, added if we demand that the coefficients 
be analytic functions of X and wish to infer the analytic character of the solution. 
Here the facts are these : 

III, If when x lies in (X) and X in a certain two-dimensional continuum A of the 
X-plane the coefficients of (1) are continuous functions of (x, X) and analytic functions 
of X, and if the coefficients of (2) are analytic in X throughout A, and if X0 is a point 
in A such that when X = X0, (].') and (2') are incompatible, then the same will be true 
throughout a certain neighbourhood of X0 and the solution of (1), (2) throughout this 
neighbourhood is, together with its first two derivatives with regard to x, continuous in 
(x, X) and analytic in X*. 

If the coefficients depend on a parameter X, as in cases I I and III , the values of 
X for which (1'), (2') are compatible are readily seen to be precisely the roots of the 
equation 

where y1 and y2 are any pair of solutions of (1') which do not become linearly 
dependent for any value of X with which we are concerned. This equation we 
call the characteristic equation and its roots the characteristic parameter values 
(Eigenwerte), or characteristic numbers. In case I I I it is clear that (5) may 
be taken as analytic in X, so that in this case, provided (5) is not identically 
satisfied, the characteristic numbers are all isolated though there may be an 
infinite number of them with cluster-points on the boundary of A. These 
characteristic numbers are the only singularities of the solution of (1), (2) 
regarded as a function of X, and also of the Green's function of (1'), (2'), and 
it may be shown that these functions can have no other singularities there 
than poles. In special cases the solution of (1), (2) may have no singularity at 
some of these points. Those characteristic numbers for which (1'), (2') become simply 
compatible we call simple characteristic numbers, those for which they become doubly 
compatible, double characteristic numbers, and so on in the higher cases when we are 
dealing with equations of higher order than the second. 

In all that has been said so far no restrictions have been made concerning the 

* In the special case in which (2) involves only one of the points a or 5 the proof of this theorem follows 
from the uniform convergence of the method of successive approximations. The general case may be 
inferred from this as indicated in a similar case in the preceding foot-note. 

= 0 (5), 



BOUNDARY PROBLEMS IN ONE DIMENSION 1 7 1 

reality of the quantities used except that x be real. In particular the coefficients of 
(1) may be complex. If the system (1), (2) is real, then when (1'), (2') is incompatible, 
the solution of (1), (2) is real; while if (V), (2') is compatible, it has a real solution not 
identically zero. In this case we can add various further facts to those already mentioned 
in this section, of which I mention the following immediate consequence of I I and I I I . 

IV. If for a certain real range A of values of X the coefficients of (1) are real 
continuous functions of (x, X) and the coefficients of (2) real continuous functions of 
X; if there is no characteristic value of X in A; and if for no point in A the solution 
u of (1), (2) vanishes at a or b, or at any interior point where its derivative also 
vanishes ; then u has the same number of roots in (X.)for all values ofX in A and these 
roots are continuous functions of X. 

If we add to our hypothesis that the coefficients of (1), (2) be analytic in X, we 
may add to the conclusion that the roots are analytic functions of X. 

I t must not be inferred from what I have said so far that the theory of boundary 
problems consists wholly, or even chiefly, in establishing existence-theorems or in 
proving by the exact methods of modern analysis facts which a hundred years ago 
would have seemed self-evident to any mathematician. Some applied mathema­
ticians make it a reproach to pure mathematics that it has come now to a state where 
it is interested solely in questions of this sort. If this were so it would indeed be a 
cause for reproach ; but it should perhaps rather be regarded as a warning of whither 
certain extreme tendencies in modern pure mathematics might lead us if allowed to 
get too much the upper hand. The good old-fashioned view that it is the main 
object of mathematics to discover essentially new facts is, however, hardly in danger 
of becoming obsolete in a generation which has just witnessed the splendid achieve­
ments of Poincaré. In the subject of boundary problems, while we need as a founda­
tion the existence-theorems, and exact proofs of facts which in themselves are quite 
to be expected, these are only a foundation. We wish not merely to be able to say : 
under such and such conditions there exists a solution of the boundary problem 
which is continuous (or analytic) but also to be able to say what this solution is like 
and what can be done with it. However incomplete the theory still is, we can make 
important statements of this sort, as we shall now see. 

§ 4. Sturms Fundamental Results and their Recent Extensions. 

Sturm's great memoir of 1836, which forms to a certain extent the foundation of 
our whole subject, produces on most superficial readers the effect of being complicated 
and diffuse. Nothing could be a greater mistake. The paper is very rich in content, 
and, while it would no doubt be possible to present the material more compactly 
than Sturm has done, there is by no means the repetition of which one gets the 
impression on a first reading owing to similarity in appearance of theorems which are 
really very different. I t must be confessed, however, that Sturm does fail to empha­
size sufficiently his really fundamental results. 

Sturm, throughout whose work all quantities used are assumed real, takes the 
differential equation in the self-adjoint form 

s W s ) - 0 » - 0 ' <*>0> <«>. 
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where K has a continuous first derivative, to which any homogeneous linear differ­
ential equation of the second order can readily be reduced. Perhaps the most 
fundamental result of the whole paper is the one which when stated roughly says 
that if the solutions of (6) oscillate in (X), they will oscillate more rapidly when G 
or K is decreased. The precise statement is this : 

If we consider the two differential equations 

where throughout (X) 
0<K2^Kx, G2^GX (8), 

and if a solution ux of the first equation has two successive roots at xx and x2, then every 
solution u2 of the second will vanish at least once in the interval x1 < x < x2 provided 
both equality signs in (8) do not hold at every point of this interval. 

If we note that this theorem tells us that if u2 is a solution which vanishes 
with ux at xx, then it vanishes again before u2 vanishes for the first time, we see the 
appropriateness of the statement that the solutions of the second equation oscillate 
more rapidly than those of the first. 

The proof of this theorem is made to depend by Sturm on the formula 

\K2uxu2 — Kxu2ux] + I (G1 — G2)uxu2dx + 1 (Kx — K2)uxu»dx = 0...(9), 
Ci J CX J Cl 

where ux and u2 are any solutions of the first and second equations (7) respectively and 
cx, c2 any points of (X). This formula, which may be regarded as merely a special 
application of Green's Theorem *, yields an immediate and extremely brief proof of 
the theorem we are considering in the special, but very important, case Kx = K2. In 
the general case the proof is by no means so easy, it being necessary then to intro­
duce a parameter so as to pass over continuously from Kx, Gx to K2, G2, and to 
consider carefully the effect of small changes of this parameter. Simpler methods 
have therefore since been devised for treating the general case, of which I 
will mention the extremely elegant one recently given by Piconef. This consists in 
using in place of (9) the formula 

\(KX - K2)ux
2dx + j C\GX - G2)ux

2dx + [ %K2 (ux - < — ) dx 

^ (K2uxu.; - Zx^toT = ° (10)> 
J^2 J Cj 

+ 
which may be deduced without difficulty from the differential equations. In applying 
this formula we must assume that u2 does not vanish between cx and c2, and vanishes 
at one or both of these points only if ux vanishes there. By means of this formula 
the proof of Sturm's theorem is immediate. 

* Cf. Dunkel, Bull. Amer. Math. Soc. vol. 8 (1902), p. 288. 
t Annali della R. Scuola Normale Superiore di Pisa, voi. 11 (1909), p. 1, where however only special 

cases of (10) are used. Another brief proof, based on the use of Riccati's resolvent of (6), had been 
previously given by me : Trans. Amer. Math. Soc. vol. 1 (1900), p. 414. 
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I have insisted somewhat at length on this one simple result of Sturm both on 
account of its great importance and because it represents a direction for investigation 
which, I believe, might well be pursued farther. The question is : What changes in 
K and G will cause the solutions of (6) to oscillate more rapidly ? Sturm's theorem 
gives one answer to this question. There are, however, many other changes in K and 
G besides a decrease in one or both which will have this same effect. Further 
theorems can of course be obtained by multiplying (6) before and after the change by 
different constants, or by making a change of independent or of dependent variable. 
All these results, while they may be formally more general, may be said not to go 
essentially beyond Sturm's classical theorem. An illustration of this which will be of 
some importance for us is the following : 

The special case of equation (6) where G = l — Xg, K = k, where g, I, k are con­
tinuous functions of x independent of the parameter X, 

Uki)+^-l)u=o ( n )> 
has been much considered ever since Sturm's time. If g è 0, the equality sign not 
holding at all points with which we are concerned, an increase of X will produce 
a decrease of G and consequently it is merely a special case of Sturm's theorem in 
its simplest form to infer that if for one value of X a solution oscillates, the solutions 
will oscillate more rapidly for a larger value of X. Precisely the reverse is clearly 
true if g ^ 0. During the last few years, however, another case of (11) has also been 
considered by several authors using various methods, namely the case I = 0, while g 
changes sign. An increase in X then causes G to decrease for some parts of (X) and 
to increase for others. I t looks as though we had here a case going decidedly 
beyond that of Sturm. If, however, we divide (11) by | X |, we get an equation 
in which 

K = \x\ ' G = ixì ~" ^Sgn ^ g% 

Consequently an increase in | X | (X retaining one sign) produces a decrease in K 
while G either decreases or remains constant, and we see that we have precisely 
Sturm's case. 

I know of no published result* which goes in this direction, and in the sense I 
have explained, essentially beyond Sturm's. 

By the side of this theorem I will recall to you another one even simpler and 
better known and which Sturm proved by the same methods. I t may indeed be 
regarded as a limiting case of the above theorem. 

The roots of two linearly independent real solutions of a real homogeneous linear 
differential equation of the second order separate each other. 

These theorems perhaps hardly come within the subject of boundary problems 
if we take the term in a strict sense, since no particular boundary conditions are laid 

* From a verbal communication of Professor R. G. D. Richardson I understand that in a paper shortly 
to appear in the Mathematische Annalen he has made progress in this direction in the case of (11) when g 
changes sign and I is negative at some or all points of (X). This would appear to be a case really different 
from Sturm's. 
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down, but they are so fundamental for all work whose object is to determine the 
nature of the solutions of boundary problems that they could not be omitted here. 
Other theorems of the same sort contained in Sturm's memoir refer to the roots of u! 
or more generally of functions of the form fau — fau', where fa and fa are given func­
tions satisfying certain conditions*. 

To the same category of theorems, preliminary, so to speak, to true boundary 
problems, are the various tests which have been given, some of which are contained 
in or follow readily from Sturm's memoir, for the equation (1) being oscillatory in (X), 
that is possessing solutions which vanish more than once theref. 

In all of these cases we have theorems whose extension to equations of higher 
order is by no means easy, not merely because of essentially new difficulties which 
may be and doubtless are involved in the proofs, but still more because it is not easy 
to surmise what the character of the analogous theorems will be. The only investi­
gation in this direction with which I am acquainted is a recent paper by Birkhoff J 
in which theorems concerning the roots of the real solutions of real homogeneous 
linear differential equations of the third order are obtained. The method used is one 
which, while familiar in other parts of the theory of linear differential equations, had 
never, I think, been used in treating boundary problems or questions relating to them. 
I t consists in interpreting a fundamental system of solutions, ux, u2, u3, as the homo­
geneous coordinates of a point in a plane. As x varies, this point traces out a curve 
whose shape is characteristic for the oscillatory properties of the solutions. I mention 
as a sample one of the simpler results obtained, from which it will be evident that 
we really have to deal with an extension of the results of Sturm mentioned above. 
Birkhoff proves that in an interval (X), where q and its derivative q' are real and 
continuous, the equation 

u" + qu' -f ^qu = 0, 

to which every self-adjoint equation of the third order may be reduced, always has 
real solutions which do not vanish, but that if two real solutions do vanish, their 
roots separate each other either singly or in pairs. Moreover, if q is increased, the 
maximum number of roots in (X) increases. 

We have here a field worthy of further cultivation. 

| 5. Boundary Problems as Treated by Sturm. 

Sturm's memoir may perhaps best be divided from a logical point of view into 
three parts, though this division is by no means followed out by the author in his 
method of exposition. We have 

First those parts of the memoir which do not involve any boundary conditions. 
These we have already sufficiently considered. 

* This part of Sturm's memoir, while extensive, is rather incomplete. Much more general results have 
been obtained by another method by Bôcher, Trans. Amer. Math. Soc. vol. 2 (1901), p. 428. 

f Bôcher, Bull. Amer. Math. Soc. vol. 7 (1901), p. 333. Of a somewhat different character is Kneser's 
paper, Math. Ann. vol. 42 (1893), p. 409, since it deals with an infinite interval. The question there is 
essentially the behaviour of solutions in the neighbourhood of a singular point, 

t Annals of Math. vol. 12 (1911), p. 103. 
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Secondly those theorems that refer to what we have called one-point boundary 
conditions, viz. u(a) = yx, u' (a) = y2. Since the existence-theorem here was well 
known, being merely the fundamental existence-theorem for differential equations, 
the theorems concern (a) the character of the solution of the boundary problem 
and (6) the changes produced in it by changes in the differential equation or in the 
boundary conditions. What is most essential here is contained in what I have called 
Sturm's two Theorems of Comparison. 

Thirdly there comes a special kind of two-point boundary problem, the boundary 
conditions being the so-called Sturmian Conditions : 

au (a) + du (a) = 0, | a | + | a' | =£ 0 ^ 

ßu(b) + ß'u'(b) = 0, |£ | -H/3 ' |=£0. 

characterised by the fact that each involves only one end-point of the interval. 
Here all three aspects of boundary problems are considered: (a) the existence of 
characteristic numbers; (b) the nature of the characteristic functions; (c) the changes 
produced in the characteristic numbers and functions by changes in the differential 
equation or the boundary conditions. The main result here is the Theorem of 
Oscillation, or perhaps it would be more correct to say the Theorems of Oscillation, 
since a variety of these may be formulated. 

The first theorem of comparison may be roughly but sufficiently characterised 
by saying that it tells us that a decrease of G, or K, or K (a) u' (a)ju (a) causes all 
the roots of u in (X) to decrease ; while the second theorem of comparison tells us 
that under the same conditions the value of K(b)uf (b)/u(b) will decrease provided 
the number of roots of u has not been changed. Both of these theorems are proved 
by Sturm by means of formula (9), which may, when Kx and K2 are not identically 
equal, be advantageously replaced by (10). 

I shall not stop to enunciate Sturm's theorem of oscillation in any very general 
form. The general case would be that in which K or G or both are functions 
of (x, X) which decrease as X increases, while the ratio K (a) u' (a)/u (a) may 
also decrease with X. I enunciate, however, merely two special cases in which X 
does not enter the boundary conditions and where the differential equation has the 
form (11). 

I. If g è 0, the equality sign not holding throughout (X), and if a, OL, ß, ß' are 
constants, there exist an infinite number of real characteristic numbers for the system 
(11), (12). These are all simple and have no cluster-point except + oo. If when 
arranged in order of increasing magnitude, they are denoted by X0, Xx> X2,... and the 
corresponding characteristic functions by u0, ux, u2,..., then un has exactly n roots in 
the interval a<x<b. 

This is the best known special case of the theorem of oscillation. Another 
special case which, after division by | X |, follows with exactly the same ease is this : 

II . If g changes sign in (X) and 

1^0, adzkO, ßß'^0, 

there exist an infinite number of real characteristic numbers for the system (11), (12). 
These are all simple and have + oo and — oo as cluster-points. If the positive and 
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negative characteristic numbers arranged each in order of increasing numerical value 
are denoted by 

X0 , Xx , X2 , ... 

and X0~, X{~, X2~~,... 

and the corresponding characteristic functions by 
^ 0 J ^ 1 y ^ 2 > • • • 

and UQ~, u{~, u2~,..., 

then un
+ and un~ have exactly n roots in the interval a<x<b. 

I doubt if it has been noticed before that this theorem is substantially 
contained in Sturm's results. I t has been re-discovered three times during the 
last few years*. 

That in the first of these cases there can be no imaginary characteristic 
numbers had been shown by Poisson by means of a special case of (9). A slight 
modification of this reasoning establishes this same fact for the second casef. 

Sturm thus had both existence-theorems for the characteristic numbers and, 
in the theorems of oscillation, some rather specific information as to the nature of 
the characteristic functions. The next thing was to consider the changes produced 
in the characteristic numbers and functions by changes in the coefficients of the 
equation or of the boundary conditions. Such questions are also touched upon by 
Sturm, but we will not enter upon their consideration here. 

As has already been said, all of these results including the theorems of 
oscillation, have their counterparts in the theory of linear difference equations, 
and it was from this side that the subject was first approached by Sturm. However, 
these oscillation properties will not hold for all equations of the form 

LiUi+1 + MiUi 4- NiUi_x = 0 (13), 

but only for those for which 2^A^ > 0 for all values of i with which we are concerned. 
As an illustration let us take the theorem that the roots of two linearly independent 
solutions of (1') separate each other. In order to get the analogous theorem for (13) 
we must introduce the conception of nodes as follows : Corresponding to the values 
i = l, 2 , . . . nlet us mark points xx,x2,...xn on the axis of x, whether equally spaced 
or not is for our present purpose of no consequence. At the point xi we erect an 
ordinate equal to Ui and we join the successive points thus obtained by straight 
lines. We regard the broken line thus formed as representing the solution U{ of 
(13), and the points where this line meets the axis of x we call the nodes of uit If 
the condition LiNi > 0 is fulfilled, it is readily seen that a solution of (13) not 
identically zero corresponds to a broken line which crosses the axis of x at each of its 
nodes, and here the theorem holds that the nodes of any two linearly independent 

* Sanielevici, Ann. de VEcole Normale Supérieure, 3rd ser. vol. 26 (1909), p. 19; Picone, loc. cit. (1909), 
and Richardson, Math. Ann. vol. 68 (1910), p. 279. The mere fact of the existence of an infinite number 
of positive and also of negative characteristic numbers (proved for instance under certain restrictions in 
Hubert's 5th Mitteilung) is an even more obvious corollary of Sturm's work, even if no restriction is placed 
on the sign of I. 

f Picone, loc. cit. p. 16. 
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solutions of (13) separate each other*. Without the restriction in question the 
theorem is false as the example f 

Ui+x Ui — U{—x = u 

shows. Here the solution determined by the initial conditions u0 = 0, ux = 1 gives 
for positive values of i Fibonacci's numbers 0, 1, 1, 2, 3, 5, 8, 13 , . . . with no node; 
while the solutions determined by u0 = - 10, ux = 6 and by u0 = ~lQ,ux = 7 both have 
several positive nodes, but these nodes do not separate each other. In the same 
way the other more complicated theorems of Sturm are, for the case of difference 
equations, essentially bound to the inequality in question. 

This apparent failure of the analogy is less surprising when we notice that every 
linear differential equation of the second order may be obtained as the limit of an 
equation of the form (1) in which after a certain point in the limiting process the 
inequality in question holds. I t is therefore only those difference equations that 
come nearest to the differential equations, so to speak, which share with them the 
simple oscillation properties. Difference equations of the form (13) in general will 
have oscillation properties of a very different character concerning which, so far as 
I know, nothing has been published, though from Sturm's brief remarks it seems 
possible that he had developed this theory also. 

The results of Sturm concerning the oscillatory properties of the solutions of 
differential equations and the existence of characteristic values have been carried 
forward in various directions since his time, partly by methods more or less closely 
related to his own and partly by a number of essentially different methods. Of 
these there are four which we may describe briefly as 

(1) Liouville's method of asymptotic expressions. 

(2) The method of successive approximations. 

(3) The minimum principle. 

(4) Integral equations. 

I t will be well for us to glance briefly at these methods in succession before proceeding 
to consider the present state of knowledge of the theory of one-dimensional boundary 
problems. 

§ 6. Asymptotic Expressions. 

Liouville's greatest contribution to the theory of boundary problems, which had 
been so brilliantly inaugurated by his friend Sturm a few years before, was first 
the discovery of asymptotic expressions for the large characteristic values and the 
corresponding characteristic functions, and secondly the application of these expressions 
in the theory of the development of arbitrary functions^. I t is the first of these 
questions which we must now consider. 

* E. J. Moulton, Annals of Math. vol. 13 (1912), p. 137. 
t Or, more generally, the difference equation satisfied by Gauss's symbols [a l5 a2, ... an].. 
Î Liouville's Journal, vol. 2 (1837), p. 16 and p. 418. 

M. a 12 
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Liouville begins by reducing equation (11), in which he assumes k > 0, g > 0, by 
a change of both independent and dependent variable to the normal form* 

^ + ( ^ - 1 ) ^ = 0, (/*2 = c2X) (14), 

where for the sake of simplicity we may suppose that the transformation has been 
so made that the interval (X) goes over into the interval (0, ir). I t is then sufficient 
to consider this simpler equation. The boundary conditions (12) may be written 

.eo-oi -(12)' u' (w) + Hu ( 

provided we assume a' ^ 0, ß' ± 0. If we suppose u multiplied by a suitable constant, 
the first equation (12') may be replaced by the two non-homogeneous conditions 

^(0) = 1, u'(0) = h (15), 

and it is the non-homogeneous boundary problem (14), (15) which Liouville first 
considers. He shows that its solution satisfies the relation 

h 
u = cos fjtic + -smfix+- \ ï(Ç)u(Ç)smfi(x-!;)dÇ (16). 

A6 H'J o 

This is of interest as being the first occurrence, so far as is known, of an integral 
equation of the second kind, and also because it is the first appearance of an integral 
equation as the equivalent of the system consisting of a differential equation and 
boundary conditions f. 

By means of (16) Liouville readily infers that u and u may be written 

^ i (x> H) 
u = cos fix + 

.(17), 
u' = — fi sin fix -f -\Jr2 (x, fJb) 

where fa and fa (and all functions which in this section are denoted by fa are 
continuous functions of (x, fi) which for all real values of fi and all values of x in 
(0, 7r) remain in absolute value less than a certain constant. From (17) we see that 
u differs when fi is large only in unessential ways from cos fix, so that the large 
characteristic values of fi may be approximately obtained, as is readily shown with 
entire rigour, by substituting cos fix in the second condition (12') in place of u. If 
then we denote the squares of the characteristic numbers arranged in order of 
increasing magnitude by /A0

2, fix
2, fi2

2,..., we may write for the positive values fii the 
expression n + i + ji, where 7; approaches zero as i becomes infinite, and n denotes 
an integer independent of i whose value is as yet unknown. It is worth while to 
notice that we thus get a new proof, quite independent of Sturm's, of the existence 
of an infinite number of positive characteristic values, and of a part of the theorem 
of oscillation, namely that at least after a certain point each characteristic function 

* Here and in what follows certain conditions of differentiability etc. must be satisfied by the coefficients 
of (11). Concerning the possibility of removing these restrictions cf. A. C. Dixon, Phil. Trans, vol. 211 
(1911), p. 411. 

t I.e. not only is (16) a consequence of (14), (15), but conversely (14), (15) is a consequence of (16). 
This last fact, it is true, is not brought out by Liouville. 
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has just one more root in (0, IT) than the preceding one. We see also that there 
are at most a finite number of negative or imaginary values for fi2. 

If, however, we are willing to make use of Sturm's theorem of oscillation, we 
may readily infer that n = 0 and thus get the more specific asymptotic formula 

A*i=s* + 7t> (lim 7̂  = 0) (18). 

The formulae (17), (18) are merely the roughest kind of asymptotic formulae, 
and Liouville proceeded to sharpen them by a further application of the integral 
equation (16). This process was carried a little farther by the same method by 
Hobson* whose results we record 

u = cos ax 1 + TlS^J1) 
L /* . + sin ux 

$ (x) fa(œ,fi) 
H 

L V* H? 
.(170, 

where <f> is continuous in (0, TT) ; 

. C $i , TT 1 f*î TTC = h + H+irì(x)dx (18'), 

and the constants Si are all in absolute value less than a certain constant. 

By substituting these asymptotic expressions for fii in the asymptotic expressions 
for u, Liouville and Hobson readily obtain, after certain reductions, asymptotic 
expressions for the characteristic functions, which need not be here recorded. 

All of these formulae, even the simple one (18), require certain modifications+ 
when in the boundary conditions (12) a' = 0 or ß' = 0 ; the method to be used, 
however, remains the same. 

These asymptotic expressions can be indefinitely sharpened. Thus Horn J, 
using another method, obtains expressions of the form (17'), (18') except that instead 
of containing only the first and second powers of 1/fi and 1/i, the powers from 1 to 
n~ enter, where n is an arbitrary positive integer. 

This paper of Horn was the starting point for the modern developments of this 
subject of asymptotic expressions. In a second paper by Horn§ and in papers by 
Schlesinger|| and Birkhoff 1Ï similar asymptotic expressions are obtained not only 
for equations of the second order in which the parameter enters in a more general 
way and in which the coefficients of the equation are not all assumed real, but also 
for equations of higher order in similarly general cases. These investigations refer, 
however, merely to asymptotic expressions of solutions of a differential equation 
either without special reference to the boundary conditions or else in the case where 

* Proc. London Math. Soc. 2nd ser. vol. 6 (1908), p. 349. 
t This was mentioned on p. 445 of my article II A la in the Encyclopädie and the formulae corresponding 

to (18) when one but not both of the quantities a', ß' are zero were given. By an oversight the case 
a!=j3' = 0, where (18) must be replaced by 

was not mentioned. These cases are considered by Kneser, Math. Ann. vol. 58 (1903), p. 136. 
t Math. Ann. vol. 52 (1899), p. 271. 
§ Math. Ann. vol. 52 (1899), p. 340. 
|| Math. Ann. vol. 63 (1907), p. 277. 
IF Trans. Amer. Math. Soc. vol. 9 (1908), p. 219. The method used in this paper was rediscovered by 

Blumenfchal, Archiv d. Math, u, Phys. 3rd ser. vol. 19 (1912), p. 136. 
12—2 
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the boundary conditions refer to a single point. The question of characteristic 
values does not present itself. This question, however, was taken up by Birkhoff 
in a second paper* in the case of the equation 

dnu dn~1u , • du • f . x , A '• h'(\\ 

where g and the p/s are continuous functions of x of which all except g may be 
complex while g is assumed to be real and not to vanish in (X). General linear 
homogeneous boundary conditions are considered, certain special cases merely (so-
called irregular cases) being excluded. Under these very general conditions Birkhoff 
establishes the existence of an infinite number of characteristic values, of which when 
n is qdd allbiit a finite number are simple,.while when,n is even an infinite number 
of multiple characteristic values can occur only in very special cases; and at the 
same time he obtains an asymptotic expression for them., By means ofthis result an 
asymptotic expression for the. characteristic functions is obtained. 

t h e question of the reality of the characteristic numbers, even when the 
coefficients of (19) are real, is not touched upon. Professor Birkhoff, however, 
calls my attention to the fact that it is possible to treat questions of this sort 
by the methods there given. For instance, to mention only an obvious case, one 
sees that if n is odd there can, apart from the irregular casesf, be at most a finite 
number of real characteristic values. 

| 7. The Method of Successive Approximations. 

Still another method which goes back to Liouville is the method of successive 
approximations. ,• Although in his published papers he used this method only in very 
special cases, it is certain that he was familiar with it in more general forms, though 
it is impossible now to say to what extent of generality he had carried it. The 
method may be formulated as follows in order to include the special cases to be 
found in the literature and many others : 

Let us write the homogeneous linear differential expression 

n/ . dnu dn-ru 

in the form P (u) = L(u) — M (u), 

where L, M are homogeneous linear differential expressions, whose coefficients we 
assume tobe continuous, of orders n and m<w. • The differential equation (1) may 
then be written 

L(û) = M(u) + r ...........................(2(ï). 

We wish to solve this equation subject to a system of linear boundary conditions 
which we will write in the form 

S W = Vi^d + Ji, : (i==l,2,...n) .(21), 

where Ui and V{ are homogeneous linear expressions in u(a), u (a), ...u[n~1](a), 

* Trans. Amer. Math. Soc. vol. 9 (1908), p. 373. 
f To these irregular cases belongs the one treated by Liouville in Liouville's Journal, vol. 3 (1838), 

p. 561. 
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u(b), ... u^n~1] (b). We have thus transposed part of equation (20) and conditions 
(21) to the second member, and we will suppose this so done that the auxiliary 
homogeneous system 

L(u) = 0, j 
Ui(u) = 0, (i=l,2,.:.n)\ '"""'• ( 2 2 ) 

is incompatible. We may then start from any function u0 for which M(uQ) is 
continuous in (X) and Vi(uQ) (i=l, ...n) are defined, and determine a succession of 
functions ux, u2,... by means of the equations 

L(ui+x) = M(u3) + r, 

Ui (uj+1) = Vi (tij) + yi, (i « 1, 2 , . . . n). 

If Uj and its first n — 1 derivatives converge uniformly throughout (X), and this is 
what we shall mean when we say the process converges, the limit of Uj is precisely 
the solution of the problem (20), (21). The question whether this process converges 
or not depends, as was noticed by Liouville in some special cases*, on the character­
istic values for the problem 

L(u) = XM(u), 

Uiiu)^\ri(u)f (i = i ,2 , , . r 7i)[ ( 2 8 ) > 

This connection can best be stated by considering the system 

i(M) = X[J f (w)+rJ + r8, 
(24) 

^ ( ^ ) = = X [ F , ( ^ ) + 7/] + 7/ /, (i = l,2,...n)f h 

where rx + r2 = r, 7 / + 7/' = yif M (u0) + rx *= 0, and Vi (u0) f 7/ = 0, so that when X = 1 
(24) reduces to (20), (21). The fact then is this : 

The method of successive approximations applied to (24) (in the same way in 
which it was applied above to (20), (21)) converges for values of X lohich lie in a 
certain circle (finite or infinite) described about X = 0 as centre and diverges outside. 
If this circle is not infinite, its radius is precisely the absolute value of one of the 
characteristic values of (23). All the characteristic values of (23) which lie within 
this circle are such that for them the system (24) has solutions (necessarily in infinite 
number), while if all the characteristic values on its circumference are simple roots of 
the equation (5), there is at least one of them for which the system (24) has no solution f., 

If there exist no characteristic values, it follows that the method of successive 
approximations will always converge; and this will, in particular, be the case if only 
one of the end-points a or 6 enter in the boundary conditions. The well-known fact 
that in this case the method of successive approximations surely converges J appears 
thus as a special case of the above general theorem. 

In other cases, in which characteristic values do exist, it will be important in 
applying the theorem to know whether for à given characteristic value of X the 
system (24) has solutions or not. Necessary and sufficient conditions of this sort 

* Liouville?s Journal, vol. 5 (1840), p. 356. 
t The statement here made goes far beyond anything I. have found in the literature, and is sufficient 

for our purposes, although a considerable generalization is possible. I expect to take up this matter in 
detail on another occasion. 

X Cf. Fuchs, Annali di Matematica, ser. 2, voi. 4 (1870), p. 36. 
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have been given by Mason* in fairly general cases for differential equations of the 
second order. By means of such conditions the above theorem can of course be 
thrown into other, but equivalent, forms. In all investigations with which I am 
acquainted where the method of successive approximations is used a special case of 
this theorem in some of its forms plays a central part. Thus in Picard's well-known 
application of the method f to the semi-homogeneous problem 

~+XA(x)u = 0, A>Q 

-, u(a) = u(b) = l, 

the fact upon which the possibility of applying the method depends is that the 
successive approximations converge or diverge according as | X | is less or greater 
than the smallest characteristic value ; and this is readily seen to be substantially 
a special case of the above theorem. Again, although the term successive approxi­
mation is not used, §§ 9,10 of Kneser's paper of 1903;j; are in substance an application 
of this method to the semi-homogeneous problem 

s(*s) + <*-*>«+/«0, 
au (a) + du' (a) — 0, | a \ + | OL j ^ 0, 

j8tt(6) + j8V(6) = 0, |/3|-f|/3'|=É0, 

and the first of these sections may be regarded as a proof of the above theorem so 
far as it refers to this special case. 

A second essential element in almost all applications of the method of successive 
approximations is constituted by Schwarz's constants which serve the purpose of 
giving a second test of the range of convergence of the process. I t is by a comparison 
of the inferences drawn from these two methods that the final result is deduced. 
For details we refer here to the work of Picard and Kneser already cited. 

§ 8. The Minimum Principle. 

That linear boundary problems can be brought into intimate connection with 
the calculus of variations was first noticed and is still best known in connection 
with Laplace's equation, where the method involved has received the now almost 
universally accepted misnomer Dirichlet's Principle. I t was pointed out by 
Weierstrass some fifty years ago that the existence of a minimum is here by no 
means obvious and that Dirichlet's Principle does not establish rigorously the existence 
of a solution of the boundary problem in question. This criticism was, however, 
not generally known in 1868 when H. Weber § applied a similar method to establish 
the existence of characteristic numbers for the partial differential equation 

d2u d2u 79 

* Trans. Amer. Math. Soc. vol. 7 (1906), p. 337. See also C. B. vol. 140 (1905), p. 1086. Cf. also for 
equations of higher order, Dini, Annali di Mat. vol. 12 (1906), pp. 240 ff. 

f Traité d'Analyse, vol. 3, 2nd edition, p. 100. 
X Math. Ann. vol. 58, p. 81. See also for more general cases the paper of Dini just cited. 
§ Math. Ann. vol. 1, p. 1. 
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subject to the boundary condition w = 0. While this work of Weber thus remained 
inconclusive, it at least made it clear that granting the existence of a minimum a 
precisely similar method could be carried through in the similar one-dimensional 
case*. The facts here are these: 

Consider the problem of determining the function u (x) with continuous first 
and second derivatives in (X) which satisfies the conditions 

u (a) = u(b) = 0, 

Au2dx = 1 i 
J a (A being a given function which is everywhere positive), and which minimizes the 

integral 

J— I u'2dx. 
J a 

If we admit that such a function, uQ, exists and call the corresponding 
(minimum) value of J, X0, it is readily proved that X0 is a characteristic number 
for the differential equation 

d^2 + XAu = ° 
with the boundary conditions u (a) = u (b) = 0, 

and that u0 is the corresponding characteristic function. Moreover it is shown that 
X0 is the smallest characteristic number. 

To get the next characteristic number we add to the conditions imposed above 
on u the further one 

rb 
Au0udx = 0. 

J a 

The function ux satisfying this condition as well as those stated above and minimizing 
J is the second characteristic function and this minimum value of J is the second 
smallest characteristic number, Xx. 

By adding to the conditions already imposed the further one 
rb 

Auxudx = 0, 
J a 

we get the third characteristic value and function, etc. 

After Hilbert's brilliant achievement in 1899 of inventing a method by which 
in many cases the existence of a minimizing function in problems of the calculus of 
variations may be established, it was natural to hope that this method might be 
applied successfully to this problem also. This was in fact done by Holmgren f, but 
a far simpler method of accomplishing the same result for this special problem, as 
well as for certain other boundary conditions, had been invented a little earlier by 
Mason I to whom the problem had been proposed by Hilbert. As first given, this 

* Cf. Picard, Traité d'Analyse, 1st edition, vol. 3 (1896), p. 117, where only a partial account of the 
matter is given. 

f Arkivför Mat., Astr. och Fysik, vol. 1 (1904), p. 401. 
X Dissertation, Göttingen, 1903. Some serious mistakes contained here were corrected in the abridged 

version, Math. Aim. vol. 58 (1904), p, 528. 
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method involved the use of some of Fredholm's results in the newly developed 
theory of integral equations, but it has been subsequently modified by Mason so as 
to be entirely independent of this theory and at the same time extended to much 
more general cases*. Still another method of establishing the existence of a 
minimum was given by Richardson f. This method depends essentially on develop­
ment theorems in the theory of integral equations. 

| 9. The Method of Integral Equations. 

We come finally to the method of integral equations which has held such a 
prominent place in the mathematical literature of the last few years. The central 
fact here is that a linear differential equation, whether ordinary or partial, together 
with a system of linear boundary conditions can be replaced by a single integral 
equation of the second kind. We have already seen how this fact presented itself in 
a very special case in the early work of Liouville. In the case of the fundamental 
boundary problem for Laplace's equation it formed the starting point for Fredholm's 
epoch-making investigations. I t was however reserved for Hilbert % to bring out 
this relation clearly in more general cases, and to make use of it in the theory of 
characteristic numbers of differential equations and of the developments according to 
their characteristic functions. 

The relation of the linear boundary problem for ordinary differential equations to 
the subject of integral equations is actually established by formula (3) above which 
may be regarded as an integral equation of the first kind for the function r (x). The 
integral equation of the second kind originally used by Hilbert in the case of certain 
self-adjoint systems was 

f(œ) = u(œ) + \(b&(at,Ç)u(Ç)dÇ (25), 
J a 

where G is the Green's function of a certain homogeneous system, the differential 
equation of which we will denote by L(a)^ 0. Hilbert shows that the reciprocal, 
G (x, £, X), of the kernel XG (x, £) of this equation (the " solving function ") is precisely 
the Green's function of the equation 

L(u) + \u = 0: (26), 

with the same boundary conditions as before. Since the characteristic numbers for 
this last system are the poles of its Green's function, we see from one of the most 
fundamental of Fredholm's results that these characteristic numbers are the values 
of X for which the determinant of equation (25) vanishes ; that is they are, according 
to Hubert's terminology, the characteristic numbers of the homogeneous integral 
equation 

u(x) + xi G(x,Ç)u(Ç)dÇ = 0 (27). 
J a 

A comparison of this equation with the equation of the first kind (3) shows that 

* Trans. Amer. Math. Soc. vol. 7 (1906), p. 337, also vol. 13, p. 516. For the treatment of the special 
case here mentioned see The New Haven Colloquium of the American Mathematical Society, 1910, p. 210. 

f Math. Ann. vol. 68 (1910), p. 279. 
X Göttinger Nachrichten, 1904, Zweite Mitteilung, p. 213. 
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if X is a characteristic value, every solution of (27) is a solution of (26) which satisfies 
the given boundary conditions, and vice versa. Consequently we have in (27) a 
homogeneous integral equation of the second kind equivalent to the homogeneous 
system consisting of (26) and a set of homogeneous boundary conditions indepen­
dent of X. 

In the cases considered by Hilbert, G is a real symmetric function of (x, £), that 
is we have to deal here with what we have called a real self-adjoiiit system. Here 
Hilbert's beautiful theory of integral equations with real symmetric kernels comes 
into play*, the fundamental theorem in which is that such a kernel always has at 
least one characteristic numberf and can have no imaginary characteristic numbers. 
I t was possible for Hilbert to go at once farther since the kernel G was readily shown 
to be closed, that is to be such that the equation 

f 
J a 

is satisfied by no continuous function u except zero. For such kernels he had 
established the existence of an infinite number of characteristic numbers. He thus 
obtained at one stroke the theorem: Every real self-adjoint system in which the 
parameter X does not enter the boundary conditions, and enters the differential 
equation only in the form (26), has an infinite number of real and no imaginary 
characteristic numbers J. 

Other applications made by Hilbert, including the theorems concerning the 
developments according to characteristic functions, will be mentioned later. 

Hilbert has sketched at the close, of his fifth and in his sixth Mitteilung^ still 
another method for reducing a boundary problem to an integral equation of the 
second kind. This method, which he carried through in detail only in the case of 
a special partial differential equation, leads us to a kernel which is not a Green's 
function, but is formed by means of a parametrix, that is a function of (x, £) which 
satisfies the same boundary conditions as the Green's function, and whose (n — l)th 
derivative has the same discontinuity, but which does not satisfy the differential 
equation. 

A linear integral equation may be regarded as the limiting form of a system of 
linear algebraic equations. This fact, which had been noticed by Volterra and put to 
essential use by Fredholm, as the very names determinant and minor sufficiently 
indicate, was made by Hilbert in his first paper the foundation, not merely 

* Göttinger Nachrichten, 1904, Erste Mitteilung, p. 49. This theory was subsequently put into still 
more elegant and complete form by E. Schmidt, Göttingen dissertation, 1905, Math. Ann. vol. 63 
(1907), p. 433. 

f In my Tract : Introduction to the Study of Integral Equations, Cambridge, England, 1909, p. 47, 
I erroneously attributed this theorem to Schmidt. This mistake will shortly be corrected in a second 
edition. 

X It is no essential generalization, as Hilbert himself points out, to consider the differential equation 

1/,(%)••+X0M = O,-• 
where g is continuous and does not vanish. The general conception of a self-adjoint system is not 
formulated by Hilbert, but his work evidently applies to this case. 

§ Göttinger Nachrichten, 1906, p. 480 ; 1910, p. 8. 
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heuristically but also in the way of rigorous deduction, of the theory of integral 
equations of the second kind. We thus have two methods of treating a boundary 
problem in one dimension as the limit of an algebraic problem concerning linear 
equations; first the direct method of difference equations described near the 
beginning of this lecture, and secondly the indirect method of replacing the 
boundary problem by an integral equation and regarding this as the limit of a linear 
algebraic system. Not only do these two methods look very unlike when super­
ficially considered, but they present also a deeper lying difference : the determinant 
and its minors of the linear algebraic system whose limit is the integral equation 
approach definite limits, namely the Fredholm determinant and the Fredholm minors 
of the integral equation; whereas the determinant and its minors of the system of 
difference equations do not approach any limits as we pass over to the transcendental 
case. In spite of this apparently essential difference, there is the very closest 
relation between these two methods of obtaining the transcendental problem as the 
limit of an algebraic one. This relation was pointed out to me a few days ago in 
conversation by Dr Toeplitz of Göttingen, and may be briefly stated as follows : 

If we use Hubert's original method of passing from the differential to the 
integral equation by means of the Green's function G (x, £), as explained above, the 
connection with the system of difference equations may be established by considering 
the homogeneous linear algebraic system reciprocal to the system of difference 
equations of which L (u) = 0 is the limit. This system has as its matrix, as is readily 
seen, precisely the Green's function of the difference equation, and if we add to the 
terms in the principal diagonal the quantities 

UQ UX un 

XX X 

we get the linear algebraic system of which the integral equation (27) is the limit. 

On the other hand, if we use the parametrix to pass from the differential to the 
integral equation, the connection with the difference equation is even more direct. 
In order to make the determinant and its minors of the difference equation converge 
when we pass to the limit, it is sufficient to combine the linear algebraic equations 
into an equivalent system by taking suitable linear combinations with constant 
coefficients of the equations, and this can be done in an infinite number of ways. 
The limit of the algebraic system as thus modified is precisely the integral equation 
of the second kind yielded by the use of the parametrix, 

These relations will be explained in detail in Dr Toeplitz's forthcoming book on 
integral equations. 

All the methods which have been devised to treat linear integral equations, for 
instance Hubert's method of infinitely many variables, may be regarded as being 
indirect methods for the treatment of linear boundary problems ; but any discussion 
of such questions would obviously be beyond the scope of this lecture, 

§ 10. The Present State of the Problem. 

The methods discussed in the last three sections have in common the very 
important advantage that they are capable of generalization without serious difficulty 
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to the case of partial differential equations. It was therefore well worth while for 
their inventors and others to apply them somewhat systematically to the proofs of 
theorems in the case of the one-dimensional problem which had been already proved 
by other methods. The fact that the proofs by the newer methods were almost 
invariably both less direct and less simple than the earlier proofs leaves these 
applications of the newer methods still of decided interest, since they pointed the 
way to be followed in deducing really new results for partial differential equations. 
As an example in point I mention Eichardson's use of the calculus of variations in 
proving Sturm's theorem of oscillation*. 

I wish now, however, to indicate the stage which has been reached in results 
rather than in methods, and in doing this we begin with the case of the differential 
equation of the second order. 

Twelve years ago in writing the article on boundary problems in one dimension 
for the mathematical Encyclopaedia I was obliged to present as an unsolved, and 
indeed until then almost unformulated, problem the question of solving the real 
homogeneous equation of the second order 

£ + P^Ìx + q^X)u = 0 (28)' 
subject to the " periodic " boundary conditions 

u(a) = u(b), w ,(a) = %,(6) (29). 

If we assume that as X increases through the interval 

1<X<L (A), 

q constantly increases from negative or zero values to values which at least for some 
part of (X) become positively infinite, and that 

rb 

I p dx = 0, 
J a 

this problem has since been answered by the following theorem of oscillation which 
I quote in detail because it really goes beyond Sturm's results and is at the same 
time simplef : 

The problem (28), (29) has an infinite number of characteristic numbers in the 
interval (A), and these have L as their only cluster point. If we indicate these 
characteristic numbers in order of increasing magnitude by X0, Xx, X2, ..., each double 
characteristic number being repeated, and the corresponding characteristic functions by 
u0, ux, u2, ..., then un vanishes an even number of times, namely n or n + 1 times. 

This theorem was not completely proved until Birkhoff J in 1909 established it 
as a special case of a much more general theorem of oscillation referring to the 

* Math. Ann, vol. 68 (1910), p. 279. 
t Given in my Encyclopaedia article for the special case in which q has the same value at a + £ as at b - £ 

while the values of p at these two points are the negatives of each other (the statement as to p is there 
incorrectly given); for the case where q = \g-l{g>0), by Mason, C. R. vol. 140 (1905), p. 1086 (see also 
Tzitzeica, ibid. p. 492) ; as here stated, by Bôcher, G. R. vol. 140 (1905), p. 928, except that it was not 
there proved that only two w's have the same number of roots. 

X Trans. Amer. Math. Soc. vol. 10, p. 259. Special cases of these results were subsequently deduced by 
another method by Haupt, Dissertation, Würzburg, 1911. 
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general real self-adjoint homogeneous problem for the differential equation of the 
second order*. These results of Birkhoff, which he obtains by a natural extension of 
Sturm's methods, may be regarded as on the whole the high-water-mark of our 
subject so far as theorems of oscillation are concerned. They do not, however, at 
present include Sturm's theorems of oscillation when K depends on X or even the 
special case mentioned above where q is replaced by Xg — Z, g changing sign, 
but 1^0. 

I t is perhaps of interest to return for a moment to the periodic case in order to 
remark that if we seek there not the truly periodic solutions (on the supposition that 
p and q have the period b — a) but periodic solutions of the second kind, i.e. if we 
seek to make u(b) and u' (b) merely proportional to u(a) and u'(a),we are imposing 
not a linear but a quadratic homogeneous boundary condition, viz. 

u (a) u' (b) — u (a) u (b) = 0. 

This example of a quadratic boundary problem is interesting because of its relative 
simplicity—the problem always has one, and in general two, linearly independent 
solutions. I t was considered explicitly by Floquetf in 1883, but is essentially the 
problem of Riemann, and Fuchs concerning the existence of solutions of an analytic 
linear differential equation which behave multiplicatively when we go around a 
singular point. Concerning this quadratic problem and its relations to the linear 
problem (28), (29) reference should also be made to the work of Liapounoff J. 

We come next to a series of interesting but rather special investigations 
concerning the equation of the fourth order. The equations here considered are of 
the self-adjoint form 

d2 f1 d2u\ % A . , • ' 

In 1900, and more generally in 1905, Davidoglou§ treated this equation by the 
method of successive approximations, the boundary conditions being the very special 
ones which present themselves in the theory of the vibrating rod. By using Picard's 
methods it was shown that Sturm's theorem of oscillation may be transferred without 
change to this case, multiple roots for the characteristic functions never occurring 
between the points a and b. This same differential equation has since been 
treated by Haupt (loc. cit.) subject to more general, but still very special, real 
homogeneous self-adjoint boundary conditions; the method used being to consider 
the effect on the characteristic numbers and functions of continuous changes in the 
differential equation—a method, it will be seen, not unlike in spirit, however it may 
differ in detail, from the methods used by Sturm. 

In all the cases mentioned so far only self-adjoint problems have been considered. 
Liouville||, in 1838, considered a special real but not self-adjoint homogeneous 

* This requires p s O in (28), but this is no essential restriction. 
t Annales de "VEcole Normale Supérieure, 2nd ser. vol. 12, p. 47. 
X Memoirs of the Academy of St Petersburg, 8th ser. vol. 13 (1902), No. 2, where references to some 

earlier work by the same mathematician will be found. 
§ Annales de VEcole Normale Supérieure, 3rd ser. vols. 17 and 22, pages 359 and 539. 
|| Liouville's Journal, vol. 3, p. 561. 
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equation of the nth order with boundary conditions of a rather special form* to which 
special methods were applicable resembling those used in establishing Fourier's 
theorem concerning the number of real roots of algebraic equations. In this way 
a theorem of oscillation precisely like Sturm's was established. Liouville noticed 
that the characteristic values were the same for this problem and its adjoint, and 
that the corresponding characteristic functions for these two problems have the same 
number of roots. 

Finally we note a very recent paper by v. Mises f who reverts to Sturm's original 
method of obtaining the differential equation as the limiting form of a difference 
equation to treat the equation (11) either under the assumption g > 0 or I > 0 and 
with the boundary conditions 

rb rb 
I Audx — 0, I Budx — 0, 

Ja Ja 

where A and B are given functions. From what was said in § 2 it will be seen that 
these are equivalent to conditions of the form (2'), where, however, the coefficients are 
in general functions of X of a special kind. 

The only other result of a general character which has been obtained is 
Birkhoff's proof, already mentioned, of the existence of an infinite number of 
characteristic numbers for the general (not necessarily real or self-adjoint) boundary 
problem in which the parameter does not enter the boundary conditions, and enters 
the differential equation only in the form indicated in (19), g being real and positive, 
and his asymptotic expressions in this case. A similar result of Hub J deserves 
notice, although it refers only to special equations of the first and second orders, 
because it involves non-homogeneous differential equations with n - f1 instead of n 
non-homogeneous boundary conditions ; a case, however, which may readily be 
reduced to the type of problem we have been considering (i.e. a homogeneous system 
involving n boundary conditions) provided we are willing to admit the parameter 
into the coefficients of one of the boundary conditions. 

§ 11. The Sturm-Liouville Developments of Arbitrary Functions. 

Almost as old as linear boundary problems themselves, and indeed one of the 
chief causes for the importance of and continued interest in these problems, is the 
question of developing a more or less arbitrarily given function / (x) in the form of a 
series whose terms are the characteristic functions of such a problem. The simplest 
case here is that of the system (11), (12), with which alone we shall be concerned in 
this section§. Moreover we assume g > 0. Denoting the characteristic functions by 
u^ %, . . . , we have the problem of determining the coefficients c0, cx, ... so that the 
development 

f(x) =zc0u0 + cxux+ ... (30) 

* Namely n~;1,homogeneous conditions involving a and one homogeneous condition involving b. 
Liouville writes, to be sure, n non -homogeneous conditions at a, but they are, for his purposes, equivalent 
to n - 1 homogeneous ones. 

t H. Weber, Festschrift, 1912, p. 252. 
X Crelle's Journal, vol. 140 (1911), p. 205. 
§ We will assume that neither a' nor ß' is zero. These are exceptional cases which require a separate 

treatment which presents no difficulty. 
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shall be valid. By means of (9) we readily see that the u/s satisfy the relation 

•rb 
gUiUjdx^O, (i±j) • (31), 

J a 

by means of which the formal determination of the coefficients of (30), precisely as in 
the case of Fourier's series, is effected, namely 

J a 
gfui dx 

Ci = J~f , .(» = 0 , 1 , ...) (32). 
gui2dx 

Ja 
Liouville* set himself the problem of considering this formal development of 

Sturm and proving first that it converges, and secondly that its value is f(oo), but 
though he invented methods of great importance and got some valuable results, he 
did not succeed in carrying his treatment even for the simplest functions f(x) to 
a successful conclusion. 

Let us first consider the question of showing that if / (x) is continuous and the 
series (30) with coefficients (32) converges uniformly in (X), its value must be 
precisely f(oc). Liouville by a simple and ingenious process showed that under 
these conditions the function represented by the series coincides with the function 
f(x) for an infinite number of values of x in (X), but did not perceive that this was 
not sufficient. A rigorous proof was first given by Stekloff-f" in 1901 (modified and 
simplified in 1903 by Kneser|) by the method of successive approximations. Further 
proofs have since been given, namely one by Hilbert § completed by Kneser|| by 
means of integral equations, and a very simple one by MasonH by means of the 
calculus of variations. 

If we turn to the question of the convergence of the series, we find that 
Liouville accomplished decidedly more than in the matter just considered, since 
he proved by a method, which when examined in the light of our modern knowledge 
proves to be essentially rigorous, that if f(x) is continuous and consists of a finite 
number of pieces each of which has a continuous derivative, the series will converge 
uniformly. This he did by means of the asymptotic expressions of § 6. Finally 
Kneser** in his remarkable papers of 1903 and 1905, which so far as wTe have not 
already described them depend essentially on the use of asymptotic values, gave a 
comprehensive, rigorous, and simple treatment of this whole subject which applies 
to functions satisfying Dirichlet's conditions throughout the region (X), and even 
establishes the uniform convergence of the development in any portion of (X) 
where f(x) is continuous. Thus, with Kneser's papers, all the more fundamental 
questions concerning the development of an arbitrary function in a Sturm-Liouville 
series were completely and satisfactorily settled. 

* Liouville's Journal, vol. 1 (1836), p. 253; vol. 2 (1837), p. 16 and p. 418. 
t Anni de la Faculté des sciences de Toulouse, ser. 2, vol. 3, p. 281. 
X Math. Ann. vol. 58, p. 81. 
§ Göttinger Nachrichten, 1904, 2te Mitteilung, p. 213. 
|| Math. Ann. vol. 63 (1907), p. 477. 
11 Trans. Amer. Math. Soc. vol. 8 (1907), p. 431. 
** Math. Ann. vol. 58, p. 81 and vol. 60, p. 402. 
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I t was however of interest to accomplish the same thing in other ways, and two 
other methods essentially distinct from Kneser's and from each other have since 
been developed. The first of these was Hilbert's remarkable application of integral 
equations to this development problem*, while the second by A. C. Dixon j* involved 
Cauchy's method of residues. 

The subject was not however hereby exhausted. There remained, for instance, 
the question of showing that, as in the case of Fourier's series, the convergence of the 
development at a particular point depends, roughly speaking, only on the behaviour 
of f(x) in the neighbourhood of this point, a question which was successfully treated 
by Hobson\. One could, however, hardly have anticipated that there was still room 
for such an extensive advance as was to be made by Haar§ in two papers which seem 
to have such a degree of finality that we must consider them in some detail. 

Haar's work, like almost all other work on this subject, involves the reduction of 
the differential equation to the normal form (14) by means of Liouville's transforma­
tion, and, for the sake of simplicity, it is only of this normal form I shall speak. 
Moreover we will assume that the characteristic functions have been multiplied by 
such constants as to make the denominators of the coefficients (32) have the value 1. 

From the earlier work on the development of functions we need merely assume 
as known that the very simplest kind of functions, say analytic functions, are 
represented uniformly by their Sturm-Liouville development. 

Let us now denote by sn (x) and an (x) the sums of the first n + 1 terms of the 
Sturm-Liouville and of the cosine development of f(x) respectively : 

We have then 

where 

fir n 

Sn (#) = f(a)tui (a) ui (x) da, 
J 0 2 = 0 

rtr r 1 2 ^ . . "1 
crn (x) = f(a) — i— 2 cos ia cos ix da. 

Jo [_7T 7Ti=zl J 

sn(x)- <rn(x) = I f(a)<&n(a,x)da .......(33), 
Jo 

n 1 2 % 

<3>n (a, x) = 2 Ui (a) Ui(x) 2 cos ia cos ix. 
i = 0 77 7T^ = i 

Now the central fact discovered by Haar, from which everything else flows with the 
greatest ease, is that whatever continuous function f (x) represents 

lim [sn (x) — an (x)] = 0 uniformly. 
n=cc 

* Göttinger Nachrichten, 1904, 2te Mitteilung, p. 213, where, however, the conditions imposed on f(x) 
were extremely restrictive. The matter was treated more generally by Kneser, Math. Ann. vol. 63 (1907), 
p. 477. 

t Proc. London Math. Soc. ser. 2, vol. 3 (1905), p. 83. 
X Proc. London Math. Soc. ser. 2, vol. 6 (1908), p. 349. 
§ Zur Theorie der orthogonalen Funktionensysteme. Göttingen dissertation (1909). Reprinted Math. 

Ann. vol. 69 (1910), p. 331. Also a second paper, Math. Ann. vol. 71 (1911), p. 38. See also Mercer, Phil 
Trans, vol. 211 (1911), p. 111. 



192 M. BÔCHER 

The proof consists of three steps of which I give all but the first completely : 

(a) By means of the asymptotic expressions for Ui it is shown that there exists 
a constant if (independent of a, x, n) such that 

\®n(a,x)\<M. 

(b) If f(x) is analytic we know that sn(x) and crn(x) both approach f(x) 
uniformly. Consequently in this case, by (33), 

lim I f(a) <&n (a, x)da = 0 uniformly. 
n-<x> J 0 

(c) Whatever be the continuous function/(#), form a sequence (jyx (x), <£2 (x), ... 
of analytic functions which approach f(x) uniformly. We may write 

sn (oo) - an (x) ==' [ / (a) - 0m (a)] <ï>n (a, x) da + <j>m (a) <&n (a,x) da. 
Jo Jo 

Since (f)m approaches / uniformly, we see by (a) that m may be so chosen that for all 
ri's and #'s the first of these integrals is in absolute value less than -|e. Having thus 
fixed m, we see by (b) that the second integral can be made in absolute value less 
than -|e by taking n sufficiently large. This completes the proof. 

I t is now merely restating a part of what we have just proved if we say : 

The Sturm-Liouville development of any continuous function f(oc) in the case of 
the normal system (14), (12') converges or diverges at any point of (X) according as the 
cosine development of f(x) converges or diverges there. It diverges to + oo (— oo ) when 
and only when the cosine development does this. It converges uniformly through a 
portion of (X) when and only when this is true of the cosine development. 

If we now denote by Sn (x) and Sn(x) the arithmetic means of the first n ss and 
o-'s respectively, we may infer easily from the fact that sn — crn approaches zero 
uniformly, the further fact that 

lim [Sn (x) — Xn (#)] = 0 uniformly. 
n=cc 

Consequently, since Fejér has proved that the cosine development of a continuous 
function of "x is always uniformly summable by the method of the arithmetic mean 
to the value of the function, it follows that the same is true of the Sturm-Liouville 
development of any continuous function. 

The extension to the development of discontinuous functions is not at all 
difficult and leads, as is indicated by Haar, to analogous results. 

Finally in his second paper Haar shows how still other theorems concerning 
trigonometric series, namely those established by Riemann and his followers, can be 
carried over to the Sturm-Liouville developments with only very slight changes. 

§ 12. Other Developments. 

The most immediate and natural extension of the Sturm-Liouville developments 
is to the development according to the characteristic functions of a system which 
consists of the differential equation (11), in which g > 0, and in place of the Sturmian 
conditions (12) a more general pair of real self-adjoint conditions, thus including, for 
instance, the periodic conditions (29). The formal work in these cases is the same as 
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before, since the relation (31) is still satisfied. Some cases of this sort were treated 
by Hilbert in his second Mitteilung (1904) by the method of integral equations but 
only under very restrictive conditions on the function f(x) to be developed, namely 
the continuity of its first and second derivatives, besides the further fact that f(x) 
must satisfy the same boundary conditions as the characteristic functions in terms of 
which it is to be developed. Shortly after, the general case here described was treated 
by A. C. Dixon, in the paper referred to above, by Cauchy's method of residues, the 
restrictions to be placed upon/(#) being very much less restrictive. 

Here again an essential advance was made by Birkhoff* in 1908. Even more 
significant here than the generalization to equations of the nth order of the form 
(19)f is the fact that the condition of reality is dropped and that the system 
considered is no longer required to be self-adjoint. This last generalization makes, 
as Liouville had already noticed in a special case J, an essential change even in the 
formal work of expansion, since formula (31) is no longer valid. It is desirable now 
to consider by the side of the given problem the adjoint problem. This has, as we 
know, the same characteristic values as the original system, and if we denote the 
corresponding characteristic functions first of the original system and then of the 
adjoint system by 

UQ , U\, U%, . . . 

VQ, Vlf Vz, . . . 

respectively, we have the relation 
rb 

I 
J a 

gUiVjdx = 0, (i±j) (34), 

which reduces to (31) when the system is self-adjoint. We have then essentially not 
an orthogonal but what is known as a biorthogonal system. By means of this 
equation the coefficients may be formally determined by the expression 

gfvidx 
Ci = fb (35), 

I gu^idx 
J a 

where, however, the question of the possible vanishing of the denominator must be 
further considered. This formal work, which had been given by Liouville in a special 
case, is the basis of Birkhoff's paper. 

At a characteristic number \ the Green's function G (x, | ) has in general a pole 
of the first order whose residue Birkhoff finds to be given by the formula 

Ui (oc) Vi (£) 

I gu^idx 
J a 

* Trans. Amer. Math. Soc. vol. 9, p. 373. A very special case of Birkhoff's result was subsequently 
obtained by essentially the same method by Hilb, Math. Ann. vol. 71 (1911), p. 76. 

+ Westfall had in 1905 (Göttingen dissertation) considered the real self-adjoint case where the equation 
is of even order, where, however, no essentially new features occur. The method used was Hubert's and 
the restrictions imposed on / were correspondingly great. 

X Liouville's Journal, vol. 3 (1838), p, o61» 

M. C. IS 
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This when multiplied byf(lj) and integrated from a to b is precisely the general term 
of the formal development off(x) according to the functions^. Consequently the 
sum of the first n 4-1 terms of this formal development may readily be expressed as 
a contour integral in the \-plane whose path surrounds the first n-f 1 characteristic 
numbers X0, \ , ... Xn. Birkhoff then evaluates the limit of this contour integral as 
n becomes infinite by means of the asymptotic expressions for the characteristic 
functions Ui, Vi, and thus establishes at one stroke in fairly general cases both the 
convergence of the series and the fact that it represents the function f(oo). 

A similar treatment has since been given by Hilb in the case of two special 
non-homogeneous systems mentioned at the end of § 10. 

The Sturm-Liouville developments have also been generalized in one other 
direction, namely to the case where in the equation of the second order (11) the 
function g changes sign while I ^ 0. The results here are still very incomplete, only 
the real case with certain special self-adjoint boundary conditions having been so far 
treated. The first treatment was by Hilbert* in 1906, when by means of his theory 
of polar integral equations he succeeded in establishing the validity of the 
development under very special restrictions including the continuity of the first four 
derivatives of the function to be developed. Mason's proof by means of the calculus 
of variations, referred to above, that if / is continuous and the series converges 
uniformly, the development represents the function, is valid in this case also. 

The numerous important contributions which have been made during the last 
few years to the theory of series of orthogonal or biorthogonal functions in general 
all have a direct bearing on the questions here considered, and some of them give, 
even in the special cases we are here concerned with, essentially new results. I t 
would, however, lead us too far if we should attempt to follow up these more general 
investigations. 

§ 13. Conclusion. 

The questions we have been considering may be classified roughly as 
(a) Existence Theorems, (6) Oscillation Properties, (c) Asymptotic Expressions, 
(d) Development Theorems. For the Sturm-Liouville system (11), (12) the investi­
gation of all of these questions has been carried to a high degree of perfection, 
although even here the field is not yet exhausted. In the real self-adjoint case for 
the equation of the second order (11) where g > 0 results of a fair degree of complete­
ness in all these directions have also been attained. In most other cases, however, 
the ground has only just been broken and nearly everything is still to be done. 

Of the methods invented during the last few years undoubtedly that of integral 
equations is the most far-reaching and powerful. This method would seem however 
to be chiefly valuable in the cases of two or more dimensions where many of the 
simplest questions are still to be treated. In the case of one dimension where we 
now have to deal with finer or more remote questions other, in the main older, 
methods have so far usually proved to be more serviceable. I t is only fair to mention 

* Göttinger Nachrichten, 5te Mitteilung, p. 473. Cf. also Fubini, Annali di Mat. ser. 3, vol. 17 (1910), 
p. I l l , where Hubert's restriction that g vanish only a finite number of times in (X) is removed. 

file:///-plane


BOUNDARY PROBLEMS IN ONE DIMENSION 1 9 5 

here the very important treatment given by Weyl of cases in which singular points 
occur at a or 6. The development theorems here, where we have frequently not 
series but definite integrals, or even mixed forms, have so far been handled only 
by the use of integral equations. Apart from this, it may fairly be said that the 
greatest advances of recent years in the theory of boundary problems in one 
dimension, I recall for instance Birkhoff's three important contributions, have been 
made by other methods, largely indeed by methods more or less closely analogous to 
the original methods of Sturm and of Liouville. If my lecture to-day can serve to 
emphasize not the historical importance but the present vitality of these methods it 
will have served one of its main purposes. 

13—2 





ON THE DYNAMICS OF RADIATION 

B Y SIR JOSEPH LARMOR. 

The subject of this title is coextensive with the whole range of the physics 
of imponderable agencies. For if it is correct to say with Maxwell that all radiation 
is an electrodynamic phenomenon, it is equally correct to say with him that all 
electrodynamic relations between material bodies are established by the operation, on 
the molecules of those bodies, of fields of force which are propagated in free space 
as radiation and in accordance with the laws of radiation, from the one body to the 
other. I t is not intended to add to the number of recent general surveys of this 
great domain. The remarks here offered follow up some special points : they are in 
part in illustration of the general principle just stated: and in part they discuss, by 
way of analogy with cognate phenomena now better understood, the still obscure 
problem of the mode of establishment of the mechanical forces between electric systems. 

The essential characteristic of an electrodynamic system is the existence of the 
correlated fields, electric and magnetic, which occupy the space surrounding the 
central body, and which are an essential part of the system ; to the presence of this 
pervading aethereal field, intrinsic to the system, all other systems situated in that 
space have to adapt themselves. When a material electric system is disturbed, its 
electrodynamic field becomes modified, by a process which consists in propagation 
of change outward, after the manner of radiation, from the disturbance of electrons 
that is occurring in the core. When however we are dealing with electric changes 
which are, in duration, slow compared with the time that radiation would require to 
travel across a distance of the order of the greatest diameter of the system—in fact 
in all electric manifestations except those bearing directly on optical or radiant 
phenomena—complexities arising from the finite rate of propagation of the fields of 
force across space are not sensibly involved: the adjustment of the field surrounding 
the interacting systems can be taken as virtually instantaneous, so that the operative 
fields of force, though in essence propagated, are sensibly statical fields. The practical 
problems of electrodynamics are of this nature—how does the modified field of force, 
transmitted through the aether from a disturbed electric system, and thus established 
in the space around and alongside the neighbouring conductors which alone are 
amenable to our observation, penetrate into these conductors and thereby set up 
electric disturbance in them also ? and how does the field emitted in turn by these > 
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new disturbances interact with the original exciting field and with its core ? For 
example, if we are dealing with a circuit of good conducting quality and finite cross 
section, situated in an alternating field of fairly rapid frequency, we know that the 
penetration of the arriving field into the conductor is counteracted by the mobility of 
its electrons, whose motion, by obeying the force, in so far annuls it by Newtonian 
kinetic reaction ; so that instead of being propagated, the field soaks in by diffusion, 
and it does not get very deep even when adjustment is delayed by the friction of the 
vast numbers of ions which it starts into motion, and which have to push their way 
through the crowd of material molecules; and the phenomena of surface currents 
thus arise. If (by a figure of speech) we abolish the aether in which both the 
generating circuit and the secondary circuit which it excites are immersed, in which 
they in fact subsist, the changing phases of the generator could not thus establish, 
from instant to instant, by almost instantaneous radiant transmission, their changing 
fields of force in the ambient region extending across to the secondary circuit, and 
the ions in and along that circuit would remain undisturbed, having no stimulus 
to respond to. The aethereal phenomenon, viz., the radiant propagation of the fields 
of force, and the material phenomenon, viz., the response of the ions of material 
bodies to those fields, involving the establishment of currents with new fields of their 
own, are the two interacting factors. The excitation of an alternating current in a 
wire, and the mode of distribution of the current across its section, depend on the 
continued establishment in the region around the wire, by processes of the nature of 
radiation, of the changing electromagnetic field that seizes hold on the ions and 
so excites the current ; and the question how deep this influence can soak into the 
wire is the object of investigation. The aspect of the subject which is thus 
illustrated, finds in the surrounding region, in the aether, the seat of all electro­
dynamic action, and in the motions of electrons its exciting cause. The energies 
required to propel the ions, and so establish an induced current, are radiant energies 
which penetrate into the conductor from its sides, being transmitted there elastically 
through the aether; and these energies are thereby ultimately in part degraded into 
the heat arising from fortuitous ionic motions, and in part transformed to available 
energy of mechanical forces between the conductors. The idea—introduced by 
Faraday, developed into precision by Maxwell; expounded and illustrated in various 
ways by Heaviside, Poynting, Hertz—of radiant fields of force, in which all the 
material electric circuits are immersed, and by which all currents and electric 
distributions are dominated, is the root of the modern exact; analysis of all electric 
activity. 

The elementary phenomena of steady currents, including Ohm's law and all 
the rest of the relations which are so easily formulated directly, are the simple 
synthesis to which this scheme of activity leads, when the changes of the controlling 
fields are slow enough to be considered as derived from statical potentials. In the 
electric force integrated round a circuit, viz., the electromotive force so called, the 
undetermined portion of the electric field, that arises from electric distributions 
which adjust the current to flow ' full-bore,' after the manner of a stream, is 
eliminated by the integration; and the fully developed current, thus adjusted to 
be the same at all sections of the wire, is of necessity proportional to the impressed 
electromotive force, as Ohm postulated. 
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The principle of the controlling influence of the activities in the intervening 
aether emerges in the strongest light when we recall the mechanical illustrations 
of the Kelvin period; we may say that the disturbance of the field of aether 
exerts influence on the conductors in the same general kind of way as the pressures 
involved in the inertia of moving fluid control the motion of the vortices or solid 
bodies which are immersed in the fluid. 

As regards the mode of establishment of these fields of aethereal activity, we 
here merely recall that the phenomena of free propagation in space are covered 
by Hertz's brilliant analysis for the case of a simple electric vibrator or dipole, 
that being the type of element out of which all more complex sources of radiation, 
including the radiation of moving ions, may be built up by superposition. More 
remarkable, on account of its sharp contrast with the familiar phenomena of light 
and sound, is the guidance of electric radiation by a wire, which was explored 
experimentally by Hertz, in full touch with the mathematical theory, but with so 
much trouble and vexation arising from the influence of casual conductors serving 
as the ' return circuits ' on which the issuing lines of electric force must find their 
terminations. I t was not long however until the conditions were made manageable, 
first by Lecher, by the simple device of introducing a parallel wire, on which as 
return circuit the lines of force from the other wire could again converge, thus 
restricting the propagated field of force to the region extending between the original 
and this return circuit; this arrangement, by preventing lateral spreading of the 
radiation, thus avoided all effects both of moderate curvature of the guiding con­
ductor and of disturbance by neighbouring bodies. The problem of conducting 
free radiant energy to a distance in the open space around the guiding conductor, 
without lateral loss anymore than there is when electric undulations travel along 
the interior dielectric region between the coatings of a submarine cable, thus 
became securely realized and understood. 

The equations of propagation of radiant effects in free space are, as we have 
seen, the foundation of all electric phenomena, whether static or kinetic. In the 
case of slow changes, both the electric field (PQR) and the magnetic field (aßy)* 
have their potentials ; namely we have 

curl (PQR) = 0, curl (a/37) = 0. 
In the case of rapid alternations these relations have to become adapted to the 
transmission of undulations; which we know in advance must be of necessity 
transverse, owing to the absence of divergence of the vectors concerned in them, 
as expressed by the equations 

div(PQ£) = 0, div(a/37) = 0. 
When this order of ideas is pursued, as it was in a way by Hertz, the appropriate 
kind of modification of the statical equations can hardly be missed: it must in 
fact be expressed by relations of the type 

cw\(PQB)--A^(afa), curl (aßy) = A jf (PQR). 

* A British writer will be pardoned for retaining the commodious and classical notation of Maxwell, in 
which he has been educated, until there is some consensus of opinion as to what other notation, if any, is 
to replace it. 
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We are bound to recall here that precisely equivalent relations had been laid 
down, in brilliant fashion, as the result of a tentative process of adaptation of 
analytical theory to optical phenomena, by MacCullagh* as far back as 1838, as 
a scheme consistently covering the whole ground of physical optics : and especially 
that their form was elucidated, and their evidence fortified, by him in the following 
year, by showing that they fitted into the Lagrangian algorithm of ' Least Action,' 
which was thus already recognized in physics as the generalized compact expression 
and criterion of the relations appropriate to a dynamical system. The analysis 
proceeded on the basis of the wider range of indications afforded by the study of 
optical phenomena in crystals, and accordingly the result was reached in the 
generalized form appropriate to aeolotropic media. But MacCullagh could not 
construct any model of the dynamical operation of his analytical equations, on 
the lines of the properties of ordinary material bodies, with which alone we are 
familiar through experiment—a task which indeed is now widely recognized to be 
an unreasonable one, though at that time it largely dominated all problems of 
physical interpretation. 

Guidance of electric radiation by wires. 

In the arrival of a magnetic field and its related electric field, in the space 
around the conducting circuit, the field being transmitted there by radiant pro­
cesses, we have recognized the essential cause of the excitation of an alternating 
current in the circuit and of its location, when the changes are rapid, in the outer part. 
An electric field so transmitted through space will not, of course, be along the length 
of the wire; but the component that is oblique will be at once compensated and 
annulled statically by the electric separation (of amount in other respects negligible) 
which it produces across the section of the conductor. The longitudinal force that 
remains may be treated as the ' induced electromotive force per unit length ' at the 
place in question. When this adjustment of the electric field has been effected by 
excitation of free charge, the total force becomes longitudinal, and its distribution in 
the cross-section of the wire is necessarily restricted to those solutions of its cylin­
drical harmonic characteristic equation which remain finite across the section; in 
the simplest and usual case of axial symmetry the distribution is represented as 
infra by the Bessel function of complex argument and zero order. 

I t is perhaps worth while formally to set out the analysis from this point of 
viewf, when this longitudinal electric field, arising from the transmitted field and 
the transverse electric distribution induced by it—which is the field propelling the 
current—is a uniform force RQeiVt, operating on a long conducting cylinder from out­
side and all along its surface. 

The equations of the field are, in Maxwell's notations, 

__da __ dR db _ dR dc __ n 

dt dy' dt dx' dt ' 

* Collected Works of James MacCullagh (1880), p. 145. 
f Cf. the rather different analysis in Maxwell, Phil. Trans. 1865, Elee, and Mag. vol. ii. § 690, developed 

by Rayleigh, Phil. Mag. vol. 21 (1886), p. 387. 
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where éirw = —- - -^, where w—[-.—0-=- + a) R. 
dx dy \4<7TG2 dt ) 

rni d'R d2R o-n i m2 „ 
Ihus -f— + -y— = - m2R, and w = - - iR, 

dx2 dy2 4urfAp 

where - m2 = ~ p2 + k-irapixi, *P = ^ • 

Thus, for symmetrical distribution in a circular section, 
d2R ldR m2R_0. 
d,r2 r dr ' 

so that inside the section the distribution is determined as 
Rhl = A J0 (mr), 

m being a complex quantity ; while outside the section, in free space, 

1 1 1 
where*, i f# n = l - f - - f - - f - . . . + - , and 7 represents Euler's constant -577, 

I 6 n 

( x2 x^ \ 

l ~ 2 2 + FT¥2"" " 7 
+. öi & — 9i~T^ ̂ 2 + 9 2 A2 o2 ^ 3 ~ . • -, •22 * 22.42 2 2 2 . 4 2 . 6 2 

0* X' 
Jo(«) = l - s i + 22 2 2 . 4 2 

The continuity of the field across the boundary of the conductor requires that R 
1 r/7? 

and —=— are there continuous. Thus for a wire of radius a, 
fi dr 

AJQ(ma) = RQ + BI0(^a) (1), 

A^J0'(ma) = BZl0>(£a} (2). 

Also, the total current G is determined by 

Ça ^ 2 Ça 
(7=1 w. 2irrdr = — s — cA J0 (mr) r 

JQ 2fxp Jo 

mrJ0' (mr) 
2fip 

giving finally (7= -— cAJ0'(ma) (3). 

The elimination of the undetermined constants A and B between the equations (1), 
(2), (3) will lead to the circumstances of propagation of this total current G excited 
in the infinite cylinder. 

* Cf. e.g. Rayleigh's Theory of Sound, vol. ii. § 341 ; referring back to cognate physical applications by 
Stokes, Phil. Trans. 1868, or Collected Papers, vol. iv. p. 321. 
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As pa/ö is usually very small, we may write approximately 

I0(oc) = y + log±LX, 70
/(^) = - ; 

and after some reductions we have 

RQ _ 2fip J0(ma) tiQ 2fip J Ama) ( , , p 
77 = - - ^ i °,\ / - 2pi{ 7 ,+ iir + log — . 
G ma J0 (ma) r y -A ö 2c 

and finally, eliminating the complex character of this equation by writing d G (dt for 
pGi, bearing in mind that m is complex, we arrive at the usual form of relation 

B° = Ldt+pC' 
and thus obtain expressions for the inductance L and the resistance p of a wire per 
unit length when it is so nearly straight that the radius of curvature is many times 
its diameter, and when no disturbing conductor is near. 

When the conductivity a is very large, and the frequency p\2ir is not excessive 
so that the second term in the expression for m2 is preponderant, we have 

m = (27rafxpf (1 - L). 

Also when, as here, the real part of the argument z is very great and positive, 

J0(z)/Jo (z) becomes equal to i. 
Thus in this case 

"G ~ \2<rr<rJ 

As R0 is the electric force impressed along the conductor just outside it, the 
coefficient of G is the effective resistance p of the conductor per unit length, and that 
of dG/dt is the effective inductance L per unit length, in this limiting case. These 
expressions agree with Rayleigh s results*, except that in this mode of formulation 
the value of L is definite and does not retain any undetermined constant. 

The transmission, along a circular wire, of electric waves which maintain and 
propagate their own field subject to the inevitable damping, involves a different point 
of view ; as R0 is now absent, a velocity of propagation is determined by equating the 
values of AjB derived from equations (1) and (2). 

General theory of pressure exerted by waves. 

If a perfectly reflecting structure has the property of being able to advance 
through an elastic medium, the seat of free undulations, without producing disturb­
ance of structure in that medium, then it follows from the principle of energy alone 
that these waves must exert forces against such a reflector, constituting a pressure 
equal in intensity at each point to the energy of the waves per unit volume. 
Cf. p. 208, infra. The only hypothesis, required in order to justify this general 
result, is that the velocity of the undulations in the medium must be independent 

* Cf. Theory of Sound, ed. 2, § 235 v. 
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of their wave-length; viz., the medium is to be non-dispersive, as is the free aether 
of space. 

This proposition, being derived solely from consideration of conservation of the 
energy, must hold good whatever be the character of the mechanism of propagation 
that is concerned in the waves. But the elucidation of the nature of the pressure of 
the waves, of its mode of operation, is of course concerned with the constitution of 
the medium. The way to enlarge ideas on such matters is by study of special cases : 
and the simplest cases will be the most instructive. 

Let us consider then transverse undulations travelling on a cord of linear density 
p0, which is stretched to tension T0. Waves of all lengths will travel with the same 

velocity, namely 0= (T0/pQ)^} so that the condition of absence of dispersion is satisfied. 
A solitary wave of limited length, in its transmission along the cord, deflects each 
straight portion/ of i t in succession into a curved arc. This process implies increase 
in length, and therefore increased tension, at first locally. But we adhere for the 
present to the simplest case, where the cord is inextensible or rather the elastic 
modulus of extension is indefinitely great. The very beginnings of a local disturbance 
of tension will then be equalized along the cord with speed practically infinite ; and 
we may therefore take it that at each instant the tension stands adjusted to be the 
same (T0) all along it. The pressure or pull of the undulations at any point is 
concerned only with the component of this tension in the direction of the cord ; 
this is 

where w is the transverse displacement of the part of the cord at distance x 
measured along it ; thus, up to the second order of approximation, the pull of 
the cord is 

The tension of the cord therefore gives rise statically to an undulation 
pressure 

* ' • © " • f ; M £ ) \ - * * ( $ • • 
The first of these three equivalent expressions can be interpreted as the 
potential energy per unit length arising from the gathering up of the extra 
length in the curved arc of the cord, against the operation of the tension T0 ; 
the last of them represents the kinetic energy per unit length of the undulations. 
Thus there is a pressure in the wave, arising from this statical cause, which is 
at each point equal to half its total energy per unit length. 

There is the other half of the total pressure still to be accounted for. That 
part has a very different origin. As the tension is instantaneously adjusted to 
the same value all along, because the cord is taken to be inextensible, there 
must be extra mass gathered up into the curved segment which travels along i t 
as the undulation. The mass in this arc is 

M1 +ë)2 ( f a ' 
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or to the second order is approximately 

p«u\^£jdx 

In the element hx there is extra mass of amount 

to®'8*' 
which is carried along with the velocity G of the undulatory propagation. This implies 
momentum associated with the undulation, and of amount at each point equal to 

^p0cl~\ per unit length. Another portion of the undulation pressure is here 

revealed, equal to the rate at which the momentum is transmitted past a given 

point of the cord; this part is represented by ^p0c
2(~?-) or i^of J T ) > a n ( i s o i s 

equal to the component previously determined. 

In our case of undulations travelling on a stretched cord, the pressure 
exerted by the waves arises therefore as to one half from transmitted intrinsic 
stress and as to the other half from transmitted momentum. 

The kinetic energy of the cord can be considered either to be energy belonging 

to the transverse vibration, viz., J \p I -^ ) ds, or to be the energy of the convected 

excess of mass moving with the velocity of propagation c*, viz., \ïp\T~) ^dx\ 

for these quantities are equal by virtue of the condition of steady propagation 
dv=:Gd7i 
dt dx' 

On the other hand the momentum that propagates the waves is transverse, 
dn 

of amount p-?- per unit length; it is the rate of change of this momentum that 

appears in the equation of propagation 

dt\ dt) dx\ dx, 

But the longitudinal momentum with which we have been here specially con­

cerned is i/MT") ° P e r u nik length, which is J - r ^ . p - ^ . Its ratio to the 

transverse momentum is very small, being \-?-\ it is a second-order phenomenon 

and is not essential to the propagation of the waves. It is in fact a special 
feature, and there are types of wave motion in which it does not occur. The 
criterion for its presence is that the medium must be such that the reflector on 
which the pressure is exerted can advance through it, sweeping the radiation along 
in front of it, but not disturbing the structure; possibly intrinsic strain, typified 

[* This specification is fictitious ; indeed a factor \ has been dropped in its expression just following. 
There is however actual energy of longitudinal motion ; as it belongs to the whole mass of the cord, which 
moves together, it is very small in amount, its ratio to the energy of transverse vibration being ^ (dn/dx)2.] 
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by the tension of the cord, may be an essential feature in the structure of such 
a medium. 

If we derive the dynamical equation of propagation along the cord from the 

Principle of Action 8 j(T-W)dt=0, where T=hp(M\ ds and W = j%To(f^dx> 

the existence of the pressure of the undulations escapes our analysis. A corre­
sponding remark applies to the deduction of the equations of the electrodynamic 
field from the Principle of Action*. In that mode of analysis the forces consti­
tuting the pressure of radiation are not in evidence throughout the medium; 
they are revealed only at the place where the field of the waves affects the 
electrons belonging to the reflector. Problems connected with the Faraday-
Maxwell stress lie deeper; they involve the structure of the medium to a degree 
which the propagation of disturbance by radiation does not by itself give us 
means to determine. 

We therefore proceed to look into that problem more closely. We now postulate 
Maxwell's statical stress system ; also Maxwell's magnetic stress system, which is, 
presumably, to be taken as of the nature of a kinetic reaction. But when we assert 
the existence of these stresses, there remain over uncompensated terms in the 
mechanical forcive on the electrons which may be interpreted as due to a distribution 
of momentum in the medium f. The pressure of a train of radiation is, on this 
hypothetical synthesis of stress and momentum, due entirely (p. 20*7) to the advancing 
momentum that is absorbed by the surface pressed, for here also the momentum 
travels with the waves. This is in contrast with the case of the cord analysed above, 
in which only half of the pressure is due to that momentum. 

The pressure of radiation against a material body, of amount given by the law 
specified by Maxwell for free space, is demonstrably included in the Maxwellian 
scheme of electrodynamics, when that scheme is expanded so as to recognize the 
electrons with their fields of force as the link of communication between aether and 
matter. But the illustration of the stretched cord may be held to indicate that it is 
not yet secure to travel further along with Maxwell, and accept as realities the 
Faraday-Maxwell stress in the electric field, and the momentum which necessarily 
accompanies it ; it shows that other dynamical possibilities of explanation are not yet 
excluded. And, viewing the subject from the other side, we recognize how important 
have been the experimental verifications of the law of pressure of radiation which we 
owe to Lebedew, too early lost to science, to Nichols and Hull, and to Poynting and 
Barlow. The law of radiation pressure in free space is not a necessary one for all types 
of wave-motion ; on the other hand if it had not been verified in fact, the theory of 
electrons could not have stood without modification. 

The pressure of radiation, according to Maxwell's law, enters fundamentally in 
the Bartoli-Boltzmann deduction of the fourth power law of connexion between 
total radiation in an enclosure and temperature. Thus in this domain also, when we 
pass beyond the generalities of thermodynamics, we may expect to find that the 
laws of distribution of natural radiant energy depend on structure which is deeper 

* Cf. Larmor, Trans. Camh. Phil. Soc. vol. xviii. (1900), p. 318 ; or Aether and Matter, Chapter vi. 
t For the extension to the most general case of material media cf. Phil. Trans, vol. 190 (1897), p. 253. 
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seated than anything expressed in the Maxwellian equations of propagation. The 
other definitely secure relation in this field, the displacement theorem« of Wien, 
involves nothing additional as regards structure, except the principle that operations 
of compression of a field of natural radiation in free space are reversible. The most 
pressing' present problem of mathematical physics is to ascertain whether we can 
evade this further investigation into aethereal structure, for purposes of determination 
of average distribution of radiant energy, by help of the Boltzmann-Planck expansion 
of thermodynamic principles, which proceeds by comparison of the probabilities of 
the various distributions of energy that are formally conceivable among the parts of 
the material system which is its receptacle. 

[Momentum intrinsically associated with Radiation. 

We will now follow up, after Poynting*, the hypothesis thus implied in modern 
statements of the Maxwellian formula for electric stress, namely that the pressure of 
radiation arises wholly from momentum carried along by the waves. Consider an 

z: 
A' B' B 

isolated beam of definite length emitted obliquely from a definite area of surface 
A and absorbed completely by another area B. The automatic arrangements that 
are necessary to ensure this operation are easily specified, and need not detain us. 
In fact by. drawing aside an impervious screen from A we can fill a chamber A A' 
with radiation ; and then closing A and opening A', it can emerge and travel along 
to B, where it can be absorbed without other disturbance, by aid of a pair of screens 
B and B' in like manner. Let the emitting surface A be travelling in any direction 
while the absorber B is at rest. What is emitted by A is wholly gained by B, for 
thè surrounding aether is quiescent both before and after the operation. Also, the 
system is not subject to external influences; therefore its total momentum must be 
conserved, what is lost by A being transferred ultimately to B, but by the special 
hypothesis now under consideration, existing meantime as momentum in the beam of 
radiation as it travels across. If v be the component of the velocity of A in the 
direction of the beam, the duration of emission of the beam from A is (1 — v/d)'1 

times the duration of its absorption by the fixed absorber B. Hence the intensity 
of pressure of a beani of issuing radiation on the moving radiator must be affected by 
a factor (1 — v/c) multiplying its density of energy ; for pressure multiplied by time 
is the momentum which is transferred unchanged by the beam to the absorber for 
which v is null. We can verify readily that the pressure of a beam against a moving 
absorber involves the same factor (1 — v/c). If the emitter were advancing with the 
velocity of light this factor would make the pressure vanish, because the emitter 
would keep permanently in touch with the beam : if the absorber were receding with 
the velocity of light there would be no pressure on it, because it would just keep 
ahead of the beam. 

* Cf. Phil. Trans, vol. 202, A (1903). 
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There seems to be no manner other than these two, by altered intrinsic stress or 
by convected momentum, in which a beam of limited length can exert pressure while 
it remains in contact with the obstacle and no longer. In the illustration of the 
stretched cord the intrinsic stress is transmitted and adjusted by tensiorial waves 
which travel with velocity assumed to be practically infinite. If we look closer into 
the mode of this adjustment of tension, it proves to be by the transmission of 
longitudinal momentum ; though in order that the pressure may keep in step, the 
momentum must travel with a much greater velocity, proper to tehsional waves. 
In fact longitudinal stress cannot be altered except by fulfilling itself through the 
transfer of momentum, and it is merely a question of what speeds of transference 
come into operation. 

In the general problem of aethereal propagation, the analogy of the cord suggests 
that we must be careful to avoid undue restriction of ideas, so as, for example, 
not to exclude the operation, in a way similar to this adjustment of tension by 
longitudinal propagation, of the immense but unknown speed of propagation of 
gravitation. We shall find presently that the phenomena of absorption lead to 
another complication. 

So long, however, as we hold to the theory of Maxwellian electric stress with 
associated momentum, there can be no doubt as to the 
validity of Poynting's modification of the pressure formula 
for a moving reflector, from which he has derived such 
interesting consequences in eosmical astronomy. To con­
firm this, we have only to contemplate a beam of radiation 
of finite length I advancing upon an obstacle A in which it is 
absorbed. The rear of it moves on with velocity o; hence if 
the body A is in motion with velocity whose component 
along the beam is v, the beam will be absorbed or passed on, at any rate removed, in 
a time l/(c—v). But by electron theory the beam possesses a distribution of at any 
rate g^asi-momentum identical with the distribution of its energy, and this has 
disappeared or has passed on in this time. There must therefore be a thrust on the 
obstructing body, directed along the beam and equal to e( l — vjc), where e is the 
energy of the beam per unit length which is also the distribution of the quasi-
momentum along the free beam. 

The back pressure on a radiating body travelling through free space, which is 
exerted by a given stream of radiation, is by this formula smaller on its front than on 
its rear; so that if its radiation were unaffected by its motion, the body would be 
subject to acceleration at the expense of its internal thermal energy. This of course 
could not be the actual case. 

The modifying feature is that thè intensity of radiation, which corresponds to a 
given temperature, is greater in front than in rear. The temperature determines 
the amplitude and velocity of the ionic motions in the radiator, which are the same 
whether it be in rest or in uniform motion: thus it determines the amplitude of the 
oscillation in the waves of aethereal radiation that are excited by them and travel 
out from them. Of this oscillation the intensity of the magnetic field represents the 
velocity. If the radiator is advancing with velocity v in a direction inclined at an 
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angle 0 to an emitted ray, the wave length in free aether is shortened in the ratio 

1 cos 0 ; thus the period of the radiation is shortened in the same ratio ; thus the 

velocity of vibration, which represents the magnetic field, is altered in the inverse 
ratio, and the energy per unit volume in the square of that ratio, viz., that energy is 

now e ( 1 — cos 0 J ; and the back pressure it exerts involves a further factor 

1 — cos 0 owing to the convection ; so that that pressure is e ( 1 — cos 0 J , where e 

is the energy per unit volume of the natural radiation emitted from the body when 
at rest. The pressurai reaction on the source is in fact E'ja, where E' is the actual 
energy emitted in the ray per unit time. 

Limitation of the analogy of a stretched cord. 

In the case of the inextensible stretched cord, the extra length due to the curved 
arc in the undulation is proportional to the energy of the motion. The loss of 
energy by absorption would imply slackening of the tension ; and the propositions as 
to pressure of the waves, including Poynting's modification for a moving source, 
would not hold good unless there were some device at the fixed ends of the cord for 
restoring the tension. The hypothesis of convected momentum would imply some­
thing of the same kind in electron structure. 

I t is therefore worth while to verify directly that the modified formula for 
pressure against a moving total reflector holds good in the 
case of the cord, when there is no absorption so that the 
reflexion is total. This analysis will also contain the proof 
of the generalization of the formula for radiant pressure 
that was enunciated on p. 202 supra*. 

Let the wave-train advancing to the reflector and the reflected wave-train be 
represented respectively by 

Tfj = A x cos mx (x + ct), 

T)2 = A 2 cos m2 (x — ct). 

At the reflector, where x = vt, we must have 

Ividt = ]V2 .*dt\ 

this involves two conditions, 

A A 
— = —- and m, ( c+u) = m2(c — v). m1 m2 \ / \ / 

Now the energies per unit length in these two simple wave-trains are 

\pA2 and \pA2\ 
* See Larmor, Brit. Assoc. Report, 1900. [The statement that follows here is too brief, unless reference 

is made back to the original, especially as a minus sign has fallen out on the right of the third formula below. 
The reflector consists of a disc with a small hole in it through which the cord passes ; this disc can move 
along the cord sweeping the waves in front of it while the cord and its tension remain continuous through 
the hole—the condition of reflexion being thus 7ji + r]2 = 0 when x = vt. In like manner a material 
perfect reflector sweeps the radiation in front of it, but its molecular constitution is to be such that it 
allows the aether and its structure to penetrate across it unchanged. For a fuller statement, see 
Encyclopaedia Britannica, ed. 9 or 10, article Radiation.] 
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thus the gain of energy per unit time due to the reflexion is 

SE = (c - v) y Ai - (c + v) \PA? 

= i^^|(C-,)(C^J-(C + v) 

= 1 ^ . 2 ^ % . 2r c-v 

This change of energy must arise as the work of a pressure P exerted by the 
moving reflector, namely it is Pv ; hence 

c — v 

The total energy per unit length, incident and reflected, existing in front of the 
reflector is 

S1 + E2 = y A? + \pA± 

= i ^ i 2 . 2 

-2 

c2 + v2 

(c-vf 
Hence finally 

P = (E1 + E2)
c^'v2 

& + V2 

becoming equal to the total density of energy E1 + E2, in accordance with Maxwell's 
law, when v is small. 

If we assume Poynting's modified formula for the pressure of a wave-train against 
a travelling obstacle, the value ought to be 

P - * ( l + ï ) + * ( l - ! ) ; 
and the truth of this is readily verified. 

I t may be remarked that, if the relation connecting strain with stress contained 
quadratic terms, pressurai forces such as we are examining would arise in a simple 
wave-train*. But such a medium would be dispersive, so that a simple train of waves 
would not travel without change, in contrast to what we know of transmission by 
the aether of space. 

Momentum in convected aethereal fields. 

If any transfer of momentum, analogous to what has been here described for 
the case of a stretched cord, is operative in free aether, the concentration of inertia 
on which it depends must, as in that case, be determined by and involved in the 
nature of the strain-system. Now this strain is expressed by the electric field, 
and therefore by the tubes of electric force. Thus we have to consider in what 
cases the change of the electric field can be supposed to be produced by convection 
of the tubes of force f. 

* Cf. Poynting, Roy. Soc. Proc. vol. 86, A (1912), pp. 534—562, where the pressure exerted by torsional 
waves in an elastic medium, such as steel, is exhaustively investigated on both the experimental and 
the mathematical side. 

t The considerations advanced in this section were suggested by the study of a passage in 
J. J. Thomson's Recent Researches (1893), § 9 seq. 

M. C, 14 
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Let the scheme of tubes of force be in motion with velocity varying from 
point to point, equal at the point (ocyz) to (pqr), but without other change. If 
N be the number of electric tubes enclosed by a fixed circuit, then by Ampere's 
circuital electrodynamic relation 

l_dN 
a2 dt 

= \(adx -f ßdy + ydz), 

a 
4<TT~ 

iL 
47T 

4 T T " 

= qh 

= rf-

=pg 

for the left-hand side is equal to 47r times the total (in this case aethereal) 
current through the circuit. But if the tubes of the current (uvw) all enter the 
circuit by cutting across its contour with the velocity (pqr), i.e. if none of them 
originate de novo during the operation, the rate of gain of total current (uvw) is 
expressed kinematically by 

— I {(qio — rv) dx -f (ru —pw) dy -f (pv — qu) dz). 

And as the current is here wholly aethereal, (u, v, w) — (f, g, h). 

The equivalence of these two line integrals, as it holds good for all circuits, 
requires that 

dyìr 

P dy' 

r CW 

These relations must in fact be satisfied for every field of aethereal strain (fgh) 
whose changes occur by pure convection. 

If permanent magnets are absent, the potential i/r will not enter, and we 
have then the relations 

cf+ßg + yh=0 and pa + qß + ry = 0. 

Thus in a convected field the magnetic vector must be at right angles to the 
electric vector and to the velocity of convection, is in fact ^ir times their vector 
product. 

In the case of the stretched cord, the kinetic energy is expressible as that 
of the convected concentrated mass on the cord. Following that analogy, the 
kinetic energy is here to be expressed in terms of the velocity of convection (pqr) 
and the electric field; viz. 

r = ^LJ(a2 + ß2 + y*)dr 

= 2TT J [(qh - rg)2 + (rf-ph)2 + (pg - qf)2} dr. 

Now generally in a dynamical change which occurs impulsively, so that the 
position of the system is not sensibly altered during the change, if <E> is the 
component of the impulse corresponding to the coordinate <p, the corresponding 
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applied force is Ò, and the increase of kinetic energy is equal to the work of 
this force, viz., to 

2 f<&d<j> = 2 fò<f>dt = 2 fcj)d<ï> ; 

thus 8r* = 2<£8*. 
But T$ is a quadratic function of the velocities : thus T® must be a quadratic 
function of the momenta, and therefore 

dT 
2 r = 2 < £ ^ = 2<H>. 

Hence 85fy = S*8<£. 

This argument applies for example in the field of hydrodynamics. 
In the present case the Cartesian components of momentum would therefore 

, dT dT dT 
be ~r~, -7—, -7— ; so that in volume or they are 

dp dq dr J 

f g h ST. 

a b c 
We thus arrive at the same distribution of momentum as the one that has 

to be associated with the Maxwellian stress system. In this case of supposed pure 
convection, that momentum is of type having for its x component 

4TT£> (f2 -f g2 + h2) - 4nrf(pf + qg + rh). 

If the motion of the tube of force is wholly transverse, as symmetry would seem 
to demand, we have the condition 

thus the momentum is now along the direction of the motion (pqr) and belongs 
to a simple travelling inertia 4nr (f2 + g2 + h2) per unit volume. The convected 
inertia here suggested is equal to twice the strain energy multiplied by 0~2, double 
what it was in the case of the stretched cord. 

The two conditions above introduced 
pf+qg + rh = 0 and <xf + ßg + yh = 0 

are equivalent to 
/ = 9 =

 h 

qy — rß ra — py pß — qa 

which, as we shall see presently, may be treated as an indication that the 
magnetic tubes are convected as well as the electric tubes. Under these circum­
stances of complete convection, electric and magnetic, it is thus suggested that 
there is a mechanical momentum in the field, which arises from convection of 
inertia and is of amount equal to twice the energy of strain multiplied by o-2.-
But here again restrictions will arise. 

Meantime we have to supply the condition that the magnetic lines are 
simply convected. If n denote the number of unit magnetic tubes that are 
enclosed by a circuit, then by Faraday's circuital law 

~~ = j(Pdx+Qdy + Rdz), 

where (PQR) is at each point the force exerted per unit charge on an electric 
particle moving along with the circuit. 

14—2 
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Now when the change of the tubes is due to convection solely we must have 

— -T7=i {(qc — ro) dx + (ra —pc) dy + (pb — qa) dz). 

These line integrals are therefore equivalent for all circuits fixed in the aether : 
hence 

n dV 

Q = ra-pc- dy, 

R-pb-qa--^. 

If there are no free charges and the potential V is thus null, 

4flroa(/flrA) = p q r 
abc 

Thus when the system is completely convected, as regards its electromagnetic 
activity, and it has no charges, the velocity of convection is at each point at 
right angles to both the electric and magnetic lines which are at right angles 
to each other: this velocity is everywhere G, that of radiation, and the ratio of 
magnetic to electric induction is 4nrO. But these are precisely the characteristics 
of a field of pure radiation, to which alone therefore the preceding argument can 
possibly apply: and the general argument even in this case is destroyed by the 
circumstance that (pqr) is restricted to the constant value O, and so is not 
amenable to variation. But as already seen, if we accept on other grounds this 
convection of momentum by radiation, the validity of the Maxwell stress will 
follow. 

In the wider case when charges are operative, both these circuital relations for 
the convective system are satisfied, if v2 = p2 4- q2 -j- r2, by 

^•«^--Gs-é-é)* 
(st, ß, y) = - 4TT (qh - rg, rf-ph, pg - qf). 

When (pqr) is constant, this is the well known field of a uniformly convected electro­
static system specified by the potential V. But to no other system is it applicable 
unless it can satisfy the necessary conditions of absence of divergence in (PQR) and 
(007). 

Frictional resistance to the motion of a radiating body*. 

We proceed to examine the retarding force exerted on a body translated 
through the aether with uniform velocity v, arising from its own radiation. 
A ray transmitting energy E per unit time pushes backward with a force 

* It appears to have escaped notice that Balfour Stewart definitely established, by a qualitative thermo­
dynamic argument based on the disturbance of compensation in the exchanges, as early as 1871, that a 
moving body must be subject to retardation owing to its own radiation ; and that we should ' expect some 
loss of visible energy in the case of cosmical bodies approaching or receding from one another,' See Brit. 
Assoc. Report, 1871, p. 45. 



ON THE DYNAMICS OF RADIATION 2 1 3 

1 coso). Consider first by themselves the sheaf of nearly parallel rays 
o / 

E, 
c 
of natural radiation emitted from all parts of the surface whose directions are 

->v 

included within the same cone of infinitesimal angle 8X1. Their energy (E;), emitted 
per unit time, as regards the part issuing from an element of surface SS is (p. 207), 
for a perfect radiator, if e now represents natural radiation per unit time, 

e8fl (1 cos 0) x projection of SS on 811 ; 

and for the whole surface, taking the front and rear parts separately, they give 
a back pressure along the rays 

e8Xl / . v „ \ ~ l „ eSn /v v „ \ ~ l 

(l -%os oVs,-^ fi +%os e)"1 Se, 
o V 

where Sd is the projection of the surface on the plane perpendicular to the rays: 
neglecting (v/c)2 this is 

2811-cos 0 .£ ö . 
G2 

If the body is symmetrical around the direction of its translatory convection 
v, so that Se is independent of azimuthal angle, we have 8 0 = — 2ir. d cos 0 ; and 
the aggregate backward pressure opposing the motion of the body is 

fi 

Jo 
k eu 2^cos20.27T.dcos<9.,Sö, 

V f1 

that is 47T—el $öcos2#.ö!eos 0. 
O2 Jo 

If the travelling perfect radiator is a sphere of radius a, we have Se = ira2, 
and the force resisting its motion is 

J7re.^.47m2*. 

For a plane radiating disc of area S advancing broadside on, the resisting 
force is 

47T — e IS cos3 0 d cos 0, which is ir — eS, 
G2 J G2 

namely is f of the value for a sphere of the same radius. 

* Agreeing with Poynting, Phil. Trans, vol. 202, A (1903), p. 551, where important applications in 
cosmical astronomy are developed. 
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The natural radiation is more usually defined by R the total radiation per unit 
area in all directions per unit time : then 

R — I e cos (j) d£l where dfl = — 27r<i cos $, 

so that e = TT^R. 

If the radiating body is in an enclosed region whose walls are also convected 
with the same uniform velocity v, the radiation contained in the region will attain to 
a steady state. Then the density travelling in the region in each direction (0) will 
be equal to that emitted in that direction from a complete radiator; thus it will 

involve a factor ( 1 H—- cos 0 ) , and so be an aeolotropic distribution. 

The separate elements of surface of a perfect radiator will not now maintain 
a balance of exchanges of radiant energy in their emission and absorption. I t may 
be calculated* that the extra pressure, due to its own radiation, on an element of 
area SS whose normal makes an angle ß with the direction of convection v, is 

SS — e \ir (1 + cos2/3), agreeing with the two special cases above. Also the extra 
o 

radiation emitted by it is SS .e-ircosß and the extra radiation absorbed by it 
c 

is — SS. e - 7T cos ß ; the equilibrium of exchanges is thus vitiated and there is either 
c 

a compensating flux of heat in the radiator from rear to front, or, if an adiabatic 
partition is inserted, there is a diminished temperature of the part in front. The 
same statements apply as regards the front and rear walls of the enclosure itself. 

Generalization to forcive on any convected system. 

I t is of interest to attempt to extend this analysis so as to include the resistance 
to the motion through aether of any electrodynamic system whatever. The trans­
formation of Lorentz is appropriate to effect this generalization. When that 
transformation is extended to include the second power of v/of, the phenomena in 
any system of electrons at rest or in motion, uniformly convected with velocity v 

* As follows :—The extra pressure resolved along v is r^V 

5S j I e ^2 cos 0 (dA . d cos 6) cos 0, 

and the extra radiation of the surface is 

dS I I e v- cos <p {dA . d cos 0), 

where A is the azimuth of the ray, and dA . d cos 6 is an element of 
its solid angle referred to the normal n to dS, while 

cos 0=cos e cos ß + sin 6 sin/3 cos X 
Integrating for A from 0 to 2ir and for cos 0 from 0 to 1, the expres­
sions in the text are obtained. 

f See Aether and Matter (1900), Chapter xi. p. 176 ; or Phil. Mag. June, 1904. That the transforma­
tion, with e thus inserted in it, so as to include the second order, is in fact exact so far as regards free 
space, not merely to the second order which is as far as experiment can go, but to all orders of vjC, was 
pointed out by Lorentz later, thus opening a way for the recent discussions on absolute relativity, an idea 
which involves of course, on the very threshold, complete negation of any aethereal medium. 
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parallel to x, are the same as for that system unconvected, provided only that (in 
electromagnetic units) 

(f,g,h) and (a, b, c) (1) 
for the convected system are put equal to the values of 

^ (e */> 9 - J ~ i c, h + ^ 6) and e* (e * a, b + 4TTI/ä, c - kirvg)...(2) 

for the stationary system, and this change is accompanied by a shrinkage of space and 

local time involving ê  and so of the second order, where e = (1 — v2JG2)~x. 

Now the force exerted on any system of electrons is determined by and statically 
equivalent to the Maxwell quasi-stress over a boundary enclosing the system, 
diminished by what would be needed to maintain in the region a distribution of 

i r z i 
momentum of density ; • In free space (abc) and (ocßy) are the same. 

The x component of this stress yields a force 

2TTC2 j {(f2 - g2 - h2) l + 2fg.ni + 2fh. n} dS 

+ ^- j{(a2-ß2-y2)l + 2aß.m + 2a7 .n) dS. 

The effect on this force of the translatory velocity is found by substituting (2) in 
place of (1). When we neglect as usual terms in (V/G)2, it is (expressed in terms of 
the stationary system) 

{(gy - hß) I -fy. m +fß. n] dS + v j {(gy - hß) l + ha.m-ga. n] dS, 

that is, 

v j {2 (gy - hß) Z + (ha -fy) m + (fß - go.) n] dS*. 

Now the rate of increase of the x component of the <pasi-momentum inside this 
fixed surface, which (p. 207) represents the pressure of radiation on the system, is, 
so far as it arises from convection only, 

vj(gy-hß) m. 
When this is subtracted there still remains, for this case of a steady convected 
system, a force of the same order of magnitude parallel to v of amount 

where R is the loss of energy per unit time by flux across this fixed surface, which 
if the body is symmetrical fore and aft can arise only from excess of radiation emitted 
over radiation received. 

* It may be shown that owing to the steady convection the Poynting flux of energy in the field is 
modified by the following additions :—twice the total density of energy is carried on with velocity u, from 
which is subtracted twice the electrostatic energy W carried along the electric field with velocity equal 
to the component of v in that direction, and twice the magnetic energy T carried along the magnetic field 
with like velocity. And similarly the quasi-momentum is altered by that of a mass 2E/C convected with 
the system, of a mass -2W\C convected along the electric field with velocity the component of v, and of a 
mass - 2T/C convected along the magnetic field with like velocity. 
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I t may perhaps be suggested that this excess of the total force on the system, 
beyond pressure connected with the radiation, arises from increase of effective mass 
(Sm) of the source itself, owing to loss of radiant energy from i t ; for this would 
involve an increase of momentum vSm, to be supplied by impressed force inside the 
radiator itself, if the velocity is to be maintained. A loss of energy E would thus 
increase the effective mass of the system by EJG2*, owing presumably to resulting 
change in minute internal configuration. But Poynting's astronomical calculation as 
to the time of clearance of cosmical dust from celestial spaces would stand, as the 
changes of thermal content that are there possible cannot introduce any sensible 
change of effective inertia *j*. 

But these second order structural phenomena appear to be still obscure. 

In final illustration of the principle that ^asi-momentum is somehow trans­
mitted along the rays, I take this opportunity formally to correct two statements 
occurring in a paper ' On the Intensity of the Natural Radiation from moving bodies 
and its Mechanical Reaction'; Boltzmann Festschrift, 1904, p. 591, or Phil. Mag., 
May 1904, p. 578. 

I t was shown there that when radiation is incident directly on a reflector it 
exerts no force on the surface layer, unless indeed the conductivity is so great that 
we can regard this layer as containing a current sheet. But this does not prove 
absence of radiation pressure unless there is conduction. The argument from a 
beam of limited length, on p. 207, is decisive on that point, so long as the principles 
of the theory of electrons are maintained. The correct inference is that the radiation 
pressure in a parallel beam is transmitted without change, unless where the existence 
of conductivity gives rise to electric flow. Thus it is the Ampèrean force acting on 
the current sheet, induced in the surface of a good conductor, that equilibrates the 
radiant pressure advancing with the incident beam, and prevents its transmission 
beyond that surface. 

The attempted disproof, in a postscript, of Poynting's modification of the law of 
pressure of radiation for a moving body, is also at fault, and must be replaced by the 
general discussion just given (p. 215). 

* The writer is reminded (by a summary in W. Schottky, ' Zur Relativtheoretischen Energetik und 
Dynamik,' Berlin Dissertation, 1912, p. 6) that this relation, obtained by Einstein in 1905, expanded in 
1907 by Planck, Hasenöhrl, Laue, etc., is fundamental in the generalized relativity theory. It may be 
permitted to mention that the analysis in the text is taken, modified by various corrections, from private 
correspondence with Poynting relating to his Phil. Trans, memoir of 1903 on resistance due to radiation, 
which has been already referred to. 

t On similar principles, the pressure of solar radiation on the earth would produce, owing to its orbital 
motion, an increase of the secular retardation of the Earth's diurnal rotation, which however proves to be 
only about a [ten] thousandth part of the amount astronomically in question. 



APPENDIX 

I have received from Prof. Levi-Civita a more general discussion of the 
mechanical side of the problem of radiant pressure, which I have his permission to 
append here. 

SIR J. LARMOR'S MECHANICAL MODEL OF THE PRESSURE OF RADIATION 

[From a letter of Prof. T. LEVI-CIVITA to Prof. SIR J. LARMOR.] 

I have perused your beautiful lecture " On the dynamics of radiation " which 
I was fortunate to hear in Cambridge. Will you allow me to present in a little 
more general aspect your idea leading to a mechanical model of the pressure of waves ? 
I shall refer myself, as you do, to a vibrating string. 

1. Specification of the assumptions.—Flow of energy.—Pressure on moving end. 

The small transverse oscillations of a stretched cord in absence of bodily forces, 
whatever the initial and boundary conditions may be, follow the equation 

d27] d2r) 

Pd¥ = fdx~2 ( 1 ) ' 
where n (x, t) is the displacement, and p and T are constants of well-known significa­
tion. As usual I shall write c2 for Tjp, c thus designating the velocity of propagation 
of transverse waves along the string. 

Let us suppose that the undulations n extend only to a finite (variable) portion 

R "~ S ^ 

of our string : from a moving end (reflector) R, at which x = vt, to a fixed S, at which 
x = b (v, b positive constants). 

The condition of (perfect) reflexion at R shall be further introduced. Indepen­
dently from it, we may specify in usual way the energetic point of view. 

The density of energy, both kinetic and potential (at any place x, between R and 
S, and time t) is 

»w»«'(£),-*p{f+*(gn w. 
where the dot stands for d/dt. Especially, in front of the reflector, it becomes 

eR = [e]x=vt (3). 

The energy stored in the whole extent of the disturbed string at the time t 
amounts therefore to 

7? = \ edx (4), 
J vt 
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from which we easily get an expression of dEjdt convenient for our aim. I t is in fact 

dE [b de -, 
-dt=-eKV+\vtdtdx-

Since, by partial integration, 

[b dvdv 7 [dy lb [b .d2v , 
^-~dx=\^- 7)\ - r} ^-- dx, 

Jvtdxdx \jjx _\vt Jvt dx2 

and r} vanishes at the fixed end S(x = b), it remains 

)vtdtdx-p}vt
v\dt> cô^[ pcldxvl^i 

On account of the fundamental equation (1), this reduces to the last term, and 
gives 

dE 
dt 
-rr = - eRv - pc2 dn . 

x-vt 

(5), 
Putting . -̂ "-̂ [Sv-
the formula may be written 

-fa = - eni> + fii°> ••• (6)> 

or also -j-= Pv (&), 

where P=-eR-rfB.^ (7). 

The formulae (6) and (&) are capable of expressive interpretations. 

Let us firstly pay attention to the formula (6), supposing v = 0 (R fixed). I t 
means that the exchanges of energy between RS and the outside take place as if 
a flow fR (directed inward if positive) passed through R with the wave-velocity c. 
We recognize obviously the one-dimensional form of the Poynting-Volterra in­
vestigations. 

In the general case where v is not zero, the wave-flow fB must be increased by 
the convection-flow —eR, travelling with the velocity v, that is—we may say— 
convected by the moving end R. 

To get the interpretation of the (equivalent) formula (&), we have only to recall 
the principle of conservation of energy in its pure mechanical form. I t states that 
dEjdt, for any material system (the string in our case) must be equal to the time-
rate of doing work of all external forces. At the present no external forces act on the 
system, except at the ends of the disturbed portion, arising from the connections : 
with the reflector at R, with some fixed body at S. But the last does not do work 
because S is at rest. 

Hence, in the equation (6'), P means the force exerted on the considered system 
by the reflector, the positive sense being of course that of the increasing x. Eeversing 
the positive sense and availing ourselves of the principle of reaction, we may also 
regard P as the pressure supported by the advancing reflector (traction if P should 
result negative). 
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2. Adiabatic arrangement. 

The formula (6) and its consequences have been deduced on the hypothesis that 
on 

the cord is fixed at S, so that ~ y vanishes for x — b. If it be not so, we have in the 
ox 

second member of (6) a further term — cfs, where 

-fs = PC 
dy . 
dx71 

This would introduce a flow of energy across S, to be considered together with 
the flow across R ; the preceding argument would therefore be altered. 

There is however an obvious arrangement for which the formula equally holds : it 
consists in admitting a proper supply of energy at S, just as it is required to com­
pensate the flow — cfs. The connection at S, between RS and the outside, may then 
be called adiabatic. We shall henceforth adopt this assumption, getting thus free 
from the more restrictive one of a fixed end. 

3. Decomposition of the disturbance in two wave-trains.—Perfect reflexion. 

If the solution y of (1) is a function (any whatever) of x + ct, we have the case of 
dy 

waves advancing to the reflector R. Then c ~- = y, and fR becomes identical with 
— eR = pr)2, giving to (6) the form 

dE , x 

_ = _ e s ( c + t>): 

the flow of energy occurs as if the waves were carrying their energy with the 
(absolute) velocity c, i.e. c + v relative to the reflector. 

For a train y (x — ct) (reflected from R), we find in analogous way the flow 

Now any solution of (1) has the form 

7] = % (X + Ct) + 7}2 (x — ct) (8 ) , 

Vi> Vz being arbitrary functions of their respective arguments. We get, accordingly, 

y = % + y2> 

dy [dy1 dy2\ 

therefore, from (2), e = p(y^ + y2) (27), 

and, from (5) fR = p [y2
2 - y2]x=vt (5'). 

With these values the expression (6) of dEjdt may be written 

d§ = prt(c-v)-pvi>(c + v) (6"). 

Thus the gain of energy appears caused by flows (relative to R) of the energies 
carried by the two opposite wave-trains. I t is your favourite point of view. 

Now we proceed to the condition of perfect reflexion at R. You properly 
conceive the reflector to be realised by a plate with a hole through which the cord 
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passes. As the plate advances along the cord, it sweeps the waves in front, restoring 
behind it the resting straight configuration of the cord. Under these circumstances 
the condition at R is obviously that the total displacement shall be annulled, that is 

% + 2̂ = 0 for x — vt (9). 

Having thus achieved the general premisses, a mathematical observation may 
find place, viz., that it would not be difficult to determine functions y1} y2 of their 
respective arguments x -h et, x — ct, satisfying rigorously to the nodal condition 
77J 4- ?72 = 0 as well for x = vt as for x = 6. But I propose only to apply the above to 
your particular solution. 

4. Case of simple wave-trains.—Mean pressure. 

You assume 

and consequently 

7h = sm m, (x + ct) 
mxc ' 

y0 = sin m2 (x — ct) 
'" m,c 2V ' 

.(10), 

.(11), 
yx — A1 cos mx (x -f ct) 

y2 — A2 cos m2 (x — ct) 

Ax, ml, A2, m2 being constants to be disposed with regard to (9). 

I t requires A2(c — v) = — A^c + v) (12), 

m2 (c — v) = ± mY (c -f v) (13). 

With the determination (10) of y1, y2, the expression (2') of e becomes a sum of 
two periodic functions of x, and of t. Its average value e~, with respect to x as well 
as to t, is 

e = lp(A2 + A?) (14). 

The same value belongs to the time average of eB = (e)x^vt. On the other hand, 
averaging the expression (5') offR> w e have 

fR = ip(A?-Ai) (15). 

But, by (12), ^ = g ± ^ ; 

_ (& -J- if' 

hence, from (14), e — p - A-?, 
v (c — v)2 

and, from (15), / « = — 2i° j——r9 A 2 = - T~,—àë-
' v / ; J r (c — vy c2 -f v2 

We finally arrive at the pressure P defined by (7). Its mean value (eB being 
identical with e) becomes 

which is your result. 

ri _ c r <r — v _ 
v J R C2jfV2 ' 

UNIVERSITY OF PADUA, Oct. 9. 
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SOME PROBLEMS OF DIOPHANTINE APPROXIMATION 

BY G. H. HARDY AND J. E. LITTLEWOOD. 

1. Let us denote by [x] and (x) the integral and fractional parts of the real 
number x, so that 

(x) = x — [x], 0 ^ (x) < 1. 

Let 0 be an irrational number, and a any number between 0 and 1 (0 included). 
Then it is well known that it is possible to find a sequence of positive integers 
w<i, n2, n3, ... such that 

(nr0) —>a 

as r —» oo . Now let f(n) denote a positive increasing function of n, integral when n 
is integral, such as 

n, n2, n\ ..., 2n, Sn, ...,n\, 2n\ ..., 22", ..., 

and let fr denote the value of f(n) for n = nr. The result just stated suggests the 
following question, which seems to be of considerable interest :—For what forms of 
f(n) is it true that, for any irrational value of 0, and any value of a such that 
0 — a < 1, a sequence nr can be found stich that 

It is easy to see that, when the increase of f(n) is sufficiently rapid, the result 
suggested will not generally be true. Thus, if f(n) — 2n, and 0 is a number which, 
when expressed in the binary scale, shows at least h O's following upon every 1, it is 
plain that 

(2»0)<£ + X*, 

where \& is a number which can be made as small as we please by increasing k 
sufficiently. There is thus an " excluded interval " of values of a, the length of 
which can be made as near to -| as we please. If f(n) = Sn we can obtain an excluded 
interval whose length is as near | as we please, and so on, while if f(n) — nl it is 
(as is well known) possible to choose 0 so that (n\ 0) has a unique limit. Thus 

(nle)-*0. 

2. The first object of this investigation has been to prove the following 
theorem :— 

Theorem 1 . If f (n) is a polynomial in n, with integral coefficients, then a 
sequence can be found for which (/rö)—>a. 
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We shall give the proof in the simple case in which 

f(n) = 7i2, 
a case which is sufficient to exhibit clearly the fundamental ideas of our analysis. 
Our argument is based on the following general principle, which results from the 
work of Pringsheim and London on double sequences and series* : 

• V J r , s ì < P r , s j 

are a finite number of functions of the positive integral variables r, s ; and if 

lim lim fTt s — a, lim lim <£r>8 = b, ... ; 

then we can find a sequence of pairs of numbers 

(rl9 Sj), (r2, So), (r3, s3) ... 

such that ri —» GO , S{ —» oo and fri^i —> a, <£ ,̂s{—>b, ..., as i —» oo . 

We shall first apply this principle to prove that a sequence nr can be found 
so that 

(wr0)-+O, {n2
r0)-*O 

simultaneously. We shall, in the argument which follows, omit the brackets in (nr0), 
etc., it being understood always that integers are to be ignored. 

We can choose a sequence nr so that nr0-*O. The corresponding values n\0 
are infinite in number, and so have at least one limiting point £ ; f may be positive 
or zero, rational or irrational. We can (by restricting ourselves to a subsequence of 
the nr

9&) suppose that 
wr-0->O, n\6->%. 

If £ = 0, we have what we want. If not we write 

A s = (nr+ n8) 0, </vs 8 = (nr + 7is)
2 0. 

Then lim lim / r j g = lim ns0=^O, 

lim lim <£ n s =l im (£ + n2
s0)=* 2%. 

s -*- co r ->• oo s -*• oo 

Hence, by the general principle, we can pick out a new sequence pr such that 
pr0-*0, p\0->2%. 

Repeating the argument, with nr+p8 in the place of nr + ns, we are led to a 
sequence qr such that 

qr0->O, q\0->3£; 
and it is plain that by proceeding in this way sufficiently often we can arrive at 
a sequence nTilc such that 

nr, k 0 --> 0, n\ & 0 —>• kg, 
for any integral value of k. 

Now whatever number £ is, rational or irrational, we can find a sequence ks 

such that 
fc,f->0 

as s —» oo . Then 
lim lim nrtîCs 0 = lim 0 = 0 , 

s -»• oo r -*• co s ->• co 

lim lim n2
rtJcs 0 = lim ks^= 0. 

S-^-cc V -*• 00 5-3^GO 

* Pringsheim, Sitzungsberichte der k. b. Akademie der Wiss. zu München, vol. 27, p. 101, and Math. 
Ännalen, vol. 53, p. 289 ; London, Math. Annalen, ibid., p. 322. 



SOME PROBLEMS OF DIOPHANTINE APPROXIMATION 2 2 5 

Applying the general principle once more we deduce a sequence of values of n for 
which (n0) -» 0, (n20) -» 0 simultaneously. 

When we have proved that there is a sequence nr for which n2
r0—>O, it is very 

easy to define a sequence vrnr, where vr is an integer depending on r, which gives 
any arbitrary a as a limit. We thus complete the proof of Theorem 1 in the case 
f(n) = n2. An analogous method may be applied in the case of the general power nk. 
As in the course of this proof we obtain a sequence for which 

w0->O, n20-+O, ..., w*0->O 

simultaneously, we thus prove the theorem when a = 0 for the general polynomial f(n). 
The extension to the case a > 0 may be effected on the same lines as in the case 
f(n) = nk, but it is more elegant to complete the proof by means of the theorems of 
the next section. 

It may be observed that the relation 

n0->O 

may be satisfied uniformly for all values of 0, rational or irrational ; that is to say, 
given any positive e, a number N (e) can be found such that 

n0 < e 

for every 0 and some n, which depends on e and 0 but is less that N (e). Similar 
results may be established for n20, n*0, The chief interest of this result lies in 
the fact that it shows that there must be some function $ (n), independent of 0, which 
tends to zero as n —> oo and is such that for every 0 there is an infinity of values of n 
for which 

n20<$(n)*. 

3. The following generalisation of the theorem quoted at the beginning of § 1 
was first proved by Kronecker f :— 

If 0, $, A|T, ... are any number of linearly independent irrationals (i.e. if no 
relation of the type 

a0 + 6<jf>+ c*/r-f ... = 0 , 

where a,b,c, ... are integers, not all zero, holds between 0, <j>, -vjr, . . .), and if a, /3, 7, ... 
are any numbers between 0 and 1 (0 included), then a sequence nr can be found 
such that 

nr0 —> a, wr<£>—>/3, nrty—*<y, 

This theorem, together with the results of § 2, at once suggest the truth of the 
following theorem:— 

Theorem 2 . If 0, cj),^, ... are linearly independent irrationals, and 

«j , ft, 7 , , . . . ( $ = 1 , 2 , . . . , * ) 

* It is well known that, in the case of n&, <f> {n) may be taken to be ljn. No such simple result holds 
when a > 0 : exception has to be made of certain aggregates of values of 6. On the other hand, if 6 is a 
fixed irrational, the relation nß -*• a holds uniformly with respect to a. All these results suggest 
numerous generalisations. 

f Werke, vol. 3, p. 31. The theorem has been rediscovered independently by various authors, e.g. by 
Borei, F. Riesz, and Bohr (see for example Borei, Leçons sur les séries divergentes, p. 135, and F. Riesz, 
Comptes Rendus, vol. 139, p. 459). 

M. c. 15 
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k sets of numbers all lying between 0 and 1 (0 included), then it is possible to find 
a sequence of values of n for which 

n0 —>.oti, n§ —>ßly ny\r -J>y1, ..., 

n20-+a2, ?i2</>->/32, n2y]r-*y2, ..., 

nk0-*OLk, nk<f)-+ßk, nkyjr-^>yk, .... 
This theorem we prove by means of two inductions, the first from the case of k sets 

ai> ßi> yi> ••• to the case of k +1 sets m which the numbers of the last set are all zero, 
the second from this last case to the general case of k + 1 sets. The principles which 
we employ do not differ from those used in the proof of the simpler propositions 
discussed in § 2. 

4. The investigations whose results are summarised in the preceding sections 
were originally begun with the idea of obtaining further light as to the behaviour of 
the series 

from the point of view of convergence, summability, and so forth. If we write* 
sn®= 2 d'-iVM 8n®= x evH,i} Sn(4)= x (_ i y - i e*2** 

v^n v < n v <n 

it is obvious that, if sn is any one of sn
{2), ..., then sn — 0 (n). If 0 is rational, either 

sn = 0 (1) or sn = An + 0 (1), where A is a constant : the cases may be differentiated 
by means of the well known formulae for " Gauss's sums." Similar remarks apply to 
the higher series in which (e.g.) v2 is replaced by v3, v4, .... The results of the 
preceding sections have led us to a proof of 

Theorem 3 . If 0 is irrational, then sn = o (n) : the same result is true for the 
corresponding higher sums. 

The argument by which we prove this theorem has a curious and unexpected 
application to the theory of the Riemann ^-function ; it enables us to replace Mellin's 
result f (1 + ti) = 0 (log 11 |)f by 

£( l + fo") = o( log | t | ) . 

Theorem 4 . Theorem 3 is the best possible theorem of its kind, that is to say 
the o (n) which occurs in it cannot be replaced by 0 (n^>), where <£ is any definite 
function of n, the same for all 0's, which tends to zero as n —> oo. 

But although Theorem 3 contains the most that is true for all irrational 0's, it 
is possible to prove much more precise results for special classes of 0's. Here we use 
methods of a less elementary (though in reality much easier) type than are required 
for Theorem 3, the proof of which is intricate. 

In Chap. 3 of his Galcul des Résidus^ M. Lindelöf gives a very elegant proof of 
the formula 

*% evH™lq= /(llY% e-v*q*ilp 

* The notation is chosen so as to run parallel with Tannery and Molk's notation for the ^-functions : n 
is not necessarily an integer. 

t Landau, Handbuch der Lehre von der Verteilung der Primzahlen, p. 167, 
$ pp. 73 et seq. 
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of Genocchi and Schaar. Here p and q are integers of which one is even and the 
other odd. By a suitable modification of Lindelöf's argument, we establish the 
formula 

0(1) 
'L»=VÖV«K V0 ' 

where 0 is an irrational number, which we may suppose to lie between —1 and 1, 
A, is one of 2, 3, 4, \ a corresponding one of the same numbers, and 0 (1) stands for 
a function of n and 0 less in numerical value than an absolute constant. 

We observe also that the substitution of 0 -f 1 for 0 merely permutes the indices 
2, 3, 4, and that the substitution of — 0 for 0 changes sn into its conjugate. If now 
we write 0 in the form of a simple continued fraction 

I I I 
a1 -j- a2 -f az + ... ' 
1 1 

and put 0 = —, 0j «1 + 01 ' «2 + 02 ' 
we obtain 

'wVö) #<"*>+ V0 

VU 
V 

-£iw+o(i)f4 + 

^L(-^) + 0(l)i4+.77^ + . IV0 V(00i) v/(00102)j 
and so on. We can continue this process until n00x02... < 1, when the first term 
vanishes, and we are left with an upper limit for | sn | the further study of which 
depends merely on an analysis of the continued fraction. 

We thus arrive at easy proofs of Theorems 3 and 4 for k = 2. We can also prove 

Theorem 5. If the partial quotients an of the continued fraction for 0 are 
limited* then sn (0) — 0 (\Jn). In particular this is true if 0 is a quadratic surd, 
pure or mixed. 

5. The question naturally arises whether Theorem 5 is the best possible of its 
kind. The answer to this question is given by 

Theorem 6. If 0 is any irrational number, it is possible to find a constant H 
and an infinity of values of n such that 

\sn(0)\>H^n. 

The same is true of all Cesàro's means formed from the series. 

The attempt to prove this theorem leads us to a problem which is very interesting 
in itself, namely that of the behaviour of the modular functions 

tq^-iy\ s / , 2(- i f -y 2 

as q tends along a radius vector to an " irrational place " eQni on the unit circle. If 
f(q) denotes any one of these functions, it is trivial that 

/ ( 3 ) = 0 { ( l - | c | ) - * } -
* This hypothesis may be generalised widely. 

15—2 
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If q tends to a rational place, it is known that f(q) tends to a limit or becomes 
definitely infinite of order ^. By arguments depending upon the formulae of 
transformation of the ^-functions, and similar in principle to, though simpler than, 
those of § 4, we prove 

Theorem 7. When q tends to any irrational place on the circle of convergence, 

/ ( 2 ) = o {(1-1 Si) '*}-

No better result than this is true in general. If q-* e01Ti, where 0 is one of the 
irrationals defined in Theorem 5, then 

f(q) = 0{(l-\q\yi}. 
Further, whatever be the value of 0, we can find a constant H and an infinity of values 
of\q\, tending to unity, such that 

\f(q)\>H{(l-\q\)-i\. 

In so far as these results assign upper limits for \f(q)\, they could be deduced 
from our previous theorems. But the remaining results are new, and Theorem 6 is 
a corollary of the last of them. Another interesting corollary is 

Theorem 8 . The series 

Zn~a < > - ^ 6 i r i , tn~a en"dTl, 2 ( - I f n'a emiTi, 

luhere 0 is irrational, and a è \, can never be convergent, or summable by any of 
Cesàro's means. 

On the other hand, if a > ^, these series are each certainly convergent for an 
everywhere dense set of values of 0. They are connected with definite integrals of 
an interesting type : for example 

t 
(_!)»- : 

eH ' \/ ( " ) I e~ix2 '°S (^ c o s 2 ma^ ^x' i n 

where w = sl(0ir), whenever the series is convergent. 

6. We have also considered series of the types S(?i0), %(n20), .... I t is 
convenient to write 

Iw0} = ( w 0 ) - i , *w= 2 {1/0}. 
v 5̂  n 

Arithmetic arguments analogous to those used in proving Theorems 3 and 4 
lead to 

Theorem 9 . If 0 is any irrational number, then sn — o(n). The same result 
holds for the series in which v is replaced, by v2, v3, ..., vk, ...*. Further, this result is 
the best possible of its kind. 

* This result, in the case fc = l, has (as was kindly pointed out to us by Prof. Landau) been given by 
Sierpinski (see the Jahrbuch über die Fortschritte der Math., 1909, p. 221). Similar results hold for the 
function 

which reduces to {#} for a = 0. 
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When k — 1, we can obtain more precise results analogous to those of §§ 4, 5. 
The series 2 [n0] behaves, in many ways, like the series 2e^20™. The rôle of the 
formula of Genocchi and Schaar is now assumed by Gauss's formula 

.^l = i(p-i)(î-i), 
where p, q are odd integers. Taking this formula as our starting point we easily 
prove Theorem 9 in the case k = 1. Further, we obtain 

2 
i 

vp 

.7. 
+ 2 

i 

Theorem IO. If 0 is an irrational number of the type defined in Theorem 5, 
then sn=0 (log n). 

This corresponds to Theorem 5. When we come to Theorem 6 the analogy 
begins to fail. We are not able to show that, for every irrational 0 (or even for 
every 0 of the special class of Theorem 5), sn is sometimes effectively of the order of 
log n. The class in question includes values of 0 for which this is so, but, for any­
thing we have proved to the contrary, there may be values of 0 for which sn= 0 (1). 
And when we consider, instead of sn, the corresponding Cesàro mean of order 1, this 
phenomenon does actually occur. While engaged on the attempt to elucidate these 
questions we have found a curious result which seems of sufficient interest to be 
mentioned separately. I t is that 

2 {V0}2 = j\n+O(l) 
V < w 

for all irrational values of 0. When we consider the great irregularity and obscurity 
of the behaviour of 2 \y0\, it is not a little surprising that 2 [v0]2 (and presumably 
the corresponding sums with higher even powers) should behave with such marked 
regularity. 

7. The exceedingly curious results given by the transformation formulae for 
the series 2e™207™, 2 {n0\ suggest naturally the attempt to find similar formulae for 
the higher series. I t is possible, by a further modification of Lindelöf s argument, 
to obtain a relation between the two sums 

n m , 

tev*07ri, tfjL-ie-^ ™, 

where K = \/(32/270). The relation thus obtained gives no information about the 
first series that is not trivial. We can however deduce the non-trivial result 

l 

Similar remarks apply to the higher series 'Ze71*6'*1 and to the series 2 {^0}, where 
k>l. But it does not seem probable that we can make much progress on these lines 
with any of our main problems. 

In conclusion we may say that (with the kind assistance of Dr W. W. Greg, 
Librarian of Trinity College, and Mr J. T. Dufton, of Trinity College) we have 
tabulated the values of (n20) for the first 500 values of n, in the cases 

0 = ^ = -31622776..., 0 = e. vio 
The distribution of these values shows striking irregularities which encourage a 
closer scrutiny. 



ON THE FUNDAMENTAL FUNCTIONAL OPERATION OF A 
GENERAL THEORY OF LINEAR INTEGRAL EQUATIONS 

BY ELIAKIM HASTINGS MOORE. 

1. THE GENERAL LINEAR INTEGRAL EQUATION G. THE FOUNDATION 25 OF 

THE GENERAL THEORY. 

In a memoir " On the Foundations of the Theory of Linear Integral Equations," 
published in the April 1912 number of the Bulletin of the American Mathematical 
Society (ser. 2, vol. 18, pp. 334—362), I have indicated the foundations, that is, the 
terminology or basis, and the system of postulates, of a theory of the general linear 
integral equation 

Ç^n-zJicn (G), 

including, as special instances, the regular cases of the equations 

Ç(s) = v(s)-z 2 *(s,t)V(t) (« = 1, ...,n) (II,); 
2 = 1 

£(*) = *»(«)-* 2 *(s>t)v(t) (« = l,2,...) (Ill); 

f («) = 1? (*) - * \ *(ß> t)n(t)dt (a£s£b) (IV), 
J a 

which are various analogues of the simple equation 

œ = y-zky (I). 

In the memoir are references to earlier papers of my own on general analysis 
and to the current literature of the linear integral equation IV and the infinite 
system I I I of linear equations. 

The general equation G we term Fredholm's equation in general analysis. We 
write this equation explicitly, in the first place, in the form 

H*) = v(fi)-*Jt«(8,t)v(t) (s) (G), 

with the basis (SI; $ß ; 3»; 91; ft; J). 

Here SI = [a] denotes the class of real, or, more generally, of complex numbers a, 
and $P = [p] denotes a class of elements p ; 9JÌ = [//,] and 91 = \y] are two classes 
of functions JJL and v respectively on ^ to 21, and ft = [/c] is a class of functions 
K on 5ß$ to 21, that is, p, or f*(p), v or v(p), K or /c(.pu p2) or K (S, t) are single-valued 
real- or complex-valued functions respectively of one, one, two arguments ranging 
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(in the case of tc independently) over the class or range ty ; and J is a function 
on 9Ì to 21, that is, a functional operation turning a function v of the class 9Ì into 
a number of the class 21 denoted by Jv. We may conveniently indicate the character 
just described of the basis by writing it as follows : 

(9\ ' *P • W on $ to 31. yx on $ to 31. q on $ $ to 31. j on 5ft to 3k 

In the equation G £ and n are functions of the class s)Jt; « is a function of the 
class ft ; z is a parameter of the class 21 ; for every value of s of the class sJß tc (S, t) n (t), 
considered as a function of t, is of the class 9Ì or ^tt, so that Jt/c (s, t) n (t) is a function 
of s on 5̂ ; and the equation G is to hold for every value of s on ty ; the functions 
£, tc and the parameter z are given ; the function n is to be determined. 

For the respective instances 11^ ; I I I ; IV the range 5̂ is 

p = l, ...,n\ p— 1, 2, 3, ... ; a^p^b; 

the functional operation Jt is 
n co rb 

S ; 2 ; dt; 
t=\ t = l Ja 

and, for the regular cases, the classes 9R, sJl, ft are the classes of all functions //,, i>, tc 
on the respective ranges 9ß} ^3, 3̂̂ 3 which in the instances I I I and IV satisfy certain 
conditions, viz., in the instance IV the functions JJL, V, tc are continuous over their 
respective ranges, while in the instance I I I the functions /JL, V give rise to absolutely 

GO OO 

convergent series 2 ju>(p)2, 2 v(p), and for every function tc there exists a function 
P=I p-i 

p of the class s)3l such that for every pair of arguments s, t on the range *p 

|*(M)|^|M*)M0'|. 
In the memoir cited above I have explained how the analogy of the sphere and 

the ellipsoid leads to the determination of a foundation, at the same time simpler 
and more general, although less obvious, than that just described, of a theory of 
the general equation G. To this end we write the equation G in the modified 
explicit form 

%(s) = v(s)-zJ{tu)tc(s, t)n(u) (s) (G). 

On the understanding that the variables s and u range over a class *J$ while the 
variable t ranges over a class *)3, we have a basis 

(21 * *B • $5 • s)Ji on ^ t0 5l • 9Ì o n ^ t o % ' ft o n ^ to % ' J on ^ t0 ^) 

for the determination, by means of suitable postulates, of a general Fredholm theory 
of this equation G. 

For the purpose of obtaining a general Hilbert-Schmidt theory of the equation 
G with symmetric real-valued kernel K (tc (s, t) = tc (t, s)), or, more generally, with 
hermitian complex-valued kernel tc (tc (s, t)~tc (t, s)) we must identify the classes $ , $ 
and increase the system of postulates. The basis is then 

/or . m . tfft on $ t o 2l • tf> on s$$ t o ^ • £ on W% t 0 5l • J on 9* t0 5l\ 

We obtain perhaps the simplest general theory including the Fredholm and 
Hilbert-Schmidt theories of the regular cases of the classical instances IIW, III , IV 
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by identifying the classes 3Ì and ft, indeed by defining them as the #-composite 
(s)Jis)JÎ)* of the class s3Ji with itself, and by imposing upon the class W certain five 
conditions LCDD0R and upon the functional operational J certain five conditions 
LMHPPQ. Thus, as foundation of the general theory of linear integral equations 
here in question we have 

(SI; sp ; M on * t 0 * • 1 C M ' S ; ft = (SRSJÏ), ; J o n Ä t o * • LMHP\ 

This is the foundation, designated as 25, defined in the memoir cited above. 

The simple general theory with the foundation 25 occupies a position within the 
complex of general theories of the equation G in a measure analogous to the position 
occupied by the theory of continuous functions within the complex of various types 
of functions. 

It should be added that this foundation 25 is effective for the development of 
a theory of the linear integral equation G in general analysis, including, for the 
regular cases of the classical instances Un, I II , IV and other classical instances, not 
only the Fredholm and Hilbert-Schmidt theories in the narrower sense, but also at 
least the principal developments of those theories due amongst others to Plemelj, 
Goursat, I. Schur and Landsberg. With additional postulates it is effective moreover 
for the development of a theory of non-linear integral equations in general analysis 
along the lines laid down by Schmidt in instance IV. 

It is the purpose of this paper to consider more closely the fundamental 
functional operation J of the foundation 25, by indicating its principal properties 
deducible from the fundamental postulates and useful throughout the development 
of the general theory of the linear integral equation G in its second explicit form. 
For the convenience of the reader the requisite fundamental definitions of the memoir 
cited above are briefly repeated here. In so far as the foundation 25 itself, rather 
than the theory erected on it, is immediately in question we speak of the system 25 

of basal terms and postulates, and similarly of systems 2 of type 25. 

2. ON CLASSES OF FUNCTIONS ON GENERAL RANGES. 

We consider a class (multiplicity, Menge) 9JI = [/A] of functions / i o n a general 
range 3̂ = [ p] to the class 21 = [a] of all real or complex numbers. The range ^} is 
a general class of elements p; this general is the true general in the sense of any 
particular ; for the purposes of the theory there are no restrictions on the character 
of the elements p or of the class *$, while for the purposes of illustration or of 
application any restrictions or specifications are permissible. I t is the presence in 
a theory of a class of functions on a general range which constitutes the theory 
a doctrine of the form of general analysis which we are developing. For a definite 
function fx of the class S0Ì and element p of the range ^ p(p) denotes a definite real 
or complex number of the class 21. 

(a) Relative uniformity of convergence.—A sequence {<f>n} of functions 
<f>n(n — l, 2, ...) is said to converge to a function 0 on the range ^} relative to a 
function a as scale of uniformity, in notation 

L$n = 8 ( $ ; a), 
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in case for every real positive number e there is an index ne (depending on e alone) 
such that for every index n^ne the relation 

IMj>)-*0>)|SekO>)| 
holds for every argument p of the range ^3. This relative uniformity of convergence 
is a fundamentally important generalization of the classical uniformity, to which it 
reduces in case the scale function cr is the constant function cr = 1. 

A sequence {c/>w} is said to converge to a function 0 relative to a class © = [cr] 
of functions a as scale class of uniformity, in notation 

L<f>n = d OP; © ) , 
n 

in case there is a function a of the class © effective as scale of relatively uniform 
convergence : Lncj>n = 0 (5)3 ; cr). 

Similar definitions hold for the relative uniformity of convergence of a series 
%n<j>n of functions as to a function a or a class © of functions on ty as scale of 
uniformity, in notation 

2<fc, = 0 ( $ ; • * ) ; Sfc,= 0 ( $ ; ©). 

The series 2wów is said to converge absolutely-uniformly in case the series 2 n | <£w | 
converges uniformly as to a or as to ©. 

As necessary and sufficient condition for the relative uniformity of convergence 
of sequence or of series we have the usual Cauchy condition taken in the sense 
of relative uniformity as to scale function or scale class of functions. 

(b) The classes 9R, SDfi@, 3JtL, -aft*.—A real or complex number a has a 
(definite) conjugate real or complex number â. A function 0 on ty has a (definite) 
conjugate function 0 such that for every argument p of the range 9$ 0 (p)= 0 (p). 
A class SJl = [p,] of functions yu, on ty has a (definite) conjugate class 3SJÌ = [/A] consisting 
of the conjugate functions /Z of the functions p, of the class 9Ji. 

Relative to two classes 9Ä = [/*,], © = [<r] of functions on *)}, the extension of 
9JÏ as to © is the class 59î@ = [^@] of all functions of the form 

/*© = £/*n ( $ ; ©), or fi^ = Z/^ (*ß ; cr), 
n n 

viz., of all limit functions of sequences {fin} of functions of the class 50? converging 
uniformly as to (some function cr of) the class ©. 

The linear extension $RL = [/* J of a class 9Jt = [/A] of functions on 3̂ is the class 
of all functions of the form nL = alfjL1+ ... -f anp,n, viz., of all linear homogeneous 
combinations of a finite number of functions of the class 3D? with numerical 
coefficients belonging to the class 21. 

The ^-extension (read star-extension) 9Jl^ = [/%] of a class 9Jt = [yu,] of functions 
on *P is the class (SJi^)^, the extension as to W of the linear extension of the class 9Ä, 
viz., the class of all functions p,% of the form 

n 

i.e., of the form fi^^L X angixng ( $ ; p). 
71 .9 = 1 
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(c) The closure properties L, G, R.—A class $51 of functions on 5)3 is linear 
(L) ; closed (G) ; real (R),—in notation 

$5lL; $51°; 9R* — 

in case respectively 

S J U S R L ; $5i = $5tm; $5l = ÏÏÏ, 

or, what is equivalent, in case $51 contains respectively $5tL ; $5lm ; 9R. 

(d) The dominance properties D, D0.—A function <£ on 5)3 is dominated by 
a function 0 on 5)3 in case for every argument p of 5)3 | c/>(_p) | ^ | 0(jp) |. A class 
$51 = [/*] of functions on 5)3 is dominated by a class © = [cr] of functions on 5)3 in case 
every function p of $51 is dominated by some function a of ©. 

A class $51 = [p~\ of functions on 5)3 has the dominance property D, in notation 
$5lD, in case for every sequence {pn} of functions of $51 there is a function yu,0 of $51 
(variable with thé sequence) such that every function pn of the sequence is dominated 
by some numerical multiple anpQ of the function p0, SO that for every n and p 
| pn (p) | ̂  | anp0 (p) |. The class sj)l has the dominance property D0, in notation $51^°, 
in case every function p of ®i is dominated by some nowhere negative real-valued 
function pQ of $51, so that for every p \p(p)\è p0(p). 

(e) Composition of ranges and classes of functions.—Consider two general 
ranges 5)3' = [jp'], ^P" =[.??"] conceptually but not necessarily actually distinct. The 
product range 5)3' 5)3" is the class of all composite elements ( p, p") or p'p", the first 
constituent being an element p' of 5)3' and the second constituent being an element 
p" of 5)3". The product class of two classes $51', $51" of functions on the respective 
ranges 5)3', 5)3" consists of all product functions p'p" or p (p)p' (p") of a function p! 
of the class $51' on the range 5)3' and a function p" of the class $51" on the range 5)3". 
The #-composite ($5l'$5l")# of the two classes $51', $51" is, as indicated by the notation, 
the ^-extension of the product class, viz., the class ((SA'SBÎ'OiW'gji")» the extension as 
to the product class ÎEJI'SK" of the linear extension ($5l'$5l")z of the product class. 

The classes WW, ($5i'$5l'% are on the product range ^5)3". 

These definitions are extensible in an obvious sense to a finite number of ranges 
5P1, ..., 5)3W and of classes SSÄ1, ..., $5ln of functions on the respective ranges. 

( / ) Illustrations.—The availability of these definitions for a general theory 
of linear integral equations is indicated by the fact that the classes $5t, ft for the 
regular cases of the classical instances I I n , I I I , IV (defined in § 1) have the properties 
LCDDQR and the class ft is the ^-composite (9JÎ3R)# of the class $51 with itself. 

The notion of relative uniformity enters into the definition of closure (G) and of 
#-extension and #-composition. Were we to use classical uniformity instead of 
relative uniformity, we should not succeed in unifying the instances IIW, III , IV for 
the purpose of a general theory. In fact, let the class $51 be said to have the closure 
property G0 in case it contains the limit function of every sequence {pn} of its 
functions which converges, in the classical sense, uniformly on the range 5)3. Then 
for the cases I I n , IV the class $51 has, while for the case I I I the class $51 has not, this 
closure property CQ. 
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(g) Theorems concerning ^-extension and ^-composition of classes of 
functions.—$51 = [p] being a class of functions p on 5)3, WSl = [ap] is the class of all 
numerical multiples ap of the functions p of 9JÌ by the numbers a of 21. For brevity 

let Bx denote "is dominated by," so that $51 x denotes "class $51 of functions is 
dominated by class © of functions." Further after Peano " ." denotes "and" and 
" .D." denotes "implies" or "if ( ) then ( ) " , so that " 4 . 5 . D . 0 . D " denotes "if A 
and B, then G and D." The systematic use of these and a few other abbreviations 
will be found to tend to perspicuity as well as to brevity of statement of theorems 
and proofs. 

We notice the following fundamental theorems. 

(1) $.$5lLC.i.$5l* = $5l, 

viz., if the class $51 on the range 5)3 is linear and closed, then it is identical with its 
#-extension.—The converse is also true. 

(2) $p.gRD .D.aO*at t-L0Z>
> 

viz., if the class $51 of functions on the range 5)3 has the dominance property D, then 
its #-extension $5i% is dominated by the class 213K (JSjîlSSJl), is linear (L) and closed 
(G) and has the dominance property D. 

(3) $ ' .$5l'D. 5P". $5l"D. D • ($5l'$5l"f, 

viz., if the classes $51', $51" of functions on the respective ranges 5)3', 5)3" have the 
dominance property D, so has their product class S)JÎ'S)JÎ" (of functions on the product 
range 5)3'5)3"). 

(4) $'. $5i'D• $". WD • D - (ÜR W%BlSl9R'9n" *LCjD. (SR'SDO* = (W* W% 
= (WW*). = W*W*)m. 

(5) ^ v i r ^ ^ o ^ ^ s ^ 
The theorems 3, 4, 5 are extensible to any finite number of classes -aft1, ..., $5ln of 

functions on the respective ranges 5)3T, ..., 5)3n (conceptually but not necessarily actually 
distinct) having the properties D, D, LGDDQR] the product class ^19Ji2...-äÄri replaces 
the product class $5t'$5t", and the second part of the conclusion of theorem 4 has, for 
the instance n = 3, the form 

( « D ™ 3 R % = (ÜRVW'#) , = . . . = (SKy^yB 3 )* =... • 

= (ÜÄVÖtVK*.)» = ((«Wa^VK»)« = ... = ( ( S W 1 ^ ) . ^ ) , ; 

in permutation of the classes the understanding is that the arguments permute with 
the functions. 

As to theorem 5 we remark that owing to the linearity (L) of $51' (or $51") the 
classes $5l'$5l" and *H$5l'$5l" are identical, so that the properties B^W and B^WW 
are equivalent, and further that owing to the property D0 of $51' and $51" we have for 
every function 0 of (9R'S3R'% a relation of the form | 0 | ^ /A0VO"> where ya0', / V are 
suitably chosen real-valued nowhere negative functions of the respective classes 
$51', $51". 
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(h) Theorems involving the notion of relative uniformity of con­
vergence of series.—The following theorems illustrate the notion of relative 
uniformity. Theorem 8 is a corollary of theorem 7, and itself enters as a lemma in 
the proof of the fundamental convergence theorem of § 5 I. The functions entering 
the theorems are functions of a common argument p on a general range 5)3, and the 
inequalities involving functions hold identically in the common argument p. 

(6) The uniform convergence of the series %n<j)n<f)n, 2 n \ / ^ ^ as to the respective 
scale functions a, r implies the uniform convergence of the series 2w|c^>w^w| as to the 
scale function V|CTT|. 

(7) The uniform convergence of the series 2n^n(j)n as to the scale function a 
and the convergence of the series Xntyntyn to a sum-function è r imply the uniform 
convergence of the series Xn\(f>n^n\ as to the scale function \/\<TT\. 

(8) The convergence of the numerical series l^nänan and the convergence of 
the series %ntyntyn to a sum-function ^ T imply the uniform convergence of the series 
Xnl^n^nl as to the scale function VT. 

3. ON THE FUNDAMENTAL FUNCTIONAL OPERATION J. 

Of the system 25 : 

(21; % mou * t 0 2 l - i C T J V*. Ä 5 ( 3 W 3 R ) # ; j ™ * *° V.LMHPP^ 

we have in § 2 considered those features not involving the functional operation J. 
In §' 3 we define the fundamental properties LMHPPQ and certain additional 
properties GG^H^P^P^ and then formulate a number of theorems involving these 
properties. The operation J is a function on ft to 21, where ft is the class (S3R9DÎ)# of 
functions on 5)35)3 to 21 derived from the class $51 of functions on 5)3 to 21. 

(a) The properties L, C,G%, M of the operation J on the class ft.—These 
properties are definable for a functional operation J on ft to 21, where ft = [#] is a 
class of functions tc on a general range £l = [g] to 21. Thus for every function tc or 
tc(q) of the class ft or ft9 Jtc or Jqtc(q) denotes a definite number of the class 21, 
denotable likewise by Jrtc(r) where r is any notation for a variable element of the 
class d . 

The operation J is linear (I), in notation J , in case 

altc1 + a2fc2 — tc implies axJ^ + a^J^ — Jtc. 

The operation </ is continuous (G), in notation J , in case 

L/cn — tc (& ; ft), or L/cn = te ( Q ; tcQ), 
n n 

implies LJtcn = J/c. 
n 

The operation J is ultracontinuous (C%), in notation J *, in case for every range 
tt = [u] (conceptually but not necessarily actually distinct from the range £l) 

L(j>n = <fi (ClU ; fcv) implies LJ$n — Jcf> (U ; v), 
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where v or v(u) is a function on U to 21, tc or tc (q) is a function of the class ft on £X 
(so that the product tcv or tc (q) v (u) is a function on the product range £111), and the 
functions c/> or <j>(q, u) and <j)n or <j>n(q, u) (n = l, 2, ...) are functions on the product 
range £ltt, which for every value of u of the range U, qua functions of the argument 
q on the range £t, belong to the class ft, and where further Jcf> or» Jq c/> (q, u) and 
J<j>n or Jqipn (q, u) (n — 1, 2, . . .) , having as to the operation J or Jq the parameter u, 
are functions of u on the range It. 

The operation J has the modular property (M), in notation / , in case there 
exists an operation (called the modulus or modular operation) IT on the class ft>0 

(consisting of all real-valued nowhere negative functions tc of the class ft) to 21 so 
related to the operation J that 

\tc\ é K0 implies \JK\ ^ Mtc0. 

If tc belongs to ft>o we have in particular | Jtc\ ^ Mtc. If the class ft>o is the 
null-class, the operation J is said .to have the modular property vacuously. In the 
classical instances the modular operation M is the operation J itself. It is to be 
noted that the modular operation M: is not supposed to be linear. 

(b) Theorems involving the properties L, G,G%,M of the operation J of 
the class ft of functions on the range £t.— 

(1)* ft .J : D : 1} '"' n . D nJ(a1K1 + ... + antcn) = a1J/c1-r ... ~\-anJ/cn. 
fCi, . . . , tcn 

(2)t ft0 . J C : D : LKU (&; ft) . D . JLKU = LJKK. 
n n n 

(3)+ StLC.JLC:D: 2«„ (CX; ft).D. J2«„ = SJ'«n. 
n n n 

(4) ft.J°*.D.JC 

(5) $LD«.JLM.D.JGC*. 

(c) The transpose function a> and the hermitian property (H) of a 
function co on the product range 5)35)3.—Consider a function co or co (s, t) on the 
product range 5)35)3, the variable s, t ranging independently over thè class 5)3. The 
transpose function co of co is the function for which co (s, t) = co (t, s) identically in s 
and t on 5)3. The operation of transposition is linear, i.e., the transpose of a1a)1 + a2ü)2 

is a1w1^-a2œ2. 
TT 

The function co on 5)35)3 is hermitian (H), in notation co , in case its conjugate 
function co and its transpose function co are identical : co = co, that is, in case 
co (s, t) = co (t, s) identically in s and t on 5)3. Otherwise expressed, a hermitian 

* For a linear operation J on a linear class St with any n numbers a l5 ..., an of 51 and n functions 

KI, ..., Kn of St we have J'(a1/c1 + . . .+a n / c J = a1J/c1+.. .+anJ/cn . (The implication " : D : " has as its con­

clusion the implication " . D . ") 
t For a continuous operation J on a closed class St on a range 0 if a sequence {/cn} of functions of St 

converges on £1 uniformly as to St then JLnKn=LnJKn. 
X For a continuous linear operation J" on a closed linear class J î o n a range Û if a series "ZnKn of 

functions of St converges on £l uniformly as to Ä then J2 W K W =2 W J )C W . 
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function co is the transpose of its conjugate : co = co, or the conjugate of its transpose : 
CO = CO. 

The function co or co (s, t) on 5)35)3 may be the product a (s) ß (t) of a function a of 
s on 5)3 by a function ß of t on 5)3. In this case we write co = aß, the order being of 
importance, the first or left argument (s) of œ being the argument of the first or left 
factor a of the product aß and the second or right argument (t) of œ being the 
argument of the second or right factor ß of the product aß. Thus the product 
function aß has as conjugate aß, as transpose ßa, and as transpose of conjugate ßa. 
Hermitian product functions are of the form äa or aä. 

(d) The properties H, H%, P, P{), P # , P0* of the operation J on the 
class $t == ($5l$5l)# derived from a real class $51 on the range 5)3.—We consider 
a real class $51 on the range 5)3, that is, a class $51 containing the conjugate p of its 
every function p. Then the class ft = (3R93l)# on the product range 5)35)3 is real and 
self-transpose, that is, the class ft contains the conjugate tc and the transpose tc, and 
accordingly the transpose of the, conjugate K, of its every function tc. The class ft 
contains the class $5l$5l of product functions pxp2 of two functions px, p2 (of inde­
pendent arguments) of the class $51. 

TT 

The operation J is hermitian (H), in notation J , in case for every two 
functions ply p2 of $51 

Jp1p2 = Jp2p1. 
TT 

It is ultrahermitian (H%), in notation J *, in case for every function tc of ft 
Jtc = JR. 

Hence, if J is ultrahermitian and tc is hermitian, Jtc is a real number. 
p 

The operation J is positive (P), in notation J , in case for every function 
fi of M 

P 

and definitely (P0) so, in notation J °, in case moreover 
J~pp — 0 implies p — 0. 

3 ultrapc 
tc of ft having the form 

The operation «7 is ultrapositive (P#), in notation J *, in case for every function 

we have Jtc ^ 0, 

and definitely (P0#) so in case moreover for such a function 

Jtc = 0 implies tc — 0. 

Functions «; of the form specified above are hermitian and of positive type (cf. § 4 c). 

(e) Theorems concerning the operation J on the class ft = (sJ0i90t)*.— 

(6) $5lD°.JLM:D: 

tc = LX angßncjJng ($5)3; 3R9R).D. J* = Z 2 a^Jß^y^, 

* J>/x, is a real non-negative number. 
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where the functions ßng, ^ng {g = 1, . . . , m„; « = 1, 2, ...) belong to the class Wi.— 
Every function K of the class $ = (s3)M>i)# has the form just indicated, and, conversely, 
every function of this form is a function K. 

(7) MB.JH*.3.JH. 

(8) mV°R.JLMH.0. JH\ 

(9) 3MB . JP* . D . JF. 

(io) mD°R.jLMP.o.jp*. 

( i i ) mu.jPo*.3.jp°. 

(12) 9 J i L C ^ ^ J t M P i \ D . , / p ° » . 

The proof of theorem 12 is of interesting nature. The conclusion, tc — 0, of the 
implicational property P0# of the operation J is to be proved. One proves indirectly 
that tc (p, p) = 0 identically in p on 5)3, and then directly that tc (s, t) is on ?)35)3 every­
where purely imaginary and finally null. 

As a corollary of theorems stated above we have 

(13 ) ffiLCDI)oR m jLMHPPo B D B jCC*H«P»P0, ^ 

that is, the 

THEOREM. The fundamental functional operation J of the system 25 has the 
properties LMCG*HH*PP*P0Pm. 

4. INSTANCES OF SYSTEMS 2B . 

The instances, now to be indicated, of systems 25 serve to indicate to some 
extent the scope of the general theory of the linear integral equation G or of other 
theories developable on the foundation 25. Of importance for the development of 
such general theories are the #-composition of systems S5, explained in (b), and the 
abbreviational notations in connection with iterated operations, explained in (c). 

(a) The classical instances.—The regular cases of the classical instances 
I I n , III , IV may be treated on the foundation 25 , the operation J or J{st) on the class 
ft or ftsî having the definition 

J[st) K O*, 0 = Jp * (P> P) 

for every function tc of ft, the operation Jp being in the respective instances 
n oo rb 

2 ; S ; dp . 
p = l p-i J a 

(b) ^-composition of systems S5.—Consider two systems S, S" of type 
S5, viz., 

S ' B ( « ; 5)3'; $51' on * ' t o » ; ®' = ($5ï$5l%; j> <****); 

2 " = (81 ; 5)3" ; $51" on r t o * ; ft" ~ (WW% ; J" o n *" t o * ) , 

where the classes 21 are identical, the ranges 5)3', 5)3" are conceptually distinct, and the 
classes $51', $51" have the properties LGDD0R while the operations J', J" have the 
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properties LMHPP0. The ^-composite (S'a")* of these two systems 2', 2 " is the 
system S : 

2 = (2'2")* = (81 ; $ = $ ' $ " ; $51 = (9Jl,5SK,/)^ ; £ = (£'ft77)» ; J = J'J")-

This system 2 is of type 25, for with use of theorems of §§ 2, 3 it is provable that the 
class $51 = (WW)* on the range 5)3 = 5)3' 5)3" has the properties LGDD.R, that the 
class ftEE(ft'ft'% on $ $ is the class (WWWW); viz. the class ($5l$5l)%, and 
that the operation J, defined as the iteration of the operations J', J" is applicable to 
functions tc of the class ft and, as an operation on ft to 21, has the properties 
LMHPP,. 

The two operations J', J" on a function tc are commutative: J'J"tc —J"J'tc. 
In the proof that J = J'J" is definitely positive (PQP) it is convenient to use 
the notion of orthogonality (cf. § 5). 

The ^-composite (2122...2*%, similarly defined, of a finite number of systems 
21, 22, ..., Xn of type 25 is likewise a system of type 25. 

For the classes $51' of the classical instances we have simple functional charac­
terizations* of the functions p of the ^-composite class $5i =($5l'$5l")%. Thus 

If $5i' is the class $5t'lu or $51'1Y of the regular case of the classical instance I I I 
or IV (defined in § 1) and $51" is any linear closed class with the dominance 
property D, then $5l = ($5l'W)# consists of all functions p on 5)3 = 5)3' 5)3" satisfying 
the two conditions: (1) for every p' the function p or p (p', p") qua function of 
p" belongs to the class $51" ; (2 III) the function p is dominated by some product 
function of the form p p"'; (2IV) the function p or p(p\ p") is for every p", qua 
function of p, uniformly continuous on the range pÏY, and this uniform continuity 
is uniform as to the parameter p", viz., for-every positive number e there exists 
a positive number de such that |px' — p2 | ^ de implies for every p"\p(p1'i p") 
-p(p2\p")\zke. 

Hence (cf. § 1) the class ft = (9Jl$l)# consists of the functions tc which are, in 
instance III , dominated each by some product function of the form pp, and, in 
instance IV, continuous over the square 5)3IV5)3IV, while for the class $51 = ($5l'IllWIY)% 
we have two distinct but equivalent characterizations of the constituent functions. 

The linear integral equation G for the system 2 = (2 / m 2" I V )# has the form 

%{s',s") = v(s',s")-z 2 Çtc^J^t'J^n^J^df (s' = l, 2, ... a^t'ïkb). 

Here £ and n belong to the class $51 = (s)Jìans$ì"IV)# while tc belongs to the class 
ft = (ST111 ft"IV) = ($5l$5l)* = (WmWTVWmWJY)*. 

To the general question of characterization of the constituent functions of classes 
arising by ^-composition of two or more classes of functions are devoted §§ 56—84, 
pp. 96—149, of my memoir: "Introduction to a Form of General Analysis/' cited in 
the footnote. 

* Cf. §§ 57 a, 60, 62, 65, 66 of my memoir : " Introduction to a Form of General Analysis," pp. 1—150 
of The New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910. The proofs there 
specified for the real number system 21 are effective without change for the complex number system 51. 
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(c) The instance suggested by the analogy of the sphere and the 
ellipsoid.—Consider a system 2 of type 25 and in it two functions co, tc of the class ft 
and two functions f, n of the class $51. Then, as phenomena of the #-composite 
system (22)* , the iterations J(St)J{UV), J{UV)J(8t) are applicable to the functions 
£ (s) co (t, u) n (v), tc (s, v) co (t, u) and we have 

J(st)J(uv)%(s) « (t, u) v (v) = J(uv)J{st)i;(s) w (t> u) V (v)> 

J(st) J(uv) * (S, V) CO (t, U) = J{uv) J{st) tC (S, V) CO (t, U). 

Here s, t, u, v are four independent variables on the range 5)3. 

Having regard to the order of the arguments of the operand functions of such 
iterational operations we may conveniently abbreviate the notations. For instance, 
in te (s, v) co (t, u) the arguments are in the order svtu and we write indifferently 

J[st)J(no) * (S, V) CO (t, U) ; J ( l 8 ) J"(42) fCCO, 

so that, for instance, J(13) «/(42) tcco = J(31) J^ cote. 

In this notation, the two equalities first written are 

J (12) J (s*) Con = J m J"(i2) Cay, 

J (13) J(4S) Kù) = J m J (13) /C0)' 

As to the operation J the function co of the class ft is of positive type (P), in 
notation coF, in case for every function p of the class $51 

J (12) J(34) ~ß<*P< ̂  0 , 

and it is definitely (P0) so, in notation : coPo, in case moreover 

«̂ (12) (̂34) fitop = 0 i m p l i e s p = 0. 

Now consider a hermitian function co : To = co, of definitely positive type as to the 
operation J. Then from the system 2 we obtain a system 2W by replacing the 
operation J on ft by the operation J^ on ft where for every function tc of ft 

J^tC — e/(13) J(42) tcco. 

This system 2W is of type 25, for the operation J"w has the properties LMHPP0. 

It was the desire to secure a theorem of this character, expressing in a sense the 
analogy between, let us say, the sphere and the ellipsoid, which led to the second 
explicit formulation of the general linear integral equation G and to the replacement 
of the unary operation Jp, as fundamental functional operation of the general theory, 
by the binary operation J{st). 

It may be remarked that, if the hermitian function co is of positive type, although 
not of definitely positive type, the operation J^ has the properties LMHP but not 
the property P 0 . 

(d) Adjunctional composition of systems 2S.—Consider n systems 21, ..., 2 n 

of the type 25 conceptually, but not necessarily actually, distinct. Let the classes 21 
be identical. Further let no two of the n ranges 5)3{ have elements in common ; this 
state of affairs, being always securable by transformation, involves no essential 
restriction of generality. The n systems 2 \ ..., 2 n give rise to a system %1-n, their 
adjunctional composite, which is likewise of type 25, as follows. 

M. c. 16 
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The class 21 of the system 2 1 -n is the common class 21 of the systems 21 , ..., 2? l. 

The range 5)3 of 2 1 -n is the adjunctional composite or logical sum or aggregate of 

elements of the n ranges 5)3* of 2*, and the range 5)3* is the i th component of the range 

5)3. Then the product range 5)35)3 is the adjunctional composite of the w2 product 

ranges 5)3* 5)3-?. 

The class $51 of functions /x on the composite range 5)3 is the adjunctional com­

posite of the n classes $51* of functions pl on the respective component ranges 5)3*, 

viz., every combination of functions p1, ..., pn on the respective ranges 5p1, ..., 5)3™ 

determines a function p on 5)3 by the stipulation tha t on every component range 5)3* 

the function p is identical with the corresponding function pi
y and every function p is 

so determinable; the function p is the adjunctional composite of the n functions p', 

and the function pi is the ith component of the function p ; we write p — (px, ..., pn) 

or p = (p% 

Then the class ft = (9Ks)3l)^ of functions K on the product range is the adjunc­
tional composite of the n2 classes ft# = (s)Ji*9Ä% of functions KV on the respective 
component ranges 5)3*5)3J'; we write # = (*#). 

The functional operation J on ft is the adjunctional composite of the n operations 

J1 on the respective classes ft* = (s3K*9Dl% = ft™, viz., if the function K is the adjunc­

tional composite of the ri2 functions K$ : tc = (##), 

n 
J/e = J(/cü)= 2 JiKii. 

i = l' 

Consider the linear equation 

£ = 7) — z Jtcrj (G) 

for this basal system 2 L n . Set t ing 

£ = (?)> y = (v*), fc-(^) 

we have (£*) = (rf) - zJ(/cV)(rfl) = (v
l) -z ( 2 J ^ V j (G), 

tha t is, equating the components, we have the system 

n 

? = ^ - ^ 2 J V V (i = l, ...,n) (Gn1-71) 
j=l 

of n simultaneous equations for the set of component systems 21, ..., 2™; and con­
versely, every such system Gn

l~n of equations is expressible as a single equation G for 
the composite basis 21-™. 

Accordingly the general theory of the simple equation G with a basis 2 of type 
2 5 covers by specialization the general theory of the more general system Gn

1-n of 
n simultaneous equations based on n systems 21, ..., 2 n of type 2 5 . 

(e) T h e t ranspose s y s t e m 2 of t h e s y s t e m 2.—Consider a system 2 of 
type 2 5 . The transpose system 2 likewise of type 2 5 is obtained by replacing the 
operation J by the transpose operation J. Here J is the operation such tha t for 
every function tc of ft 

Jtc = Jtc, 
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t ha t is, by the definition (§ 3 c) of the transpose tc of the function tc, 

J{st) K (S> 0 = J(st) * (t> S) = J{ts)K (8, t), 

so tha t we have J(st) — J{ts)-

Here one must recall, as noted in § 3 d, tha t the class ft contains the transpose tc of its 

every function tc. 

(f) A class $jlLCDDoR and the operations JLMHPP» Qn §t = ($3tm)m.— 

W e consider a range 5)3 and a class $51 a v of functions on *)3 to 21 and the 

associated class 3 of all operations J ° on ft = (3J13R)^ to 21. 

The class 3 is self-transpose, as we have seen in § 4 e, viz., if the operation J 

belongs to the class 3 , so does the transpose operation J : Jtc — Jtc. 

The class 3 is positively-linear, viz., if the two (possibly identical) operations 
Jlt J2 belong to the class 3 , so does every operation of the form a1 Jj + a2J2 : 

(a1Jl
Jra2J2)tc — a1J1K

Jta2J2K, 

where a1} a2 are two positive real numbers. 

Further , as we saw in § 4 c, if the operation J belongs to the class 3 , so does 

every operation Jl0, where co is a hermit ian function of the class ft of definitely 

positive type as regards the operation / . If co i s merely of positive type, J"w has at 

least the properties LMHP. 

These are closure properties of the class 3 . Another closure property is given 

by the following theorem. 

If Ji, J2, ..., Jn, . . . is an infinite sequence of operations on ft to 21 such tha t 
(1) every operation Jn has the properties LMHP, while at least one operation Jn has 
the additional property P 0 , and so belongs to the class 3 ; (2) for every function tc of 

CO ' 

ft t he infinite series 2 Jn/c converges absolutely; (3) there exists a sequence 
n—l 

Mlt if2» --•> Mn, . . . of modular operations on ft>0 to 21, the operation Mn being 

associated with the operation Jn in the sense of the modular property i f of Jn, of 
CO 

such a nature tha t for every function tc0 of ft>0 the infinite series 2 Mntc0 converges, 

CO CO 

then the operation J~ 1 Jn: J/c = 2 Jn/c, is an operation on ft to 21 with the 

properties LMHPP0 and accordingly belongs to the class 3-

W e notice the following example. Let p1}....., pm be m fixed elements of the 

range 5)3. The corresponding operations 

J B ^ , ...,RPm: Rp1K = tc(p1,p1),...,Rpmtc^tc(pm,pm), 

are operations on ft to 21 with the properties LMHP. Accordingly, if J is an 

operation of the class 3 , so is the^opera t ion Jv~ RPl -f ... + Rpm -f J. For this 

operation J j the linear equation G : ^—vzJ\Kri> has the form 

£ (S) = V(s)-Z[ S ä (S, pn) 7J (p^ + Jm tc (s, t) rj (u) (s), 

16—2 
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and to this equation the general theory applies. For the classical instance I V this 

equation has the form 

2 tc (s,pn)v(Pn)+ K(s,t)v(t)dt) (a^s^b), 
n=l Ja J 

where plt ..., pm are m arguments of the range a £ p £b. 

5. T H E F U N C T I O N S P A C E $51. U N I T A R Y ORTHOGONAL S E T S OF F U N C T I O N S . 

T H E PYTHAGORAS AND SCHWARZ INEQUALITIES . 

We are now to consider certain geometric properties of the class $51 of functions 

relative to the operation J of the system 2 5 , to the extent requisite for the theory of 

the general linear integral equation G. For the algebraic instance 11^ a function f 

of the class $51 is interprétable as a point or a vector in space of n (real or complex) 

dimensions, and this instance is to be borne in mind in the sequel. 

(a) M o d u l u s of a funct ion . Orthogona l i ty o f a pair of func t ions .— 

A function £ of the class $51 has the real non-negative modulus M (£), where 
if2 (£) = JTÇ£ which vanishes if, and only if, £ = 0. A function £ of modulus 1 is 
unitary or a uni t function. If i f (£) 4=0, £/ i f (£) is unitary. 

Two functions £, TJ are orthogonal, in notation : (f, 77) , in case J\7] = 0. The 
relation of orthogonality is symmetric. 

For two orthogonal functions £, rj we have the Pythagoras equality 

M*(Ç + v)=*M*(Ç) + M*(<n). 

The modulus M and orthogonality 0 are relative to the operation J. Similarly 
we define relative to the transpose operation J the transpose modulus M and ortho­
gonality 0, and have the relations 

I t should be noted tha t in general we do not have the relations 

Jf (?) = if <f);(?,i>)° 3 (M)0 , 
t ha t is, modulus and orthogonality are in general not self-conjugate. For example, 

consider the algebraic instance I I 2 derived from the classical instance I I 2 by the 

utilization (in the sense of § 4 c) of the hermitian function co : 

0,(1, 1) = u, (2, 2) = 5, *>(!, 2) = 4i, co (2, 1) = - 4i (i = V=TT), 

of definitely positive type. Then, set t ing tc (g, h) = kg1l (g, h = l, 2), we have 

Jtc = 5 (Jcu + k22) +• U (lc12 - k21), 

and accordingly for two functions f, v\ : 

?(9) = xo> V (9) = yg(g = 1, 2), or f = (x,, x2), y = (ylt y2), 

we have JÇ77 = 5 (x^ + x2y2) + U (xxy2 - x2y^). 

Then the moduli of the conjugate functions (1 , i), (1 , —i) are respectively V2, V l 8 : 
and the functions (1, 0), (4, 5i) are orthogonal, while the conjugate functions 
(1, 0), (4, — 5i) are not orthogonal. 
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(b) The combinatorial product of m functions. The multiplication 
theorem for integral determinants.—Consider a set (^, ..., £m) of m functions 
of the class $51. By multiplication of these functions in independent arguments 
Pu • • • > Pm of the range 5)3 we have the product function 

fi|-2..-£n Or M P i ) & ( P 2 ) . . . £ m ( P m ) 

of the class ÜR9Ä...9Ä or $Rpi
<S5lV2...$5tp ] in the notation ^1f2---^m the order is of 

importance (cf. §§ 3 c, 4 c). The combinatorial product (£i£2...£m) of the m functions 
is the sum 

1, m 

/ 1 ? • • • » Jm 

where the symbol ±* * is 0 if two indices are equal, and otherwise + 1 or — 1 , 
according as f1} ...,fm is an even or odd permutation of 1, ..., m. Thus, the com­
binatorial product (^i.-.^m) in the arguments plt ..., pm is the determinant 

(?i?a.-.?m)(pi, •••>Pm)=\Çf(Ph)\ (/, ä = 1, ...,.m). 

If the functions ^ , ..., £m are linear combinations of functions rj1, ..., rjm: 

m 

£/= 2 %% (/=!> ..., m), 

we have (&£,... fm) ±= | o^ j (^^...??,m,) (/, gr = 1, ..., m). 

The combinatorial product (fi£2...£m) changes sign on the interchange of two of the 
m functions |y, and it vanishes identically if and only if the m functions fy are 
linearly related. 

From two sets (£ , ..., fm), (%, ..., rjm), each of ?ra functions, arises the integral 
determinant 

\J%fVg\ (/fl r = 1^ •••> m)> 
in which the m2 elements are the integrals J^/Vg of the m2 products £/T^. This 
determinant for m = 1 is the integral J"|fy ; we denote it by the notation* 

Jm(&> •••> ?m)0\ •••> W-
This determinant vanishes if the functions of either set are linearly related and it is 
an invariant of weight 1 as to linear homogeneous transformations of either set of 
functions. 

Multiplication theorem.—For two sets (£x, ..., | m ) , (%, ..., r)m) of functions of the 
class $51 the integral determinant multiplied by m ! is equal to a certain m-fold 
integral of the product of their combinatorial products, viz., 

™lJm(&, ...,ìm)(Vi, ..., Vm) = Jm(ïi&-..Çm)(ViV2--.Vm), 
where on the right Jm denotes the m-fold operation 

J (1 m+i) ** (2 rn+2) • • • J (m 2m) > 
in the notation of § 4 c. 

* Here Jm is an operation (associated with the operation J) whose operand is always of the form: 
(£i> •••» £m) (vi> •••> ^m)- I f w e multiply the two sets to form the matrix (£/%)(/, 9 = ̂ , ...» wi), we may write 
Jm(£fng) = \JÇfVg\(f> 9 = 1, ...» ™)> and accordingly, more generally, for a matrix (/c/̂ ) of functions of the 
class Ä, we may write Jm (Kfg) s \ JK/9 | (/, g = l, ..., m). 
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Proof.—The right side has the value 
1, m , 

J lì •••> J m 

0 1 » . . . . 0 m 

1 , M 

J lì •• 'i Jm 

which is an expansion of the left side. 

I t is to be noted that the factor m ! on the left may be omitted if we replace 
either combinatorial product on the right by the corresponding simple product, viz., 

.^m(fi , . . . . , fm)(%, . . . , ^ W m ( ? i ? 2 ^ 

.(c) Modulus of a set of functions.—The modulus 'M(Ç): M*(Ç) = J\%, of 
a function £ of the class $51 is a real non-negative number which vanishes if and only 
if p = 0. Similarly, the modulus i f (£1; ..., fm) of a set (£ , ..., £m) of functions of the 
class $51, suitably defined by the equation 

M*(Çlt..., U~Jm(ìi, . . . W f ö - . . . , U = \Jìf^gl 

w^ere the integral determinant, on the right has, by .§ 5 b, the expressions as m-fold 
integrals 

•^^m(Çi|a.-.|in)(fi?2...fW), Jm{ìih^rtm)^2...^ ^|1f2...Çm(?ie2.-.?m), 

is a real non-negative number which vanishes if and only if the functions |y are 
linearly related. 

The proof by induction of this fact, true form == 1, depends upon the ident ic 

if2(0) = if2(£> ..., ÇmYM*^ ..., Çm, fTO+1), 

where the function 0 is a certain function of the form 

O = M2(£,..., fm) Çm+1 +..OÌ& + ... + aw£TO, 

viz., the function Jm%£2...\m.(ì;lì;2...ì;mì;m^). M2(6) or J## is readily put in 
the form 

1 » W M - 1 

- f - ± Â - • -/m/m-H * Pi - • • PmflWl J^fi ^'" J^L ^ ' ^ ^ 1 * ' ' J ^m ^m ^ / J \ £ / » i + l ' 
J l> •••>./m» Jm-f'l 
Ö'l 5 • • • 5 #m » #m-f 1 <4 

or, since the terms with / m + ] = 1, . . . ,m occur in pairs with opposite ^rgns, in 
the form " 

1 , m __ _ 1 , m f i _ __ _ 

/ l ' • • • > / m #1 » • • • > £/<m > #m+l 

thus M*(0) = J - ( f J a . . . f w ) £ f ,..'. fTO J ^ f af2...fmÇm+1 (&&... fTO^n+i) 

as stated. 

Now admit the statements as to the modulus of a set of m functions, and 
suppose that (%u ..., £m, ^m+1) is a set of linearly independent functions. Then 
^2(£i> •••> f«i) and M2(0) are real and positive, since (£ , ..., |m) is a set of 
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linearly independent functions and 6 is not the function 0. Hence, by the pre­
ceding remark, if2(?i, •••> £m> fm+i) is real and positive. Accordingly, the state­
ments as to the modulus of a set of m -f 1 functions are valid, since the modulus 
vanishes if the functions are linearly related, as one sees from either expression 
of the square of the modulus as a multiple integral, the combinatorial product 
vanishing identically. 

The definitions and theorems of § 5 a, b, c in essentially the present form, 
although for the more special integral operation Jp and with different postulates 
on the class $51 and the operation J, have been in my possession since 1906, and 
I gave the multiplication theorem for integral determinants in a course of lectures 
on the general theory of determinants at Chicago in the summer of 1907. The 
equivalence of the identical vanishing of the combinatorial product and the linear 
dependence of the functions of a set of functions was, for the instance IV, perhaps 
first published by Goursat (Annales de 'Toulouse, ser. 2, vol. 10, p. 80, 1908). The 
multiplication theorem for instance IV was first published by I. Schur (Mathe­
matische Annalen, vol. 67, p. 319, 1909), while the names "integral determinant" 
and "multiplication theorem" are due to Landsberg (ibid., vol. 69, p. 231, 1910). 

(d) Hadamard's theorem in general analysis.—For functions £ of the 
class $51 we Bave 

i f (fi, ..., £», £m+i) ^ M(fi, ..., ln)M (£m+1), 

and accordingly the general Hadamard theorem : 

Mfo, ...,lm)éM(ë1)M(^...M(^m). 

The first inequality hold as equality if and only if either the functions (%1} ..., %m) are 
linearly related or the function £m+1 is orthogonal to the various functions (£ , ..., fm). 
Accordingly, the second inequality hold as equality if and only if the functions 
(£i> •«•> £m) are in pairs orthogonal*. 

We prove the first inequality and added remark in case the functions (fj, ..., fm) 
are linearly independent, so that M(£1? ..., £m)=|=0. Set 

%m+i = Jmìih • -. f m (fi & • • • £mf m+i) ; ÌTm+1 = %m-hi/^2 (&> • • • > £m)-

Then M (%m+1) = if* (f 1, ..., fm) M (^n + 1) , 

while, as proved in § 5 c, 

M(^...,^m)M(^, . . . , ? m , fm+1). 

Hence i f (f>, ..., fm, fw+1) = if (£ , ..., %m)M(^m+1). 

We readily see that i/rm+1 = %m+1 — r)m+1} where ?ym+1 is of the form b^ + ... + &mfm, 
and that %m+i and ijrm-t-i are orthogonal to the various functions (fl5 ..., fm), since 

4/%m+i = Jm+1ìih ... fm!/(fifa •.. ?»Wi)=Jm+1 (fifa - I*»!/) ?1& •'• ?-Wi = 0, 
the combinatorial product ( f ^ ... fmf/) vanishing identically ( / = 1, ..., m). Hence 
-v|rm+1 is orthogonal to Vm+i, and with fm+1 = ^m+i -f ^m+i we have the Pythagoras 
equality : if2 (fm+1) = M2 (f m+1) + if2 (rçTO+1), and accordingly i f (yjrm+1) è M (f TO+1), 
the equality holding if and only if r]m+1 = 0, and so if and only if fjm+1 is orthogonal to 

* If wi = l, this condition is understood to hold (as we say, vacuously). 
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the various functions (%u ..., fm). Hence the first inequality and added remark are 
proved. 

We notice further that the functions (y]r1, ..., yfrm+1): 

^ = £5 +f=J'-1hh...h-AM*---Çf-ih)IM*&, .... f,_x) ( / = 2 , ...,m + l), 

are mutually orthogonal and connected with the functions (fx, ..., £m+1) by a linear 
homogeneous transformation of determinant 1, and accordingly 

M(Çl9 ..., fTO, &,+ 1)=Jf Ofr, - , ^m+i) = M(f1)M(f2) ... i f ( tm + i ) . 

Hadamard's classical theorem on determinants of order m is the instance I I m of 
the general Hadamard theorem stated above. 

(e) Equivalence of sets of functions. Unitary sets and orthogonal 
sets of functions.—A set ((j>lt ..., <f>m) of m functions of the class $51 as basis 
gives rise to the linear class (</>!, ..., <j>m)L consisting of all functions £ of the 
form 

%i yi + • • • + xm tym > 

where the coefficients xg are numbers of the class 21. If the functions <j>g of the 
basis are linearly independent, a function £ of the linear class (<pl} ..., $<m)L is 
uniquely determined by and uniquely determines the corresponding set (x1} ..., xm) 
of numbers, the coordinates of £ as to the basis (cply ..., <j>m); on occasion, we write 
£ = (#!, ..., xm)', the linear class (<£l5 ..., cf)m)L is thus a function space of m real 
or complex dimensions, according as 21 is the class of real or complex numbers. 

Two sets (</>!, ..., cj)m), (^i, ..., y{rn) of functions are linearly equivalent: in 
notation, ((j>1, ..., (f>m) ~» (^1? ..., yfrn), in case the two classes (fa, ..., <j>m)L, 
(tyi, •••; tyii)L are identical, that is, in case the functions fa are linearly expressible 
in the functions tyg and conversely. 

The set (fa, ..., cj)m) is unitary, in notation: (fa, ..., <f)m)u, or orthogonal, in 
notation: (fa, ..., cf>m)0, in case its functions are respectively individually unitary 
or in pairs orthogonal. 

A unitary orthogonal set (fa, ..., cf)m)uo of functions, necessarily linearly 
independent, plays the rôle of a set of m mutually orthogonal unit vectors in 
geometry. Thus, consider two functions : 

m m 

f = (x1} ..., xm) = 2 Xgfa; v = (yi> •••> Vm)-= 2 ygfa, 
g=i g=l 

of the m dimensional function space (fa, ..., <pm)L. The coordinates xg are deter­
mined by the formulae 

x9 = J4>g £> ïï'g = J Hg (g = l, ..., m). 

Hence we have the equations 

m _ _ w __ _ 

o=i g=i 

__ m m _ _ 

tfy= 2 xgyg= 2 JCfaJfav. 
g=i ' g=i 
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For the modulus i f (£) we have 
•_ m 

if2(£) = J H = **gxg; 
ff=i 

and for the modulus M (£ — ??) or distance £?? between the two points £, rj of the 
function space (fa, ..., <f>m)L we have 

M*(C-V) = J{C-V)(C-V)= 2 (xg-yg)(œg-yg). 

Accordingly, the function space (fa, ..., fan)L with unitary orthogonal basis 
(fa, ..., (pm) is, with respect to the operation J, a real m dimensional euclidean 
space or a complex m dimensional parabolic hermitian space in the sense of 
Study, according as 21 is the real or the complex number system. 

The rank of a set (£ , ..., £m) of functions is the largest number of linearly 
independent functions contained in the set. Two equivalent sets are of the same 
rank. For a set of rank n > 0 there is an equivalent unitary orthogonal set of 
rank n. 

The infinite set (fa, fa, ..., fa%, ...) of functions is unitary, or orthogonal, 
if its functions are, respectively, individually unitary, or in pairs orthogonal. 

Consider an infinite set (f1? f2, ..., %n, ...) of functions of the class $5i. We 
proceed to construct an infinite orthogonal set (fa, fa, ..., fa, ...) of such a 
nature that for every m the sets (fl5 ..., £m), (fa, ..., i/rm) are equivalent, in 
fact, in such a way that fa — & = 0 and for every m fan+1 — £m+1 is linearly 
expressible in £ , ..., £m or in fa, ..., yfrm. 

Construction.—Take fa=^lt Whenever the set (£l5 ..., £m) is of rank 0 
take ^ m + i = £m+i- Whenever the set (£l5 ..., £w) is of rank n > 0, denote by 
( | ..., £ ) a set of ^ linearly independent functions chosen from the m functions 
%g(g = Y, ...3 m). Then the function %m+1 : 

Xm + l- J ?#! *•• ?#% \%gx ••• f#u £m + l)> 

is linear in j*gi, ..., %g , %m+\, and is orthogonal to the functions £ ..., £ 

and hence to the functions %1, ..., £m; and the coefficient of %m+l in ^m + 1 is 

^f^i-'-f^^i — ^ t h a t is' M 2 ^ i J '••' W ' w h i c h i s d i f f e r en t f rom 0. Take 
^m+l^Xm + il^iSg^ •••> £/u)-

 I t} i s readily seen that the set (fa, ..., fa, ...) 
so determined satisfies the conditions specified, and that it is the only set 
(fa, ..., fa, ...) which satisfies those conditions. 

Consider now an infinite set (^, . . . , %n, ...) of functions of such a nature 
that for every m the set (£1? ..., £m) is of rank m. We proceed to construct an 
infinite unitary orthogonal set (fa, ..., <pn, ...) of such a nature that for every m 
the sets (£1? ..., £m), (fa, ..., fan) are equivalent. 

Construction.—Take 

where %m+1 = Jm^ ... %m (£ ... %m fm+1) (m = 1, 2, ...,??,...). 
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These definitions are legitimate, since, from the hypothesis, for every m 

M (£ly •••> %m) =(= >̂ an<^' a S W e S a W ^n I ^ C, 

M2(Xm+i) = M2(Ci, ..., f,n) J f 8 (£ , ..., | m , fw+1). 

I t is readily seen that the set (fa, ..., <j>n, ...) so determined satisfies the con­
ditions specified, and that these conditions determine the set (fa, ..., <pn, ...) up 
to numerical multipliers an (of the respective functions fa%) belonging to the 
class 21 and of unit modulus : | an j = 1. 

( / ) The Pythagoras or Bessel inequality.—Consider in the function 
space $51 a unitary orthogonal set (fa, ..., fan) and the corresponding m-space 
(fa, ..., fai)i- A function £ of $51 is uniquely separable into two components 
fi> &'• f = ?i + ?2, & of (fa, .... W i a n d £> orthogonal to ( ^ , ..., 0m)L, viz., 

m _ m _ 

| i = 2 (pnJfai^'ì %2= £ * £1 = £ — 2 faiJfaiÇ. 
n-1 ii = l 

The function ^ is the orthogonal projection of £ on (</>l5 ..., <j>m)L', the function £2 

is the component of £ orthogonal to (</>l5 ..., <f>m)L. For the orthogonal functions 
£ , £2 we have the Pythagoras equality : M2 (&) + M2 (fa) = if2 ( £ + £2) = M2 (£). 

Accordingly, for a function £ and unitary orthogonal set (fa, ..., cj>m) of 
functions of $51 we have the Pythagoras or Bessel inequality 

w* — — — 

wherein the inequality holds as equality if, and only if, £ is a function of 
(fa, ..., (/)m)i. Hence, for a function £ and an infinite unitary orthogonal set 

on __ _ 

(</>!, ..., <£n, ...) the infinite series 2 Jt; fai J fail; of real-valued non-negative 
n = l 

terms converges to a sum at most JÇf. and we have the corresponding Pytha­
goras inequality 

2 JUnJ4>nÇèJtf. 
n = l 

Thus, for a function £ and a finite or infinite unitary orthogonal set 
(fa, ..., fax, ...) we have the Pythagoras inequality 

n 

m co 

where 2 is of the form 2 or 2 , according as the set (fa, ..., (j>n, ...) is 
n n=l n~\ 

finite or infinite. Since the class $51 is real and the operation J is hermitian, 
this inequality occurs also in the form 

n 

(g) The Pythagoras or Bessel inequality for a finite set of functions.™ 
The Pythagoras inequality, in the two forms given at the conclusion of § 5f, may 
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be generalized by taking instead of the function £ a finite set (£l5 ..., ffc) of functions 
of the class $51. We have thus the two forms 

s Jk(ì i , - •., h) (4>Hl,..., </>„,) J" (*,„. • • •, kk) (h > • • •, &•) 

«!<•• •<% 
^*(fi,...,ffc)(fi,-,lt5-

Here the terms on the right and the factors of terms on the left are integral 
determinants of order k, expressible in various forms as &-fold integrals, as ex­
plained in § 5 6; the summation indices n1} ..., n^ run from 1 to oo if the unitary 
orthogonal set (fa, ..., fal} ...) is infinite, and from 1 to m if the set is finite: 
(fa, ..., fan), in which case if Io m the left sides are to be interpreted as having 
the value 0, the inequality becoming (in view of § 5 c) trivial. 

This generalized Pythagoras inequality for the case of an infinite unitary 
orthogonal set (fa, ..., fa%, ...) follows (as in § 5 / for k =•!) from the generalized 
inequality for the case of a finite unitary orthogonal set (fa, ..., fan) with m~k. 

This latter inequality holds as an equality, if the functions fj, ..., £& are 
linearly expressible in the functions fa, ..., fan. This equality is a particular 
case of a more general equality which we state as a lemma. 

Lemma 1. If the k functions fl5 ..., ffc are linearly expressible in terms of 
m mutually orthogonal functions fa, ..., fan (m^k): 

m 

& = 2 Xfn<f)n ( / = 1 > ..•>&)> 
n = l 

1, m 

then J* (fi, ..., Ik) (fi, . •., ffe) = 2 | œf 11 x^ \ J^<j>ni.. . J ^ ^ , 

where the determinants are of order k, Viz., f, g = l, ..., k. 

Proof.—By the multiplication theorem we have 

where Jk on the right denotes the A?-fold operation J, t \... J u t \. This expression 

readily takes the form 
1, m 

1 
k\ 

2 jt 
ui, . . . , «* 
vi, ...,vk 

1, m 

afug4>uó(
sg) ÌÌVfVgQvftgìl* 

that is, £-j ̂  2 • | XfUg j I xfUg \ JfaLlfax... J4>uk<l>vk> 

from which, in view of the mutual orthogonality of the functions fal} the required 
form is readily obtained. 
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In case the set (fa, ..., fa%) is unitary orthogonal we have xjn —Jfa%^ 
(f—1, ..., k] n = l, ..., m), and readily see that this case of lemma 1 is the 
special case specified above of the generalized Pythagoras inequality. 

I t remains to prove the generalized inequality for the finite unitary ortho­
gonal set (fa, ..., <£m) and any set (ft, ..., ft,.) where m =/c. By means of lemma 1 
this will be reduced to the special case. 

Separate the functions ft (f=l, ..., m) into orthogonal components r]f, £}•: 
f/ = *7/+f/, with respect to the space (fa±, ..., cf>m)L, rjf being the orthogonal pro­
jection of ft on the space and £/ being the component of ft* orthogonal to the 
space. Then the left of the Pythagoras inequality is unchanged, if we replace 
the functions ft respectively by the functions 7jf, since the elements of the deter­
minants involved are of the forms Jf/(£n, J<j>n%f> and, in view of the orthogonality 
of £/ to (fa, ..., fai)L, JÇ/fai = J fai Kf — 0. Thus, by the preceding case, the in­
equality holds if on the right we replace the functions ft respectively by the 
functions rjf, and accordingly it holds as written, in view of the following lemma. 

Lemma 2. If the k functions 77/ (f—\, ..., k) are orthogonal to the k functions 
Kg (0 = 1, . . . k): JrjfCg=0(f,g = l, ..., k), then 

J*(Vi> ...,%)(%> •••> V*) + Jh&> - J * ) (£i> ..., r*)^ ^ ( f i , . - J *)(?i, -> &), 
viz., M2 (Vl, ..., Vk) + M2 (£ , ..., &) è M2 (ft, ..., ft), 

where & = Vf + & ( / = 1, ..., k). 

For & = 1 this inequality holds as an equality, the Pythagoras equality, while 
for k > 1, on the introduction of orthogonal sets (fa, ..., fa), (%l3 ..., %k) respectively 
equivalent to the sets (rjj, ...,7]h), (Çlf ..., ffc), we readily secure the inequality by 
three applications of lemma 1. 

The generalized Pythagoras inequality is now fully established. 

(h) The Schwarz inequality.—For two functions ft 77 of the class $51 we 
have the Schwarz inequality 

J%7)Jrjì; â: J\%Jr\T). 

This inequality holds obviously if £ = 77 = 0, and, if say f is not 0, it is the Pythagoras 
inequality (m = l ) for the function 77 and the unitary function ft/if (ft). The in­
equality holds as an equality if and only if one of the functions is a numerical 
multiple of the other. 

The Schwarz inequality has also the second form 

J£v J£v = J£ì Jvv-
I t may be remarked that the Schwarz inequality has as a consequence,—and, 

if 21 is the real number system, is equivalent to—the geometric theorem for the 
function space $51 that the length of one side £77 of a triangle ft?£ is at most 
the sum of the lengths of the other two sides ££, £77,—viz., the theorem that for 
three functions ft 77, f of the class $51 
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that is, the theorem that for two functions ft 77 of the class $51 

M (f + 77) è M (f) + M (77), 

or JÇ77 +JrjÇ^2 Jj% f J7777. 

These two inequalities in the functions ft 77 hold as equalities if, and only if, 
one of the two functions is a positive numerical multiple of the other. The 
preceding inequality in the functions ft 77, f holds as an equality if, and only if, 
f has the form (œ% + yy)/(œ 4- y), where x and y are real non-negative numbers 
with x 4- y =j= 0, that is, geometrically, if the point f is on the interval £77 of the 
normal chain joining the points ft 77. 

(i) The Schwarz inequality for two sets of functions.—For two sets 
(%i> •••> %k), (Vi> •••> ^ ) 0I> functions of the class $5i we have the Schwarz inequality 
in the two forms : 

Jk(h> ..»h)(vi, ...>Vk)Jk(vi> • . . ,%) (£ , •••> &) 

Jh(%i> ->>h)(Vi, ->.,Vk)Jk(!;i, . . . , !*)(%, ...,^*) 

^*-(£i, ..., &)(fi,... f*) J^fö,.... m) (vi,..., ^)-
This inequality is readily seen to hold as an equality if the functions ft- are linearly 
expressible in the functions 77̂  ..., r}k. For the general case, separate the functions 
%f(f — l, ..., k) into orthogonal components £), wf\ ft = £/+©/, respectively lying in 
and orthogonal to the function space (77!, ..., 77^. Then the left of the Schwarz 
inequality is unchanged, if we replace the functions ft respectively by the functions £}•. 
Since, by the preceding case, the inequality holds if we make this substitution on the 
right, it holds as written, in view of lemma 2 of § 5 g. 

(j) The generalized Pythagoras inequality.—The Pythagoras inequality 
of § 5 / for a single function £ and unitary orthogonal set (fa, ..., fax, ...) has been 
in § 5 g generalized by replacing the function f by a set (ft, ..., ft;) of functions of 
the class $51. We proceed, by the suitable introduction of a parameter into the 
function ft to obtain another generalization of use in the theory of the general 
linear integral equation G. 

Consider two systems 2', 2" of type 25 and their ^-composite system 
2 = (2 ' 2 ' % defined in § 4 b. Then a function £ or £ (p', p") of the class 
$51 = ($51' $51")# of the system 2 is for fixed argument p' a function of the argu­
ment p" belonging to the class $51" of the system 2". Hence, by § 5 / , for a 
function £ of the class $51 and a unitary orthogonal set (fa", ..., <j>n", ...) of 
functions of the class $51" as to the operation J" we have, as an identity over the 
range *P', the Pythagoras inequality 

t(J"Un"J"^n"Bn^(J"mir-
n 

Here J"%<j>n"> J"$n%> J"\% are functions of the respective classes $51', $51', 
$' = ($5? $51% on the ranges $' , $ ' , $ ' $ ' ; and the suffix B' (of reduction on the 
range *ß') denotes that the two arguments of range 9$', whether on the left or 
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on the right of the inequality, are to be set equal. Written explicitly, the inequality 
is as follows : 

2 J ' V n Ì (p\ s") <f>n" ( O J"im 4>,:\s") Ì- (p', t") s J" „ , n } {p\ s") £ (p', t") ( p). 
n 

To this inequality we may, in the classical instances, apply the operation J' = J'.p> 
to secure the new inequality desired. In general we may not, however, similarly 
apply the operation J' = J V n -

The generalized Pythagoras inequality is the following : 

2 j ' (j"ìfa;'j,ffan) ^ J'J"ìI;=JìI 
n 

that is, 

2 J'lsr> (J"<rn \ («', a") V ( i " ) J"im $n" (s") £(£', t")) 
n 

£ Jfm J ' V n Ì(«', s") Ç(t, t") = J{8t) \ (S)£(t), 

where f is a function of the class $51 = (SA'SBÎ")* on *ß = *£'*£" and (fa", ..., fa{\ ...) 
is a unitary orthogonal set of functions of the class $51" as to the operation J". 

Proof.—In the system 2 the function £ has relative to a finite unitary orthogonal 
set (fa", ..., fan") of the system 2 " the two orthogonal components 

m _ 

ft = 2 fa"J"fa"Ç, ft = £ - ft, 
n = l 

_ _ w* _ _ 

while M* (£) = JU, = ^ ' . / " ? l ^ = S J' (J"U«"J'WÇl 

Hence the inequality for a finite set (fa", ..., fan) simply expresses the fact that 
M2(^) = M2(^) +M2(^2)^M2(^), and from this case we at once secure the in­
equality for an infinite set (fa", ..., cj>n", ...), as in § 5 / . 

The inequality reduces to that of § 5/ in case the system 2 ' has as range *ß' 
a singular range (consisting of a single element), while J'tc = K . 

The inequality has the second form 

2 J' (J"f<V J"W) â J'J"g = Jg. 
n 

(k) Important instances of the generalized Pythagoras inequality.— 
Let the two systems 2', 2 ; / of type 25 have identical ranges *ß', *ß", and classes 
$5Ï, $51" and accordingly classes £ ' = (WW)*, $t" = (W'$Ji'%; they differ then at 
most in functional operations J', J". We set $ ' = $ " = *ß ; $?' = sjR" = sjjj. 
£' = §t" = Ä. Then £ = (9A5JÌ)* = ( W l " ) , , that is, the class St is the class (WW%, 
denoted in § 5i by 9JÎ, of the #-composite system ( 2 ' 2 ' % . 

For this case, the second form of the generalized Pythagoras inequality is the 
following : 

2 J' (J"tcfa"J"icfab"-) ^ JmJm)™, 

viz., 
S J\sJy) (J'\*M * (SU S2) fa," (t2) J"{SoA) K (t±, S2) faJ'JU)) è J\8M J'\8M K (Si, S2) K (tlt t.2), 
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where K is a function of the class St and (<£/', ..., fa", ...) is a unitary orthogonal 

system of functions of the class $51 as to the operation J". 

Consider now a single system 2 of type 2r,. Take a function K of the class St 

and a unitary orthogonal set (fa, ..., fah, ...) of functions of the class $51 as to 

the operation J. We have then two distinct Pythagoras inequalities : 

2 J (Jttfai Jfcfai) = J m J(24) M ; 

2 J (J/Cfab J/Cfa) è Jfei) J(24) K* = ^(13) *f (42) fCK, 
n-

derived from the preceding inequality by set t ing respectively 2 ' = 2 " — X,J' — J" = J] 

S = 2 , J' = J, 2 " = 2 , J" — J. Here 2 is the transpose system of 2 defined in § 4 e ; 

hence J\ri) = J{Vd) — J^, while J'/juß — J/JLJI — J ^ . 

(I) A f u n d a m e n t a l c o n v e r g e n c e theorem.—Theorem. For every function 
K of the class £ of a system 2 of type 2 5 there exists a function //,0 of the class $51 

of such a nature that for every function /n and infinite unitary orthogonal set 
(fa, . . . , fai, . . .) of functions of the class $51 the infinite series 

°° _ 
2 | J/ccj)nJ^nfi \ 

n=l 

converges on the range ty uniformly as to the scale function /x0 to a sum è /JL0M (/J). 

Writ ten explicitly, the infinite series is 

2 I J{st) K (p, s) fax (t) J{st) <j>n(s) fl (t) i. 
u = l 

Proof.—We have the Pythagoras inequalities : 

2 Jfa/xJ<j>nfi è Jßfi\ 
n=l 

x> 

2 (J/C<l>nJK<f>n)R = (J(u)fcJc)M, 
n = l 

where, as indicated by the suffixes R, the four first arguments of the four functions K 

are to be set equal. Then, by the Schwarz inequality for the instance I I I , we have 

oo _ 

2 I Jfcfa.Jfa.fi I è ^(J(2i)KK)jßJfifl, 

while, by theorem 8 of § 2 h, we see tha t the infinite series on the left of this 

inequality converges on the range % uniformly as to the scale function ^(J(24)fäc)R. 

Hence the s tatements of the theorem follow from the fact tha t the function Jmidc 

belongs to the class St and is dominated by a function /x0^0, where //0 is a real-valu ed 

nowhere negative function of the class $51 depending on K alone, and accordingly the 

function ls/(J(2i)K/c)ß is dominated by the function /x0. 

This convergence theorem, a generalization of a theorem of E. Schmidt fqr 
instance IV, is of importance in the theory of the integral equation G with hermitian 
kernel K. 

http://Jfcfa.Jfa.fi


SUR LES RECHERCHES RECENTES RELATIVES A LA 
MEILLEURE APPROXIMATION DES FONCTIONS CON­
TINUES PAR DES POLYNÔMES 

P A R S. B E R N S T E I N . 

Vous connaissez bien le théorème classique de Weierstrass que toute fonction 
continue dans un intervalle donné peut être représentée avec une approximation 
aussi grande qu'on le veut par des polynômes de degré assez élevé. 

Depuis que ce théorème a été découvert presque simultanément par Weierstrass 
et M. Runge, plusieurs mathématiciens en ont donné des démonstrations différentes 
et ont construit divers polynômes approchés de degré n, Rn (x), tels que le maximum 
de la différence 

\f{x)-Rn(x)\ 

tend vers 0, lorsque n croît indéfiniment. 

L'approximation fournie par diverses méthodes pour une même fonction et pour 
une même valeur du degré n n'est pas toujours la même, et il est naturel de rechercher 
ceux des polynômes approchés Pn pour lesquels le maximum de la différence 
considérée tend le plus rapidement vers zéro. 

Les polynômes Pn (x) jouissant de cette propriété ont reçu le nom de polynômes 
oVapproximation et le maximum En[f(x)] du module de la différence 

\f(x)-Pn(x)\ 

le nom de la meilleure approximation de la fonction donnée dans l'intervalle con­
sidéré. 

Je n'ai pas besoin de rappeler que, les polynômes d'approximation avaient été 
introduits dans la science, par Tchebischeff, encore avant la découverte de Weier­
strass ; mais ce n'est que ces dernières années qu'on a essayé d'étudier systématique­
ment la grandeur de la meilleure approximation En[f(x)~\, d'une fonction donnée 
f(x), pour des valeurs très grandes de n, et de compléter ainsi le théorème de 
Weierstrass qui exprime que lim En[f(x)] = 0, quelle que soit la fonction continue 

11 —ao 

f (x). Le fait général qui se dégage de cette étude est l'existence d'une liaison des 
plus intimes entre les propriétés différentielles de la fonction f(x) et la loi asympto-
tique de la décroissance des nombres positifs En [ /(#)] . Voici, en effet, les résultats 
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les plus essentiels qui sont obtenus dans cette voie et qui sont résumés dans le 
Tableau suivant: 

Pour qu'une fonction de variable réelle dans un intervalle donné 

il est nécessaire que 

1. Soit analytique 

2. Admette des dérivées de 
tous les ordres 

3. Admette une dérivée d'ordre 
p satisfaisant à une condi­
tion de Lipschitz d'ordre 
a. (On posera p = 0 lors­
que c'est la fonction elle-
même qui satisfait à la 
condition correspondante 
de Lipschitz.) 

3 his. Admette une dérivée 
d'ordre p continue 

4. Satisfasse à une condition 
de Dini-Lipschitz 

d/(*+»)-/(*)i< 

l imt f« [ / (*)] p»=0 

(P>1) 

lim En [ / (*)] « " = 0 
n—oo 

(quel que soit p) 

En[f{X)\nV+«<k 

(k étant une constante 
déterminée) 

Auteur 

O U € 

avec 

logô | 
tend vers zéro 

En[f(x)]np<en 
(çn tendant vers zéro 

pour n infini) 

^ » [ / (#)] log ^<*n 
(où €n tend vers zéro 

pour n= co). 

S. B.(l) 

S. B.(l) 

D.Jackson(2) 

il est suffisant que 

lim ,£„ [ / (*)] p» = 0 

(P>1) 

lim£Jn[f(x)]nv = 0 
W = oo 

(quel que soit p) 

D.Jackson (2) 

H.Lebesgue(4) 

soit convergente 

2 En[f(a>y\n-
n-l 

Auteur 

S.B.(l) 

S.B.(l) 

S.B.(l) 

S En[f{x)]n^ 

soit convergente 

En[f{x)]\ogn<en 

(où en tend vers zéro 
pour n = co). 

S.B.(3) 

S.B.(3) 

Avant de passer à l'analyse de ce Tableau, je voudrais dire quelques mots sur les 
méthodes par lesquelles ces résultats ont été obtenus. Pour établir les conditions 
nécessaires, on se sert de polynômes approchés convenables de la fonction considérée 
et l'on constate que si la fonction appartient à une des classes indiquées elle est 
effectivement susceptible de l'approximation correspondante. M. de la Vallée 
Poussin (5) a le premier suivi cette voie d'une façon systématique et c'est en se 
servant de ses procédés et en les perfectionnant qu'on a obtenu les résultats énoncés. 
Pour établir les conditions suffisantes, on procède de la façon suivante : s'il s'agit par 

n — <x> 

S En[f(x)]nP-ie$t exemple de la classe 3 bis, on démontre que lorsque la série 

convergente, la fonction considérée peut être développée en une série de polynômes 
derivable p fois et admet par conséquent une dérivée continue d'ordre p. 

La convergence uniforme des dérivées successives du développement construit 
résulte essentiellement de certaines propositions d'algèbre concernant les relations 
entre le module maximum d'un polynôme de degré donné et ceux de ses dérivées 
successives dans un intervalle déterminé. Ces études algébriques préliminaires 
forment une suite naturelle de la théorie de Tschebichev des polynômes qui s'écartent 
le moins de zéro, et en suivant cette voie, je me suis rencontré sur quelques points 

M. c. IV 
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avec MM. A. et W. Markoff (6) (7), qui, il y a 20 ans, s'étaient occupés de questions 
semblables. 

Passons à présent à l'analyse des résultats. Il suffit d'un coup d'œil superficiel 
sur le Tableau pour se rendre compte de l'exactitude de ce que je disais tout à l'heure, 
du lien étroit qui existe entre la meilleure approximation et les propriétés différen­
tielles d'une fonction. Vous voyez d'abord qu'au point de vue réel, les fonctions 
analytiques laissent se définir comme des fonctions dont la meilleure approximation 
par des polynômes de degré donné décroît le plus rapidement possible; ce sont les 
fonctions qui entre toutes les fonctions continues diffèrent le moins possible des 
polynômes. Une théorie systématique des fonctions de variable réelle admettra donc 
nécessairement comme premier chapitre la théorie des fonctions analytiques. 

Nous arrivons ensuite à la seconde classe de fonctions, celle des fonctions 
indéfiniment dérivables ; cette classe est également déterminée sans ambiguité par la 
nature de la décroissance de la meilleure approximation. Les résultats relatifs aux 
classes 3 et 3 bis paraissent, à première vue, moins satisfaisants ; ici les conditions 
nécessaires et suffisantes ne sont plus les mêmes. Il est bien clair, en effet, qu'en 
posant pour fixer les idées, p = l, dans la classe 3 bis, on a d'une part, Enn< en ou 

En<~, et d'autre part, ^En convergente, conditions nullement équivalentes. On 

pourrait croire que de nouvelles études permettraient plus tard d'obtenir également 
des conditions qui soient à la fois nécessaires et suffisantes. Mais il n'en est rien. 
J'ai reconnu, en effet, qu'il existe des fonctions à dérivée continue et telles que %En 

est divergente ; notre condition suffisante n'est donc certainement pas nécessaire ; or, 
d'autre part, si l'on se donne arbitrairement une série divergente à termes positifs 
%an, il est toujours possible de construire des fonctions f (x) sans dérivées continues, 
telles que l'on ait En[f(x)\ < an. Par conséquent, quelque faible que soit la diver­
gence de la série HEn[f(x)] elle est capable de détruire la continuité de la dérivée; 
il est donc impossible de restreindre la condition suffisante qui, comme nous venons 
de le voir, n'est cependant pas nécessaire. Ainsi, en général, les fonctions des classes 
3 et 3 bis ne peuvent pas être complètement distinguées par leur meilleure 
approximation ; il existe des cas limites, où la nature de la continuité (qui n'est 
exprimable par aucune condition de Lipschitz) de la dérivée diffère si peu d'une 
certaine forme de discontinuité qu'il est impossible de décider par la seule considéra­
tion de la meilleure approximation si cette dérivée est continue ou non. Je pense 
que l'étude de ces cas critiques, où les fonctions caractérisées par le même ordre 
de la meilleure approximation jouissent des propriétés différentielles en apparence 
différentes, pourrait contribuer à éclaircir la notion de la continuité. 

Le fait que les conditions nécessaires et suffisantes ne sont pas identiques pour 
les classes 3 et 3 bis explique la difficulté qu'on a éprouvé à résoudre le problème 
posé par M. de la Vallée Poussin(8) sur l'ordre de la meilleure approximation de \x\. 

k 
M. de la Vallée Poussin avait démontré que En\x\ est inférieur à - , k étant une 

n 
constante, et cela résulte aussi de notre Tableau, puisque j x | satisfait à une condition 
de Lipschitz du premier degré et par conséquent appartient à la classe 3 avec 
p — 0, a = 1. Mais le Tableau ne permet aucunement d'affirmer que En est 
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nécessairement de l'ordre de - . La seule chose qu'on puisse affirmer, c'est que 

2i£n | x | est divergente, sans quoi | x j aurait une dérivée continue. Ainsi le simple 
fait de la discontinuité de la dérivée n'exclurait pas, par exemple, la possibilité d'une 

inégalité de la forme En\x\< -^ , mais on doit avoir, en général, En\x\> 
n log n o i i 

—ï rr-. H est clair d'ailleurs, que malgré la divergence de la série %En\x\, il 
n\ogrì+a » H 6 6 m i> 
pourrait y avoir une infinité de valeurs particulières de n pour lesquelles En j x j 
décroirait même beaucoup plus rapidement. Il est bien facile, en effet, de donner 
des exemples de fonctions f(x) non dérivables dont la meilleure approximation se 
comporte pour une infinité de valeurs de n, comme celle des fonctions de la deuxième 
classe et même de la première classe, qu'on ait par exemple, pour une infinité de 

1 
valeurs de n convenablement choisies, En[f(x)]< -—, car on peut imaginer une loi de 
décroissance de En [/(#)] suffisamment irrégulière, pour que la petitesse d'une 
infinité de termes de la série %En [f(x)] ne l'empêche pas de diverger. La question 
suivante se pose alors : quelle est donc la nature de ces fonctions sans dérivées, qui 
pour une infinité des valeurs de n convenablement choisies sont susceptibles de la 
même approximation que les fonctions indéfiniment dérivables et même les fonctions 
analytiques ? Je n'ai fait que le premier pas de cette étude. 

Le théorème que j 'ai obtenu me paraît assez curieux pour être signalé ici. 
Désignons par B1 (e) le maximum de l'oscillation | f(x -f- h) — f(x) | de la fonction f (x) 
dans l'intervalle donné AB lorsque | h \ est inférieur ou égal à e. La fonction Sj (e) est 
évidemment non négative et non décroissante. La condition de Lipschitz d'ordre a 
s'exprime ainsi 

S1(e)<k^ (I) 

quel que soit e. Il est possible que la croissance de la fonction S1 (e) relative à une 
certaine fonction f(x) soit irrégulière et que l'inégalité (I) sans être vérifiée pour 
toute valeur de e, soit exacte pour une infinité de valeurs de e aussi petites qu'on 
le veut. S'il en est ainsi, nous dirons que la fonction satisfait à une condition de 
Lipschitz généralisée du premier ordre et de degré a. 

Considérons également 

S2(e) = Max | f(x -f 2h) - 2f(x + h) + f(x)\, 

S3 (e) = Max | f(x + 3/0 - 3/0» + 2A) + Sf(x + h) -f(x) \, 

etc. pour | h | ^ e. 

Si pour une infinité de valeurs de e aussi petites qu'on le veut, on a une 
inégalité de la forme 

Sx (e) < kea 

nous dirons que la fonction f (x) satisfait à une condition généralisée de Lipschitz 
d'ordre i, de degré a. Cela posé, voici le théorème. 

Théorème. S'il existe une infinité de valeurs de n pour lesquelles 

En[f(^)]<~, 
17—2 
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la fonction f(x) satisfait à des conditions de Lipschitz d'ordre i et de degré 

di — . ^ quel que soit i. 
i + p ^ ^ 

Ainsi par exemple, une fonction / (x) qui pourrait même ne pas avoir de dérivée, 
mais qui jouirait de la propriété que, quel que soit p, il existe une infinité de valeurs 
de n telles que 

En [ / (*) ]< ^ > 

satisferait à des conditions de Lipschitz généralisées de tout ordre i et de degré a 
aussi voisin de i qu'on le veut (on aurait donc, pour une infinité de valeurs de e, 

h1(e)<kè~\ 

h2(e)<kë~\ ... , 

où X est un nombre aussi petit qu'on le veut et k une constante déterminée lorsque X 
est fixée). 

Ce théorème montre aussi immédiatement que, quel que petit que soit r\, on a 
nécessairement 

# » H > ^ (n)> 
à partir d'une certaine valeur de n. En effet, si l'inégalité (II) n'était pas vérifiée 
pour une infinité de valeurs de n, on conclurait, en vertu du théorème précédent, 
que | x | satisfait à une condition de Lipschitz d'ordre i quelconque et de degré 

a=iQL+v) 
i + l+y 

supérieur à 1 pour i suffisamment grand. Or, on reconnaît sans peine que la 
fonction \x\ ne satisfait à aucune condition généralisée de Lipschitz de degré 
supérieur à 1. Notre théorème est cependant insuffisant pour démontrer qu'on a, 
pour toute valeur de n, 

En\x\>~, 
n 

si e est un nombre fixe suffisamment petit. Ce résultat n'a pu être obtenu jusqu'ici 
que par des considérations plus spéciales dont je parlerai plus loin, mais je crois 
qu'on pourra le retrouver également par des considérations générales, en introduisant 
des propriétés semblables aux conditions généralisées de Lipschitz qui auraient une 
influence encore plus sensible sur la grandeur de la meilleure approximation. 

L'exemple du problème de la meilleure approximation du | x j posé par M. de 
la Vallée Poussin donne une preuve de plus à l'appui de ce fait qu'une question 
particulière bien posée donne naissance à des théories d'une portée plus générale. 

Avant d'aborder les considérations directes qui conduisirent à la solution 
complète du problème posé par l'éminent géomètre belge, je veux dire quelques 
mots d'un théorème fort remarquable dû à M. Lebesgue (4) qui a permis à M. 
Jackson (2) et à moi(l) de démontrer d'une façon indépendante que 

k 
En \x\> 

nlog(n +1) 
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k étant une constante convenablement choisie. Voici ce théorème : 

Si Rnf(x) est l'approximation fournie par une suite de Fourier d'ordre n, la 
meilleure approximation qu'on puisse obtenir par une suite trigonométrique quel­

conque du même ordre est supérieure à * ÙRnlf(x)] où k est un facteur déterminé. 
log(?i-fl) ; 

Je ne puis m'empêcher de rappeler à cette occasion la belle application de ce 
théorème faite par M. Lebesgue (4); je fais allusion à sa démonstration si simple du 
fait que toute fonction satisfaisant à une condition de Dini-Lipschitz est développable 
en une série de Fourier uniformément convergente. 

Les mathématiciens qui se sont occupés de la représentation approchée des 
fonctions ont pu remarquer que les propriétés de l'approximation d'une fonction 
périodique par des suites trigonométriques limitées sont essentiellement équivalentes 
à celles de l'approximation des fonctions quelconques par des polynômes. Il est bien 
facile de voir (3), en particulier, que le théorème de M. Lebesgue s'applique au 
développement en série de polynômes trigonométriques (cos n arc cos x). Ainsi, si 

Rn[f(%)] est le maximum du reste 2 Apcosp arc cos x de la série 
p = n+l 

on a 

f(x)— S Ap cos p arc cos x, 
p = Q 

.(ili), 

où k est la constante de M. Lebesgue. 

Pour \x\, on a 

donc 

1 7r[2 + • 
cos 2 arc cos x 

T73 
cos 4 arc cos x cos 6 arc cos x 

• 4-3 .5 5.7 

R9i I I - -
TT + ; X2rc+l)(2ïi + 3) (2n + 3)(2?i + 5) 

2 

+ 

7T.(2n + l)' 

Par conséquent, en vertu de l'inégalité (III), on a 

2 
^ E m \x\>-

2k 
IT (2n + 1) " ~aw ' ~ ! "' TT (2n + 1) log (2n + 1) ' 

On voit que le théorème de M. Lebesgue fournit dans des cas très étendus 

l'ordre de la meilleure approximation, au facteur = -, 1 v près, mais la question de 

la valeur exacte de l'ordre de la meilleure approximation reste ouverte. 

Nous n'avons pas parlé jusqu'ici de la méthode qui paraît la plus naturelle. 
Celle qui consisterait à déterminer effectivement les polynômes d'approximation de 
la fonction donnée et de calculer directement la meilleure approximation En ainsi 
obtenue. Le fait est que, la détermination des polynômes d'approximation qui, en 
général, ne peut être faite que par approximations successives, devient de plus en 
plus compliquée à mesure que le degré des polynômes augmente, et il semblait 
extrêmement difficile de tirer des renseignements plus ou moins précis sur la grandeur 



262 S. BERNSTEIN 

de la meilleure approximation en utilisant des considérations de cette nature. C'est 
M. de la Vallée Poussin (9) qui osa le premier, aborder le problème par cette voie-là. 
Il serait trop long d'exposer ici sa méthode générale de détermination des polynômes 
d'approximation. Je me bornerai à signaler le théorème suivant dont l'application 
conduit immédiatement à des bornes inférieures pour la meilleure approximation. 
Soit Rn (x) un polynôme de degré n ; si le segment AB est divisé en n + 2 intervalles 
où la différence 

f(x)-Rn(x) 
change successivement de signe, et tels que 

\f(x)~Rn(x) | 

dépasse dans chacun d'eux une certaine valeur M, la meilleure approximation 
En [/(%)] de/(a?) sur le segment AB par un polynôme de degré n est supérieure à 
M. Pour appliquer le théorème, il suffit de prendre arbitrairement n + 1 valeurs de x 
(appelés nœuds par M. de la Vallée Poussin) et de construire le polynôme de degré 
n, Rn (x), qui en ces n 4- 1 points se confond avec f(x). On aura ainsi (sauf des cas 
exceptionnels) n+2 intervalles où la différence f(x) — Rn(x) est de signe contraire 
et l'on pourra se servir du polynôme Rn (x) pour donner une borne inférieure de la 
meilleure approximation def(x). M. de la Vallée Poussin a appliqué son théorème à 

k 
la recherche d'une borne inférieure de En I x I ; il obtient ainsi(9) En\x\ > —-,——r-, 1 1 v 7 ' l n (log n)3 

résultat un peu moins précis que celui de tout à l'heure. 

Il est évident que les bornes inférieures qu'on trouvera en appliquant le théorème 
énoncé dépendent essentiellement du choix des nœuds. Il y aura, en particulier, une 
position des nœuds pour laquelle le polynôme Rn(x) sera lui-même le polynôme 
d'approximation et l'on conçoit que plus la position des nœuds sera voisine de celle-là, 
plus la borne inférieure qu'on trouvera sera voisine de la meilleure approximation. 
La méthode de M. de la Vallée Poussin ne donne pas d'indications pour diriger ce 
choix, et c'est sur ce point qu'elle doit être complétée. 

Au moment où parut le Mémoire de M. de la Vallée Poussin, je venais de 
trouver d'une façon un peu moins simple et comme conséquence d'une méthode 
entièrement différente un théorème équivalent au fond à celui de M. de la Vallée 
Poussin. L'idée de la méthode (3) dont il s'agit consistait essentiellement à étudier 
les polynômes d'approximation d'une fonction donnée en utilisant convenablement 
les polynômes d'approximation connus déjà d'autres fonctions qui diffèrent suffisam­
ment peu de la fonction considérée. L'avantage du point de vue auquel je me 
plaçais était celui de m'imposer un choix de nœuds peu différents de ceux qui 
correspondent aux polynômes d'approximation. Dès lors, comme je le disais plus 
haut, l'application du théorème de M. de la Vallée Poussin devait me conduire à 
une borne inférieure assez précise de la meilleure approximation. C'est ainsi qu'en 
revenant à la fonction | x | sur le segment — 1, -f-1, j 'ai été conduit à prendre comme 
nœuds du polynôme R2n (x) de degré 2n les racines de l'équation 

x cos 2n arc cos x = 0 

9 /2 
et que j 'ai obtenu E2n \ x \ > ô T T ^ - T T X • 

21 (An + 1) 
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La question de l'ordre de la meilleure approximation de \x\ se trouve donc 
résolue. Mais en persévérant dans la même voie on peut aller beaucoup plus loin. 
Je me bornerai à indiquer le résultat le plus essentiel. 

Le produit nEq n | *• 

tend vers une limite X parfaitement déterminée lorsque n croît indéfiniment. Cette 
limite X peut être calculée par approximations successives et l'on a 

X = 0-282 à 0-004 près. 

Ainsi pour n suffisamment grand, 

0-286 ^ , , 0-278 
n ' ' n 

La détermination plus précise de X par la méthode que j 'ai suivie ne serait 
maintenant qu'une question de patience et de calcul. 

Il importerait cependant de perfectionner la méthode. Aussi pourrait-on 
trouver alors des expressions plus ou moins simples pour A, et rattacher peut-être 
cette constante absolue à d'autres constantes qui se rencontreront certainement dans 
les recherches relatives à la valeur asymptotique de la meilleure approximation 
d'autres fonctions que \x\. On rencontrera, sans doute, encore bien des difficultés 
dans ce genre de recherches, mais je ne les crois pas au-dessus des moyens dont 
dispose l'analyse moderne. Il y a des cas même, où la détermination de la valeur 
asymptotique de la meilleure approximation d'une fonction se fait beaucoup plus 
simplement que pour \x\. Cela a lieu, en particulier, pour un grand nombre de 
fonctions entières ex, sin x, etc. C'est ainsi, par exemple, qu'on trouve immédiate­
ment, par application des théorèmes généraux, 

.. u» 
hn+i 

l i m f f n (6f )2"(n + l ) l = 1 

où la meilleure approximation se rapporte au segment (~h, + h). 

J'ai donné une seconde démonstration encore (3), du fait que En | x | est de 

l'ordre de - . Je me permets seulement d'attirer votre attention sur le théorème 

qui est à sa base, non pas pour l'appliquer à | x \, mais pour en indiquer certaines 
conséquences qui me paraissent être d'un intérêt général. 

Soient alf <x2,..., an et ßly ß2, ... ßn deux suites de nombres positifs croissants 
tels que 

oti>ßi, cc2>ß2,..., an>ßn. 

Si k est inférieur à ßx et qu'on ait 
i = 11^ I 

fc - 2 AiXai \ ^ e, 
i=i I 

sur le segment 0, 1 (Alf A.2,... étant des constantes), il est possible de déterminer 
des constantes 

B1} B2,..., 

telles qu'on ait 

sur le segment 0, 1. 

2 Bixßi 
i = l 

^ e 
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S: 
forme 

Si k est supérieur à an on peut conclure inversement qu'une inégalité de la 

#*— 2 BixP* 
i=l 

entraîne nécessairement la possibilité de l'inégalité 

i=n î 
- 2 AiXai ! < e. 

i = l I 

On peut appliquer ce théorème à la recherche des conditions pour qu'une suite 
donnée de puissances positives de x 

xa\ xa2,..., xa* 

soit une suite complète, c'est-à-dire une suite telle, qu'il soit possible de rendre la 
différence 

i—n 

f(x) - 2 AiXai 
i=l 

aussi petite qu'on le veut dans un intervalle déterminé 0, 1 par un choix convenable 
des coefficients Ai et en prenant n suffisamment grand, quelle que soit la fonction 
continue f(x). 

Voici les résultats qu'on obtient et qui montrent, comme cela était facile à 
prévoir, que la nature arithmétique des exposants a$ ne joue aucun rôle, mais que 
tout dépend de leur croissance. 

1°. Si les nombres a$ tendent vers une limite finie, les fonctions xai forment 
toujours une suite complète. Ce résultat un peu paradoxal prouve, par exemple, 
qu'une fonction continue quelconque peut être indéfiniment approchée au moyen 
d'une somme de la forme 

i=n 1 

2 Aixi. 
i = l 

2°. Si les nombres or$ croissent indéfiniment il suffit pour qu'ils forment une 
suite complète que 

——•— tende vers 0. 
n log n 

Au contraire, la suite des puissances xan n'est pas complète si l'on peut trouver un 
nombre e tel que 

an ^ n (log n)2+e 

ou bien an > (log n)2 (log log n)1+e, 

Ainsi, si la croissance des nombres an est trop rapide, le système des fonctions xan 
ne peut être complet, il l'est, au contraire, si cette croissance est suffisamment lente, 
et il ne reste qu'une incertitude relativement faible au sujet du moment critique où 
la croissance des exposants an devient assez rapide pour que la suite cesse d'être 

complète. Il serait intéressant de savoir si la condition que la série 2 — diverge ne 

serait pas une condition nécessaire et suffisante pour que la suite des puissances xan 

soit complète ; il n'est pas certain, d'ailleurs, qu'une condition de cette nature doive 
nécessairement exister. 
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Vous voyez que bien des questions des plus diverses se posent dans l'ordre 
des idées que j 'ai taché de vous exposer ici. Les théories dont nous avons parlé 
sont trop jeunes encore pour qu'il soit temps de juger de la place qu'elles sont 
appelées à occuper dans la science. Il serait intéressant de savoir si l'on ne 
pourrait pas en tirer profit pour l'étude des fonctions qui se présentent dans 
les applications, par exemple, dans les équations différentielles. On ne l'a pas 
essayé jusqu'ici. Des recherches de cette nature me paraîtraient cependant fort 
souhaitables, dans le cas de plusieurs variables surtout. On sait, en effet, que l'étude 
de la nature des fonctions satisfaisant à une équation aux dérivées partielles présente 
des difficultés considérables. Peut-être, ces difficultés seront-elles levées plus facile­
ment si l'on utilise systématiquement la notion de la meilleure approximation. Il 
est vrai que les recherches sur l'approximation des fonctions de plusieurs variables 
sont à peine ébauchées, mais les quelques propositions que j 'ai obtenues en appli­
quant convenablement le Tableau indiqué au début, me paraissent de nature à 
encourager des recherches du même genre. 

Pour terminer, j'indiquerai seulement une de ces propositions : Si une fonction 
f(x, y) à l'intérieur d'un contour G considérée comme fonction de x seulement, admet 

dlf 
une dérivée partielle d'ordre l, ~~x, satisfaisant par rapport à x à une condition 

déterminée de Lipschitz de degré a et si, considérée comme fonction de y seulement 
dlf . . 

elle admet également une dérivée partielle d'ordre l, ~-x, satisfaisant par rapport à y 

à une condition déterminée de Lipschitz de degré a, la fonction f(x, y) admettra, à 
l'intérieur d'un contour quelconque $ intérieur à C, toutes les dérivées partielles 

dlf 
d'ordre l „ i4 i-i e^ c e s dernières satisferont, en outre, par rapport aux deux variables, 

à des conditions de Lipschitz de degré ^ inférieur à a et aussi voisin de a qu'on 
le veut. 
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ON VECTOR-ANALYSIS. AS GENERALISED ALGEBRA 

BY ALEXANDER MACFARLANE. 

A vector may be analysed into modulus and space-unit. The quantities of 
algebra may be viewed as numbers ; but they may also be viewed as vectors having 
a common space-unit. Thus a + b 4- c may denote a sum of numbers ; or it may 
mean aX + bX 4- cX, where X denotes the common space-unit (fig. 1). The X may 
be left to be understood, because, with the help of — X to denote the opposite unit, 
it is the same for all the terms. In the same way abc may be viewed as a product 
of numbers; but it may also be viewed as (aX)(bX) (cX), the product of three vectors 
having a common space-unit. When we replace the constant by different space-
units, we get the sum act + 6/3 4- cy, and the product (aa) (6/3) (cy). When the vector 
as a whole, that is the product of the number and the space-unit, is symbolised by 
the corresponding italic capital, we get the expressions 

A+B+C (fig. 1) and ABO (fig. 2). 

-> 
Fig. l . Fig. 2. 

Our problem then is : When the quantities of common algebra are so generalised 
as to be in space, and endowed with order whether linear or cyclic, what are the 
generalisations which necessarily follow in the rules, processes and theorems of 
algebra ? We have to ascend from the particular to a definite general. 

For primary space-units we take the total assemblage of rays which emanate 
from a common point and are cut off by the sphere whose radius is the unit of 
length. These primary units, as well as the vectors derived from them, have one 
dimension in length. I t is scarcely correct to say that their moduli have one 
dimension in length ; for the algebraic symbols to which physicists attach dimensions 
are not mere moduli but disguised vectors ; for example, v the symbol for velocity. 

These units a, ß, y, etc. differ from the Grassmannian el3 e2, es, etc., in that they 
are expressly stated to be spherical, in their being infinite in number, and in the 
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circumstance that there are no conditions of orthogonality implied. They differ from 
the Hamiltonian units in being infinite in number, in having one dimension in 
length, and in wanting the angular index irj2, that is the imaginary i as a factor. 

But the greatest difference lies in the circumstance that the vectors are here 
treated as successive ; in consequence of which the algebra developed is highly 
aristocratic. There are successive orders of vectors, and each member of an order 
has its own place within the order ; consequently the problems which arise are largely 
questions of precedence. When the matter is studied more minutely it is found 
that there are two kinds of succession which must be carefully distinguished, linear 

Fig. 4. 

(fig. 3) and cyclic (fig. 4). In common algebra the difference crops out in the two 
ways of expanding (a 4- 6 4- c)2 ; namely 

a2 4- b2 4- c2 4- 2ab 4- 2ac + 26c, 

and a2 4- 62 4- c2 + 2ab + 26c 4- 2ca, 

the former being linear, the latter cyclic. 

In linear succession A 4- B denotes the complex vector formed of A followed 
by B springing from the end of A ; whereas in cyclic succession it means A followed 
by B springing from the same origin as i . In the latter case we have the Round-
Table precedence. I t follows that A 4- B is not the same thing as B 4- A (fig. 5) ; 
what is true is that the resultant of A -{-B is the same as the resultant of B + A. 
Let S denote resultant, then 

X(A + B) = X(B + A); 

but A+B^B + A 

unless A and B have the same unit. In other words the sign 4- denotes simple 
addition, not geometric composition. In calculations we cannot substitute the 
resultant for the complex vector ; to do so is to fall into a grievous fallacy which 
afflicts all the existing forms of space-analysis whether vectorial or quaternionic. I t 
prevented Hamilton from generalising the Exponential Theorem, with the result 

- A 

A 

Fig. 6. 
A 

Fig. 7. 

that the development of the Quaternion Analysis was arrested. In 1892 I succeeded 
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in making the generalisation, and it is the view gained from that eminence which 
makes possible the present development. 

I t follows that two adjacent elements of a complex vector cannot be interchanged 
unless they have the same unit ; that is, 

A+B1 + Bi = A + B2 + B1 

if B1 and B2 have the same unit ß, but not otherwise. I t also follows that two 
elements having opposite units cannot cancel, when they are separated by a different 
unit. For example 

A + B-B = A (fig. 6), 

but A + B - A not = B (fig. 7). 

Hence two vectors which have different units may be said to be independent, 
whereas if that condition is not satisfied, they are dependent when adjacent. 

Consider next the expression 2 (A 4- B). Does it mean 

2A + 2B or A+B+A+B1 

The figure (8) shows the two hypotheses. It means the former, because A is always 
prior to B ; and the latter hypothesis would not enable us to construct \ (A 4- B) 
(fig. 9). 

4B 

àA A 

Fig. 9. 

Consider next the square of a vector. By B2 is meant the product of B by 
itself; it analyses into 62/32. This unit ß2 has the property that while it refers to 
the line ß it does not have positive or negative direction along the line. Conse­
quently Hamilton and Tait replace ß2 by — 1, the minus coming from treating of 
imaginary units. The substitution of 1 for ß2 may be justified under certain con­
ditions as a reduction, but 1 can never be the full equivalent of /32; because ß 
having one dimension in length, ß2 must have two ; whereas 1 is the purest kind 
of number. Again, we observe that while B2 may be represented by an area square 
as in the second book of Euclid, it does not mean such geometrical quantity ; for its 
factors being identical have necessarily the same direction. I t is a scalar square, 
not an area square, and throughout such squares must be carefully distinguished. 

Suppose that in the binary product the second factor is different from the first, 
as AB. I t may be taken to denote the parallelogram formed by A and B ; although 
there are reasons for holding that the simpler and more direct meaning is the 
triangle AB. On the former interpretation aß denotes the rhombus unit ; on the 
latter, the triangular unit. When ß is perpendicular to a, the unit aß becomes 
a simple unit of area : in the general case it can be resolved into two components 
of the second degree, the one scalar, the other areal. 

In the ternary product all three factors may be the same, or a pair may be 
the same, or they may be all different. The cube B3 — 63/33, having an odd number 
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of line units, has as a result the polar direction of ß ; and so it is for every odd 
power of a vector, whereas every even power is like the square in wanting polar 
direction. Nevertheless the even powers of ß cannot be dropped from the unit 
without violating the principle of dimensions. Similarly B2G has the polar direction 
of 7, whereas BC2 has the polar direction of ß. In ABC, which analyses into 
abcaßy, the unit aßy means the parallelepiped (or rather the tetrahedron) formed 
by a, ß, y. When a, ß, y form an orthogonal system, aßy is simply the unit of 
volume. It is then a scalar unit of three dimensions. 

Does this method of definition fail when we come to the quaternary product ? 
What is the meaning of ABGD ? I t was pronounced "impossible " by Gregory and 
De Morgan, reasoning from the tri-dimensional character of any resultant vector; 
but A, B, G, D are not the components of a resultant but the elements of a complex 
vector. For these there is no limit to the independence. The product of the moduli 
may be removed ; what then is the meaning of a/fyS ? It does not mean a solid but 
the solid angle defined by the units a/378 taken in that order. The quantity ABGD 
breaks up into a number of components, but each one of them involves the modulus 
abed. As there is no limit to the number of unit rays which may proceed from 
a point, so there is no limit to the number of factors in a product of vectors. 

The fourth power A4, being composed of two square factors, has no polar 
direction; nor has A2B2. Again A*B being divisible into A2AB has the charac­
teristics of AB. 

What is the correct meaning of (BC)2 ? Is it B2G2 or BGBCi I t is the former, 
because A has always precedence over B, not only in a sum but in a product. In 
a product the factors may be associated in any manner so long as the order of the 
elements is not interfered with. 

What is meant by a fractional power of a vector, such as B% ? So far 

as the modulus is concerned there is no difficulty ; it is simply V6. But what 

is /32 ? It must be such that (ß*)2 = ß. Consequently ß^ has the direction of ß, but 

its length dimension is | . Similarly, ß$ has the direction of ß, but a length 
dimension of -J-. 

In the same manner as (BC)2 = B2G2; so (BCf = B%C%. 

1 . . 1 1 
The reciprocal of B is denoted by -~ ; it analyses into -j- - ,̂ that is to say, not only 

is its modulus the reciprocal of the modulus of B, but its unit is the reciprocal of the 
unit of B. In the various books on vector-analysis it is commonly stated that the 
inversion applies to the modulus only; but a vector-analysis so founded cannot 
satisfy the principle of dimensions. The systematic notation is B~\ and in general 

B~n = b~nß-n. 

The quotient 5_1(7 has two different meanings. I t primarily means G per B; 
the English language reads it in the order opposite to the natural order of writing ; 
for B is the antecedent and G the consequent. The modulus is cjb and the unit 
is /3_17, which means that the unit ß is changed into the unit 7. The other is 
a reduced meaning got by deriving the amount of the angle, that is, < /3_17 and 
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the axis of the angle denoted by [ß^y]; and - [/3-17]<ß~ly constitutes the primary 
c 

quaternion. The former quotient corresponds to the dyad of Gibbs. When B and 
B~l are adjacent they cancel one another, but not unless. 

From the principle of the succession of the elements it follows that 

(Br*C)* = Br*C\ 

and (B-lGf = B~icK 
What is the meaning of log B ? We first observe that as log is a kind of power, 

log B = log (6/3) = log 6 . /3°. Its unit has no dimension in length. 

Let B and G be two vectors which have the same unit ß ; then, according to 
algebra (if we view the algebraic quantity as a vector), 

(B + C)2 = B2+2BC+C2 

= (b2 4 26c + c2) ß2. 

Suppose now that G has a different unit 7 ; does the above formula for the 
square of the binomial change in form ? Here we are at the parting of the ways ; 
quaternionists and vector-analysts take the way of the affirmative ; vector-algebra the 
way of the negative. Hamilton breaks up the square into two factors (B 4- G) (B 4- G), 
applies the distributive rule retaining the order of the binomial factors in the partial 
products, getting 

B2 + BC+CB + C2; 

and, as the vector components of BC and GB cancel, the result is 

B2 + 2 Cos BG 4- G2, 
where Cos BC means the product of B and the projection of G on B. 

The introduction of the Cos component into the formula instead of the complete 
product involves a very radical departure from the simple formula of algebra. We 
note, however, that the expression is the square of 2 (B 4- C) ; how then, we ask, can 
it be the square of B 4- C, unless B+G and 2 (B 4- G) mean the same thing? But they 
are different ; hence the above cannot be the true formula. 

Grassmann, in his paper Sur les différents genres de multiplication, adopts the 
same rule for expanding the square of a binomial of vectors ; but in the second part 
of the second "Ausdehnungslehre" he deduces the formula B2 4- 2BC + C2 by laying 
down as the special condition for his algebraic multiplication of vectors that in it 
BG = GB. If that condition is satisfied, then BC and GB involve no order, and the 
whole subject reduces to common algebra. 

The true method of forming the square is after the idea of a symmetrical matrix. 
Put B2 and G2 in the diagonal and BG in each corner; the result is 

(B + C)2 = B2 + 2BC+C2. 

As BG = Cos BC + i Sin BG, 

the square of the binomial consists of two components ; the scalar or cosine product 

B2 + 2 Cos BC+C2, 

and the area or Sine product 2i Sin BC. The former is the square of the resultant 
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2 (B 4- C), and expresses that extension of the Pythagorean Theorem which is demon­
strated in the twelfth and thirteenth propositions of the second book of Euclid. The 
Sine product gives four times the area included between the complex vector and the 
resultant ; with the triangular unit of area it would be twice, which is an indication 
that the triangular is the natural unit. Here we have an example of a general 
characteristic of vector-algebra ; namely, that for any scalar theorem it supplies 
a complementary vector theorem, the sum of the two constituting the complete 
theorem. 

Consider next the square of a linear complex of three vectors. I t is formed by 
the matrix 

A2 AB AC 

AB B2 BC 

AG BC G2 

or it may be deduced from the preceding principle as follows 

(A+B + C)2 = {A + (B + C)}2 

= A* + 2A(B + C) + (B + C)2 

= A2 + B2 + C* + 2AB 4- 2AC 4- 2BC. 
The scalar part 

A* 4- B2 4- G2 + 2 Cos AB + 2 Cos AC-{• 2 Cos BG 

gives {2 (A+B 4- C)}2; 
while the vector part 

2i Sin AB + 2i Sin AG + 2i Sin BC 
gives four times the resultant of the areas enclosed between the complex and the 
resultant line. In the fig. 10 triangle 1 is \ Sin AB, and 
triangle 2 is 

-I S in2 ( J . 4- B) G = | 2 {Sin^C-l- Sin BG} ; 

hence the resultant of the enclosed area is 
12 (Sin AB + Sin A G 4- Sin BC}. 

If A 4- B 4- G is a cyclic complex, its square is derived from 
the linear square by introducing cyclic symmetry. As the 
cycle has no ends, there must be no discrimination among 
the elements; the elements have an order, but no definite 
point of beginning. Hence in the above case it is 

A2 + B2 + C2 + 2AB 4 2BC 4- 2CA. 

WTe proceed to consider in what manner these principles generalise the funda­
mental theorems of algebra ; and first of the Binomial Theorem. 

When n is a positive integer it follows from what has been established that 

(B 4 Gf = B» + nB»-1 G + ̂ " ^ Bn~2 G2 + 

provided that B is in all the terms placed prior to G. When the number n is even, 
the scalar part is 

Bn + !L^LD Bn-, Qz + e t a + C o s BC { ßn-2 +
 n (n ~ ^ 0» " 2> ßn-, Q2 + etc> 

1 . A (̂  1 . À . Ò 
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while the vector part is an area vector 

i Sin BG L B » - 2 + n(n-l)(n-2) £n_4 Q2 + \ 

When the terms are reduced, these parts become 

hn + ^ y ^ hn~2 c2 + etc. + 26c cos /37 Lb™ + ^ L ^ 1 ^ " " 2 ) &?l~4 ̂  + 1 

and i be sin ßy. [ßy] Lb™ + n(n^1)(^-2l bn-t & + \ 

But when n is odd all the terms of the expansion are vectors having a polar axis, and 
they break up into the two series 

ß j6» + ^ Z 1 ) h n - * & + | + 71^-:c + nJn-lK^-2) ̂ & + J _ 

Consider next the case where n is fractional; suppose | . Let B have the 
greater modulus; then 

(Jß + 0)i = {£( l+£- 1 0)} i 

= J3*(l + .fr-1C)* 

C2 

Now because (B~* G)2 reduces to j - , the series reduces to two parts 

2 . 4 62 2 . 4 . 6 . 8 64 

and ^ ^ ^ V 6 l 2 6 + 2 ^ 7 6 P + 

What is the meaning of the unit /3¥ /3 -1 y ? The quotient means that ß is changed 

into 7; hence it means that ß2 is changed into y2. Hence the unit is 72. The 

result is a complex having ß2 and y2 for successive units. 

The Binomial Theorem also applies when n is negative ; for example, 6 being 
greater than c, 

(B + C)-2 = B~* - 2B-s G 4- H S"4 G2 -

= £-2 j l - 2 5 - 1 0 + p | £-2 C3 -

When the terms are reduced this becomes 

1 (_ , 2.3 & , 2 .3 .4 .5 c\ ) , 1 (ao , 2 .3 .4 c3 , 1 
= p | 1 + ÏT265 + r 2 ^ T 4 6 i + } + è i | 2 6 + r 2 ^ P + J * 7 ' 

Consider next the square root of a trinomial. If in A 4- B 4- 0 we have a cyclic 
succession, the greatest vector can be moved to the front ; say B. Then 

{B 4- 0 + A}* = JS* {1 + B-1 G -f 5-1 ^L}2 

l 4 - | ( 5 - 1 C + 5 - M ) - ^ ( )2 + < ^ ( y 

M.C. 18 
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Now the square is 
(B-1 Gf + 2J5-2 CA 4 (B-1 A)2, 

1 
b2 = -^{c2 + 2caya + a*}, 

where 7a is of zero dimensions. 

And the cube is 

B-* C* + SB- G2A + 3B-3 G A2 4- B~* A\ 

= ~ [c'ß-1 y 4- Stfaß-1 a -f 3ca2/3-x7 4- a'ß-1 a}. 

Hence the square root of the trinomial is 

# | l - ^ p ( c 2 4 - 2 c a c o s 7 a 4 a 2 ) - 1 (1) 

+ * * { - 2 ^ 4 p 2 c t t S Ì n f y a ~ } [ 7 a ] W 2 (2) 

+ ̂ S ^ 2 ^ 6 ^ + 8 o f l , > + 1 ^ (3) 

+ ̂ {it + 2^eè<aB + 8cte>+ K 1 « <*>• 
The unit for the series (1) is evidently ß^. That for the series (3) is ß* ß~ly, which 

is 7¥. That for the series (4) is /32 /3"1 a, which is a?. Finally the unit for the second 

series is ß^ [ya]77'2, which means that ß is conically rotated round the axis [7a] by a 
quadrant. Its components are 

cos ß [7a] . [7a] and sin ß [7a]. [/3 [7a]]. 

If instead of the cycle of vectors we substitute a cycle of dyads, the same process 
will hold, and we shall obtain an expression for the square root of a dyadic or linear 
vector function. The existence of such a quantity was discovered by Tait. 

In the case of a product of two factors (A 4- B 4 C) (A' 4- B' 4- G'), where the 
corresponding elements of the factors have the same units, there is no real order 
in the factors ; the order is in the units, and the expansion is made after the order 
of the units. If in the above the elements are cyclic, the product is 

A A' + BB' + GC + AB' + A'B 4- BC' 4- B'O + CA' 4- C'A, 
that is 

aa'a2 -f bb'ß2 4- ce y2 4- (ab' + a'b) aß 4- (bc 4- b'c) ßy 4- (ca' + c'a) 7a. 

But if the two factors are made up of different units, then there is an order of the 
factors which dominates over the order of the elements in each factor if these have 
an order. Consider (A 4- B) (G + D). I t means 

{2, (A + B)} {2(0 + D)} = 2(JL<7 4- AD + BG + BD); 

in words the product of the resultants is equal to the resultant of the products. 
This means that the triangle formed by the resultants is the maximum projection 
of the sum of the several triangles. The Theorem of Moments is simply the vector 
part of the above theorem ; for, from the latter, we also derive that the cosine 
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product of the resultants is equal to the sum of the cosine products of the several 
triangles. 

So long as these two kinds of product are not distinguished, it is impossible 
to develope vector-algebra. The want of the discrimination is the source of the 
difficulties in differentiation, and has prevented the development of the transcendental 
part of vector-algebra. 

We are now in a position to attack the difficulties of differentiation. A curve 
in space is a linear complex of infinitesimal vectors; let it be denoted by S (fig. 11). 
Let R denote the variable chord from the beginning of the curve, and AR an 
additional chord at its extremity. When AR becomes infinitesimal, it coincides 

with an element of the curve S, and is then denoted by dR. Reciprocally, R — \ dR, 

where I denotes the resultant of the infinitesimal elements from the origin up to the 

extremity of R. The difference between S and R is that the former is the sum of the 
elements, whereas the latter is their resultant. 

To find the derivative of R2, the ordinary process applies with slight modification. 
The derivative of R2 is the limit when AR is 0 of 

that is, of 

{_ & + (R + AR)2} 

{2RAR + (ARf 

1 
Â Ë ' 

1 
"KB9 

that is, of 2R 4- AR, 

therefore is 2R. 

The differential is the derivative multiplied by dR ; therefore in this case 2RdR. 
I t is to be noted that dR must be written after 2R\ also that dR2/dR, that is, 
2R dR/dR is a physical quotient, and that it is its reduced value which gives 2R. 

If we take the origin for the vector at a point outside the curve, then instead 
of the chord we have a radius-vector. Let it for a moment be denoted by R' ; then 

Fig. 11. Fie. 12. 

R' = 2 (A + R) (fig. 12) and, as A is constant, dR'= dR. Consequently R may be 
used to denote any radius-vector whether starting from a point in the curve or 
not. 

Since dR = 2 {drp 4- rdp}, 

RdR = rp 2 {drp 4- rdp}, 
18—2 
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but this does not break up into 

rdrp2 + r2pdp. 

I t follows from the generalised Binomial Theorem that, for any power of R, 

dRn = nRn~l dR. 

Consider next the differential of a product of vectors RS. If R and S are 
successive factors merely, then 

2,(R + dR)X(S + dS) = 2,(RS+RdS + dR.S + dRdS) 

and therefore d (RS) = 2 (RdS + dR. S). 

Hence, when S is equal to R, 

d(RR) = X(RdR + dR.R) 

= Cos RdR +Cos dR.R, 

of which the modulus is 2rdr. 

But suppose that R and S are successive elements ; then 

d(RS) = RdS + SdR9 

for, otherwise, dR2 would not be 2RdR, 

The result here obtained is sufficiently startling, and shocks the ideas of 
quaternionists and vector-analysts alike. Nevertheless it is true, and is in harmony 
with the principle of succession. Any differential is subsequent to each of the 
original vectors in the complex. The rule of precedence is: Vectors first, then 
differentials of the first order, then differentials of the second order, and so on ; and 
within these classes the members have the order designated by the order of the 
alphabet. 

Hence, if R, S, T form a linear succession, 

d (RST) = RSdT + RTdS 4- STdR ; 

but if they form a cyclic succession, 

d (RST) = RSdT + STdR + TRdS. 

Consider next the differentials of powers of a complex. First of all, it is to be 

noted that 

d (R + S) = dR + dS 

in contrast to dt (R + S) = 2 (dR 4- dS), 

where the former differential is the sum, and the latter the resultant. 

Since d(R + S)2 = d (R2 + 2RS + S2), 

it follows from the principles already found that 

d(R + S)2=2(R + S) (dR + dS). 
In this product the factors are successive, and the elements successive within each 
factor. 

Consider next the differentials of higher order. We have 

dRn = nR"-1 dR ; 

therefore d2Rn = n (n - 1) Rn~2 (dR)2, 
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d2R not existing because R is the independent variable. Consequently 

The higher differentials of a product are given by a generalisation of Leibnitz' 
Theorem. For 

d (RS) = RdS + SdR, 

d* (RS) = Rd*S + 2dRdS + Sd*R ; 
hence 

dn (RS) = Rd»S + ndRdn~1S + n^~1^ d*Rdn~*S + ... + nd'Sd^R + dSdnR. 
1 . £ 

It is to be noted that there is a change at the middle of the series from the R 
factor being first to the S factor being first. With that understanding we may 
write 

dnRS = (ds+dB)nRS. 

The same formula applies to component differentials of a single vector when 
analysed into modulus and unit. Let 

R = rp, 

then dR = X {drp + rdp}, 

d2R = 2 {d2rp 4- 2drdp + rd2p}, 

and generally dnR = 2 {dnrp 4- ndn~Yrdp 4- ... 4- rdnp} 

= X(dr + dp)
nrp. 

As r is a modulus, there is no change at the middle. 

Consider next the subject of partial differentiation. Let u be a modulus 
function of the moduli x, y, z and let their respective units be constant and denoted 

by h, j , k. Then ^-Jh, ~~ lj, ~~ Ik express the gradients along the axes. And 

their resultant is 

which is the maximum gradient, and is denoted by Vu. Let v denote the unit of 
this maximum gradient; du and dnv corresponding differentials; then 

— du I 
\U = - y - P. 

an/ 
The gradient for any direction a is 

du I du 1 
T - / o" = T~ cos - a. la. 
as I an v I 

Hence the total differential corresponding to ds. a is 

dui -, 1 du 1 7 . dui -, 7 r - y dxh 4- 7T- - dyi 4 ^~ 7 dzk, 
dxh dyj JJ dzk 

that is, dsu~7r- dx + ~- dy + TT dz\ 
dx dy * dz 

and -~y <r = | ~ dx + ~ dy 4- ~ dzi/% {dxh 4- dyj + dzk}. 
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By V2u is properly meant the maximum gradient of the second order. As V is 
cyclic, V2 is the square of a cyclic complex ; hence 

VHI={£/»+|A+SA2+2 wJjk+2 £rJkh+2 4 A} "• 
Hence V2^ consists partly of a scalar gradient, partly of an area-vector gradient. 

Hence the second differential of u for the distance ds. a is said to be 

* , B = £ ^ + ^ + £ ^ + 2 4 d ^ + 2 r a d * < t e + 2 4 * B d y -
It is however, in reality, twice the differential ; for 

£&A)A-£M 
and therefore -—- —̂ / h2, 

1. 2 öx2/ 
on the same principle that g ft. per sec. per sec. gives \g ft. per (sec.)2 ; 

but
 9^ÊAVj = SAA' 

and therefore 1 ——-1 (hi). 

ay oxl v J/ 

The maximum gradient of the third order V3 u consists of a vector gradient only. 

According to Quaternions V2u is 
1_ d2 cP_\ 
dx^dy^dz2)11' 

Leaving out the minus, the expression is derived by reduction from 

32 li, 92 A , ^ li, 

the remaining terms of the above square do not appear at all ; or if they do appear 
it is only to be immediately annihilated. I pointed out that the complete nabla 
of the second order could be obtained by the restoration of the cancelled terms 
in a paper contributed to the Fourth Congress of Mathematicians, entitled On the 
square of Hamilton's delta. 

I t is evident from what precedes that Taylor's Theorem retains its simple form, 
notwithstanding the opposite conclusion reached by Hamilton and Tait. Their 
theory of expanding a binomial led to a theory of differentiation in which no 
derivative is possible, and this prevented them from finding the generalisation of 
Taylor's Theorem. As in common algebra 

f(B + G) =/B +f'B.G + Y^f'B. C* + f^f'B .C*+ . 

Consider next the subject of integration. Let R denote the radius-vector of a 
curve in space ; then 

JA 
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that is, the integral is the chord between the limiting vectors A and B, which is 
evidently the resultant of all the infinitesimal vectors of the curve between A and 
B. The sign / denotes taking the resultant of a sum of infinitesimal vectors. 

Again I RdR = %(-A2 + B% 

and I RdR = \R2. r 
Jo 

This agrees with the physical formula 
imvdv — m\ / • 2 ' 

for v and dv are vectors having different space-units. 

Again ( R2dR = ±Z(-A* + B*), 
JA 

which is a vector. 

Hence if n is odd 

BRndR = - ^ {- An+l 4 Bn+1 

A n 4- 1 l 

but if n is even = -^— 2 {- An+* + Bn+1}. 
n 4-1 l 

Also the formula for integration by parts, namely 

JAdB = AB-SBdA. 

Also [(A 4 Bf (dA + dB) = :^—1 (A + B)^ 1 . 

I t also follows from the generalised Binomial Theorem that 

R^dR = — n En + i m , 
??, 4 - 1 

where the integral is always a vector ; and that 

R^dR^-^R-^-^ 
n — 1 

and that I -p dR = log iî. 

I t is to be noted that 

jRdR=Jrpl(drp + rdp); 

and that the 2 makes it different from 

Jrpdrp 4 Jrprdp, 

that is jrdrp2 + fr2 pdp, 

R2 

the former of which is -^-, and the latter is twice the resultant of the infinitesimal 
areas enclosed between the curve and the chord. 

Having investigated what may be called the algebraic part of the generalised 
algebra, we now take up the transcendental complement. Hitherto the elements 
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have been line vectors; now they will be spherical angles. The former part is 
geometrical in its nature ; the complementary part is trigonometrical or quaternionic. 

In Euler s notation for a circular angle, namely eih, 6 denotes the circular 
measure ; and i which stands for V— 1 is not in reality a multiplier of 6, but the 
index of an axis which need not be specified so long as only one plane is considered. 
When angles on the sphere are considered, the axis must be inserted, and also 7r/2 
for the indefinite V—1. Hence for a spherical angle we get the exponential 

expression eh& . The logarithm of this expression is a quadrantal quaternion, or 
Hamiltonian vector. Compare this directed logarithm with the line vector; both 
have a multiplier and both have a direction, but the ß of the logarithm is of the 
second order and zero dimensions, while the ß of the line-vector is of the first order 
and has one dimension in length. But in the logarithm, instead of dimension there 
is a quadrant of angle; and it enters into the expression in a manner precisely 
analogous to that in which the dimension enters into the vector. This is the 
foundation for the profound analogy which was discovered by Hamilton, and which 
he treated as an identity rather than an analogy. These quadrantal logarithms may 
be called imaginary vectors, in the sense that they embody the quadrant as an 
index in the place of a dimension. Hamilton could not pass readily from the one 
to the other, because he adopted the principle 

ß"l*rfl* = - cos ßy 4- sin ßy [ßy]"l*, 

instead of having a minus before both terms. For from the true equation 
ßir/2^12 = _ c o s ßy __ gin ßy [ßy]«t*f 

we derive by dropping both indices and the equivalent minus 

ßy = cos ßy 4- sin ßy [ßy]*12. 

By expanding the expression for the angle, we obtain 

A ! o ! 

from which we derive by means of ß* = — 1 

= cos 6 4- sin 6. ß^2. 
In the fig. (13) PQ and QR are two spherical angles of which the logarithms 

are respectively denoted by bß*l* and cy*12 ; and PR is the 
spherical angle which is the spherical resultant of PQ and QR. 
The question arises: Is 6/3ff/24-cy"12 the log of PR? The 
binomial is successive; hence the question reduces to the com­
parison of ebß7r2ecy7r2 with e ^ ^ W 2 when the powers are 
expanded as those of a successive binomial. The answer is Yes. 
Hamilton answered No, because he treated the binomial as 
equivalent to {2 (6/3 4- cy)}"12. To prove that 

ebß^2
ecy^2^ebß^+cy^2

t 
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Since 

and 

1 4- 6/3-/2 4 -^ /3-4- ^-t /3
37r/2 4-

2! 3!' 

e^1'2 = 1 + C7"/2 + ~ 7-+ J- y*"'2 + 

é*** e«y"h = 1 + C7-/2 + ~ 7- 4- J- y^2 + 

6c2 

4- 6/3 /̂a + bcßwl* y"12 + ^ /3^2 7^ 4 

-rf3!/3
S7r/2 + 

= 14- ÖyŜ 2 4- 6*7 ,ir/2 

4 Ö". {ö2^ 4- 2bcß^2y^2 + c2y"} 

+ 0-, {63/337r/2 4- eS62c/37r77r/2 + 36c2 ß ^ V + c3737r'2} 

4- etc. 

The quadratic expression is the square of bßvl* 4- cy*12 according to the analogy 
to successive vectors ; and the cubic expression is the cube of that same binomial. 
And so for the other orders of terms. Hence the theorem is proved. 

When the terms are reduced by means of the principle 

ßnl2y*fr = _ C0S ßy _ gin ßy § IßyY'2, 

which includes ßv = — 1 ; they fall into the following four components : 

(1) 1 - ^ {62 4 26c cos /37 4- c2} + ^ {64 4- 463c cos ßy 4- 662c2 

2!1 

(2) - 4 c - ^ ( 6 3 c 4 - 6c3) 4-

(3) + j6-~(63-r36c2) + 

(4) +{c-~(c3 + 3c62) + 

+ 46c3 cos ßy 4- c4} 

sin / 3 7 . [ßyf2 

ß*H 

fW2 

The first series gives the cosine of the angle ; the 
second gives the component of the Sine which is along 
the intersection of the two angles ; the third gives the F i 14< 

component along the axis of the first angle ; and the 
last gives the component along the axis of the second angle. These axes are 
represented in fig. 14. 

Hence the rules, processes and theorems which apply to successive vectors 



tfß^+cy"'2-

ebßvfr+c^-bß-

1 
bß*l2-

-cy"'2
 = ebß 

TT/2 

not = 

: - Ö-W2 

6 P ' 

TT/2 # 

5 

c^ /2. 
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can all be transferred with slight modification to this transcendental complement 
which deals with the successive logarithms of angles. For example : 

but 

Also 

(bßrrf = *Jbß*i\ 

log bß?l* = log 6 4- TT/2 ß^2, 

d (bß"i2) = {2 (dbß + bdß)Yi\ 

db 
If 6/371"'2 is an angular velocity, then -y? ß is the component changing the speed 

and b-jj- that changing the axis, the total result being -jS (-77 ß 4-6 -y- U . 

I believe that it will be found that the vector-algebra here outlined unifies the 
methods of Descartes, Grassmann, and Hamilton, and lays the foundations of an 
analysis which is in perfect logical harmony with algebra. 

Note on Notation. In the above paper a capital italic letter is used to denote 
a vector : the corresponding small italic to denote its modulus, and the corresponding 
small Greek letter to denote its space-unit. A roman capital denotes a complex 
of vectors. The functional notations Cos and Sin are used to denote the scalar and 
vector components, the capital C and the capital S denoting that the appropriate 
space-unit is involved ; whereas cos and sin with small c or s denote the respective 
moduli. Thus cos is the negative of Hamilton's S ; Sin is equivalent to Hamilton's 
F with the imaginary left out, and sin to his TV with the imaginary left out. The 
imaginary where needed is denoted explicitly, and for this purpose i or the index irj2 
is used. The triad h, j , k denote a constant orthogonal system of space-units. By 
[ßy] is meant the unit which is normal to ß and g\ 2 denotes resultant of; and the 
point is used as a separatrix. 



THE VALUES THAT CERTAIN ANALYTIC FUNCTIONS 
CAN TAKE 

B Y P H I L I P E. B. J O U R D A I N . 

Consider a one-valued function / of a complex variable z and let z = a be any 
regular poin t ; further let G be a circle round this point such tha t all the points 
within it and on its circumference are regular. Let f(a) = w0; we will find under 
what conditions z can so move—stat ing the mat te r picturesquely—so that , corre­
sponding to it, / travels (say, in a straight line) from w1 to any selected value w*. 

We have first to prove that , corresponding to G, there is round tu0 an aggregate 
such tha t w0 is isolated from all values which are not taken by / . If not, the points 
not taken by f condense at wQ ; and, if we choose the aggregate contained by G as 
closed (i.e. including its circumference), the corresponding/-aggregate is also closed-]"; 
and consequently each such point is isolated from all the points which are assumed 
b y / . If, then, we describe round every point which is not taken by / the greatest 
circle within which every point is not taken, we determine what we may call the 
" b o r d e r " of all the domains formed by the points not taken by / . This border 
must correspond to ^-points on the circumference of G ; for, by the theory of 
conformai representation, a border-point obviously cannot correspond to a point 
within C. Thus, if we choose G so tha t the circumference does not pass through any 
point z such th&t f(z) is equal to w0i we exclude the possibility of the border-points 
on the w-plane lying arbitrarily close to the point iu0. Thus the points not taken by 
/ c a n n o t condense at the point wQ. 

Thus it is possible to determine a path (a ... Zj) such t h a t / ( # ) travels along the 
straight pa th (w0... iv±) towards w. Since, now, f(z) is again regular about z = zx, we 
can determine other portions of path (z1... z2) and (w1... w2). We can prove tha t 
there is a #-path such t h a t / t r a v e l s up to w by the considerations used by Lebesgue ; 
allied to the following. 

I n the first place we notice tha t the #-path can never cut itself; for, suppose z 

were a point of contact ; then to z' would correspond two values w-[ and tv2' of the 
function f(z), and this is excluded by the presupposed one-valuedness of f(z). 

* In this paper the method which I have followed in my previous paper "On Functions, all of whose 
Singularities are Non-Essential," Mess, of Math. (2), xxxin. 1904, pp. 166—171, is made quite rigid. 

f Cf. Schoenflies, Die EnUuickelung der Lehre von den Punktmannigfaltigkeiten, Leipzig, 1900, p. 117. 
The object of making the /-aggregate closed will be quite evident when we consider the method to be used 
in what follows. 

X Leçons stir VIntegration, Paris, 1904, p. 105. 
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In the second place, if the singularities of / are non-essential, the £-path cannot 
go through any of them, for otherwise f(z) would ultimately increase beyond any 
finite limit when z approaches one of these singularities by any path. 

Thus, if f(z) has only non-essential singularities, there can be no obstacle to 
the attainment of the value w by / The case is otherwise if there are essential 
singularities. Then, to attain some particular value for w, it is quite possible that 
the said path is forced to lead to an essential singularity. Thus the function ez has 
its only singularity—an essential one—at infinity ; if now we consider any other point 
z = a and put w = 0, we shall never be able to reach, in the manner described above, 
the point w. Thus it appears that the above method cannot be applied to prove the 
well-known result of Picard, but is limited to the proof that a function, all of whose 
singularities are non-essential, can take any assigned value at least once. In this 
result, of course, the fundamental theorem of algebra is contained. 

I t should be noticed that Lebesgue's method of proving the Heine-Borei theorem 
used avoids the use of the multiplicative axiom when the intervals (as here) have no 
end-points. 



ÜBER LIMESBILDUNG 
UND ALLGEMEINE KÖRPERTHEORIE 

VON JOSEF KüRSCHäK. 

Im Folgenden soll in die Körpertheorie oder, in der Terminologie des Herrn 
Julius König, in die Theorie der orthoiden Bereiche ein neuer Begriff eingeführt 
werden, der als Verallgemeinerung des absoluten Wertes angesehen werden kann. 

Es sei jedem Elemente (jeder Grösse) a eines Körpers K eine reelle Zahl \\ a \\ 
so zugeordnet, dass den folgenden Forderungen genügt wird : 

(1) es ist || 01| = 0 ; für jedes von Null verschiedene a ist \\ a || > 0 ; 

(2) für jedes Element a ist 

| | l 4 - a | | ^ l 4 - | | a j | ; 

(3) für je zwei Elemente ist 

\\ab\\ = \\a\\\\b\\; 

(4) es gibt in K ivenigstens ein solches Element, dass \\a\\ von Null und von 
Eins verschieden ist. 

Jede solche Zuordnung nenne ich eine Bewertung des Körpers K. Die Zahl || a \\ 
nenne ich die Bewertung von a. 

Die bekanntesten bewerteten Körper erhalten wir, wenn für K ein reeller oder 
komplexer Zahlkörper gewählt und jeder Zahl ihr absoluter Wert zugeordnet wird. 

Bedeutet K den Körper der rationalen Zahlen, so gibt es ausser der Bewertung 
mittels des absoluten Wertes noch unendlich viele andere Bewertungen. Es bedeute 
nämlich p eine gegebene Primzahl. Dann lässt sich jede von Null verschiedene 
rationale Zahl in der Gestalt 

u 
a = -pa 

vr 

darstellen, wo u und v zu p teilerfremde ganze Zahlen sind. Der Exponent a kann 
eine positive oder negative ganze Zahl sein, oder auch Null. Wird nun 

|| a || = e~a 

gesetzt, wo e die Basis der natürlichen Logaritmen bedeutet, und unter || 0 || die Null 
verstanden : so entspricht diese Festsetzung allen Forderungen, die wir an eine 
Bewertung gestellt haben. Ich nenne darum e~a die Bewertung von a in Bezug auf 
den Àquivalenzmodul p. 
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Die wichtigeren Sätze über absolute Werte bleiben für jede Bewertung gültig. 
Namentlich ist stets || 11| = 1, || — 1 || = 1 und 

• | | a - 6 | | ^ | | a - c | | + ||c-6||. 

Zufolge dieser Ungleichheit ist || a — b || ein spezieller Fall des aus der allge­
meinen Mengenlehre bekannten Begriffes : Ecart. 

Bemerkt man dies, so liegt es nahe, die bekannten Begriffe des Limes und der 
Fundamentalreihe von den reellen und komplexen Zahlen auf beliebige bewertete 
Grössen zu übertragen. Man braucht nur in den gewöhnlichen Definitionen statt 
den absoluten Wert überall Bewertung zu setzen. Die auf den Grenzwert bezüg­
lichen, bekannten Sätze behalten zumeist auch nach dieser Verallgemeinerung ihre 
Gültigkeit. 

Z. B. : Bedeutet A eine beliebige Grösse des beiverteten Körpers K, so gibt es immer 
eine solche Folge 

a~i, a2, . . . , an, .. 

von Grössen aus K, dass sämtliche Glieder von einander und von A verschieden sind 
und mit wachsendem n sich dem Limes A nähern. 

Trotz der vielen Ähnlichkeiten lassen sich natürlich auch wesentliche Unterschiede 
zwischen den Körpern finden, wenn wir ihr Verhalten bei der Limesbildung betrachten. 
Den wichtigsten Unterschied können wir sogar schon bei den gewöhnlichen Grenzü­
bergängen bemerken, wenn wir den Körper der reellen Zahlen mit dem der rationalen 
Zahlen vergleichen. Im Körper der reellen Zahlen hat jede Fundamental reihe einen 
Grenzwert. Hingegen kann im Körper der rationalen Zahlen zu einer Fundamental­
reihe aus rationalen Zahlen nur ausnahmsweise ein Limes gefunden werden. Man 
kann sogar behaupten, dass die irrationalen Zahlen eben dazu eingeführt sind, um 
die Bestimmung des Limes einer Fundamentalreihe, die im Körper der rationalen 
Zahlen nur ausnahmsweise möglich ist, im Körper der reellen Zahlen zu einer stets 
ausführbaren Operation zu machen. 

Hat im bewerteten Körper K jede aus ihm entnommene Fundamentalreihe 
einen Limes, dann ist dieser Körper identisch mit der Gesamtheit der Limes der in 
ihm enthaltenen Fundamentalreihen. Wir nennen darum einen solchen Körper 
perfekt. 

Das Ziel meiner Untersuchungen ist zu beweisen, dass jeder bewertete Körper 
durch die Adjunktion neuer Elemente zu einem solchen perfekten Körper erweitert 
werden kann, der zugleich auch algebraisch abgeschlossen ist. Ein Körper K wird 
algebraisch abgeschlossen genannt, wenn jede rationale ganze Funktion f(z), deren 
Koeffizienten dem Körper K angehören, in K in lineare Faktoren zerfällt. 

Die Frage nach der Möglichkeit der gewünschten Erweiterung zerfällt in 
Teilfragen, die entweder in der Literatur bereits erledigt sind, oder wenigstens durch 
naheliegende Verallgemeinerungen bekannter Untersuchungen leicht beantwortet 
werden können. 

Vorerst wollen wir die Forderung der algebraischen Abgeschlossenheit unbeachtet 
lassen und nur die Frage erwägen, ob jeder bewertete Körper zu einem perfekten 
ergänzbar ist. Die Methoden zur Beantwortung dieser Frage stammen von Herrn 
G. Cantor. Seine Theorie der irrationalen Zahlen ist im Grunde eben die Lösung 
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dieser Frage für den Fall, dass der vorgelegte Körper aus der Gesamtheit der 
rationalen Zahlen besteht und diese mit ihrem absoluten Werte bewertet sind. 
Cantors Ideen können in jedem Falle angewandt werden und führen zur kleinsten 
perfekten Erweiterung des gegebenen Körpers K. Die so erhaltene Erweiterung 
nennen wir den derivierten Körper von K. Ist K ein perfekter Körper, so ist er sein 
eigener derivierter Körper. 

Bei den weiteren Teilfragen wollen wir unser Augenmerk auf die algebraisch 
abgeschlossenen Erweiterungen richten. Dass jeder Körper zu einem algebraisch 
abgeschlossenen Körper erweitert werden kann, das hat Herr E. Steinitz* beweisen. 
Sein Beweis, obzwar derselbe auf den viel bestrittenen Wohlordnungssatz von Herrn 
E. Zermelo beruht, soll im Folgenden als streng betrachtet werden. Uns wird 
aber ausser der Existenz der algebraisch abgeschlossenen Erweiterung auch deren 
Bewertung interessieren. Vom Stammkörper wollen wir dabei voraussetzen, dass er 
ein perfekter bewerteter Körper sei. Die nächste Frage, die wir zu erledigen haben, 
gestaltet sich dann in der folgenden Weise : Kann die kleinste algebraisch abgeschlos­
sene Erweiterung eines perfekten bewerteten Körpers K stets so bewertet werden, dass 
die Bewertung des Stammkörpers unberührt bleibt ì 

Bekanntlich genügt jede Grösse des erweiterten Körpers einer und nur einer 
solchen algebraischen Gleichung, deren Koeffizienten dem Stammkörper K entnommen 
sind und die in K irreduzibel ist. Wir nennen diese Gleichung die Definitions­
gleichung jener Grösse und fordern, dass solchen Grössen, welche durch dieselbe 
Definitionsgleichung bestimmt sind, gleiche Bewertung zukomme. Es ist dann 
evident, dass die der Definitionsgleichung 

zn + a1z
1lr-1 + ... +an = 0 

genügende Grösse a keine andre Bewertung erhalten kann, als 
l 

II «11 = I I « » II"-
Es fragt sich aber, ob die so zugeordnete Zahl \\a\\ in der Tat als Bewertung 

gelten kann, d. h. ob diese Zuordnung die Forderungen 

II «011 = 11 «Uli £11 
| | l + « | | ë l + ||a|| 

befriedigt. 

Dass im erweiterten Körper für jedes Produkt in der Tat 

ll«/3|l = ll«llll/3|| 
ist, das kann mit Hilfe der Galoisschen Theorie leicht bewiesen werden. Dabei 
spielt der Umstand, dass der Stammbereich perfekt ist, gar keine Rolle. 

Wollen wir aber auch 
||1 + « | | S 1 + ||«|| 

für den erweiterten Körper beweisen, so gelingt dies nur mit solchen Hilfsmitteln der 
Analysis, bei denen die Perfektheit des Sammbereiches wesentlich ist. Ich habe 
diese Hilfsmitteln aus Thèse des Herrn J. Hadamard f entnommen. 

* E. Steinitz, "Algebraische Theorie der Körper," Journal für reine u. ang. Mathematik, Bd 137 (1909). 
f J. Hadamard, "Essai sur l'étude des fonctions données par leur développement de Taylor," Journal 

de Math., Série 4, T. 8 (1892). Insbesonders Nr. 15—18 (Seite 119—125). 
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Hadamard hat dort unter Anderem die folgende Frage gelöst : Was ist die 
notwendige und hinreichende Bedingung dafür, dass zu einer vorgelegten Potenzreihe 
P(z) eine solche rationale ganze Funktion f(z) gefunden werden kann, für welche 
der Konvergenzradius von P(z)f(z) denjenigen von P(z) übertrifft ? Desweiteren: 
Wenn es solche rationale ganze Funktionen gibt, wie finden wir unter ihnen diejenige 
vom niedrigsten Grade? 

Bei Hadamard begegnen wir diesen Fragen eigentlich in der folgenden Gestalt : 
Wann hat eine Potenzreihe auf ihrem Konvergenzkreise keine anderen Singularitäten 
als Pole und wie lassen sich diese bestimmen Ì In dieser Fassung knüpft sich die 
Frage an funktionentheoretische Begriffe, die wenigstens an dieser Stelle nicht auf 
beliebige perfekte Körper übertragen werden können. Wird aber die Frage in 
unserer obigen Fassung gestellt, so können nicht nur die Resultate, sondern auch 
die Beweise von Hadamard auf beliebige perfekte bewertete Körper übertragen 
werden. 

Vor Allem kann der Begriff der Potenzreihe auf den Fall übertragen werden, 
dass die Koeffizienten nicht reelle oder komplexe Zahlen sind, sondern einem 
perfekten bewerteten Körper entnommen sind, und auch die Werte, welche die 
unabhängige Variable annimmt, Grössen von K sind. Sodann kann der Konvergenz­
radius für eine solche Potenzreihe 

Co 4- w 4- c2z
2 + ... cmzm + ... 

einfach in der Weise definiert werden, dass wir darunter den im gewöhnlichen Sinne 
genommenen Konvergenzradius von 

II °o || + || Gi || r 4-1| c21| r2 4- ... 4-1| cm || rm + ... 
verstehen. Die Hadamardsche Frage erhält auf diese Weise in jedem perfekten be­
werteten Körper einen Sinn, und die Hadamardschen Resultate bleiben samt ihren 
Ableitungen allgemein gültig. 

Übergehen wir zu Potenzreihen, die nach negativen Potenzen fortschreiten, 
so kann auf Grund der Hadamardschen Resultate leicht der folgende Satz eingesehen 
werden : 

Sind die Koeffizienten von 

dem perfekten Körper K entnommen und ist f(z) in K irreduzibel, so ist der 
Konvergenzradius von 

J__£0 G, 
f(z)~ z + z* + '" 

l 

gleich \\an\\
n. 

Nun bedeute a in irgend einer Erweiterung von K eine WTurzel der in K 
i 

irreduziblen Gleichung f(z) — 0, und setzen wir ||a|| = ||aw||w. Es wird dann in 
der Tat 

| | l + a | | â l + | | « | | . 
Es ist dies identisch mit dem Satze, dass zwischen den Konvergenzradien l und V 
der Reihen 

f(£)~ Z + 0 3 + " -
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1 1 Gn O i 

und _ _ _ _ = _ _ + „ + ... 
die Ungleichheit 

P ^ 1 4- ü 
besteht. 

Das Bisherige gestattet uns jeden bewerteten Körper zu einem algebraisch 
abgeschlossenen, bewerteten Körper zu erweitern. Ob dieser Körper auch perfekt ist, 
bleibt noch unbestimmt. Wohl aber wird der derivierte Körper dieses algebraisch 
abgeschlossenen Körpers, d. h. seine kleinste perfekte Erweiterung, unseren sämt­
lichen Forderungen genügen. Man kann nämlich beweisen, dass der derivierte 
Körper eines algebraisch abgeschlossenen Körpers K stets wieder algebraisch abge­
schlossen ist. 

Ist K der Körper der algebraischen Zahlen, sind diese mit ihrem absoluten 
Werte bewertet, und ist somit der derivierte Körper von K die Gesamtheit der 
komplexen Zahlen : so erhellt die Richtigkeit meiner Behauptung aus dem funda­
mentalen Satz der Algebra. Natürlich hat man in der Algebra wenig Grund dafür, 
dass man diesen Teil des fundamentalen Satzes für sich beweise. Dennoch beginnt 
Weierstrass* seinen Beweis aus dem Jahre 1891 im Wesentlichen gerade damit. 
Seine Überlegungen können auch dann wiederholt werden, wenn K ein beliebiger 
algebraisch abgeschlossener bewerteter Körper ist. 

Auf diese Weise können wir mit Benützung der Untersuchungen von Cantor, 
Steinitz, Hadamard und Weierstrass einen beliebigen bewerteten Körper erst zu 
einem perfekten, dann zu einem algebraisch abgeschlossenen, endlich zu einem 
solchen bewerteten Körper erweitern, der sowohl perfekt, als auch algebraisch 
abgeschlossen ist. 

Ich wurde zu diesen Untersuchungen durch Herrn K. Hensels Schöpfung, die 
Theorie der p-adischen Zahlen^, angeregt und zwar insbesonders durch die Theorie 
der £)-adischen rationalen Zahlen. Bewertet man die rationalen Zahlen nicht mit 
ihrem absoluten Werte, sondern mit ihrer Bewertung in Bezug auf einen Aquivalenz-
modul p, und bildet dann den derivierten Körper, so bekommt man genau denjenigen 
Körper, den Hensel mit K (p) bezeichnet und dessen Elemente er p-adische rationale 
Zahlen nennt. Die Grössen dieses Körpers sind (mit Ausname der rationalen Zahlen) 
weder Zahlen, noch Funktionen im gewöhnlichen Sinne, sondern neue Symbole, die 
eben so beschaffen sind, dass sie den Körper der in Bezug auf den Aquivalenzmodul 
p bewerteten rationalen Zahlen zu einem perfekten Körper erweitern. 

* K. Weierstrass, "Neuer Beweis des Satzes, dass jede ganze rationale Funktion dargestellt werden 
kann als ein Produkt aus linearen Funktionen derselben Veränderlichen," Sitzungsberichte d. Akad. 
Berlin 1891, Seite 1085—1101, Werke Bd 3 (1903), Seite 251—168. 

+ Siehe insbesonders : K. Hensel, Theorie der algebraischen Zahlen, Bd 1, Leipzig (1908). 

M. c. 19 



SOME APPLICATIONS OF QUATERNIONS 

BY L. SILBERSTEIN. 

This communication will be published in the Philosophical Magazine in the 
course of 1913. 



SOME EQUATIONS OF MIXED DIFFERENCES OCCURRING 
IN THE THEORY OF PROBABILITY AND THE RELATED 
EXPANSIONS IN SERIES OF BESSEL'S FUNCTIONS 

BY H. BATEMAN. 

Equations of mixed differences appear to have been first obtained in the study 
of vibrating systems. When John Bernoulli* discussed the problem of a vibrating 
string he used a difference equation which is practically equivalent to 

dhi 
-~ = k2 [un^ 4- un+i - 2un] (1), 

and this difference equation was used by dAlembert to obtain the well-known partial 
differential equation 

d2u__ Jhi 
W ~a~dx2' 

Equation (1) plays a prominent part in Euler's investigation of the propagation 
of sound in air j* and has been discussed more recently by other writers^:. 

The equation is usually solved by forming periodic solutions of the type 

un=f(n)eipt, 

but I find that for some purposes the particular solution 
un\l) ~ J2{n—m) (Awt) 

can be used more advantageously. For instance the solution which satisfies the 
conditions 

un (t) =f(n)> —jT = 0 (ft an integer) 

when t = 0, is given generally by the formula^ 
CO 

un(t)= S J2(n-m) (2kt)f(m). 
m= - co 

* Petrop. Cornili. 3 (1728) [32], p. 13. Collected Works, Vol. in. p. 198. The problem of the string of 
beads was discussed in detail by Lagrange, Mécanique Analytique, t. i. p. 390. 

f Nova theoria lue is et colorum, § 28, Berol. (1746), p. 184. An equation slightly different from the 
above has been obtained by Airy in a theory of the aether. 

X See for instance M. Born und Th. v. Karman, " Über Schwingungen in Raumgittern," Phys. Zeitschr. 
April 15 (1912), p. 297. 

§ An expansion of this kind usually converges within a circle \t\ = p ,but with suitable values of the 
coefficients f(m) it may converge for all values of t. 

19—2 
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Many interesting expansions may be obtained from this result by using particular 
solutions un(t), for instance we find that 

oo 

n2 4- k2t2 2 m2 J"2(n_m) (2kt) : 
m— -co 

this equation holds for integral values of n and for all values of t. 

A solution satisfying the conditions 

un (t) = 0, —jj = fc[g(n)— g (n 4- 1)] (n an integer) 

when t = 0 is given generally by the formula 
00 

Un (t)= 2 g (m) J2{n-m)+i (2fet), 
m= - G O 

and this result may also be used to obtain interesting expansions. 

Equations of mixed differences have been solved hitherto* either by forming 
periodic solutions of the form fp(n)eipt or by using symbolical methods f ; in the case 
of the numerous equations^ which occur in the theory of vibrations the method 
of periodic solutions is used almost invariably. I t will be of interest then to develop 
the present method and mention a few problems of chance for wThich the solutions 
obtained are naturally adapted. 

The equation ^ = ^[Fn^(x) + Fn+1(x) ^2Fn(x)] (2), 

which is analogous to the equation of the conduction of heat, possesses the particular 
solution e~x In (x) where In (x) denotes the Bessel's function 

pJn(ia>). 

This particular solution may be generalised so as to provide us with a formula 
CO 

Fn(x) = e-<*-v 1 I^œ-a)Fm(o) (3), 

which gives the value of Fn(x) when the value of Fm(a) is known§. 

* See however the remark on p. 387 of Nielsen's Cylinderfunktionen (1904). 
t See for instance J. F. W. Herschel, Calculus of Finite Differences, Cambridge (1820), pp. 37—43; 

D. F. Gregory, Mathematical Writings (1865), pp. 38—41; Boole's Finite Differences (1860), pp. 193—207; 
G-. Oltramare, Assoc. Franc. Bordeaux (1895), pp. 175—186 ; Calcul de generalisation^ Paris (1899). 

X Equations of mixed differences sometimes occur in the theory of radiation, see for instance 
Lord Rayleigh's paper " On the propagation of waves along connected systems of similar bodies," Phil. 
Mag. XLiv. pp. 356—362 (1897). Scientific Payers, Vol. iv. 

§ The solution of the equation 
dui7 . , 

which satisfies the conditions un (0) = / (w) is given by 
CO 

un(x)= 2 Jn-m{x)f{m). 
m = - <x> 

This formula is due to Sonin, Math. Ann. Bd. xvi. p. 4 (1880). 

Thus the particular solution n2 - 2nx + x2 gives rise to the expansion 
GO 

n2 - 2nx + x2= S m2Jn_m (ss). 
m— -oo 
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By using particular solutions we may obtain the following expansions, most 
of which are well known: 

GO 

I n < » = 2 In_m (x - a) Im (a), Fn(x) = e~xIn(x), 
tn= - G O 

CO 

(n2 + x)ex~a = 2 (m2 + a)In_m(x-a), Fn(œ) = n* + œ, 
m — - GO 

OD 

e x c o s 2 a c o s 2na = 2 eaeos2a cos 2maIn__m (x - a), Fn(x) = e~^sìn2a cos 2na. 
M i = - GO 

The expansion (3) gives the solution of the following problem. 

Consider a large number of boxes and a continually increasing large number of 
objects each of which is marked with either 4-1 or — 1. The objects are placed in 
the boxes, there being no restriction as to the number in each, and when the average 
number of objects in a box is a the sum of the numbers in each box is supposed to be 
known. The problem is to find the chance that a box chosen at random contains 
numbers which add up to n when the average number of objects in each box has 
increased to x. I t is supposed that an additional object is just as likely to go into 
one box as another. 

Denoting by Fn (x) the chance that a box contains numbers adding up to n and 
treating tc the number of boxes as very large we obtain the difference equation 

Fn [x + *) .= ^ [F^ (x) 4- Fn+l (x)] + ( l - ^) Fn (*) 

which reduces to (2) when, squares of - are neglected*. Since 

2 Ir(x-a)^ex-a 

r— - co 

it follows that when Fn (x) is given by (3) we generally have 
CO CO 

1 Fn(œ)= 2 Fn(a). 
n—-~ co n— — oo 

GO 

Consequently if 2 Fn(a) — \, as should be the case, we also have 
n— — co 

I Fn(œ) = l. 
? l = - G O 

The function e~[x~a) ln_m(x — a) is a type of Green's function for the equation 
(2), for a solution of the equation 

dun 

is given by 

• - £ (un+14- ««_! - 2un) =f(n, x) 

GO rx 

2 I e- (»-a) j n _ m (# _ a \ y (m> a) da, 
= — CO J — CO 

un = 
m = — oo J — co 

and this solution generally satisfies the conditions 

un — 0 for x = — co , or for n — ± oo . 

* It is interesting to compare the present problem with those considered by Lord Rayleigh, Theory of 
Sound, Vol. i. p. 37. " Dynamical problems in illustration of the kinetic theory of gases," Phil. Mag. 
Vol. xxxii. 1891. Scientific Papers, Vol. in. 
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If in our probability problem objects with positive signs only are added after the 
initial distribution has been examined the difference equation (2) must be replaced 
by the simpler one 

dFn 

Poissons formula* 

* , ' = * • " - * • • <*>• 

gives the required probability in the case when there is no initial distribution of 
objects; from this particular solution we may derive the more general solution 

Fn(x)= 2 (x-*y*.<f>(n-p)e-^ (5) 

which satisfies the condition Fn(a) = <f>(n). If </>'(w) = 0 when n is negative the 
summation extends from p = 0 to p = n and we obtain the solution of the problem 
for the case in which all the objects have the positive sign. 

Interesting expansions may be derived from (5) by substituting particular 
solutions for Fn(x), but the simplest ones are so well known that it will not be 
necessary to write them down here. 

I t is easily seen that in general 
co oo 

2 Fn(x) = 1 Fn(a) = l. 
n- - c o 

I t should be mentioned that the problems considered here can be solved 
accurately as well as approximately by using partial difference equations in place 
of the equations of mixed differences. The equation which takes the place of (4) is 

K[Fn(m^l)-Fn(m)-\ = Fn^(m)~Fn(m) (6) 

and has already been considered by Lagrange f. A particular solution is given by 

r, , N m ( m - l ) . . . ( m - w 4-1) 1 /- lyn-n 

the well-known formula for the chance that a box contains a number n when we have 
no previous knowledge of the distribution of objects among the boxes J. A more 
general solution is 

Fn(m)= 2 ^ r
JsK-s 1 - - Fn_s(r). 

If there are no negative signs on the objects we must sum from 0 to n. Using 
the particular solution (7) the formula gives Vandermonde's theorem. 

* Recherches sur la probabilité des jugements, Paris (1837), pp. 205—207. See also L. von Bortkewitsch, 
Das Gesetz der kleinen Zahlen, Leipzig (Teubner) (1898), this memoir contains tables of the function in 
the formula; L. Seidel, Münch. Ber. (1876), pp. 44—50. Smoluchowski, Boltzmann Festschrift (1904). 
Bateman, Phil. Mag. (1910) and (1911). 

t Miscellanea Taurinensia, t. i. p. 33. 
X And the signs are supposed to be all positive. 



FONCTIONS IMPLICITES OSCILLANTES 

PAR MICHEL PETROVITCH. 

1. Les propositions de Sturm sur les intégrales de l'équation différentielle 
linéaire du second ordre 

y"+/(*)? = o 
expriment les relations entre les particularités (signe, limites de variation etc.) de la 
valeur relative de la dérivée seconde de y, c'est-à-dire de la valeur du rapport 

A<y) = Ç . 
dans un intervalle considéré (a, b) de la variable indépendante x et Y allure de 
l'intégrale y lorsque celle-ci est finie et continue dans cet intervalle. 

Je voudrais faire remarquer que les considérations élémentaires, conduisant à ces 
propositions, s'étendent à des classes plus générales d'équations de tous les ordres et 
conduisent à des particularités d'allure des intégrales réelles, finies et continues (ainsi 
que leurs dérivées) dans l'intervalle considéré de x. 

2. Soit donnée une fonction, algébrique ou transcendante, 

<l>(œ> Ço, &,...&)• 
de ?z4-2 variables, à variations arbitraires ou assujetties à des conditions (G) s'expri-
mant par des égalités ou inégalités. Nous dirons : 

1° qu'elle est, dans un intervalle (a, b) de la variable x, supérieurement limitée 
par une fonction donnée /n (x) si, pendant que x varie de a à b, la valeur de la 
fonction <j> reste inférieure à JJL(X) pour tout système de valeurs f0, £i...?n compatible 
avec les conditions (G) ; 

2° qu'elle est, dans l'intervalle (a, b), inférieurement limitée par une fonction 
donnée X (x) si, pendant que x varie de a à b, la valeur de $ reste supérieure à X (x) 
pour tout système de valeurs f0, | 1 ? . . . ^ compatible avec les conditions (G). 

Un polynôme P ne contenant que des puissances paires des ^ à coefficients tous 
positifs pour x compris entre a et 6 est une fonction inférieurement limitée par son 
terme (f>(x) indépendant des ^ ; il est supérieurement limitée par ce terme si tous 
les coefficients sont négatifs. 

La fonction p est inférieurement ou supérieurement limitée par — suivant que 

ses coefficients, supposés tous du même signe, sont négatifs on positifs. 
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La fonction $=ffÌL$& 

on f, f2, fa, fa sont des fonctions finies, telles que f et fa ont un même signe e 
et/g, fa un même signe e pour x compris entre a et b, est inférieurement et supérieure­
ment limitée par les fonctions 

à et & 
f fa 

ou inversement, suivant les signes e et e. 

Un cas analogue se présente avec la fonction 

où P est un des polynômes précédents à coefficients fonctions toutes négatives pour 
x compris entre a et b, f et (p étant du même signe dans cet intervalle ; ou bien avec 
les fonctions 

<jE> = 2fK^ 

où. les £K sont assujetties à verifier une condition de la forme 

ir + tfa&^O, 
les/*, (/>K, ty étant des fonctions de x positives dans l'intervalle (a, b) etc. 

3. Etant donné un système d'équations différentielles (E) d'un ordre quelconque, 
définissant n variables 

comme fonction d'une variable indépendante x, il arrive qu'une expression </>, 
dépendant de x, des yK et de leurs dérivées successives, égale, en vertu des équations 
(E) mêmes, à la valeur relative A (yK) de la dérivée seconde d'une des variables yK, soit 
une fonction inférieurement ou supérieurement limitée pour x compris entre a et b, 
par des fonctions de x ne changeant pas de signe dans cet intervalle. 

Ceci arrive, par exemple, dans le cas de l'équation du premier ordre 

y =/(*> y) 

lorsque 1 expression - ( —- + / ~ 

est inférieurement ou supérieurement limitée par une telle fonction. Pour qu'il en 
soit ainsi de l'équation linéaire 

y[ = My + N 

où M et N sont fonctions de x, il faut et il suffit qu'on ait 

M N 

et que la fonction M' 4- M2, 

égale alors à À (y), ne change pas de signe dans l'intervalle (a, b). Pour qu'il en soit 
ainsi de l'équation 

y' = My+ \/P + Ny2 
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il faut et il suffit qu'on ait à la fois 

P' 4- 2MP = 0, 

et que la fonction ikf 4- M2 4- JV, 

à laquelle se réduit alors l'expression A (y), ne change pas de signe dans l'intervalle 
(a, b). 

Les équations, d'un ordre quelconque, de la forme 

tf + y4>(œ9y,y'...yW) = 0, 

où <j> est l'une des expressions précédentes, et dont l'équation linéaire 

y"+/(*)y = o 
n'est qu'un cas particulier, appartiennent au type d'équations considérées. Tel est, par 
exemple, le cas de l'équation 

y" 4- my3 4- ny = 0 

(où m, n sont des constantes du même signe) s'intégrant par les fonctions elliptiques. 

Le système -J^1 =f (x, ylm. ,yn) 

^=M*,y,-.y») 

forme un système (E) toutes les fois qu'au moins l'une des expressions 

yK\dx J dyj 

est une fonction <fr inférieurement ou supérieurement limitée. 

Ceci arrive, par exemple, dans le cas du système 

où M, N, P, Q sont fonctions de x liées par la relation 

N* + N(M+Q)=0 

et lorsque la fonction M' 4- M2 4- NP 

à laquelle se réduit alors l'expression A (y^), ne change pas de signe pour œ compris 
entre a et b. 

Dans le cas du système -,— = my2y{ 35 

dy* 
dx 

dy^ 
dx 

t f o ^ W " 

=pyiy*> 
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qu'on rencontre dans le problème du mouvement d'un corps solide et qui s'intègre 
par des fonctions elliptiques, on aura 

A (yx) = m (pyi 4- nyi), 

de sorte que le système appartient au type considéré toutes les fois que mp et mn 
sont du même signe et que yly y2, y% (ainsi que leurs dérivées) sont réelles, finies et 
continues dans l'intervalle (a, b) ; en effet, A (y^) ne saurait s'annuler pour une valeur 
x = öL que si pour cette valeur de x on avait à la fois 

2/2 = 0, y3 = 0, 

dans quel cas en vertu des équations du système et celles qu'on obtient en différentiant 
celles-ci toutes les dérivées successives de y1 seraient nulles pour x = a. 

Dans le cas de problèmes de la Dynamique, il arrive que l'équation des forces 
vives fournit des conditions d'inégalités, en vertu desquelles le système d'équations 
du second ordre, auxquelles se ramène le problème, fournit pour une ou plusieurs 
coordonnées q l'expression A (g) inférieurement ou supérieurement limitée. 

4. Une fonction y de x sera dite régidiere dans l'intervalle de x — a à x = b si, 
dans cet intervalle, elle et toutes ses dérivées sont réelles, finies et continues. 

Lorsque le système donné (E) d'équations définit la valeur relative A (y) de la 
dérivée seconde d'une intégrale y comme fonction 0 inférieurement ou supérieurement 
limitée, il y a des rapports entre les particularités (signe, mode de croissance, limites 
de variation etc.) de la fonction dans un intervalle (a, b) et la repartition des zéros 
simples de toute l'intégrale y régulière dans cet intervalle. Ces rapports sont résumés 
dans les faits suivants : 

(a) Supposons que la fonction 0 soit inférieurement limitée par une fonction 
X (x) finie et continue dans l'intervalle (a, b) ; soit u une intégrale quelconque de 
l'équation 

u" — X (x) u = 0. 

Deux zéros simples consécutifs de u compris dans (a, b) comprennent au plus un 
zéro de y ; deux zéros simples de y comprennent au moins un zéro de u. Lorsque y et 
u ont un zéro commun x = a la variable x, en croissant à partir de a, atteindra d'abord 
un zéro de u et ensuite un zéro de y. 

(b) Supposons que </> soit supérieurement limitée par une fonction fi (x) finie et 
continue dans (a, b) ; soit v une intégrale quelconque de l'équation 

v" - fjb (x) v — 0. 

Deux zéros simples de v compris dans (a, b) comprennent au moins un zéro de y ; 
deux zéros simples consécutifs de y comprennent au plus un zéro de v. Lorsque y et v 
ont un zéro commun x = a, la variable x, en croissant à partir de a, atteindra d'abord 
un zéro de y et ensuite un zéro de v. 

Ces propositions, qui ne sont autres que celles de Sturm pour les équations 
linéaires du second ordre, se démontrent de la manière bien élémentaire connue ne 
supposant que les inégalités 

X (x) ^ </> ^ fjb (x) 

et la régularité de l'intégrale y dans (a, b). 
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En prenant pour fonctions de comparaison u et v diverses fonctions dont on 
connaît, d'une part la manière dont varient les valeurs relatives de leurs dérivées 
secondes, et d'autre part la repartition des zéros dans un intervalle donné (a, b), on 
aura les propositions suivantes mettant en évidence les rapports entre les particularités 
de la fonction $ correspondante à une intégrale y d'un système (E), régulière dans 
(a, b), et la repartition des valeurs de x, comprises dans cet intervalle, pour lesquelles 
y change de signe en s'annulant. 

1°. La fonction de comparaison 
u = erx 

ayant comme A (u) la valeur r2, conduit à la règle suivante : si (/> est inférieurement 
limitée par une fonction constamment positive dans (a, b), l'intégrale y ne change de 
signe plus d'une fois dans cet intervalle. 

2°. La fonction de comparaison 

v = sin x\/N (N = const.) 

ayant pour A (v) la valeur —N, conduit à la règle suivante: si cf> est supérieure­
ment limitée par une fonction constamment négative dans (a, b), où elle a — N comme 
une limite supérieure, l'intégrale y change de signe, dans cet intervalle, au moins autant 
de fois qu'il y a d'unités entières dans 

(b-a)\/N 
TT 

La fonction de comparaison 

u = sin x Vif (M = const.) 

ayant pour A (u) la valeur — M, conduit à la règle suivante : si cj> est inférieurement 
limitée par une fonction constamment négative dans (a, b), où elle a — M comme une 
limite inférieure, Vintégrale y change de signe, dans cet intervalle, au plus autant de 
fois qu'il y a d'unités entières dans 

(&-q)Vl¥ | 2 _ 
7T 

Ce sont les règles connues de Sturm pour le cas spécial d'une équation linéaire 
du second ordre, applicables, également, à d'autres types d'équations. 

3°. Les fonctions de comparaison de la forme 

xl~~2m sin px 

(m et p étant des constantes positives), ayant pour valeur relative de la dérivée 
seconde l'expression 

G - Dx2m 

n m2 - 1 j , 
avec C =—-r-—, D=p2m2, 

conduisent à la règle suivante : les constantes positives G, D étant choisies de manière 
que dans (a, b) $ soit supérieurement limitée par la fonction 

G - Dx2m 
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négative dans (a, b), y change de signe, dans cet intervalle, au moins autant de fois qu'il 
y a d'unités entières dans 

bm - am 

ou m 

2TT 

"~D 
= Vl + 4G, V^SJY . 4- 40•• 

De même : les constantes positives G', D' étant choisies de manière que dans (a, b) <£> 
soit inférieurement limitée par la fonction 

X2 

négative dans (a, b), y change de signe, dans cet intervalle, au plus autant de fois qu'il y 
a d'unités entières dans 

-~-^~p+% 

mWl4-4C, V^JY^W" ou 
... . . . . _ _ . . ... . + 

Dans le cas, par exemple, de l'équation linéaire 

?-{& + **) y 
la règle 2° fournit pour l'intervalle (1, 4) et en prenant N — 63, 9 le nombre 9 
comme limite supérieure du nombre de changement de signe de y; la règle 3° en 
prenant 

C" = a D' = -2~£ 

ce qui donne w! = 2 , p' = f, 

en fournit 7 comme une limite supérieure. De même, pour une limite inférieure de 
ce nombre la règle 2° fournit 1 et la règle 3° le nombre 2. 

4°. Les fonctions de comparaison de la forme 

e~kx sin (pe2kx) 

(où k et p sont des constantes positives), ayant pour valeur relative de la dérivée 
seconde l'expression 

A - Be4kx, 

avec A = h2, B = ^p2h2, 

conduisent à la règle suivante : les constantes positives A et B étant choisies de manière 
que, dans (a, b), <£ soit supérieurement limitée par la fonction 

A - Be4lcx, 

négative dans (a, b), y change de signe, dans cet intervalle, au moins autant de fois qu'il 
y a d'unités entières dans 

De même : les constantes positives A', B' étant choisies de manière que, dans 
(a, b), <jb soit inférieurement limitée par la fonction 

A'-B'e*h'x, 
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négative dans (a, b), y change de signe au plus autant de fois qu'il y a d'unités dans 

2 + l_ ( e 2W^_ e 2WZ' ) A y / J. 

Dans le cas, par exemple, de l'équation linéaire 

y" = (l-^x)y, 

en prenant A = l, 5 = 1, 

A' = l, £ ' = 9, 

on trouve que l'intervalle (0, 3) y doit changer de signe au moins 62 et au plus 188 

fois, tandis que la règle 2° en fournit les limites 1 et 740. 

5°. Les fonctions de comparaison de la forme \/x sin (p log x) (p étant une 
constante positive), ayant pour valeur relative de la dérivée seconde l'expression 

X2 ' 

avec A = p2 4- J, 

conduisent à la règle suivante : les constantes positives A et A' étant choisies de 
manière que dans (a, b) on ait constamment 

A' , A 
- ^ ^ - ^ 

le nombre de changement de signe de y dans (a, b) est compris entre les deux valeurs 

V4A - 1 . b 

et 2 + -toT-^-a 
Dans le cas, par exemple, de l'équation linéaire 

65 
y —&y> 

en prenant A = -2 -̂, A' = ^-, 

on trouve que dans l'intervalle (1, 100) y doit changer de signe au moins 2 et au plus 
4 fois; la règle 2° fournit 1 et 128 comme limites de ce nombre. 

5. Les règles précédentes s'appliquent, par exemple, aux équations du premier 
ordre 

yf =Aœ> y)> 
pour lesquelles l'expression 

^ y\dx J dy 

est limitée par une des fonctions de comparaison X ou /JL. On les vérifie directement, 
par exemple, sur les équations de la forme 

y' = -l~y + ^P~lc2P2y2 
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(où P est fonction de x ou constante, h une constante) ayant comme intégrale générale 

-j=. sin ( k \ Pdx 4- G j , 

et comme <£ l'expression 

y W P 

8 ^ Y L 2 P 2 i -P" 
4 VP/ " " 2 7 ^ * 

Appliquées à l'équation du second ordre 

y" +fy + $ys = o, 

où / et (/> sont des fonctions positives de x, elles mettent en évidence le caractère 
oscillant des intégrales régulières et fournissent des limites inférieures du nombre 
d'oscillations de ces intégrales dans un intervalle de x donné ; l'expression (/> corres­
pondante est supérieurement limitée par la fonction constamment négative —f(x). 
On vérifie directement les règles sur le cas particulier de l'équation 

y" + Ay + By* = 0 

(où A et B sont des constantes positives), s'intégrant par les fonctions elliptiques. 

Appliquées au système 

-J? =/% 0», Vu ••• yn\ (i = 1; 2 ... n) 

ces règles mettent en évidence le caractère oscillant de toute intégrale régulière y^ 
pour laquelle l'expression 

yk\dx Jldyi 

est supérieurement limitée par une fonction négative ; la connaissance d'une fonction 
de comparaison /n conduit à la connaissance d'une limite inférieure du nombre d'oscilla­
tions comprises entre les limites données de x* Les règles se vérifient directement 
sur le système de la forme 

'^-Mn. + Ny,, 

où M, N, P sont des fonctions de x telles que l'expression 

M' + M* + NP, 

à laquelle se réduit l'expression c/> relative à l'intégrale ylt soit constamment négative, 
et plus particulièrement sur le cas où M, N, P sont des constantes. 



SUR LA SERIE DE STIRLING 

PAR J. HADAMARD. 

La série de Stirling, 

iogV^-.+(, + i)iog,+Aì_^J+... + (_1),-1(„^_i3i + ... 
d), 

correspondant à l'expression asymptotique de log T (x + 1) pour x très grand, est, 
on le sait, divergente. Elle renseigne sur l'allure de la fonction, mais n'en fournit 
pas la valeur numérique. 

M. Borei s'est, le premier, posé le problème de remplacer une pareille série 
par une quantité ayant, pour chaque valeur de la variable, un sens bien défini. 
Il l'a résolu (pour une classe très étendue de développements, à laquelle appartient 
celui que nous considérons en ce moment) en substituant aux séries considérées 
des intégrales définies. 

J'ai montré depuis* qu'on peut arriver au même résultat en suivant la méthode 
classique de M. Mittag Leffler, c'est-à-dire en ajoutant à chaque terme de la série 
divergente un terme de décroissance plus rapide lequel ne change pas, par conséquent, 
l'allure du terme primitif, mais qui produit la convergence lorsqu'on le considère 
pour n— 1, 2, ..., oo. 

On peut, comme j 'ai eu l'occasion de le constater précédemment, indiquer 
effectivement une forme de série de cette espèce pour la fonction de Bessel. Je 
me propose aujourd'hui de traiter la même question pour la série de Stirling. 

La série que nous allons former ne représentera pas \§<gY(x)\ mais en 
désignant sa somme par S(x), on aura 

\ogT(x)=S(x) + ylr(x), 

^r(x) décroissant lui aussi, plus vite que n'importe quelle puissance de x. 

Pour arriver à ce résultat, nous appliquerons la méthode qui jusqu'ici semble 
la plus naturelle pour l'évaluation asymptotique de log T (x), celle qui est fondée 
sur l'intégrale de Eaabe 

'X+l 

log T (x) dx = x log x — x 4- log V 27T, 

* Transactions of the American Mathematical Society, 1902. 
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et, pour déduire de là la valeur de log T (x) lui-même, nous prendrons comme point 
de départ les mémoires* dans lesquels M. Lindelöf étudie les relations qui existent 
entre une intégrale définie et la somme des valeurs de la fonction à intégrer 
correspondant à des valeurs en progression arithmétique données à la variable. 

Nous emprunterons aux recherches de M. Lindelöf la formule f 

(x+i r a 

ï[F(œ) + F(œ + iy\=\ F(x)dx + 2 
J x J 0 

Q(x+l,t)-Q(x,t) 
éT 

dt, 

Q f r O - ^ * ^ - ^ * - * » . 

Pour i^(*) = logr(a?) (et, par conséquent, F(x + 1) — F(se) — log«) ceci devient 

\ [log r o ) + log r (x+D] = log r (*•) + 1 log x 

f*Mi r / w , r i o g ( « + tO-log(a!-i«) ,, / 0 . 

"J. l o g r ( - )^ + j 0 < ( ^ _ î ) dt (2>-
La première intégrale du dernier membre est celle de Raabe. C'est le second 

terme que nous nous proposons de développer. 

Si la quantité sous le signe / était développable (dans tout l'intervalle), suivant 
les puissances de x, ce second ternie s'écrirait: 

/ _ 1 \n—i r°° f2n—i 
9V V "O _J dt 

*(2n- l ) ^ - 1 J o e^-l ' 

c'est-à-dire l'expression (3), puisque j 

/ , 
1 dt - "" 

o e27rt - 1 4M ' 

Pour appliquer ce même développement dans des conditions où il soit légitime, 
nous limiterons la deuxième intégrale de la formule (2) à l'intervalle (0, x). 

Le reste f " logfr + ^ j g g O » - * ) dt 

Jx i(e2j:t-l) 

satisfait à la condition de décroissance imposée ci-dessus et peut, dès lors, être 
laissé de côté. 

Dans l'intégrale , notre développement est applicable: son terme général 
J 0 

est de la forme 

2 ( - i ) ^ ~ i fx p*-* = 2 . (-1)*»-1 /Bn _ r t™-1 \ 
(2n - 1) x2n~l J o e27r* - 1 ~ (2n - 1) af^1 \4m J x e ^ ^ l J ' 

* Voir en particulier "Quelques applications d'une formule sommatoire générale," Acta Soc. Fennicae, 
t. xxxi. (1902) ; voir aussi Acta Math. t. xxvn., et Leçons sur le calcul des résidus, Paris, Gauthier Villars, 
1905, Ch. n i . 

t C'est la formule (35) du No. 9 du Mémoire des Acta Soc. Fennicae (note précédente) dans laquelle on 
fait f(n)=F(x + n), ra=0, n — 1, ou l'une des formules du No. 30 (page 62) des Leçons sur le calcul des 
résidus. 

X Voir, par exemple, Leçons sur le calcul des résidus, p. 71. 
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Dans l'intégrale qui constitue le terme soustractif, nous remplacerons la fraction 

-^—— par son développement fini : 

—:—, = e-2"14- e~47rt 4- ... 4- e~2X7vt + --,--• ^ . 

En prenant \ = n (ou plus généralement, X — kn, k étant un entier fixe) les restes, 
ß—2\irt 

—t—- , reportés dans l'intégrale, donnent une série convergente, dont la somme satisfait e' 
ë 
d'ailleurs à la condition de décroissance 

Il en résulte qu'on rend la série de Stirling convergente en ajoutant au 
terme la quantité 

2 (— \\n~i r00 / i \ 
^ ' I - t v n — i ( „—Z-rrt i „ — X t r t t i • , — 2 ? l 7 r £ \ J + r f S I S > — 2 T T X \ J t211'1 (e~27rt 4- e~é7Tt 4- ... 4- e~2n7Tf) dt = ®n(-, e~27TA 

(2n-l)x2n-1Jx 

étant un polynôme entier de degré 2n — 1 par rapport à l'une des variables, n par 
rapport à l'autre. 



ÜBER EINE AUFGABE VON HERMITE AUS DER 
THEORIE DER MODULFUNKTION 

VON L. SCHLESINGER. 

In einem Briefe an Stieltjes* vom 23 Februar 1891 schreibt Hermite das 
folgende: "Permettez moi...de vous demander s'il y aurait lieu de suivre cette idée 
qui m'a traversé l'esprit : Je considère la relation entre les modules pour la trans­
formation de second ordre 

j _ 2V& 

iK' 
" Si l'on pose co = • ~ et k = c/)4 (co) 

•n.*™, *'(!) = r ^ > « 
" Or il m'a semblé voir qu'une telle relation ne peut être satisfaite, si l'on suppose 

que (j) (œ) soit une fonction uniforme dans tout le plan. D'où cette conséquence non 
inutile à remarquer que la présence d'une coupure rend possible des relations d'une 
certaine forme, d'une nature et d'un caractère de grande importance." 

Ich möchte heute einen ersten Teil meiner Untersuchungen vorlegen, die sich 
auf die von Hermite aufgeworfene und daran anschliessende weitere Fragen beziehen, 
indem ich mir die Aufgabe stelle, stufenweise fortschreitend die allgemeinsten 
monogenen Funktionen aufzustellen, die der Hermiteschen Funktionalgleichung 
genügen. Es wird dabei eine Bemerkung von Gauss zu besprechen sein, die sich 
vor kurzem im handschriftlichen Nachlasse vorgefunden hat, und-wir werden im 
Anschlüsse hieran zu einem einfachen System von Bedingungen gelangen, durch das 
die Modulfunktion charakterisiert werden kann. 

1. Wir gehen der Bequemlichkeit wegen statt von <£(û>) von der vierten 
Potenz dieser Funktion aus und schreiben die Hermitesche Funktionalgleichung 
(1) in der Form 

J\.2)-l+f(t) (l) 

oder /2(ö=[ifl)p (2A)-
* Correspondance H ermite-Stieltjes, il. (1905), S. 148. 
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Es sollen die monogenen Funktionen der komplexen Variabein t charakterisiert 
werden, die der Gleichung (2) Gentige leisten. Dabei soll die Aussage, dass eine 
mehrdeutige Funktion der Funktionalgleichung genügt, bedeuten, dass diese 
Gleichung durch jeden eindeutig definierten Zweig jener Funktion befriedigt wird. 
In diesem Sinne sind auch alle anderen im folgenden zu betrachtenden Funktional­
gleichungen zu verstehen. 

Es sei x=f(t), und t = F(œ) die inverse Funktion von f(t). Dann folgt aus (2) 
die Gleichung 

2F(èfx)=F^ <8) 

die wir, um die Quadratwurzel zu vermeiden, durch die Substitution 

\/x = £ 

in die Gestalt 2F ( ^ Ü = F (?) (4) 

transformieren wollen. 

Wir nehmen nun zuvörderst an, dass die Funktion F(x) in der Umgebung von 
x — 1 holomorph sei. 

Dann folgt aus (4) durch Differentiation nach £ 

also für | = 1 F'(l) = 0. 

Durch fortgesetzte Differentiation ergibt sich ebenso, dass alle Derivierten von F (x) 
für x — 1 verschwinden, sodass also F (x) eine Konstante sein muss. Wie man sieht, 
bleibt dieser Schluss bestehen, wenn man an Stelle von (4) die allgemeinere 
Funktionalgleichung 

^(rfr)=^2> (ß) 
zu Grunde legt, wo p irgend eine endliche Konstante bedeutet, und es folgt sogar, 
dass für p =fc 1 die Konstante F (x) notwendig den Wert Null haben muss. Wir 
haben also den Satz : 

1. Eine Funktion, die der Gleichung (5) Genüge leistet und in der Umgebung 
von x — 1 holomorph ist, ist notwendig eine Konstante und für p =f= 1, also insbesondere 
für die Funktionalgleichung (4), identisch gleich Nidi. 

2. Wir stellen zunächst eine partikuläre Lösung der Funktionalgleichung (4) 
her, die nicht identisch verschwindet. 

Es werde x — ~, b — \la2 — c2 (6) 
a 

gesetzt, wo a, c beliebige komplexe Zahlen bedeuten, die nur der Bedingung unter­
worfen sind, dass a2 — c2 von 0 und 1 verschieden ist. 

20—2 
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Wir bilden aus a, b einerseits, aus a, c andererseits den Algorithmus des 
arithmetisch-geometrischen Mittels (agM.) 

a1 = —=— , 6j = \/ab, d = Va2 — b2 \ 

• a^p)^ b2 = \faA, c^^af-bf] 

a + c _ /— T /— --'\ 
h = —y- , Ci = vac, bj = v ^ 2 - Cj2 

a2 = -^-—*, c2 = V a ^ , b2 = Va2
2 - c2

2 ( 

•(7) 

.(8) 

Dann ist bekanntlich* 

lim an = lim bn = M (a, b), lim cn = 0 

lim äw = lim cn = Jf (a, c), lim 67l = 0. 

,..(9) 

.(10) 

und es bestehen die Beziehungen 

M(pa,pb) = pM(a,b) (11) 

für ein beliebiges von Null verschiedenes p, 

M(a,b) = M(an,bn)=2nM(än,bn) (12) 

M(a,c)=M(än,cn)=2nM(all,cn) (13). 

Da *, = ^ - = - ' (14) 
1 + x «i 

ist, so genügt die durch die Gleichung 

.(15) 
.M(a,b) .M(l, V i - * 2 ) 
M(a,c)~~ M(\,x) 

definierte Funktion von x, zufolge der Gleichungen (11), (12), (13) der Funktional­
gleichung (4). Da bekanntlich 

.(16) 

limilf(l, x) = l 
x=l 

HmM(l,Vr^log^==f 

ist, so besitzt die Funktion co von x für x = 1 eine Singularität, wie es nach unserem 
Satze I. sein muss. Die inverse dieser Funktion, œ=<j> (co), ist nichts anderes als die 
Modulfunktion f. 

* Vergi, für die hier anzugebenden Sätze über das agM. etwa Schlesinger, Handbuch der Theorie der 
linearen Differentialgleichungen, Bd. n. 2 (1898), S. 7 ff. 

t In der Bezeichnung von Hermite, # —04(w). 
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3. Bedeutet F (x) irgend eine nicht identisch verschwindende Lösung der 
Funktionalgleichung (4), so genügt offenbar 

MCI, so) 
G^-F^-iM(^jr^) ("> 

der Funktionalgleichung G ( ^ j \ = G(Ç2) (18) 

die aus der allgemeinen Gleichung (5) hervorgeht, wenn p = l gesetzt wird. Wir 
wollen diese Funktionalgleichung die Gauss'sche nennen, die Berechtigung hierfür 
wird sich sogleich ergeben. Es erscheint somit durch Zuhilfenahme der Funktion 
(15) die allgemeine Lösung der Funktionalgleichung (4) auf die der Gauss'schen 
zurückgeführt. Wir beschäftigen uns also mit der letzteren, von der bereits 
feststeht (Satz I), dass eine Lösung derselben, die für x — 1 holomorph ist, notwendig 
konstant sein muss. 

2\Jx Ci \ 
Setzt 

x2 — 
1 + x 

1 4- x a1 

2\Jxx c2 

\ (i9) 

xn — 
a. 

"TL 

so ist für eine Funktion G (ai) die der Gauss'schen Gleichung (18) genügt 

G (œ) = G (x,) = G(x2) = ... = G (xn) (20). 

Da nach den Gleichungen (10) und (19) 

lim xn — 1 
n 

ist, so folgt, dass die Lösung der Gauss'schen Gleichung (18) auch dann eine Kon­
stante sein muss, wenn für sie nur feststeht, dass sie im Punkte x — 1 eine Singularität 
besitzt, an der sie bestimmt ist*. In diesem Falle existiert nämlich lim G(x) als 

endlicher oder unendlich grosser Wert, der unabhängig ist von dem Wege, auf dem 
die Variable x in den Punkt x = 1 einrückt. Es ist also 

lim G (xn) = lim G (x). 
n x—\ 

Bedeutet nun x einen Wert, für den die Funktion G (x) holomorph ist, so haben 
wir nach (20) 

G (x) = lim G (xn), 
n 

* Im Sinne der von mir (zuerst Handbuch, i. 1895, S. 16) angegebenen Modifikation der von Fuchs 
(1886, Werke, n. S. 349) aufgestellten Definition, wird von einer Funktion F (x) gesagt, class sie an der 
Stelle x = a bestimmt (nicht unbestimmt) ist, wenn (1) F (x) an allen Stellen einer gewissen Umgebung von 
x = a holomorph ist und (2) für jede gegen die Null konvergierende Wertenfolge 51? 52, ..., die so beschaffen 
ist, dass sich F(x) in den Punkten a + dk holomorph verhält, die Folge, F(a + di) F(a + 52), ... einem 
bestimmten, von der Wahl der besonderen Folge di, 52, ... unabhängigen endlichen oder unendlich grossen 
Grenzwerte lim F(x) zustrebt, vorausgesetzt, dass zur Berechnung der Funktionswerte F(a + ôk) ein 

beliebig gewählter, aber dann eindeutig festzuhaltender Zweig der Funktion F (x) benutzt wird. 
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der Wert lim G (x) — G ist also ein endlicher, und es ist G (x) = G. Wir haben also 
s=l 

den Satz : 

IL Eine Lösung der Funktionalgleichung (18), die für x = l nicht unbestimmt 
lüird, ist eine Konstante. 

In dem handschriftlichen Nachlass von Gauss findet sich eine Aufzeichnung, die 
demnächst an anderer Stelle veröffentlicht werden soll*, in der Gauss sagt, es sei 
leicht zu sehen, dass eine Funktion, die der Funktionalgleichung 

FW=F(T2T)' ( 2 1 ) 

genügt, notwendig eine Konstante ist. Setzt man 

so verwandelt sich die Funktionalgleichung (18) in die Gauss'sche Gleichung (21). 
Gauss hatte bei dieser Aussage offenbar den Fall vor Augen, wo die Funktion F(t) 
als Funktion der reellen Yariabeln t für t = 1 stetig ist. In der Tat werden wir in der 
Nr. 5 die allgemeinste Lösung der Gauss'schen Funktionalgleichung (18) aufstellen 
und an einem einfachen Beispiele erkennen, dass diese Lösung sich nicht notwendig 
auf eine Konstante reduziert, sodass also die in unserem Satze II. enthaltene Ein­
schränkung für die Funktion G (x) nicht überflüssig ist. 

4. Die Gleichungen (16) lehren, dass die Funktion (15) 

.M(l, \ll-~x2) 
W-% M{l,x) 

für x=l singular, aber bestimmt ist. Bedeutet F(x) eine Lösung der Funktional­
gleichung (4), die in x — 1 eine Singularität besitzt, von der Beschaffenheit, dass das 
Produkt 

F(x).1-

für x = l bestimmt istf, so ist dieses Produkt eine Konstante, es unterscheidet sich 
also F(x) von œ nur durch einen konstanten Faktor. Für die inverse Funktion 
x—f{t) von t = F(x), die der Funktionalgleichung (2) genügt, erhalten wir also die 
Darstellung 

f(t)=<j>(C.t), 
wo (jy die Charakteristik der Modulfunktion und G eine Konstante bedeutet. Zufolge 
der Gleichungen (16) kann die Bedingung für F(x) so formuliert werden, dass 

v i— x2 

für x = 1 bestimmt sein soll. Wir haben also den Satz : 

* Materialien für eine "wissenschaftliche Biographie von Gauss, gesammelt von Klein und Brendel 
(Leipzig, Teubner), Heft in. Anhang S. 120. 

t Es genügt nicht etwa zu sagen, dass F (x) selbst in x = l bestimmt sein soll, denn das Produkt zweier 
Funktionen, die in x = l bestimmt sind, kann sehr wohl in diesem Punkte unbestimmt sein. Z. B. sind 

(&-1)""* % und {x-Vf beide in x=l bestimmt, aber ihr Produkt (x-iy ist (vergi. Brodén, Arkiv for 
Mathem., Astron. och Fysik, i. 1903-4, S. 446) in x — 1 unbestimmt. 

file:///ll-~x2
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III . Eine monogene Lösung x = f(t) der Hermite sehen Funktionalgleichung (2), 
4 

deren inverse Funktion in x = l singular, aber mit log —••-=-. multipliziert für x = l 
vi— x2 

bestimmt ist, geht aus der Modulfunktion cp(co) durch die Substitution Gt = co hervor, wo 
G eine von Null verschiedene Konstante bedeutet. 

Für die lemniskatische Funktion ist co = i, x — i, wir können also für die Modul­
funktion x = </> (co) die folgenden, diese Funktion eindeutig charakterisierenden 
Bedingungen angeben: 

(1) Sie genügt der Funktionalgleichung 
fco\ __ 4t(f> (co) 

V\2J (14-CK*>)) 2 ' 
4 

(2) ihre inverse Funktion ist mit log _ —- mulipliziert in x = 1 bestimmt, 
v i — x2 

(3) sie nimmt für co = i den Wert i an. 
5. Die Betrachtungen der vorigen Nummer zeigen, dass die allgemeine Lösung 

der Funktionalgleichung (4) aus der allgemeinen Lösung der Gauss'schen Funktional­
gleichung (18) durch Multiplikation mit einer partikulären Lösung von (4), also etwa 
mit co hervorgeht. Wir wollen daher jetzt die Gauss'sche Funktionalgleichung (18) 
ganz allgemein zu lösen suchen. 

Wir setzen zu diesem Zweck in G (x) der Reihe nach x =f(t), t = eu ein, wo 
x~f(t) irgend eine Lösung der Hermiteschen Funktionalgleichung (2) bedeutet. 
Dann ist nach (18) 

ö(/(*)) = G (/g)), 
und G (f(eu)) = G (f(eu~1^)). 
Bezeichnen wir also mit P (u) irgend eine monogene Funktion der komplexen 
Variabein u mit der Periode log 2, so ist P (log t) die allgemeine Lösung der 
Gauss'schen Funktionalgleichung und folglich t. P (log t) die allgemeine Lösung 
der Funktionalgleichung (4). Wählen wir z. B. für die Lösung x =f(t) von (2) die 
Modulfunktion x = cfi(co), so stellt uns 

.M(l, v T ^ r 2 ) \ 
G(*) = P(H*) = P{logi^M{hx) >) (22) 

die allgemeine Lösung der Gauss'schen Funktionalgleichung, und folglich 

-^n^-^)«-^? ™ 
die allgemeine Lösung der Funktionalgleichung (4) dar. Die Umkehrung der 
Funktion (23) liefert demnach die allgemeine Lösung der Hermite'schen Funktional-

2iriu 

gleichung (2). Die Wahl P(u) = elog2 würde z. B. die Lösung 

der Gauss'schen Funktionalgleichung liefern, die offenbar keine Konstante ist, aber 
in x = 1 unbestimmt wird. Da die periodische Funktion P (u) in u = oo stets 
unbestimmt ist, so ist überhaupt, in Uebereinstimmung mit unserem Satze IL, die 
durch (22) dargestellte Lösung der Gauss'schen Funktionalgleichung im Punkte 
x — 1 stets unbestimmt, wenn sie sich nicht auf eine Konstante reduziert. 



DIRECT DERIVATION OF THE COMPLEMENTARY THEOREM 
FROM ELEMENTARY PROPERTIES OF THE RATIONAL 
FUNCTIONS 

BY J. C. FIELDS. 

Let f(z,it) = iin+fl_li^-1+...+f==Q (1) 

be an equation in which the coefficients /?l_x, ..., f are rational functions of z. The 
equation may be reducible or irreducible. We shall assume however that it does not 
involve a repeated factor. Any rational function of (z, u) can be written in the 
reduced form 

hn_iun-1 + hn-*un-* + ... +h0 (2), 

where the coefficients hn...ly ..., h(} are rational functions of z. The term involving 
un~J we call the principal term, the coefficient hn_x the principal coefficient of the 
function. By the principal residue of a rational function relative to a given value 
of the variable z we shall mean the residue of the principal coefficient of the function 
for this value of z. 

In the neighbourhood of a value z = a (or z = oo) the equation (1) can be 
represented in the form 

( U - P 0 . . . ( u - P n ) = 0 (3), 

where P1, ..., Pn are power-series in z — a for - j involving, it may be, fractional 

exponents and possibly also a finite number of negative exponents. They will group 
themselves into a number r of cycles of orders vly ...,vY, the exponents in the branches 

belonging to the several cycles being integral multiples of the numbers —, ..., — 
Vj vr 

respectively. Only for a finite number of values of the variable z will any of the 
corresponding power-series involve negative exponents, and for all but a finite number 
of values of the variable we shall have v1= ... =vr = l, and therefore r = n. 

A rational function of (z, u) will have certain orders of coincidence with the 
branches of the fundamental equation corresponding to a given value of the variable z. 
These orders of coincidence will be the same for the branches of the same cycle. The 
orders of coincidence of the function fu' (z, u) with the branches of the rK cycles 
corresponding to a finite value z = aK we designate by the notation fx^, ..., ///, , its 
orders of coincidence with the branches of the r^ cycles corresponding to the value 
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z = GO by the notation f61
(co), ..., p^- If the orders of coincidence of a rational 

function for the value z = aK do not fall short of the numbers 

^ W - l + -t)> - . / £ ) - l + -£) (4) 
*V v., 

respectively, we say that the orders of coincidence of the function are adjoint* for 
the value of the variable in question, and we also say that the function itself is 
adjoint for this value of the variable. 

I t is readily seen that we can construct a rational function which actually 
possesses an arbitrarily assigned set of orders of coincidence corresponding to any 
value of z.—Here it is to be understood of course that the orders of coincidence in 

question are integral multiples of the corresponding numbers —, ..., — respectively.— 

Assigning a system of sets of orders of coincidence T^K\ ..., T ^ for all values of the 

variable z, the value z = oo included, w7e shall designate this system by the notation (T) 
and we shall say of a rational function that it is built on the basis (T) when its orders 
of coincidence with the several branches corresponding to any value of the variable z 
in no case fall short of the orders of coincidence given by the basis. In assigning the 
orders of coincidence of a basis we shall assume that for all but a finite number of 
these orders of coincidence we have taken the value 0. We shall find it convenient 
to employ the notation (T)' to designate that part of the basis (r) which corresponds 
to finite values of the variable z and to designate by (T)(GO) the partial basis corre­
sponding to the value z = oo . 

The general rational function conditioned by the set of orders of coincidence 

7"I(K\ •••> TIK) f° r the value z = aK can be written in the form 

6M (z, u) u xx /CN 

^ ^~/ + ((z-aK, u)) (5), 
(z — aK) K 

where <£^K) (Z, U) is a polynomial in (z, u) of degree < iK in z, and where the notation 
((z — aK, u)) signifies a polynomial in u with coefficients which, expanded in powers 

* It might be well in this connection to draw attention to the divergence which exists between the 
meaning which the writer has found convenient to attach to the term adjoint and the sense in which the 
word adjungirt has been defined by Brill and Nöther in their classical paper "Ueber die algebraischen 
Funktionen und ihre Anwendung in der Geometrie," Math. Annalen, Bd.'vn. Brill and Nöther speak of 
"adjungirte Curven " meaning thereby curves which fulfil certain conditions with regard to the singular 
points of the fundamental curve. The writer however finds that it fits in better with his methods to define 
the term "adjoint" with reference to any individual value of z and to say of a function of (z, u) that it 
is adjoint for one or more values of the variable z—it may be for all values of the variable, the value 
Z — CD included. If the fundamental equation (1) is an integral algebraic equation it represents an 
algebraic curve as it stands and if g (z. u) = 0 is an adjungirte Curve the function g (z, u) is, as a matter of 
fact, adjoint for all finite values of the variable z when we regard u as a function of z satisfying equation (1). 
For the value z=cc however a function g(z, u) will not in general be adjoint when g{z, u)=0 is an 
adjungirte Curve of a given degree. The property of adjointness relative to the value z — cc in fact limits 
the degree of a rational function. If equation (1) is integral and if the function g (z, u) is adjoint for all 
finite values of z it must, in its reduced form, be integral in {z, u) and the curve g {z, u) = 0 is an adjungirte 
Curve of a certain degree. If, however, the equation (1) is not integral, a function g (z, u) may be adjoint 
for all finite values of z without being integral. 
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of z — aK, involve no negative exponents. The general rational function conditioned 
by the partial basis (T) ' will have the form 

Tr , N N (z, u) 7 , s /n. 
H(z,u)= ^ z )

} + P{z,u) (6), 

where Q (z) is a polynomial in z and where N (z, u) and P (z, u) are polynomials in 
(z, u), the former having a degree in z less than that of Q (z). Under the fractional 
element in (6) is evidently included the fractional part of the expression (5)—that is, 
on imposing further conditions on the arbitrary constants involved in the fractional 
part of (6) we could reduce it to the fractional part of (5). 

It is readily shewn that we can construct a rational function which, for finite 
values of the variable z, actually possesses the orders of coincidence assigned by 
the partial basis. (T)'. Also we can construct a rational function which actually 
possesses for the value z — oo an arbitrarily assigned set of orders of coincidence 
r / , ..., T^\ We may or may not however be able to construct a rational function 

which is simultaneously conditioned by the partial bases (r)' and (T)(CO), that is, we 
may or may not be able to build a function on the basis (T). 

We say that a partial basis (t)' is loiver than a partial basis (T)' if the orders 
of coincidence indicated in the former partial basis nowhere exceed those designated 
by the latter basis and if, at the same time, one or more of the orders of coincidence 
given by the partial basis (t)' fall short of the corresponding orders of coincidence 
given by the partial basis (r)'. In like manner with reference to the value z = co we 
speak of a partial basis (£)(co) which is lower than the partial basis (T)(OO). I t is 
evident that we impose on the general rational function conditioned by the partial 
basis (t)' a number of conditions given by the sum 

2 , | i ( r f ) -^ ) )^ ) (7) 

in order to obtain the general rational function conditioned by the partial basis (T)'. 
Here the accent over the sign of summation signifies that the summation is extended 
only to terms having reference to finite values of z. Also we impose on the general 
rational function conditioned by the partial basis (£)(QO) a number of conditions given 
by the sum 

2(T<->-*<•>)„<«> (8) 

in order to obtain the general rational function conditioned by the partial basis 

( T ) ( M ) . 

If two sets of orders of coincidence T^K\ ..., r^ and r^K\ ..., T?. , corresponding 

to the same value z — aK, satisfy the inequalities 

1^ 
^ ) + ^ ) P ^ ) - l + 4 5 ; * = 1, 2, . . . , rK (9), 

we say that they are complementary adjoint. If they satisfy the inequalities 

•r{;i + r{;)?i + ^ ) - l + ~ ; s = l,2,...,rK (10), 
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we say that they are complementary adjoint to the order i. Two bases (r) and (T) 
we say are complementary bases if the sets of orders of coincidence which they furnish 
for finite values of the variable z are complementary adjoint, while the sets of orders 
of coincidence furnished by them for the value z = co are complementary adjoint 
to the order 2. Where then (T) and (r) are complementary bases, the orders of 
coincidence furnished by them for finite values of the variable z — aK satisfy the 
inequalities (9), while for the value z — oo they furnish orders of coincidence which 
satisfy the inequalities 

T 
(co) - ( C O ) _ (GO) 1 

+ TÌ f l 0 ' 5^ W ' + 1 + -75Tì; * = 1 , 2 , ...,*•„ (11). (oo) 

From now on we shall find it convenient to assume that the equation (1) is an 
integral algebraic equation. In this case the writer has shewn* that a rational 
function which is adjoint for a finite value z — aK must be integral with regard to the 
element z—aK. He has also shewnf that the necessary and sufficient conditions in 
order that a rational function -v/r (z, u) may have for the value z = aK orders of 
coincidence which are complementary adjoint to the orders of coincidence TX

( , ..., Ty 

are obtained on equating to 0 the principal residue relative to the value z = aK in the 
product of i/r (z, u) and the general function (5). Supposing yfr (z, u) to be an integral 
rational function of (z, u) the necessary and sufficient conditions here in question are 
evidently also obtained on equating to 0 the principal residue relative to the value 
z — aK in the product 

C* $.+<*.) (12). 
(z - aK)K 

In this product no residues can possibly present themselves other than those which 
correspond to the values z = aK and £ = oo . Since however the sum of the residues 
of a rational function of z must be 0, it follows that the necessary and sufficient 
conditions in order that an integral rational function y{r (z, u) should have for the 
value z = aK orders of coincidence which are complementary adjoint to the orders 
of coincidence T^K\ ..., r^ are obtained on equating to 0 the principal residue 
relative to the value z — co in the product (12). 

Now the function (6) in the neighbourhood of the value z — aK has the form 
given in (5). It is therefore necessary that the principal residue relative to the 
value z = aK in the product of y\r (z, u) and the function (6) should have the value 0 
in order that the former function should have for the value z = aK orders of coincidence 
which are complementary adjoint to the orders of coincidence r^K\ ..., T£K\ In order 

then that the integral rational function yjr(z, u) should have, for the value z = aK, 
orders of coincidence which are complementary adjoint to the orders of coincidence 
T^K\ ..., T|,K) it is necessary that the principal residue relative to the value z = aK in 

the product 
N(z,u) 

Qjz)'^^u) ( 1 8 ) 

* "On the foundations of the theory of algebraic functions of one variable," Phil. Trans. Roy. Soc. 
1912. 

t loc. cit. 
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should have the value 0. In order therefore that the integral rational function 
^ (z, u) should have for all finite values of the variable z orders of coincidence which 
are complementary adjoint to the corresponding orders of coincidence furnished by 
the partial basis (rf it is necessary that the principal residues of the product (13) 
relative to the several values z — aK should all have the value 0. The sum of these 
residues will in this case be 0 and the principal residue of the product (13) relative 
to the value z — oo must consequently have the value 0 when the orders of coincidence 
of the function ^(z, u), for all finite values of the variable z, are complementary 
adjoint to the corresponding orders of coincidence furnished by the partial basis (r)'. 

Conversely, if the principal residue relative to the value z = co in the product 
(13) is 0 the integral rational function ^ (z, u) must, for all finite values of the 
variable z, have orders of coincidence which are complementary adjoint to the 
corresponding orders of coincidence furnished by the partial basis (T)'. For if the 
principal residue, relative to the value z = oo , in the product (13) is 0, so also 
is 0 the value of the principal residue relative to the value z = co , in the product (12), 
since the first factor in (12) maybe obtained from the first factor in (13) by imposing 
on it certain conditions. If then the principal residue relative to the value z = oo in 
the product (13) has the value 0, the integral rational function ^fr(z, u) must, for the 
value z — aK, have orders of coincidence which are complementary adjoint to the 
corresponding orders of coincidence furnished by the partial basis (T)'. This holds 
for all the finite values of the variable z in question. The necessary and sufficient 
conditions then in order that an integral rational function ty (z, u) may, for all finite 
values of the variable z, have orders of coincidence which are complementary adjoint 
to the corresponding orders of coincidence furnished by the partial basis (r)', are 
obtained on equating to 0 the principal residue relative to the value z = oo in the 
product (13). 

Expanding the coefficients of the powers of u in the first factor of the product 

(13) in powers of - , the principal residue of the product relative to the value z — oo 
z 

will evidently depend on a finite number of terms only in the expanded first factor. 
If, for example, ty (z, u) is to be of degree in z not greater than a definite number M, 
we could name an integer i such that the principal residue of the product (13) 
relative to the value z — oo would be independent of any term in the expanded first 

l . fly 
factor involving - to a power as high as ( - . We do not for our purpose need to 
select the smallest integer i for which this holds. In the sequel M will designate 
the greatest degree in z of a rational function of (z, u) which is compatible with 
the possession by the function of the orders of coincidence T1

(CO), ..., T ^ for the 
roo 

value z = oo . 
In the general rational function of (z, u) conditioned by the partial basis (T)(CC) 

we shall suppose the coefficients of the powers of u to be expanded in powers of the 

element - and the general function so conditioned we shall represent in the form 
z 

*&«)=** (H+^(G'«)) (14)' 
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where R(i) (- , uj is a polynomial in u in whose coefficients - does not appear to 
z 

a power higher than f- j , and where the notation n - , u)) signifies a polynomial 

1 
in u wThose coefficients expanded in powers of - involve no negative exponents. The 

z 
integer i we shall choose sufficiently large to suit our purpose. In the memoir 
already cited we have shewn that the necessary and sufficient conditions in order 
that a rational function A|T (Z, u) may have, for the value z = co , orders of coincidence 
T/00*, ..., T(,GC) which are complementary adjoint to the order 2 to the orders of 

coincidence r/00 ', ..., T£ , are obtained on equating to 0 the principal residue relative 

to the value z = oo in the product 

R^,uyf(Z,u) (15). 
Supposing yfr (z, u) to be a rational function of (z, u) of limited degree in z and 

choosing i sufficiently large, the principal coefficient in the product 

a 
u)).yfr(z, u) (16) 

will present no residue relative to the value z = co whatever values the constant 

coefficients in the function ( ( - , u)) may have. Choosing i sufficiently large then, 

the necessary and sufficient conditions, in order that a rational function A/T (Z, u) of 

specified degree in z may have, for the value z = oo , orders of coincidence TJ\ ..., T|,GO) 

which are complementary adjoint to the order 2 to the orders of coincidence furnished 

by the partial basis (T)(QO), are obtained on equating to 0 the principal residue relative 

to the value z = oo in the product 

J S * ( p u ) . * ( * , « ) (17). 

We shall now suppose ty (z, u) to be an integral rational function of (z, u) and 
furthermore we shall assume that it has the form 

<v/r(^) = l S ^ . t - / " 1 « ' " 1 (18). 
t=l r = l 

In this case also we shall prove that the vanishing of the principal residue in the 
product (17) furnishes the necessary and sufficient conditions in order that the 
function -vjr (z, u) may have the orders of coincidence T}™\ ..., r ^ for the value z = co 

—if only the integer i be chosen large enough. Among the conditions here in 
question then will be found those which reduce the degree in z of the function 
f(z,u) to M. 

Let us consider the product 

*-p«"- '2 S ^ 1 | M * M « H ; P ? I , I ? T 3 H (19). 
1=1 r=l 
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Bearing in mind the fact that the fundamental equation (1) is integral, we readily 
see that in the reduced form of the product (19), the principal residue is the sum 
of the coefficient ap_ljT_1 and a linear expression in terms of coefficients ar_1} t-i i*1 

which r^p, t>r. If we equate this residue to Ó we obtain for ap_li T_x an expression 
which is linear in terms of coefficients ar_1} ̂  in which r ^ p, t> r. In particular 
when T = nwe obtain ap_l5 n_! = 0. 

Writing R(-,U)=X Zß^n-tz-ru"-* (20), 
\Z / t-\ r 

let us consider the product 

n i—1 n i—1 
2 2 /3_ r , n-tz-'v?1-1. S 2 a M , ^ - V - 1 (21). 

t-\ r-\ t=l r=l 

By the letter j we shall indicate an integer so large that the coefficients /3_rj n_t are 
all arbitrary for which r > j and at the same time so large that j — 2 ^ M—the 
greatest degree in z which a rational function of (z, u) can have and yet possess the 
orders of coincidence T1

(GO), ..., T(,CC) for the value z= oc . Furthermore we shall take 
GO 

i so large that in the product 

z-PUn-r I 2 ö M , * - ! ^ " 1 « ' " 1 (22) 
£=1 r = l 

the principal residue is identically 0 for arbitrary values of the n(j — 1) coefficients 
ar_]5f,_i here in question for p ^ i. 

Among the n(j— 1) coefficients ß-r)7l-t for which ? ^ j — 1 we shall suppose 
that there are just n(j— 1) — \ which are arbitrary. . The remaining X coefficients 
are then linearly expressible in terms of these n(j — 1) — X coefficients. On equating 
to 0 the principal residue in the product 

Ì S ß^n^z-^.^-1. ï "2 cv-M-iz^u1-1 (23) 
t = l r = l t = l r = l 

it is readily seen that we impose on the coefficients ar-i,*-i i n t n e second factor just 
n(j — 1) - \ independent conditions. To see this we note, in the first place, that we 
impose a condition on the coefficients ar^ht~i of the second factor in the product (23), 
on taking for the first factor a specific function and equating to 0 the principal 
residue in the product. For if in the specific function p is the greatest value of r in 
a coefficient /3_r,n_i which is different from 0 and if T is the least value of t in a 
coefficient ß_p>n_Ä which is different from 0 we obtain «p_ijT_i in terms of coefficients 
ar_1? t-\ in which * r < p, or r = p, t> r. 

If in the product (23) we take turn about for the first factor a number of specific 
linearly independent functions, it is evident that the principal residues in the several 
products, regarded as linear expressions in the arbitrary constants ar_1)t_l5 are linearly 
independent of one another. For if they were connected by a linear relation, the 
linear expression in the specific first factors just referred to, constructed with the like 
multipliers, would furnish us with a specific first factor for the product (23) such that 

* The truth of the statement here made follows from the fact that the equation (1) is integral and that 
therefore no negative powers of z are introduced in reducing a power of u higher than un~l by the aid of 
this equation. 
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the principal residue in the product would be 0 independently of the values of the 
constants ar_1}t_i. This however we have seen to be impossible. I t follows that on 
substituting turn about for the first factor in (23) a number of specific linearly 
independent functions and equating to 0 the principal residues in the several products 
we impose on the coefficients ar_-i,*-i in the second factor as many linearly independent 
conditions. On equating to 0 then the principal residue in the product (23) where 
n(j — 1) — X is the number of the coefficients ß_rjW_t which are arbitrary we impose 
on the otherwise arbitrary coefficients ar_M--i in the second factor of the product 
just n (j — 1) — X independent conditions. There remain therefore among the 
coefficients V - M - I OI> the second factor of the product (23) just X which are arbitrary. 
In like manner, on equating to 0 the principal residue in the product (21) we impose 
on the coefficients ar-.ht-i in the second factor n(i — l)~X conditions, so that just 
X of these n(i—l) coefficients remain arbitrary. 

Let us now consider more in detail the conditions imposed on the coefficients 
ar-.ht-i in the second factor of the product (21) when we equate to 0 the principal 
residue in this product. These conditions are plainly made up of the conditions 
obtained on equating to 0 the principal residue in the product (23) together with the 
conditions obtained on equating to 0 the principal residues in the n(i —j) products 

n i — 1 

z-?un-r x S cv-M-i^"1^"1 ; p = j , j + 1, ..., i - 1 ; T = 1, 2, ..., n.. .(24). 
t = l r = l 

The n(i—j) conditions so obtained give us the n(i—j) coefficients ap_i>7—i, severally 
expressed linearly in terms of coefficients ar_i,t-i in which r^ p, t>r. Among others, 
these conditions evidently include the i—j conditions ap_ l jn_1=0. In any case we 
can plainly combine the n(i—j) conditions so as to express ultimately each of the 
n(i—j) coefficients ap_1)T_i here in question linearly in terms of the coefficients 
ar_u_i in which r<j. From this fact follows that the n(i—j) conditions here in 
question are linearly independent. The effect of equating to 0 the principal residue 
in the product (21) then is to express each of the n(i—j) coefficients ar^lft-i in which 
r ^j linearly in terms of the n (j — 1) coefficients in which r< j ; these latter n (j — I) 
coefficients being at the same time expressed linearly in terms of the X ones among 
them which remain arbitrary after equating to 0 the principal residue in the 
product (23). 

Now, as we have already seen, the necessary and sufficient conditions in order 
that a rational function ^ (z, u) may have, for the value z = oo , orders of coincidence 
T/00*, ..., r^ which are complementary adjoint to the order 2 to the orders of 

coincidence T^°°\-..., T ,̂CO) are obtained on equating to 0 the principal residue relative 
CO 

to the value z — oo in the product (15). Supposing ^r (z, u) as before to be the 
integral rational function represented in (18), the necessary and sufficient conditions 
in order that it may have the orders of coincidence T}™\ ..., T ^ for the value z = oo 

CO 

are then evidently obtained on equating to 0 the principal residue in the product 
n oo n i — 1 

S 2 ß^n-t^U^ . S S Or-a.t-.!**-1!**-1 (25), 
2=1 r = l t = l r = l 

where the first factor is derived from the function li\~,u) in (20) by omitting all 
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those terms which do not involve a negative power of z. Among the conditions 
so arrived at are included the conditions obtained on equating to 0 the principal 
residue in the product (21)—and only these conditions are included, as we may 
readily shew. For any further condition would have to be obtained on equating 
to 0 the principal residue in a product of the form 

n i—1 
z-?un~r 2 2 ar^t_1z

r-1ut~1 (26), 

where p ^ i. We have however chosen i so large that the principal residue in the 
product (22) is 0 for arbitrary values of the n (j — 1) coefficients ar_ljt_! in which r <j. 
On equating to 0 the principal residue in the product (26) then we impose no 
restriction on the values of the coefficients O^W^-L in which r < j . The only condition 
so obtained would have to be a linear relation connecting the n(i—j) coefficients 
o^-!^-! in which r has one of the values j,j + l, ...,i — l. Such condition however 
could be nothing new, for on substituting in it for each of the n(i — j) coefficients 
ar_i,t-i in question its expression in terms of the coefficients ar_ljt_! in which r<j, 
obtained on equating to 0 the principal residue in the product 

n i-1 n i—1 

2 2 ß^^z^u^ . 2 S « H ) H ^ ^ (27) 
t=lr = l * = l 7 ' = l 

we arrive at an expression which must be identically 0, since otherwise we should 
have a linear relation connecting the coefficients ar_h t_j in which ,r < j , as a result of 
equating to 0 the principal residue in the product (26). 

On equating to 0 the principal residue in the product (25) we then impose no 
further conditions on the coefficients ar_1>t-i than those already obtained on equating 
to 0 the principal residue in the product (21). The necessary and sufficient conditions 
in order that the integral rational function ty(z, u) represented in (18) may have the 
orders of coincidence r1

(co'), ..., r[œ) are therefore obtained on equating to 0 the 
1 CO 

principal residue in the product (21). 

To obtain the general rational function built on the basis (r), that is to 
obtain the general rational function conditioned simultaneously by the partial 
bases (rf and (T)(CO), we subject the function H (z, u) in (6) and the function 

R ( - , u) in (14) to the conditions implied in identifying them with each other. The 

polynomial N (z, u) in (6) involves a number I of arbitrary constants and the function 

R(i) l-yU) in (14) involves a number l^ of arbitrary constants. These numbers we 

do not here determine, and in the sequel we shall find that we do not need to know 
their actual values in order to prove the complementary theorem. The I + l^ arbitrary 
constants in question we shall refer to as the arbitrary constants S. 

Identifying the function H(z, u) in (6) with the function 22 f-, uj in (14), we 

may write our identity in the form 
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This identity evidently determines the integral rational function P (z, u) as that part 

of R{i) (-, u) which is integral in (z, u). I t also determines each of the otherwise 

arbitrary constant coefficients in z~l [ ( -, u ) J in terms of the constants 8 which appear 

in the function which stands on the left-hand side of the identity. The conditions to 
which these I 4- I constants S are subjected by virtue of the identity are obtained on 

expanding in powers of - the coefficients of the powers of u on the left-hand side 
z 

of the identity, and equating to 0 the aggregate constant coefficient of each term 

£)' which involves a power (-) , where r has one of the values 1, 2, ..., i — 1. Writing 

ë^ï _ R® (\ u) = i 2 e_>B_(*r-r««-« (29) 
V W \Z J t = l r 

the coefficients C-.r>n-t are linear in the constants S and the conditions to which these 
constants are subjected by the identity (28) are embodied in the identity 

n i—1 

2 2 c ^ r t ^ = 0 ...(30). 
t=l r=l 

The constants S then are subjected to the n(i— 1) conditions 

c_r?n_t = 0; r = 1, ..., i - 1 ; * = 1, ..., n (31) 

which may or may not all be linearly independent. 

Now we have seen that the necessary and sufficient conditions in order that the 
function yfr (z, u) may, for finite values of the variable, z, have orders of coincidence 
which are complementary adjoint to the orders of coincidence furnished by the 
partial basis (T)' are obtained on equating to 0 the principal residue relative to 
the value z = co in the product (13) for arbitrary values of the constants 8 involved 
in N(z, u). Where the function yfr(z, u) is of limited degree M in z we have also 
seen that the principal residue relative to the value £ = co in the product (13) is 

independent of any term in the expanded first factor involving - to a power as high 
z 

as (-) —when i is chosen large enough. Furthermore, supposing ty(z, u) to be the 

integral rational function represented in (18), we have shewn that, on equating to 0 
the principal residue in the product (21) we obtain the necessary and sufficient 
conditions in order that the function ^ (z, u) may have, for the value z = co , the 
orders of coincidence T/00 '), ..., T^,CO)—the integer i being taken sufficiently large. I t 

co 

evidently follows that the necessary and sufficient conditions in order that ty(z, u) 
may be built on the basis (r) complementary to the basis (r) are obtained on equating 
to 0, independently of the values of the arbitrary constants o", the principal residue 
relative to the value z — co in the product 

n i—1 
2 S c _ r ) n ^ ^ . f f e w ) (32), 
t=l r = l 

where ty(zt u) is supposed to have the form given in (18). 
M. c. 21 
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The conditions obtained on equating to 0 the principal residue in the product 
(32) include the conditions obtained on equating to 0 the principal residue in the 
product (21) and therefore involve the reduction of the degree of yfr(z, u) in z to M. 
The vanishing of the principal residue in the product (32), with the degree of ty (z, u) 
in z reduced to M, then further involves the vanishing of the residue relative to the 
value z— co in the product (13)—the integer i being of course assumed to have been 
chosen sufficiently large in the first place. 

Among the n (i — 1) coefficients c_r5n_t in (32), regarded as expressions linear in 
the arbitrary constants 8, we shall suppose that d are linearly independent and cl such 
coefficients we shall for the moment represent by the notation cly c2, ..., cd. Ex­
pressing the remaining coefficients in the first factor of the product (32) linearly in 
terms of the d coefficients here in question we can evidently represent the first factor 
in the form 

d / I \ 
Sc 8 <M-, u) (33), 

s=i \z / 
where the d functions <j>8[-,u) are specific linearly independent functions. Since the 

d coefficients cs are linearly independent expressions in the constants S they may be 
given any arbitrarily assigned values by properly choosing the values of the constants 
8. In order then that the principal residue in the product 

a (1 \ 
2 cs(j)s (-,u).^(z,u) (34) 

s=l \Z J 

may be 0 for arbitrary values of the constants 8, it must be 0 for arbitrary values of 
the d coefficients cs. That is, the principal residue must be 0 in each of the products 

<M~, u\.yjr(z}u); s = l, 2, ..., d (35). 

Conversely, if the principal residue in each of the d products (35) is 0 it is 
evident that the principal residue in the product (34)—that is, in the product (32)— 
is 0 for arbitrary values of the constants 8. Because of the linear independence of 

the functions <f>8 f - , u ) we see, on recalling the reasoning employed in connection 

with the product (23), that the d conditions on the coefficients of the function ty (z, u), 
obtained on equating to 0 the principal residues in the products (35), are linearly 
independent of one another. The number of the conditions imposed on the co­
efficients of the integral rational function ty(z, u) on equating to 0 the principal 
residue in the product (32) independently of the values of the constants 8 is then cl, 
the number of the n(i — 1) coefficients C-r,n-t in the first factor of the product which 
are linearly independent of one another, when regarded as expressions in the arbitrary 
constants 8. This is therefore also the number of the conditions to which we subject 
the n(i— 1) coefficients of the integral rational function yfr(z, u) in order that it may 
be built on the basis (T) which is complementary to the basis (r). I t follows that the 
number of the arbitrary constants involved in the general integral rational function 
yir (z, u) built on the basis (r) is just equal to the number n(i — l) — d of the n(i — l) 
coefficients c_r>w_t in the first factor of (32) which are linearly dependent on the 
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remaining coefficients, when we regard the coefficients as linear expressions in the 
arbitrary constants 8. 

We shall assume for the moment that the orders of coincidence furnished by the 
basis (T) for finite values of the variable z are none of them positive. Writing 

T (*) - . <T{;\ s = l,2,...,rK, 

in the case of every finite value z = aK the numbers O^K) are 0 or positive. For the 
orders of coincidence furnished by the basis (r) for finite values of the variable z we 
then have from (9) 

T? = *M+tf)-l+±] s=l,2,...,rK. 

A rational function of (z, u) built on the basis (r) then must be adjoint for all finite 
values of the variable z and must therefore be integral. I t follows that the number 
of the coefficients C-.Vin_t in the first factor of (32) which are linearly dependent on 
the remaining coefficients is equal to the number of the arbitrary constants involved 
in the expression of the general rational function built on the basis (r)—for we have 
shewn that it is equal to the number of the arbitrary constants involved in the 
expression of the general integral rational function built on this basis. 

Employing the notation NT to designate the number of the arbitrary constants 
involved in the expression of the general rational function built on the basis (T) and 
going back to the n(i — 1) conditions (31) imposed on the constants 8 in identifying 

the function H(z, u) in (6) with the function RÌ-, UJ in (14), we see that just 

n (i — 1) — NT of the equations of condition here in question are linearly independent, 
for we have proved that just Nr of the n(i — 1) expressions c_r>7i_e here involved are 
linearly dependent on the remaining ones. By virtue of the identity (28) then the 

I -+-1^ constants S involved in the functions N (z, u) and R{i) ( - , u J are subjected to 

just n(i — 1) — NT independent conditions.—We of course impose no condition on the 
constants 8 by equating the polynomial P (z, u) to the integral part of the function 

R{i) ( - , u).—The number of the constants 8 which remain arbitrary we readily see 

gives the number Nr of the arbitrary constants involved in the expression of the 
general rational function H (z, u) built on the basis (r) and we therefore have 

Nr=l + l^-n(i-l) + NT.... (36). 

This formula we have obtained on the assumption that the orders of coincidence 
furnished by the basis (T) for finite values of the variable z are none of them 
positive. 

Where H (z, u) and H (z, u) are the general rational functions built on the bases 
(T) and (T) respectively, we can evidently so choose a polynomial S (z) that the 

H(z u) 
functions S(z) .H (z, u) and ^ ' are the general rational functions built on 

o (z) 
complementary bases (p) and (p) respectively, the orders of coincidence furnished by 
the basis (p) being at the same time all 0 or negative. Remembering that the 

* For more detail consult the writer's memoir already cited in this paper. 

21—2 

* 
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orders of coincidence for finite values of the variable #'furnished by the partial basis 
(T)' require a rational function to be integral, we see that the general rational 
function conditioned by the partial basis (p)' may be written in the form 

W + P ( * ' t t ) (87)' 
where P (z, u) is an arbitrary polynomial in (z, u), and where N (z, u) is a polynomial 
in (z, u) whose degree in z is less than that of S(z). I t may be too that N(z, u) has 
a factor in common with S(z). The general rational function conditioned by the 
partial basis (p)(oo) can be written in the form 

:G,«) = S«g,« ) + ^(g ,» ) ) (38). 
The polynomial N (z, u) will involve a number I of arbitrary constants, while 
a number lx of arbitrary constants will present themselves in the function 

R(i) (-,u\. In analogy with (36) we evidently have the formula 

N-p = ï + ï«-n(i-l) + Np (39). 

It is understood throughout that we choose i sufficiently large and we are plainly at 
liberty to give it the same value in the two formulae (36) and (39). The numbers 
lœ and l^ depend for their values on i. Evidently we have NP = NT, Np = NT. From 
(39) we therefore derive 

Nr = l + lao-n(i-l) + Nr (40). 

Let us now take any partial basis (t)' which is lower than the partial bases 
(T) ' and (py. On starting out from the general rational function h (z, u) conditioned 
by the partial basis (t)'', we arrive at the general rational function (6) conditioned by 
the partial basis (r)' after imposing on the coefficients of the function h(z, u) just 

2 / 2 ( T ( * ) -t{K))v{K) 

K 5 = 1 

conditions. These, conditions evidently affect only the arbitrary constants involved 
in the essentially fractional part of h (z, u) and reduce their number to I, the number 
of the arbitrary constants involved in the numerator N (z, u) in (6). On starting out 
from the general rational function h(z,u) conditioned by the partial basis (t)', we arrive 
at the general rational function (37) conditioned by the partial basis (jo)' after 
imposing on the coefficients of the function h (z, u) just 

2'2(pW-eV<K) 
K. S = l 

conditions. These conditions affect only the arbitrary constants involved in the 
essentially fractional part of h (z, u) and reduce their number to I, the number of 
the arbitrary constants involved in the numerator N(z, u) in (37). From the pre­
ceding, for the number of the arbitrary constants involved in the essentially fractional 
part of h (z, u) we derive 

l + 2 ' 2 (T<"> - *<*>) v? = I + 2 ' 2 ( p « - <W) * « 

rK 

= 1 
whence I + 2 7 2 T<K) I/K) = I + 2 2 p{

s
K) V[K) (41) 
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Again let us take a partial basis (£)(oo) which is lower than the partial bases 

(T)(CO) and (p)(co). On starting out from the general rational function h^ (z, u) 

conditioned by the partial basis (t) , we arrive at the general rational function (14) 

conditioned by the partial basis (T)(OO) after imposing on the coefficients of the 

function hœ(z, u) just 2(TçC O ) — ^G° ))^ c o ) conditions. These conditions leave us l«, 

arbitrary constants involved in the function R(i) (- , u) in (14). On starting out from 

the general rational function h^ (z, it) conditioned by the partial basis (ty, we arrive 
at the general rational function (38) conditioned by the partial basis (p) after 

r c o 

imposing on the coefficients of the function hœ (z, u) just 2 (pi — t^) ^Go) con-
5 = 1 

ditions. These conditions leave us lœ arbitrary constants involved in the function 

RM (-, uj in (38). We derive 

lw + 2 (r<"> - *<"») v™ = L + 2 (p<"> - tf°>) „<•>, 
S=l 5 = 1 

whence l„ + 2 r™ v™ = ~l„ + 2 p™ v^ (42). 
5 = 1 * -9 = 1 

From (41) and (42) by addition we obtain 

l + lx+t 2TW v W = i + ia) + 2 ìp^v? (43). 
K 5 = 1 K 5 = 1 

- H(z u) 
Since however H (z, u) and ^ / . are the general rational functions built on the 

S(z) n 

bases (r) and (p) respectively and since the aggregate sum of the orders of coincidence 
of the rational function S(z) with the branches of all the cycles is 0, it follows that 
we have 

2 S T 0 0 * 0 0 = 2 2 P ( K ) V{K\ 
K 5 = 1 K 5 = 1 

From (43) we then derive 

Z + ^ + 2 2 T ^ ^ ^ ^ ! + ^ + 2 2 T ^ ) ^ ) (44). 
K 5 = 1 K 5 = 1 

From (36) and (40) we have 

l + l„-2NT = î + ï<0-2NT (45). 

Combining (44) and (45) we deduce 

rK 

iVr + | 2 2 T W ^ ) = ^ + i 2 2 T < K ) ^ ) (46). 
K 5 = 1 K 5 = 1 

This is the complementary theorem. 

In deducing the complementary theorem we have here assumed that no positive 
orders of coincidence are furnished for finite values of the variable z by the basis (r). 
We shall now suppose (T) to be any arbitrary basis aud (r) the complementary basis. 
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The general rational functions built on these bases we shall designate by H(z, u) 
and H(z, u) respectively. It is evident that we can select a polynomial S(z) so that 

q ' ' and S(z)H(z, u) are the general rational functions built on a pair of com­

plementary bases (t) and (t), of which the former furnishes no positive orders of 

coincidence for finite values of the variable z. The complementary theorem, as we 

have proved it, then holds good for the bases (t) and (t), and we therefore have 

2:_ 
K 5 = 1 K 5 = 1 

We plainly have, however, 

Nt = NT, N-t = Nr, 2 2 i<*> v{
s
K) = 2 2 T « »<">, 2 2 t™ i/<"> = 2 2 rf v<f\ 

K 5 = 1 « 5 = 1 K 5 = 1 K 5 = 1 

and the formula just obtained goes over into the formula (46). The complementary 
theorem therefore holds for any pair of complementary bases (r) and (T). The 
theorem has been derived on the assumption that the fundamental equation is 
integral. This restriction, however, is readily removed and we can at the same time 
obtain the theorem in a somewhat more general form given in Chapter x n of the 
writer's book* on the algebraic functions. 

* Theory of the algebraic functions of a,complex variable, Mayer and Müller, Berlin, 1906. 



AXIOMS OF ORDINAL MAGNITUDES 

BY A. B. FRIZELL. 

The word "axiom" is not used here as a substitute for either of the modern terms 
" assumption " or " postulate " ; it is rather to be taken in the same sense as in 
Euclid. 

1. Axioms of Magnitude. 

M. 1. Between every two magnitudes of the same class one of the relations 
A = B (A is equal to B) or A =j= B (A is not equal to B) must hold. 

2. The relations A — B and A 4= B cannot both hold for the same A and B. 

3. The simultaneous relations A = B and B = C shall always involve the 
relation A = G. 

4. The assertions B = A and A — B are to be identical in meaning. 

5. For every magnitude, A = A. 

A class of magnitudes is any set of symbols (e.g. those denoting the points in an 
arbitrary space) satisfying Axioms M. 

There is a temptation to treat M. 5 as a consequence of 4 and 3, viz. A = B and 
B = A, hence A = A. This, however, tacitly assumes that the class in question 
contains, corresponding to every member A, a distinct element B = A; and for the 
purposes of the present paper this possibility is to be expressly excluded by the 

2. Axioms of Arrangement. 

A. 1. Between every two magnitudes of an arranged set one of the relations 
A < B (A precedes B) or A > B (A follows B) must hold. 

2. The relations A < B and A > B cannot both hold for the same A and B. 

3. From the simultaneous relations A < B and B < C the relation A < Ö shall 
always follow. 

4. The statements B > A and A < B are to be identical in meaning. 

5. No two magnitudes in an arranged set can be equal. 

For example, the definition of a line postulates an arranged set of points. 
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Definitions. Of two symbols in an arranged set, tha t which precedes will be 

called lower, and tha t which follows higher, than the other. 

A set of magnitudes will be said to be ordered according to a rule denoted by 

the sign O if for all members of the set A < A O B, A < B O A and Axioms A. 1—4 

all hold. 

The only indispensable restriction to be imposed on the sign O (or any equivalent 

sign) is contained in the 

3. Group Axioms. 

G. 1. There shall be a class of magnitudes and a rule denoted by the sign O 

whereby equals with equals give equals for all members of the class for which this 

combination shall have been defined. 

2. There shall be a set comprised in the class postulated in G. 1 such tha t if A 

and B both belong to the set so does AO B also. 

3. The rule denoted by the sign O shall be associative for all members of the 

set postulated by G. 2. 

4. Equals combined with unequals by the rule O shall give unequals. 

5. There shall be a set which satisfies G. 1—4 and contains corresponding to 

every pair A, B of its members an element X and an element Y such tha t 

BOX = A = YOB. 

A rule obeying Axiom G. 1 will be called a group rule or g-rule. 

A set of magnitudes satisfying Axioms G. 1 and 2 is said to possess the funda­
mental group property. 

A set that satisfies G. 1—4 will be called a semigroup. The purpose of Axioms G. 
is heuristic ra ther than subsumptive. If it were desired merely to define a group, 
part of the set would be redundant. 

4. Axioms of Numbering. 

N. 1. There shall be a (/-rule denoted by the sign O . 

2. There shall be a symbol IT and a symbol X^ir. 

3. There shall be a set [TTX] composed of IT and other magnitudes to be 
postulated in N . 4. 

4. If K belongs to [TTX] so does XO K when X = IT and so does tc O X if X < IT. 

5. The set [VX] shall be an arranged set. 

6. For all members of [TTX], K < X O K and K<KOX. 

Every set of magnitudes satisfying Axioms N. will be called a numbered set. 
To illustrate, IT and X may denote rectilinear segments and O the operation of a 
Streckenüberträger. 

Note. I t is easy to show inductively tha t a numbered set is ordered according 
to its defining g-rule. 
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5. The magnitudes to be postulated by the following sets of axioms will be 

called ordinal magnitudes. 

Axioms of Infinity. 

1. 1. There shall be an arranged set of magnitudes [M]A. 

2. The set [M]A shall have a first element. 

3. Every member of the set [M~\A shall have an immediate successor in the set. 

4. Every member of the set [M]A except the first shall have an immediate 

predecessor in the set. 

Every set satisfying Axioms I. will be called an infinite set. 

I t will be shown later (Theorem IV) tha t every numbered set is an infinite set. 

6. Transfinite Axioms. 

T. 1. There shall be an infinite set of (/-rules |_pj. 

2. There shall be a symbol co ; we will call it the unit of transfinite magnitudes. 

3. To every (/-rule shall belong a numbered set of primitive elements having 
7T = CO = X. 

4. There shall be a set of monomial elements consisting of the primitives and 
others to be postulated in T. 5. 

5. To every monomial element M shall belong a numbered set of monomials 
having IT = M = X for every (/-rule < the lowest used in postulating M. 

6. To every monomial M shall belong a numbered set of binomial elements 
having IT = M for every monomial X<p (where p > co is the highest primitive used 
in postulating M) for every (/-rule ^ the lowest used in postulating M, the sign = 
being excluded when M is itself a primitive element. 

7. There shall be a set of polynomial elements composed of the binomials and 
others to be postulated by T. 8. 

8. To every polynomial P shall belong a numbered set of polynomials having 

IT = P for every monomial X < p, where p > co is the highest primitive in the lowest 

term of P, and for every (/-rule ^ the lowest used in postulating P. 

7. The following notation naturally suggests itself as a means of making clear 
the content of Axioms T. 

Pu t w\v~\co = co , co\_vjco =co &c, so tha t the formula for a primitive 

element is p=co , where v, i are merely arbitrary symbols of an infinite set. 

T . (0 r-I (0 ('. D (0 f—i (t, D (t, 2) „ 
Let co Av2\œ = œ , co Meo . = <» ^ &c-> 

in general M=œf
li'L*^ for this type of monomial. 

(^1 J v«) J -1 
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Writing co, li/3 w, =<*>, 

and so on, we have as the most general formula for a monomial 

71 yf ( l J > l 2 ) • • • t ? l ) M = co . 
(Vi, Vr,, ...Vn) 

Thus if we denote the two lowest rules by \jx\ and \v\ respectively the 

primitives co L and co * may be written coL and /ceo respectively, the most general 

monomial is co "' * = tccoL, there are binomials tclcoL'\v\tc2col'i and polynomials H/ccoL 

where 2 denotes merely repeated application of the sign | v\. 

Familiar notation has been used purposely, detached from its connotation, to 
emphasize the fact that the concepts in question justify their existence on the basis 
of postulating pure and simple. They have a foundation which is in so far simpler 
than that of the natural numbers that it requires fewer axioms and none which need 
proof to show that the set is self-consistent. There can be no contradiction between 
the different (/-rules posited in Axioms T. so long as we postulate no relations 
connecting them. 

8. The preceding sets of axioms are connected with each other and with those 
that are to follow by certain propositions. 

THEOREM I. No arranged set can form a group with regard to a g-mile according 
to which it is ordered. 

For every group contains a modulus /JL for its (/-rule, so that we should have 

a = aO fji 

contrary to definition and A. 5. 

Corollary. No arranged set can constitute a semigroup with modulus for a 
(/-rule according to which it is ordered. 

THEOREM II. An arranged set ordered according to a (/-rule with respect 
to which it possesses the fundamental group property contains at least one 
numbered set. 

For if K belongs to the set so does K — K O K by G. 2. Therefore also K," — tc O tc, 
tc" — tc O tc", and so on. 

But this set obeys Axioms N., having IT = tc = X. 

Corollary. An arranged set ordered according to a (/-rule with respect to which 
it constitutes a semigroup contains at least one numbered set. 

Scholium. A necessary condition of an arranged set ordered according to a 
(/-rule constituting a semigroup on that rule is the existence in it of a subset within 
which 

X O a O ß = X O (ot O ß), 

where X is a fixed element of the subset and a, ß arbitrary members of it. 
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Lemma. A numbered set in which X •=• ir will constitute a semigroup on its 
(/-rule if combinations of its members by this rule are defined inductively in accord­
ance with the formula 

X O a O ß = X O (a O ß). 

Proof. If a O ß belongs to [XX] so does X O (a O /3) by N. 4. Therefore so 
does (X O a) O ß by definition. Hence if X O ß belongs to [XX] so do V O ß, X" O ß,... 
where X'= XOX,X" = XQ X', &c. 

But XOß belongs to [XX] if ß does (N. 4), and since every member of [XX] is 
comprehended in the series X, V, X",... the fundamental group property is proved. 

Suppose now that the associative relation 

aG( /3 0 7 ) = a O / 3 0 7 

has been established for every member of [XX] up to and including a certain element a 
and for every ß, 7. Then 

(X G a) O (ß O 7) = X O {a O (ß O 7)} = X O (a O ß O 7) 

= \ 0 ( a O / 3 ) 0 7 = \ O a O / 3 0 7. 

But A , G / 3 0 7 = \ G ( / 3 0 7)by definition (hypothesis). Therefore 

X'Oßöy = X'0(ßOry), 

and so on. Hence, by strict induction, the rule denoted by O is associative. 

By hypothesis no two members of [XX] are equal (N. 5 and A. 5). Therefore by 
the associative property Axiom G. 4 is verified. 

Thus Axioms G. 1—4 all hold and we have a semigroup. Q. E. D. 

THEOREM III . Sufficient conditions of an arranged set constituting a semi­
group are 

(1) that it be a numbered set; (2) X = IT ; (3) inductive definitions according 
to the formula 

( \ 0« )0 /3 = \Q(aO/3). 

THEOREM IV. Every numbered set is an infinite set. For it is arranged (N. 5), 
has a first element (N. 3 and 6), contains an immediate successor to every one of its 
members (N. 4 and 6), and the immediate predecessor of every one except the first 
(N. 3 and 6). 

THEOREM V. An infinite set ordered according to a (/-rule with respect to which 
it constitutes a semigroup is a numbered set. 

Proof. The given set K is arranged (I. 1) and ordered according to the given 
rule (hypothesis). Whence K contains at least one numbered set [XX] (Th. II, Cor.). 

The set [XX] is infinite (Th. IV) and associative (G. 3). Therefore it constitutes 
a semigroup on the rule O (Lemma). 

If now K is included in [XX] the theorem is proved. 

If K contains an element tc that is not in [XX], then tc cannot follow [XX] since 
thus tc would have no immediate predecessor in K, contrary to I. 4. But by G. 2 
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K contains te = te O K, tc" — tc O K, ..., which is likewise an infinite set and cannot 
precede X, since thus X would have no immediate predecessor in K. Hence X is some 
member of [tctc], say X = tc{v). Therefore every X(t) is a member of [toe] and we have 
only a single numbered set. Like reasoning holds if K contains an element KX that 
is not in [/etc], and so on for other such elements tc2, tc«, But there must be a 
last tcv, since otherwise K would have no first element. Therefore K is only a single 
numbered set. Q.E.D. 

THEOREM VI. No set of symbols can form a group with regard to each of two 

(/-rules whereof one is distributive over the other. 

For it would contain a modulus v for the latter rule so that 

OLO v = a. 

Whence by the distributive law (hypothesis) and G. 1 

aß = (a O v) ß = aß O vß. 
Therefore we should have 

vß' = vß, 

when ß' =j= ß> which is contrary to G. 4. 

Corollary. No set of symbols can constitute a semigroup on both rules with 
modulus for that over which the other is distributed. 

Scholium. A necessary condition of an infinite set ordered according to each of 
two (/-rules constituting a semigroup on both is the existence of a formula connecting 
the two rules. 

For such a set is a numbered set (Th. V) with reference to each rule. Taking 
the lower rule the given set may therefore be written X,V = X O \ , X" = X O X',... . 
Then indicating combination by the higher rule by juxtaposition 

XX = X("} (hypothesis and G. 2). 

THEOREM VII. Sufficient conditions of an infinite set that constitutes a semi­
group on a (/-rule O according to which it is ordered constituting also a semigroup 
on a rule • are that the rule • be distributive over the rule O and that 

X Q X = X<̂ . 

Proof. If \w = X, then X Q (X G X) = X G X = X, and so on. If X{v> > X, let \<"> 
denote the immediate predecessor of X{v). Then 

XD(> .DX) = x a ( ^ 0 \ w ) = ( \ D ^ ) 0 ( X D X , v ) ) , 

and hence belongs to [XX] if X G ^{v) does. 

But if X G X̂ > belongs to [XX], so does X G X(^, where X̂ > = X O A>>, for 

x • \<n = x a (x O x>>) = (\ • x) o (x G A») = \<"> O (x G x( )̂> 
and X • V = X D (X O \ ) = (X • X) O ( \ • X) = X^ O X<">, 

whence the fundamental group property by strict induction. 

The associative property follows readily from the distributive by the reasoning 
which Weierstrass used for complex numbers. In like manner we get the relation of 
equals with unequals. 
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Corollary. The set is also ordered according to the rule G provided 

X G X > X. 

Scholium. All sets postulated in accordance with Th. VII are holoedrically 
isomorphic with one another. Consequently we naturally take as representative 
of this set of sets the simplest of them, viz. that in which X G X = X. 

THEOREM VIII. Given two (/-rules, the higher distributive over the lower, and 
an infinite semigroup on the lower rule, ordered according to it, if further 

x G x = x, 
then X is modulus for the higher rule denoted by the sign G- For 

X • X' = X • (X O X) = (X • X) O (X • X) = X O X = X', 

and X G (X O X«) = (X Q X) O (X Q XW) = X O X^, 

whenever it has already been proved that X O X(0 = X(t). 

Whence the theorem follows readily by strict induction. 

9. The above is perhaps a sufficiently exhaustive account of the logical status 
of the system of natural numbers. They cannot logically be postulated by a single 
(/-rule. Addition alone does not distinguish them from any other numbered set. 
Multiplication alone cannot yield the complete set but only successive subsets—the 
powers of 2, 3 , . . . . Multiplication and addition together, with no further restriction, 
yield the transfinite set l̂ co*. This is an arranged set constituting a semigroup on 
each rule, ordered according to both. We cannot have an arranged set forming 
a group on either rule, nor, if we postulate the distributive relation, a semigroup 
on both with modulus for the lower rule. If we demand a set ordered according to 
both rules, this excludes the modulus of the higher rule, and we get only a subset. 
Consequently we postulate according to the enunciation of Th. VIII, or, in other 
words, we formulate the 

Axioms of the Finite Unit. 

U. 1. There shall be (/-rules denoted by the signs J7&] and \v\. 

2. The rule denoted by \jf\ shall be distributive over the rule \v\, 

3. There shall be a symbol \x ; we will call it the finite unit. 

4. There shall be an infinite set of symbols 

fl, fJbf = j L tO fJL, /Jb" = fl O p / , . . . 

forming a semigroup on the rule \v\, ordered according to it. 

5. p, |_pj p, = fi. 

It follows by Th. VIII that p, is modulus for the rule [p], and by Th. VII that the 
set postulated in U. 4 constitutes a semigroup with respect to the rule |p,|, but is not 
ordered according to it. 

Thus the system of natural numbers, however simple it may be in epistemology, 
is connected with the equally simple concept of a rule for combining symbols by 
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relations which exhibit a certain degree of complexity. And it is these relationships 
which are of interest in mathematics. Even if we take the naive point of view with 
which Cantor contents himself in Annalen XLVI., and posit the natural numbers by 
a twofold abstraction, the logical structure is there and cannot be ignored. The 
validity of Axioms U., on the basis of any such external evidence, supplies eo ipso 
a consistency proof for Axioms T. in the special case of two (/-rules only. But if we 
can postulate two independent (/-rules we can also postulate an infinite set of 
them without involving any contradictions. 

10. The necessity of distinguishing different sets of symbols resulting from sets 
of two, three, ... (/-rules suggests supplementing Axioms T. by a set of Axioms TN . 
which differs from the former only in replacing Axiom T. 1 by Axiom TN. 1. 
There shall be for each value of N=2, 3 . . . a finite set of (/-rules denoted by 

signs [I], |2J, ...[# 
We now proceed in the direction of Cantor's "Fortsetzung der natürlichen 

Zahlenreihe über das Unendliche hinaus," and first we will postulate his second 
ordinal class by the 

Axioms for a Denumerable Set. 

D. 1. There shall be a set of symbols N postulated by Axioms U. 

2. There shall be a symbol co > N for all values of N. 

3. There shall be (/-rules denoted by signs |X|, |p,| and \v\. 

4. There shall be a set of symbols postulated by Axioms T3. 

5. Between every two symbols a, a| v \co of those postulated in 4, we interpolate 

a numbered set a\_u]N, N= fi, fju, /J/'\ . . . . 

6. The whole set postulated in Axioms D. 1—5 shall be ordered in accordance 
with the 

11. Axioms of Ordering. 

0. 1. Of two polynomials, P > Q if M> N, where M, N are the highest terms 
in P, Q respectively. 

2. Of two monomials, M > N if p > q, where p, q are the highest primitives in 
M, N respectively. 

3. Of two primitive elements, p = co" and q = coK:, p>q if p, > v or if p,= v 

and i > tc. 

4. a + N1> a + N2 if N^_ > N2, where N1} N2 are natural numbers and a infinite 
or transfinite. 

Using Axioms O. we also postulate non-enumerable sets by the 

12. Axioms of Transfinite Numbers. 

NT. 1. There shall be a set of symbols postulated by Axioms U. 

2. There shall be a symbol co > N (every value of N). 
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3. There shall be a set of (/-rules | vY|, | z>21 > • • • Î JVI • 

4. There shall be a set of symbols postulated by Axioms T N . 

5. Between every two symbols a, a\vN\co of the set postulated in 4, shall be a 

numbered set a\v^\N N.B. The suffix N is constant ; the other N is variable. 

6. The whole set of symbols postulated in Axioms N T. 1—5 shall be ordered in 

accordance with Axioms 0 . 

Thus Axioms 3T. are identical with Axioms D., while Axioms 2T. furnish a series 

of type co . 

13. We next formulate Axioms T1. 

This set differs from the set denoted by N T. only in replacing NT. 3 and N T. 4 
respectively by 

Axiom T1. 3. There shall be an infinite set of #-rules. 

Axiom T1. 4. There shall be a set of symbols postulated by the totality of 

Axioms T N . ( i V = 2 , 3 , . . . ) . 

And now we prepare to take the last steps by laying down the 

Axioms of Postulating. 

co. 1. There shall be an arranged set of sets of Axioms TT. consisting of the set 

T1. and other sets to be postulated in Axioms TT. 

2. Every set of sets of axioms composed of all sets tha t precede each set TT. 

(where r is to have the meaning stated in co. 3) shall postulate a set of symbols of 

ordinal type v. 

3. The symbols r shall be taken in order from among those postulated by 

Axioms TT. (T = 2 , 3, ...co,...). 

4. The symbol T° shall have the same meaning as U, so t ha t to T = 1 shall 

belong the value v=f(l) — co. 

14. The Last Axioms. 

TT. 1. There shall be a set of (/-rules whose ordinal type is v. 

2. To every g-rule shall belong an u-set of primitive elements having IT — v = X. 

3. There shall be a set of monomial elements composed of the primitives and 

others to be postulated in TT. 4. 

4. To every monomial M shall belong an u-set of monomials having TT = M = X 

for every (/-rule < lowest rule used in postulating M. 

5. To every monomial M shall belong an u-set of binomial elements having 

TT = M for every monomial X<^>, where p > v is the highest primitive used in 

postulating M, for every (/-rule =i lowest used in postulating M ( the sign = excluded 

when M = p). 

6. There shall be a set of polynomial elements consisting of the binomials and 

others to be postulated in TT. 7. 
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7. To every polynomial P shall belong an u-set of new polynomials having 
IT = P for every monomial X<p, where p > v is the highest primitive in the lowest 
term of P, for every (/-rule =i lowest used in postulating P. 

8. Between every two symbols ß and ß \1] v of the set postulated in TT. 2—7 

shall be an u-set of new symbols. 

9. The whole set just postulated shall be ordered by Axioms O. extended by 
the substitution of v for co in 0. 3 and. of an u-set for the infinite set used in 0. 4. 

15. By virtue of Axiom co. 4 the natural numbers are comprehended in the 
set of symbols postulated by Axioms TT., and the next value of v, which may be 
denoted by v =f(2), is brought into the general scheme by Axiom co. 2. Then co. 3 
directs us to take, corresponding to r = 3, the set of Axioms T2. which uses a set of 
(/-rules with ordinal type v = / ( 2 ) and yields a set of symbols having the ordinal type 
v=f(3). The transfinite induction îromf(N) to f (co) is provided for by Axiom co. 2 
and this is also enough for all cases of transfinite induction. Thus the Axioms co. 
and TT. constitute a recurring procedure which carries forward the postulating process 
in a manner that ipso facto excludes all idea of limitation. 

There will always be found between the set of values already used for r and 
that of the symbols which they have made it possible to postulate a gap from which 
new values of r may be drawn. And the word "always" is not here liable to the 
same ambiguity as in the classic example of Achilles and the tortoise. The present 
gap does not admit of closure by the introduction of a new symbol. That possibility 
depended essentially upon the external conditions imposed by the statement of the 
problem in question. But in our case there are no external conditions. 

I t remains to state explicitly what is involved in the above, viz. 

THEOREM IX. Every set of symbols postulated by Axioms TT. is well ordered. 
For all these sets are built up out of infinite sets of symbols ordered by the sequence 
of the sets in infinite sets of (/-rules. 

16. The theory may now be completed by establishing 

THEOREM X. The set of symbols postulated by Axioms TT. may be made to 
include any given well-ordered type of order. For otherwise there would be, just 
as in functions of a real variable, a type constituting a limit to the TT. set and 
therefore likewise a limit to the set of values for T. But by Axioms co. every 
limiting value to a sequence of the symbols r is taken up into the series. 

Scholium. The expression "the totality of the symbols r " has no meaning and 
we have the 

Corollary. I t is not possible to postulate all well-ordered sets. 

There is thus a second kind of infinity that sets a natural boundary to the series 
of postulates. Perhaps this is the infinity of the continuum. If so the continuum 
concept would turn out to be arithmetically a " Ding an sich," the existence of which 
may be surmised but never proved. 



UNE QUESTION DE MAXIMUM OU DE MINIMUM 

P A R ALESSANDRO PADOA. 

1- Soit z = yxy<À...yn (1), 

où n est un nombre entier plus grand que 1 et où, pour toute valeur entière de r 
depuis 1 jusqu'à n, 

yr = a.rlxt + ar2x.2 + ... a.^n^x^ + arn (2). 

Remarquons tout de suite que, si l'on pose 

(xLl a12... ain 

a.» a™ ... a2n 
nA = •(3), 

anl am...ann 

on peut toujours supposer 
A ^ O (4) 

parce que, s'il avait été A < 0, il aurait suffit d'échanger entre eux préalablement deux 
facteurs quelconques de z, pour changer le signe de A. 

Mais, pour une raison que j'expliquerai tout à l'heure, ici je suppose que le 
mineur d'un élément quelconque de la dernière colonne soit différent de zéro ; 
donc, en désignant par Ars le mineur (signé) qui correspond à l'élément ars, je 
suppose que 

A=AmAm...Ann^0 (5). 

L'Algèbre élémentaire nous apprend que*, si 

yr = 0 et si S yr = ns, 
r = l 

où s est un nombre positif donné, et s'il peut se faire que 

yi = 2/2 = ... = 3fo> 
alors ces valeurs des yr font atteindre à z son maximum, par rapport aux dites 
conditions, de manière que 

max z — sn. 
Mais ici, en assujettissant les variables à la seule condition que yr ait toujours le 

même signe que Arn, c'est-à-dire que 

Arnyr^0 (6), 

je vais démontrer d'une façon élémentaire que z atteint toujours un maximum ou un 
minimum selon que A est positif ou négatif, que la valeur de ce maximum ou de ce 
minimum est déterminée, dans les deux cas, par la formule 

z'=fr:A (7) 
* La première des conditions suivantes est nécessaire seulement lorsque ?i>2. 

M. C. 22 
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et que cette valeur z' de z correspond toujours à un seul système de valeurs 
(déterminées et finies) des variables œlf oc2t ...œn-i' 

En effet, la valeur de notre déterminant (3) ne change pas si à la dernière 
colonne on ajoute les produits des autres par xï} x2,...xn_1, c'est-à-dire que, par la 
formule (2), 

&11 ^12 • • • V\ 

a21 a22... y2 n& = 

Mm a-n2... yn 

d'où, en développant selon la dernière colonne, 

Alnyx + A27ly2 + ... + Annyn = nA (8). 

Mais, en multipliant membre à membre les égalités (1) et (5), on obtient 

Az = (Amyù (A2ny2) ... (Annyn) ; 

de manière que, par rapport k Az, les formules (4), (6) et (8) nous ramènent immé­
diatement à la question d'Algèbre élémentaire que je viens de vous rappeler*. 

Donc, pourvu qu'on puisse déterminer un système de valeurs des variables 
tel que 

Amyi = A2ny2= ... = Annyn (9), 

ces valeurs feront atteindre à Az son maximum, de manière que 

max (Az) = An (10) ; 
et par suite, A étant différent de zéro (5), la formule (7) nous donnera le maximum 
ou le minimum de z selon que A est positif ou négatif. 

A cause de la formule (8), la condition (9) est vérifiée seulement si, pour toute 
valeur de r, 

Amyr = A (11). 

En considérant comme inconnues x1} x2,...xn_Y, la formule (11) désigne un 
système de n équations linéaires; mais, bien que le nombre des équations y soit 
plus grand que celui des inconnues, ce système admet toujours une solution. 

La solution dont je parle est représentée par la formule 

1 [Aio . Ano . . A7 

*''lÇr+zL+"-+TL) (12) 

où, pour toute valeur entière de s depuis 1 jusqu'à n — 1, œ8' désigne la valeur qu'il 
faut donner à l'inconnue xs ; valeur qui est toujours déterminée et finie en conséquence 
de l'hypothèse (5), dont maintenant on voit l'importance. 

En effet, si nous désignons par y/ la valeur qui prend yr lorsque, dans la formule 
(2) préalablement multipliée par n, on remplace les variables 

/y» /y» rp 
OJX, JJ2, . . . U / Î l _ 1 

par les nombres 
Xo , . . . xn 

* En conséquence de la note précédente, même dans la question dont je m'occupe la condition (6) est 
nécessaire seulement lorsque n>2. 
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An . A2l ATl 

, ( !2 , ^ 2 2 , , ^M12 

" \Ain A2n A 

+ 
, (Ai,n—i , A2n-i . . -«-n,»—1\ 

+ a>rtn-i l—1 + —j + • • • + - ! J 
\ i i i w ^-2n -^rm ' 

+ a m I - j - + - r - + ... + -j— j 

où le dernier terme n'est qu'une transformation de narn. 

En faisant les multiplications indiquées et puis en faisant l'addition par colonnes, 
par une propriété bien connue des déterminants chacune de ces sommes est zéro, 

n A 
sauf celle de place r qui, à cause de la formule (3), vaut -j— ; on obtient donc 

nHv=-Ä-> d ' o ù Amyr'=A (13) 

et par conséquent le système (11) est vérifié. 

D'ailleurs, ce système ne pourrait avoir d'autres solutions ; parce que, en laissant 
de côté une quelconque des n équations, on obtient un système de n — 1 équations à 
n — 1 inconnues, dont le déterminant des coefficients, étant le mineur d'un élément de 
la dernière colonne du déterminant nA, est toujours différent de zéro, par l'hypothèse 
(5) ; par suite ce système admet toujours une seule solution. 

Donc la formule (12) nous donne le seid système de valeurs des variables auquel 
correspond le maximum ou le 'minimum de z, que nous savons déjà être déterminé 
par la formule (7). 

2. Comme cas particulier, si tous les facteurs de z peuvent devenir simultanément 
zéro, de la formule (8) on déduit A = 0. Réciproquement : si A = 0, alors la formule 
(13) devient Anlyr' — 0, d'où, en conséquence de l'hypothèse (5), yr' = 0 ; c'est-à-dire 
que tous les facteurs de z deviennent simultanément zéro, pour les valeurs (12) des 
variables. 

D'ailleurs, en ce cas, ces valeurs sont les seules compatibles avec la condition (6), 
ce qu'on déduit de A = 0 et des formules (6), (8), (5) ; par conséquent, zéro étant en 
ce cas la seule valeur de z que nous avons à considérer, il est en même temps le 
maximum et le minimum, soit A positif ou négatif. 

3. Voici un exemple d'application géométrique du théorème que je viens de 
démontrer. 

Soient 2/i = 0, y2 = 0, 2/3 = 0, y4 = 0 

les équations normales, en coordonnées cartésiennes, de 4 plans quelconques de 
l'espace ordinaire. 

L'hypothèse (5) A =j= 0 a le rôle d'exclure que 3 de ces plans soient parallèles à 
une même droite. Remarquons qu'on peut même toujours supposer que 

A > 0 (14) 
22—2 
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parce que, s'il avait été A < 0, il aurait suffit de changer préalablement tous les 
signes d'un des polinomes donnés, par ex. de y4; alors Au, Au, A3i auraient changés 
de signe, tandis que A4i l'aurait conservé, et ainsi A aurait changé de signe. 

Du cas particulier que nous venons d'examiner il résulte (ainsi que nous 
l'apprend la Géométrie analytique) que A = 0 seulement lorsque le point de 
coordonnées x-l, x2, xs' appartient aux 4 plans donnés (qui, par conséquent, 
appartiennent à une même gerbe, dont ce point est le centre). 

Maintenant, soit A=}=0, c'est-à-dire (4) 

A > 0 (15); 

en ce cas, les 4 plans donnés sont les faces d'un vrai tétraèdre. 

Si nous désignons par y" ce que devient y1 lorsqu'on remplace les variables 
x1, x2, x3 par les coordonnées du point d'intersection des plans y2— 0, yd — 0, y4 — 0, 
la formule (8) nous donne 

et en général 
4 * y , " = 4A (16), 

où yr" sont les hauteurs du tétraèdre donné, que la formule (16) nous apprend à 
calculer aisément. 

Des formules (15), (16) on déduit Ariyr" > 0 ; par conséquent Ariyr > 0 pour tout 
point qui, par rapport au plan yr = 0, se trouve du même côté de l'intersection des 
autres 3 plans. On voit ainsi que la condition (6) porte à s'occuper seulement des 
points qui appartiennent au tétraèdre dans l'acception élémentaire du mot. Alors, en 
se souvenant de la formule (14), on arrive au résultat suivant : parmi les points 
internes au tétraèdre donné, il y en a un seid dont le produit des distances des faces 
du tétraèdre est un maximum, ses coordonnées sont a?/, x2, x3' et la valeur de ce 
maximum est A4 : A. 

4. D'ailleurs, par la même méthode mais d'une façon géométrique élémentaire, 
on peut traiter directement la question particulière dont je viens de parler. 

Si v est le volume du tétraèdre considéré et si (pour toute valeur entière de r 
depuis 1 jusqu'à 4) l'on désigne par br un tiers de l'aire d'une de ses faces et par yr la 
distance de cette face d'un point variable interne au tétraèdre, alors le produit 

devient maximum ensemble au produit 

(Oiyi)(b2y2)(b3ys)(b4y,) 
4 

où bryr>0 et ^bryr—v, 
i 

v 
c'est-à-dire lorsque bryr = -r, 

c'est-à-dire lorsque les distances du point des faces sont la quatrième partie des 
hauteurs correspondantes. 

On connaît ainsi 4 planes (parallèles aux faces du tétraèdre) qui passent par le 
point cherché et dont 3 suffisent pour le déterminer. 



NEUE EMPIRISCHE DATEN ÜBER 
DIE ZAHLENTHEORETISOHE FUNKTION o-(n) 

VON R. v. STERNECK. 

Die von F. Mertens mit a (n) bezeichnete zahlentheoretische Funktion ist durch die 
n 

Gleichung a(n) = 2 p(X) definiert, wobei JJL(X) den Wert + 1 hat, je nachdem X das 
\ = i 

Produkt einer geraden oder ungeraden Anzahl verschiedener Primzahlen ist und den 
Wert 0 für alle durch ein Quadrat, grösser als 1, teilbaren Argumente X. 

Mertens hat das Gesetz | a (n) j è V?i bis zur Grenze n = 10,000 nachgewiesen und 
zugleich gezeigt, dass mit dem allgemeinen Nachweis dieses Gesetzes auch die 
Richtigkeit der Riemannschen Vermutung bewiesen wäre, dass die komplexen 
Nullstellen der Funktion Ç(s) sämtlich den reellen Bestandteil \ haben. 

In den Jahren 1897 und 1901 habe ich durch Herstellung einer bis 500,000 
reichenden Tabelle der Werte a (n) den Nachweis geführt, dass bis zu dieser Grenze, 
wenn man von einigen ganz im Anfange gelegenen Stellen in der Umgebung von 
n = 200 absieht, sogar die Relation | a (n) | < -J- *Jn strenge erfüllt ist, indem der 

Quotient —~- in diesem Intervalle stets zwischen den Grenzen + 0*46 hin und 
yn 

herschwankt. 

Den Anlass, mich neuerdings der empirischen Prüfung des erwähnten Gesetzes 
zuzuwenden, fand ich in einer Arbeit von E. Landau, die sich mit einer Abhandlung 
von Franel aus dem Jahre 1896 beschäftigt und in der gezeigt wird, dass eine von 
Franel dortselbst ohne Beweis gegebene Relation mit der Riemann'sehen Vermutung 
im Widerspruch steht. Wenn nun auch für die Richtigkeit dieser von Franel ange­
gebenen Beziehung nicht der geringste Wahrscheinlichkeitsgrund geltend gemacht 
werden kann, so schien es mir doch angesichts der Sachlage wünschenswert, die 
empirische Grundlage des Gesetzes j a (n) \ < \ 's/n so ausgedehnt als möglich zu ge­
stalten. Dabei dachte ich nicht an eine Fortsetzung meiner Tabelle sondern nur an 
einzelne Stichproben für möglichst grosse Argumente n. Unterstützt durch die 
kaiserliche Akademie der Wissenschaften in Wien, welche mir eine Subvention zur 
Entlohnung von Rechnern gewährte, konnte ich diesem Plane entsprechend im Laufe 
des vergangenen Winters 16 neue Funktionswerte a (n) ermitteln, deren Argumente 
bis zur Grenze 5,000,000 hinaufreichen. 
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Die Formel, nach der die Berechnungen durchgeführt wurden, ist die folgende : 

In derselben bedeutet g die grösste in Vn enthaltene ganze Zahl, coi (m) die Anzahl 
der die Zahl m nicht übersteigenden, durch keine der i ersten Primzahlen teilbaren 
Zahlen; X' hat alle derartigen Zahlen, welche g nicht übertreffen, zu durchlaufen. 
Die Formel gilt für alle jene n, welche grösser oder gleich dem Produkte der i ersten 
Primzahlen sind. 

Setzt man in derselben z. B. i — 4, so erhält man eine Formel, in welcher in der 

ersten Summe auf a (n) sogleich a ( ~~ j folgt, die sich somit zur Berechnung von a (n) 

bis zum llfachen äussersten Argumente der vorhandenen Tabelle eignet. 

Auf Grund dieser Formeln wurden folgende Funktionswerte ermittelt : 

a (1,800,000) = + 406, 

(7(2,000,000) = - 2 4 7 , 

a (2,500,000) = + 364, 

a (3,000,000) - + 109, 

a (3,500,000) = - 136, 

a (4,000,000) = + 194, 

er (4,500,000) = -f 177, 

CT (5,000,000) - - 705. 

I er (ni I 
Bildet man für jeden derselben den Quotienten ' ) - ', so erhält man, auf 

Vn 
3 Dezimalstellen abgerundet, der Reihe nach folgende Werte : 0*297, 0*270, 0*022, 
0-237, 0-214, 0140, 0-209, 0133, 0'302, 0175, 0*230, 0*063, 0*073, 0*097, 0083, 0*315. 

Die neuberechnenden Funktionswerte erfüllen also, wie man sieht, sämtlich das 
Gesetz | er (n) | < \ Vn. Da dies aber nur von diesen einzelnen Stellen feststeht, ist 
damit natürlich nicht etwa der vollständige Beweis erbracht, dass dieses Gesetz bis 
zur Grenze 5,000,000 gültig bleibt ; doch hat dies auf Grund obiger Zahlen, wie man 
sich leicht klar machen kann, einen sehr hohen Grad von Wahrscheinlichkeit. 

Die eben erhaltenen Verhältniszahlen geben im Mittel 0*179. Vergleichen wir 

diesen Wert mit dem Mittelwerte des Quotienten '—^=M für das Intervall von 0 bis 
Nn 

500,000, für welchen man durch Mittelbildung aus den Werten dieses Quotienten 
nach je 10,000 Argumenten n den Näherungswert 0*140 erhält, so können wir eine 
ganz befriedigende Uebereinstimmung konstatieren, da man ja bei einer so geringen 
Zahl von nur 16 zufällig herausgegriffenen Funktionswerten nicht erwarten kann, 
durch einfache Mittelbildung dem wahren Mittelwerte dieses Quotienten für das 
ganze Intervall besonders nahe zu kommen. Alle Anzeichen sprechen daher dafür, 
dass das Gesetz | er (n) | < J Vn auch bis zur Grenze 5,000,000 richtig bleibt und dass 

der Quotient —-~ ungefähr zwischen denselben Grenzen hin und herschwankt wie in 
Vn 

o-(600,000) = 

a (700,000) = 

o- (800,000) = 

a (900,000) = 

a (1,000,000) = 

a- (1,200,000) -

o- (1,400,000) = 

o- (1,600,000) = 

- 2 3 0 , 

: + 226, 

: - 20, 

: - 2 2 5 , 

: + 214, 

: - 153, 

: - 247, 

= + 168, 
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dem früher untersuchten zehnmal kleineren Intervall; es waren dies die Grenzen 
± 0-46. 

Als Ergebnis der Untersuchung ist somit festzustellen, dass sich die Funktion 

—jJ- im Intervall von 0 bis 5,000,000 genau ebenso zu verhalten scheint, wie in dem 
Vn 

zehnmal kleineren Intervall bis 500,000, dass somit die Relation 

| er (n) | < -J Vn 

ein zwar unbewiesenes, aber ausserordentlich wahrscheinliches zahlentheoretisches 
Gesetz darstellt, und somit auch die Biemann'sche Vermutung mit einem hohen 
Grad von Wahrscheinlichkeit als richtig angesehen werden kann. 



SOME USES IN THE THEORY OF FORMS OF THE 
FUNDAMENTAL PARTIAL FRACTION IDENTITY 

BY E. B. ELLIOTT. 

1. H F(<t>) = (ct>-a1)(<j>-a,)...((f>-an) (1), 

where alt a2,... an are different constants, the identity is 

1- .ïiVFTaTj^-J ()-
Here F(<j))/(<j) — a8) is the integral function 

(<j> - a,) (cj)-a2)...((j)- as_a). (c/> - as+i) ... (<j> - an) (3). 

The cj>, which disappears from the right of (2), need not be a quantity. But, 
if we take it to be a symbol of operation, it must not operate on ax,a2, ... an, as 
the factors in (1) have to be commutative. 

/ £) 7) 1 \ 

Let it be a symbol of direct differential operation <p ( x, y, z, ... ^~-, ^~, ~-, ... J 

on functions of any number of letters x, y, z, . . . . Then, if u is any function of 
ffl> y> &> • * • > 

u-T'(^l^u) (4). 
8ssl\F'(a8) $-as ) w 

We look upon this as a formula for the separation of u into n parts by direct 
operation. 

2. Now let u denote any solution of the differential equation 

F(#)u=f(x,y,z,...)' ..(5). 

By direct operation, as in (4), we have 

u = ih -f u2 + ... + un (6), 

where, for s — 1, 2, ... n, us satisfies 

(cp - as) us ^ jrr^. f(x,y,z,...) (7). 

We further remark that any us satisfying (7) satisfies 

^ « • - F W ) ^ ; ^ ^ ' 5 - 0 (8)> 

so that, by (4), any sum (6) of solutions, each of one of the n equations (7), for 
s = 1,2,... n, satisfies (5). 
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I t follows that the general solution u of (5) is the sum of the general solutions 
of (7) for all the separate values s = 1,2, ... n. 

In particular we have a compact proof ab initio that the general solution of 
the linear equation, with constant coefficients and no repeated operating factors on 
the left, 

F{i)y=w <9> 
is the sum of the general solutions of the several equations 

(sraOy = F W ) / ( Ä 0 , <*= 1*2 '-w> (10)' 
i.e. is y=î iJ?^xe^{Je~a^f(x)dx+Cs] (11); 

1 $ \as) 

so that it involves n arbitrary constants. 

3. The integration of equations like (5) is not, however, our present concern. 
We are going to deal with known solutions u of such equations ; separate them into 
parts (6) by direct operation ; examine the parts ; and draw conclusions from the 
separability. 

In all the examples chosen the right-hand side of (5) will be zero ; and we shall 
deal with solutions of particular types (for instance with rational integral solutions), 
under circumstances when it is clear or demonstrable that the separation is into 
parts of the same types. 

Separation of gradients into seminvariant and other parts. 

4. For the notation and nomenclature reference is made to my Algebra of 
Qualities, Chap. vu. 

If GTxm~ryT is any term in a co variant of order w of (a0>ßi> ... ap)(x,y)p, Cr 

being of degree i and weight w in a0, ax, ... ap, so that ip — 2w = <& — 2r = n, say, then 

{IiO-(r + l ) ( w - r ) } a r = 0, 

i.e. iaO-(r+l)(V + r)}Cr = 0 (12). 

Conversely, if this is satisfied then Gr is the coefficient of xri+ryr in a covariant 
of order n + 2r, provided n ^ — 1, as we for the present assume. 

Now consider the most general gradient (rational integral homogeneous isobaric 
function) G of type w, i, p, where ip — 2w = n. Gradients included in G, by proper 
limitation of the arbitrary numerical multipliers, figure as : 

(1) seminvariant coefficients of x71 in covariants of order n, when n <£ 0, 

(2) coefficients of a^+1y in covariants of order n -f 2, 

(3) x-o+2y2
 v + 4, 

etc., etc. 

(w -f 1) the coefficient of x^+wyw in the one covariant of order n + 2w — ip, i.e. 
in the i-th power of (a0, aly ... ap)(x, y)v, arbitrarily multiplied. 
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By the above these included gradients satisfy respectively, and are in their 
generality determined by, the corresponding differential equations : 

(1) ( 1 2 0 - 1 . 9 7 ) ^ = 0 

(2) ( n O - 2 . * j + l )G a = 0 

(3) (HO-3.97-f2)G 3 = 0 \ (13). 

etc., etc. 

(w +1) (£10 —w + l.ri + w) Grw+1 = 0 

Consequently every one of them satisfies 

(ClO-l.v)(£lO-2.v + l)...(ttO-iv + 1.71 + iv)G = 0 (14), 

i.e. 0W+1C1W+1G = 0 (14') 

(cf. Algebra of Quantics, § 125, Ex. 3). 

Now the most general G of type w, i, p satisfies this equation ; for it satisfies 
Ç1™+1G = 0, since operation with O lowers weight by 1, and there is no gradient of 
negative weight. Hence, by § 1, we have an identity 

uH-l 

<?= %A,F, (15), 
1 

where, for s = 1,2, ... w + 1, 

Fs~(n0-l.n)...(n0-s-l.v^s-2).(n0-s+l.v + s)...(n0-w + l.v-hw)G 

= 0*-in°-1.(S10-8 + l.<n-r 8)...(nO-w + l.y + w)G (16), 

and (nO-s.n + s-l)Fs = Q (17). 

Also every As has a definitely determined numerical value. 
Thus we have expressed the general G, of its type, with w zero or positive, as 

a sum of seminvariants A1F1 and other coefficients in covariants. (With n = — 1 the 
seminvariant part is of course absent.) 

In the general G = %ASFS = 2(?s, every Gs is general for purposes of (1) to 
(w + 1) above. For if, instead of the general G on the left, we take only the general 
Gs which is annihilated by X20 — s . n -{- s — 1, everything on the right vanishes except 
the corresponding ASFS, which must therefore be Gs. 

Accordingly the general gradient G of type w,i,p, with n <(: — !, has been 
expressed by direct operation as the sum of (1) the general seminvariant Gj of the 
type (absent if v =—.1), (2) the general second coefficient G2 in a covariant led by 

a seminvariant f-fì6r2j of type iu—l,i,p, (3) the general third coefficient Gs in 

a covariant led by a seminvariant of type w — 2, i,p, and so on, and lastly (w +1 ) a 
numerical multiple of the (w-fl)-th coefficient in the i-th power of (a0,a1,...ap)(x,yy. 

A variation of the above reasoning (here omitted) succeeds in expressing the 
most general G for which ip — 2w — — r( is negative as a sum of coefficients in 
covariants of orders r)',n' + 2, ... ip. 
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Separation of a homogeneous function into orthogonal invariants. 

5. I t has been proved, somewhat circuitously *, that every rational integral 
function H of degree i in the coefficients of (a0, au ... ap) (x, y)*> satisfies the 
differential equation 

n {0-a-i(ip-2m)}H=0 (18), 

where c denotes V— 1. The equation may be written 

{(0 - n y + (iPy] {(0 - ny + (ip - 2f]... {(0 - ay + 22} (o - n> H=o...(is'), 
or {(0 - a)2 + (ipf) {(0- n)2 + (ip - 2)2}... }(0 - ny +12} H= O...(is"), 

according as ip is even or odd. 

It follows, by § 1, that every homogeneous H of degree i can by direct operation 
be expressed as a sum of parts 

H = Hù + H1 + H9+... + Hip (19), 
where, for m = 0,1, 2, ... ip, 

{0 - Cl- L(ip- 2m)} Hm = 0 (20). 

Now this last equation is the condition, necessary and sufficient, for Hm to be 
an orthogonal invariant of factor et(^~2w)ö in the expression of invariancy for the 
transformation x = X cos 6 — F sin 6, y = X sin 6 + F cos 0, as we learn by employing 
the infinitesimal transformation (cf. Proc. Lond. Math. Soc. loc. cit.). Accordingly 
every rational integral homogeneous function of degree i can by direct operation 
be expressed as a sum of orthogonal invariants of the various possible factors for 
degree i. If H is general, so is every Hm ; for if we take the general Hm for H 
on the left in (19), we obtain Hm alone and complete on the right. 

For one of the parts to be an absolute orthogonal invariant (for direct turning) 
it is necessary that ip be even. This being so, the most general absolute orthogonal 
invariant of degree i is extracted from the most general H in the form 

U{0-£l-i(ip-2m)} 

= {(0 - ny + (ipy\ {(0 - ay + (ip - 2)2}... {(0 - 0) 2 + 22} H...(21). 

Universally, for all the ip + 1 values of m, the general Hm which is a part of 
H is extracted from H as a definite numerical multiple of the result of operating 
on H with the product of all the operating factors in (18) except the corresponding 
0 — £1 — i (ip — 2m). 

* Mr Berry showed {Proc. Camb. Phil. Soc. Vol. xm. pt. n. p. 55) that the equation is satisfied by the 
leading coefficient in any absolute orthogonal covariant (for direct turning) of order ip, and I subsequently 
remarked {Quarterly Journal, Yol. xxxvu. p. 93) that every rational integral function of degree i in the 
coefficients is such a leading coefficient. Probably a better order of ideas would be (1) that orthogonal 
invariants (non-absolute and absolute) of degree i are just as numerous as products of coefficients of that 
degree, and (2) that every such invariant is annihilated by some one of the operating factors in (18) (cf. Proc. 
Lond. Math. Soc. Vol. xxxin. pp. 226, etc.). 
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Sources of ternary covariants and mixed concomitants. 

6. In a recent paper (Proc. Lond. Math. Soc. Ser. 2, Yol. xi. p. 269) I have 
shown how by differential operations to exhibit all ternary covariant sources in a 
double system of coefficients 

C00> 

C\0> ^01? 

^20 J On, CQ2, 

^ 3 0 ; C21> C 12? C03> 

• •> 

i.e. all rational integral functions of letters contained in this double system, regarded 
as unending, which are coefficients of highest powers zm of z in covariants of a ternary 
quantic 

S -T-TT^ ST. CrsxHfz'P-^ (22) 

r=o,*=o r\s\(p-r-s)\ 
of sufficiently high order p. In connexion with any particular source, p may be any 
number not less than the greatest value of r + s for any cr8 present in that source. 

The sources are those homogeneous rational integral functions of the letters 
crs which are of constant equal weights throughout in first and second suffixes, and 
which have the four annihilators 

r*œ ( 3 d 3 1 nyx= 2 \crù^7— + 2c M ) 1 ^- .+ . . .+rc l f f . . 1 r - -^ (23), 

£lxy ~ 2 W „ M — + (r - 1) c,_2,2 ?r + ... + cor -. -(24), 

r+s-^co ( 3 v 

a„= 2 0- + l)c,.Sa- (25), 
r=0, s=0 { ocr+i,s) 

•%z= S U8 + l)cn^—\ (26). 
r = {), « = 0 I 0Cr}S+i) 

Let us denote the degree of one of them by i, and its equal weights by q, q. 

The fact proved (loc. cit.) was that if Gi)(Lq is the most general rational integral 
homogeneous doubly isobaric function of degree i and weights q, q with arbitrary 
numerical coefficients—say the most general gradient of type i, q, q—then 

W j l - G W (2Ï) 

is the most general covariant source of the type, where 

Y = C00 \Gl0**XZ "Ì* 00iilyZ) + 7~~9 \G20^^XZ "f" ^0nilxzllyZ "f CQ2Ìl"yz) — ... . ( ^ 8 ) , 

and (j) = 1 — j—2 12^12^ + - 2^~3 ̂ %/^ 'V "" ̂ " 22 ~32 " 4 ^ " W ^ V + • • • (29). 

The general —̂ Cr^g,g is of course the general Gi-.h(Jtq. ^G^^q^ is the most 
dc00 

general gradient of type i, q, q which is annihilated by Qxz and by £lyZi and 
<j>yfrGi-it q, q is the most general gradient included in this which has £lyx and £lxy as 



SOME USES IN THE THEORY OF FORMS, ETC. 349 

well as £lxz and £lyz for annihilators. The method of the present paper will now be 
used to express the whole ^ G i - i , ^ as a sum of parts of which (f>yfrGi-hqyqis one, 
while the rest, as well as this, can be interpreted. 

The general -v/rG^^g, and in fact the general gradient of second weight q, 
is annihilated by Xl^1; for operation with £lyx diminishes second weight by 1. We 
accordingly have 

^xy Qyx *^öi--i,<7,tf ==0, 

i.e. (see § 4), 

ßy*flW (uyxtoxy - 1 . 2 ) (£lyx£lxy - 2 . 3 ) . . . (£lyx£lxy -q.q+1) x^G^^g = 0.. .(30). 

Consequently -vJrG^-^g is separable, by direct operation as in § 3, into a sum of q + 1 
parts 

GM + GW + G<2> + ...-f G<?>, 

where nyxnxyG^=0 (31), 

and, for r - I , 2, ...q, (üyxnxy-r.r + 1) G^ = 0 (32). 
We have, in fact, 

G(0)=(- w r ^ r s r ^ ^ ^ + T (°**na* ~x *2) (n*"n"* - 2 •3) • • • 
.,. (£lyx£lxy -q.q + 1) 'r'Gi-i, q,q (33), 

and, for r = 1,2, ... q, 

OT = ̂ . o , Ä (o ? / A, -1 .2 ) . . . (nyx£ixy - r - 1 . r). (nyxnxy - r + 1 . r + 2')... 
. . . (n^flay - ? . ? + 1) ^ f t - 1 , g, g 

= ̂ ,n;ya;,(nyxnxy - r +1 . r + 2) ( I ^ A , - r + 2 . r + 3) . . . 
... •(ßya.n^ - g. g + 1) ^G;_1} g, g (34), 

where (2r + 1) 4 r = ( - l)^~r (q - r) ! (q + ?- + 1) !. 
7. The first part G(0) is the most general covariant source of type i, q, q. It is 

in fact (Jn/fG^^g, otherwise written. 
The other q parts G(1), G(2), ... G(5) specify mixed concomitants. I t will be seen 

that they are, respectively, the most general gradients of type i, q, q which occur as 
coefficients of %nÇ°, fVf°, ... ^nq^0 in covariant sources of the universal concomitant 
%x + rjy + Çz and a ternary quantic (22) jointly, i.e. which occur as coefficients of 
%n, £V, ... Zqvq in quantics (|, n, Çf, (f, n, Ç)\ ... (£, 17, Ç)23 which present themselves 
as co-factors with highest powers z7* of z in mixed concomitants. 

We have, in fact, as in § 4, that G(r) is the middle coefficient in a 2r-ic covariant 
of the binary system 

^00 

c10x + c0i y y (35) 
c20x

2 + 2cnxy + c02y
2 

Moreover all the coefficients in this binary covariant have Çlxz and £lyz for annihilators, 
by my earlier paper. If we put £ for y and n for — x in it, we obtain a 2r-ic 

7) 7) 

contravariant of the binary system, annihilated as such by £lyx -f £ ~- and 12 /̂ + ^ ^ t , 

and also annihilated by £lxz and £lyz. This (we will see) is the part free from f in 
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a 2r-ic (£, n, £)2r obeying differential equations which tell us that it is the £, TJ, Ç co-
factor of the highest power z™ of z in a mixed concomitant, which can be determined 
from it by differential operation in the usual manner. 

The following order of construction of the (£, n, Ç)2r will make the truth of the 

statements clear. Operate on ^— G{r) ^rnr with 

Coo - je™ f ßa» + K jjfci + Coi Ulyz + ? g Z 

+ ̂  {c (n„ + ? | ) 2 + 2cn (n„ + ? | ) (ß„, + K ̂ ) + cö2 (ß„ + ? ^ 

ß„+C^, ß^ + fe; (37)> 

(36). 
The result is a 2r-ic in £, 97, Ç. I t has the annihilators 

as direct operation at once verifies. I t has also iG(r) $jrrjr for its only term free from f ; 
ri 

because -vjr -— G(r) = iG{r), in virtue of the annihilation of G(r) by £lxz and ß ^ . Now 
ac00 

operate again on the result with 

l _ _ y . o x . l V o A t Ì > J . _ L _ ^ . 0 . . 4 . , Ì Y / r . O . . . J . l : l 

(38). 

The new result, which is a (f, n, f)2r, has the two former annihilators (37), and also 
the two 

* V + f ^ , n ^ + i , ^ (39). 

I t has, then, the four annihilators which exactly suffice to express that it is the co-
factor of the highest power of z in a mixed concomitant. Also the terms free from f 
in the (£, n, Ç)2r, being obtained by operation with (38) on iG(r) fr?f, compose as stated 
that contravariant of the binary system (35) which contains the term Gkr)^rnr, 
numerically multiplied. 

On examining the effect of (36) in its operation on =— G(r), and remembering 
C'Coo 

from my former paper that, for every m and n, 

- 4 ~ , ß £ ß ; A ©w = ( _1)«** s ffw> 

because £lxzG
(r) = 0 and ß^G ( r ) = 0, we find that the coefficient of the highest power 

£2r of £ in the result of operation is 

3 , / 3 , 3 \ / 3 3 3 
Crr aCoo

 + r r + v ' ac10
 + Gr^1 dcj + vCr+2,r 3c20

 + Cw'r+i dc^i+ c*'r+s a^2 

+ . . .1 G^ = Arö ( r ) , say (40). 

Consequently the coefficient of Ç^z™ in that ternary mixed concomitant which is 
provided by G(r) is </>DrrG

(r). I t is a gradient of type i, q + r, q + r, and, from its 
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formation by means of 0, is an invariant of the binary system (35). Call it a mixed 
concomitant source of type i, q + r, q + r. 

Notice that the source (j)DrrG
{r), and the (%, n, Ç)2r in which it is the coefficient 

of Ç2r, are independent of p, the order of our ternary quantic (22), provided this 
be great enough for every cmn introduced in the source to occur as a coefficient in the 
p-ic. The lower limit for p is apparently 2q + 2r, but I shall not be surprised if this 
turns out to be excessive. The order vs in x, y, z of the mixed concomitant finally 
obtained depends, of course, on p, and is known to be ip — Sq — r. 

8. By reasoning as in § 4, every G(r) is general of its type and with its properties 
when the Gi-1} g, q from which we start is general. I t is the sum of arbitrary multiples 
of all the particular G(r)s of its type which yield mixed concomitants as above. 
Remembering this we are provided with the following theorem of enumeration : 

The whole number of the linearly independent gradients of type i, q, q that are an­
nihilated by £lxz and by £lyz is equal to the sum o / ( l ) the number of linearly independent 
covariant sources of type i, q, q, and (2) the aggregate of the numbers of the linearly 
independent sources of the q possible types i, q -f r, q + r (r = 1, 2, ... q) of those mixed 
concomitants of the q corresponding classes (dimensions in %, rj, f) 2r which contain 
terms free from Ç in their co-factors with highest powers z™ of z. [Mixed concomitants 
without such terms are results of multiplying other concomitants by powers of the 
universal concomitant Çx + ny-r Çz.] 

For all the sources derived from the general Gi-Ïi([)q, and referred to in the above 
enumeration, to be relevant to a p-ic, p has to be not less than a certain number, 
which may be as great as 4g. 

There is no upper limit to p, and we may take it as infinite. If we do, every 
-cr (= ip — Sq — r) is also infinite. We may look upon our results as affording by 
direct operations all the finite sources of infinitely continued covariants and mixed 
concomitants in the perpétuant theory of the infinitely continued 

Coo + (c10œ + cmy) + Y^ (c2o^2 + %cuxy + c02y
2) + (41). 

Completeness will have been given to the theory of the enumeration of all 
linearly independent concomitant sources, when it has been found possible to 
enumerate gradients of given type with Q,xz and Q,yz for annihilators, i.e. to ascertain 
the number of arbitraries in ^Gi-^^q, with Gi-iiQjq general of its type. The problem 
of the enumeration of irreducible ternary perpétuant sources appears to be a 
subsequent one. 



ON REGULAR AND IRREGULAR SOLUTIONS OF SOME 
INFINITE SYSTEMS OF LINEAR EQUATIONS 

B Y H E L G E V O N K O C H . 

1. If the infinite determinant 

A 

XL 1 1 , ^ l i 2 , 

-"-21» -"-22» 

is supposed absolutely convergent*, the system of equations 

Anxi + Aï2x2+... = 0 j 

AnXL + A22X2 +...== 0 [ •o 
will have properties quite similar to those of a finite system of equations, provided 
that the unknown quantities 

®1, #2 , ( 2 ) 

are subjected to certain additional conditions depending on the nature of the co­
efficients Aik. 

For instance, if A is a normal determinant f having a value =|= 0, and if the xk are 
subjected to the condition 

\xk\< Const. (&= 1, 2, . . .) , 

the only solution of the system will be 

Xi = 0, #2 = 0, (3) ; 

and the corresponding non-homogeneous system 

-"• l l^ l "T" -"-12^2 i • • • =z ^ 1 

Â1SLœ1 + A2iœ2+...=G2\ (4) 

* At the Scandinavian Congress of Mathematicians in Stockholm 1909, a report was given on the 
theory of infinite determinants and the resolution of infinite systems of linear equations. See the 
Compte rendu of the Congress (Leipzig, Teubner, 1910). 

t This signifies that the product n ^ ^ and the sum S ^ S j . ^ (extended to all i, k verifying the 
condition i^=k) are absolutely convergent. 
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will, if the Ck are supposed inferior, in absolute value, to a given constant, have an 
unique solution 

xh = £ («ifcCi + cc2kG.2+ ...) • (5), 

where aik denotes the minor of A corresponding to the element Aik. 

If, on the contrary, no additional conditions for the xk are introduced, the 
analogy with finite systems wholly disappears and there will, in general, appear 
solutions of quite a new kind. 

This I propose to illustrate by certain systems of the special type * 

Xi - j - (X12&2 1 « 1 3 ^ 3 1 ' 

# 2 + «23 # 3 + • 

X* -f • 

- C i 

.(6). 

Whatever may be the values of the a^, the infinite determinant 

1, a12, a13, 

A = 
1 , «23, 

1, 
•(7), 

and all the minors of A of any finite order are certainly absolutely convergent. We 
have A = 1 and 

a i l — I? #21 — — «12? • • • ; °^+l . l — (—"1/ I «12J «13? ' • • «lM-1 

!•) «23? ••• «2I/+1 

1 , . . . a 3 „ + 1 .(8) 

1, avv^ 
and similar formulas for the other minors f. 

Supposing now the a^ such as to make the series 

l + | ^ . i + 1 i a + |ai.i+a |
2 + |at.i+8 |2+ (9) 

convergent and not superior, for any value of i, to a certain positive quantity K2, it is 
easily seen, by the application of a well-known theorem of Hadamard, that 

j a H - l . l j = •**-

and, generally, j av+h,k\^Kv (v = 0, 1, 2, ...; k = 1, 2, . . .) , 

and hence it is not difficult to prove the following theorem. 

* It may be remarked that a very general class of systems of the type (4) can be, by suitable 
transformation, reduced to this type. 

t These minors will evidently satisfy the relations avv = 1 and 

„ + «„-1-1 „Û-W-1 v+<n+-+*v + <n.v = ° (2> = 1, 2, . . . ) , v.v "V .v+p* 1 H 1 J + P " v+7?. Ĵ  

•aj>+7>.i> + a v + 7? . i /+ l a i / . v + l + ••• + av+p.v+p av.v+p = 0 (i) = 1,2, ...). 

M. C. 23 
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THEOREM 1. If in (6) the ck as well as the unknown quantities are subjected to 
the conditions* 

iim ll\cn\ < j^ j 

i \ « 

hm V\xn\ < -„j 

the system will have for unique solution 
#&•= ck + ak+ukck+i + ak+2.kck+2+ . . . f (&=1, 2, ...) (11). 

* According to the notation proposed by Prof. Pringsheim, lim c denotes the greatest limiting 
value of c. 

f Demonstration : Supposing xk a solution with the property (10), we can choose a positive number e < l 
and an integer ni such that 

K l < ( ^ j for n>ni. 

Hence 

\xn\ + \an.n+l\ \xn + l I + I an. n+2 i K* + 2! + ••• 

Vxy (1+ia^.«+i I # + K . « + 2IV# 

< ^ i - ( - ^ j for ?i>rii, 

i^! being a certain positive constant. 

Hence the series 
GO 

2 K .J f l ^ l + K.H-ll K+ll + •••) 
V — % 

is convergent and we are justified in writing 
CO 

S %n(x
v + a

v.v+ixu + l+ •••) 
v — n 

— a)m xn 

+ (auuan . n+l + au-\-l. n) Xn-V1 

+ (anuau. n + 2 + au-Y\ . uau + l. n-\-2 + an+2 . n) xn + 2 

+ ... 
= xn (cf. note *, p. 352). 

GO 

S a 

which proves (11) to be a necessary form for #fc. 

Supposing next xk defined by (11); we easily find a positive e < l and an integer wj such that 
(for n > ?ii) 

l i m ^ K JC 

where xk denotes the expression obtained by taking in (11) every term with its absolute value. Hence 

x
V+\au.v + l\x

V+l + \a
V.v + 2\x'V + Z+ -

is convergent and 
xv + av.v+lxv+l + av.v + 2xv + 2 + ••• 

can be written in the form 
Gv + V f l (av (-1 . v + av+l. I/+1 ^ . r/ + l ) 

+ Ci/ + 2 ( % + 2 . v + a v + 2 . v + lav. I/+1 + S + 2 . v + 2 ai>. v+2) 

+ ... 

which is =cv (cf. note *, p. 352). Thus the theorem is proved. 



As an immediate consequence of this we have : 

THEOREM 2. The only solution of the homogeneous system 

x1 + a12x2 -f a13#3 -f .,. = 0 \ 

x2 + a2Sxs + ... = 0 

Xz + ... = 0 
.(12) 

ivhich verifies the additional condition 

\imV\xn\<-^ (12') 

is x1 = 0,x2 — 0, (13). 

As the solutions thus found correspond to those of a similar finite system, I will 
in the following call them regular solutions. Thus the regular solution of (12) is (13) 
and that of (6) is (11). All other solutions of the same systems shall be called 
irregular solutions. 

By a suitable change of the constant ^ , the above results will remain true if 

instead of the conditions imposed on the series (9) we only suppose that aik satisfies 
the condition 

\aik\^T^ (i,k=l,2,...) (90, 

T being a given positive constant. For, taking a constant >S<^ and writing (6) 

under the form 

X{ "T (%i.i-i-l «^ï+i ~f ^i.i+2 ^i+2 l • • • = = fy \^ = = ±> *^> • • • )> 

where äik = aikS
k-\ c{ = ~ , x{ = ~ , 

the new coefficients ä{k will evidently satisfy the conditions above imposed on (9). 

K Theorems 1 and 2 also remain true if in (10) and (12') we substitute for ^ a 

value G < -~, and in many cases they may remain true even for values G > ^ . For 

any given system of aik which satisfies (9') there exists, according to a fundamental 
theorem of Weierstrass, an upper limit G> 0 of all values G such that 

(1) each series Xi 4- O>ìA+IXì+I + ... converges if 

lim y\xn\ < C; 

(2) Theorem 2 remains true if -^ is replaced by G 

From the definition of G we hence derive the following results. 

If G is finite, any solution of (12) which satisfies the condition 

ÏÏnrV|^]<Ô ....(12") 

must be identical with the regular solution 

#i = 0, x2 = 0, 
23—2 
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At the same time, if e is an arbitrarily small positive quantity, there exists at 
least one system of values 

Xi, x2, . . . 

satisfying the condition G è lim V\œn\< C + e, 

and such as either to satisfy the equations (12) or to render one or several of the 
series in the left members divergent. 

If 0 = oo, any solution of (12) for which liin-V|#nj is finite must be identical 
with the solution x1 = 0,x2 = 0, ...; and if (12) admits another solution xk we must have 

lim Vj xn j = oo . 

Corresponding results may be obtained for the non-homogeneous system (6). 

An important simplification will be obtained if in addition to (9') we suppose, 
for instance, that the power-series 

1 + aimi+1t + aL ;+2f + ... (i = 1 , 2 , ...) 

converges for any finite value of t. For then the series 

x>i ~r « t . i + i ^ i + i ~r « i . ?;+2^i+2 ~r • • • 

will certainly converge for any system of values ak such that lim \l\ xn is finite and 
we conclude : 

THEOEEM 3. There exists a positive limit G (finite or infinite) which divides the 
solutions of system (12) in the following manner : 

If G is finite, any solution of (12) satisfying (12") must be identical with the 
regidar solution x1 — 0,x2 = 0, .... 

At the same time, if e is an arbitrarily small positive quantity, the system (12) 
will admit of at least one irregular solution satisfying the condition 

G è lim v 'Kl < G + e. 

If G is infinite, any solution of (12) 'which is not identical with the solution 
x1 — 0, x2 — 0, ..., must satisfy the condition 

J-. nr, r 

hm VI xn I = oo . 
For the study of the above systems, the determination of the limit G evidently is 

of great importance. In general this determination seems very complicated but I 
will point out some interesting cases where the value of G is easily obtained. 

2. Consider the system 

Xi -f- C\X2 -f- C2XZ - j- CSX± 4- . . . = U \ 

^2 + Cix3 + c2xA -f . . . = 0 

y u4), 
xz + cxxA + ... = 0 

the coefficients ck being supposed such that the Taylor-series 

F(t) = l+c1t + c2& + (15) 
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is convergent in a certain circle with radius R > 0* and that F(t) has one or several 
zeros in this circle. I shall denote by £ the least possible absolute value of these 
zeros. Then we have 

0<%<R. 

It is now easy to prove the following 

THEOREM. Every solution xk o/(14) such that 

w ^ i < £ (i6) 
must be identical with the regular solution 

Xi = 0, x2 — 0, . . . ; 

at the same time, there are irregular solutions satisfying the condition 

fimV[^ = f (160-

Thus the exact value of the above-mentioned number G is in this case = £. 

Demonstration. Suppose xk to be a solution of (14) satisfying the condition (16). 
Then the series 

will certainly converge for 11 \ > Ri and thus the function 

^ ( * ) G @ ....(17) 

will be regular and uniform in the region 

Ri<\t\<R, 

where 7^ = lim W\ xn | < £. 

According to a theorem of Weierstrass (17) can then be developed in a Laurent-
series, proceeding after positive and negative powers of t. The coefficients of the 

negative powers will all vanish because of equations (14) and thus F(t) G[~) will be 

a regular function in the neighbourhood of t = 0. This is, F (t) being =£ 0 for 11 | ̂  Ru 

impossible unless G (~) vanishes identically: 

xY = 0, x2 — 0, ... 

which proves the first part of the theorem. 

To prove the second part we denote by p the root (or one of the roots) satisfying 
the condition 

Then putting in (14) 
«i = l , oo2 = p , x s = p2, (18), 

the left-hand members will all converge absolutely and all be = 0. Thus (18) is an 
irregular solution of (14) satisfying the condition (1&). 

* Should F(t) converge for every value of t we put R = co . 
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Denoting by 

those minors of the determinant 
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1 , Oil, <*2, a?,> • • • 

1 , Ci, a , , Co,,.. 

1, C,, C«2, .. 

1, Ci,.. 

which correspond to the first column so tha t 

Ci, C2, . . . Ck—i 

1 , Ci, . .. Cfc_2 

1, .. .C*_8 

1, * 

it appears immediately tha t these quanti t ies satisfy the equations 

Cl + «j = 0 \ 

C3 -f Cidi 4- 0f2= 0 

.(19), 

.(20), 

Cfc + CA;-!«!-!- . . . +ajfc=0 

and the condition l i m V \ a n \ — T. (21). 

For 1, ai, a2,... will be the coefficients in the development of -pyr? accordi 
ß (t) 

to ascending powers of t and the radius of convergence of this development is 
since this is the absolute value of the zero of F(t) which is nearest origin. 

By this remark it is easy to obtain the following theorem. 

Let aQ, a1} a2i... be given quantities such as to satisfy the condition 

lim \/\ an j < £, 

£ being defined as before by means of the given quantities 1, cu c2,.... Then if xY, x, 

is a solution of the system 

Xi + Ci x2 + c2 ocz + ... = a0 | 
i 

x2 -f d x3 + ... = cii I 

œ3 + ... — a2 1 
.(22) 

satisfying the additional condition 

lim \/\ocn\ < ?, 

this solution is identical with the regular solution 

®1 — «0 + «1 «1 + «2 «2 + • • • 

oc2 — ax + Oj a2 + .. . 

Xo LX/9 r - . . . 

.(23); 
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at the same time there exists a singular solution yx, y2,... such that 

lim y\yn\ = £• 

Thus even in this case £ will be the barrier between the regular and the 
irregular solutions of the system*. 

3. As an application of these results we take 

F(x)^ 
phx . hx h2x2 

hx 12 13 

If 
: | 3 " 

.*. f = ̂  (H^\h\), 

so tha t system (14) takes the form 

h h2 h3 

®\ + To œ* + lo œs + M œ4 + • • • = 0 

®2 + To ^3 + Tg ^4 + • • ' = 0 

xz 4- p9 #4 + . . . = 0 

.(24). 

This system, as well known, is nearly connected with Euler-Maclaurin's sum-
formula. 

I t evidently possesses the irregular solution 

2iri l2iri\l 

x* — — # i = 1> h ' A A 
.(25), 

* The systems (14) and (22) will be of quite a different nature if the function (15) has no zero-points 
within the circle of convergence |t|<JR. In this case it is easy to prove that G = R. Thus if R = œ , any 
solution of (14) satisfying the condition 

lim \ / \xn| < finite constant 

must be identical with the regular solution 

x1 = 0} #2 = 0, .... 
Taking, for example, 

F{x) = ex, 

1 1 
ci = l, c 2 = g ' c3=j3' •••> 

(22) will be identical with a system considered by E. Borei [Annales de VEcole Normale, Ser. ni, t. 12, 
p. 3 ; t, 13, p. 79 ; see also Comptes Rendus, t. 124, p. 673 (Paris, 1897)), which is of great importance in his 
researches concerning the representation of functions of real variables. The method given by Borei 
furnishes an infinity of solutions of the considered system for any values of the quantities ak (these 
solutions are, according to our terminology, irregular) and applies to a general class of systems which 
contains (22) as a special case. 
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and according to the results obtained (No. 2) we can state that a solution 
xk(k — 1, 2, ...) of (24) cannot have the property 

l im y/\ 0Dn \<-TT y 

unless xx — x2 = ... = 0 . 

From this result it is easy to deduce the following remark concerning periodic 
functions : 

k h 
If the series kYx + y\ ®2 + r l ^ ~*~ C^) 

represents a periodic function <\>(x) with the period h, \h\ — H being supposed inferior 
to the radius of convergence of the series, there are only two cases possible, viz. : 

27T 

(1) \im\/\kn\ =jj' 

(2) ki = k2 = ... = 0. 
_ o 

To prove this, suppose lim \/\kn\<-jr (27), 

and </> (x + h) = <j> (x). 

Hence we have 

0 (A) = </> (0), fi (h) = <j>' (0), <j>" (h) = $' (0) etc. 

or À0 /(O) + S f / ( O ) + ~ f ' / ( O ) + ...==O, 

so that x-i = <// (0) - Id, x2 = </>" (0) = h, ... 

is a solution of system (24). Hence because of (27) and of the preceding result : 

h = h = ... - 0, 
which proves the statement. 

o 

Evidently the limit -jj. given by this remark is a real minimum, for by the 

function 

e }l - 1 = kix + y~x2 + --? a?3 + ... 

2 7T this limit is attained : lim ^/\kn\ — ^ . 

From this point of view, the exponential function appears as a limiting-case of 
all periodic functions with the same period. 

I t has already been remarked that (25) represents an irregular solution of (24). 
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It is now easy to form an infinity of such solutions and a general formula embracing 
them*. 

27TÌT 

Put 

with the conditions 

u = e h , 

</> (x) = 2 Kku\ 
\— - 00 

lim V\KK\< e~2\ lim V\ K-K \ < e~2" (28). 
A = +oo A=+oo 

Then (/> (x) will be a periodic function (period = h) which is regular within 
a circle of radius >\h\ and with x — 0 as centre. Thus 

Mx)'.»» (* = 1,2, . . . ) .(29) 

will be a solution of the system (24). One at least of the KA being supposed =j= 0, 

i t follows tha t the function 
XiX-\- X2x

2 + ... 

can not vanish identically. Hence, by our general result we must have 

lim nJ\ Xn | H .(30), 

and our Xv form an irregular solution of (24). This solution contains an infinite 

number of arbitrary constants, viz. 

KK (A, = — oo . . . 4- oo ). 

Remark. The formula (30) may be writ ten thus : 

j +00 

lim 2 Kx\
v 

v = + oo j A. = - oo 

S I , 

the Ki being supposed to satisfy (28). As a very particular consequence of this 

we infer tha t the infinite system 

2 KK\" = 0 (i/ = 0 , l , 2 , . . . ) 
A = - o o 

can not admit any solution with the property (28) other than the evident solution 

JBTA = 0 ( \ = - oo . . . + oo ). 

4. Considering instead of (24) the non-homogeneous system 

h h2 ir 
Xi + -Tg #2 + Fg #3 + T^ #4 + • - - = a* 

h h2 

#2 + i~9 #3 + Tg #4 + • - . = al 

%3 4" T^ 004 4" 

\ 

.(31), 

* Cf. a research of P. Stäckel published in Festschrift, Heinrich Weber gewidnet (Leipzig, 1912), and 
concerning a system identical with (24). (This research was unknown to the author of the present paper 
until about two months after it had been sent to the General Secretary.) 
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077-

and supposing that lim ty\ an \ < -==-, 

we arrive at the following result. 

The formula 
xk = a^_i + «iak 4- a2ak+1 4- ... (k = l,2, ...) 

gives a solution 0/(31) with the property 

lim VI xn I < 
2TT 

and any solution having this property must be identical ivith (32). 

Here 
h 

a i = - | 2 ' 
h2 

«* = (-!)*&* 1 1 
12' 13' 

14" 

i, r2... 

L 
IP7 1 

1 

or «j = - |2 , «2̂ +1 = 0 (A? = 1, 2, ...) I 

^ = ( - l ) ^ _ | | ^ (k = l,2,...) 

where JBI, B2, B?J, ... is the suite of Bernoulli's numbers : 

* = 6 ' 52 = 
30' 

R - X 

3 ~ 42 " 

.(32) 

• (33), 

so that the first of formulas (32) may be written thus : 

Applications. Suppose 

/(0)=/<O) + n/'(O)+mT(O)+ (35) 

to be an integral function such that 
9«r 

l imV| /<»» (0 ) |<~ (36), 

P being a given positive quantity. Then Euler-Maclaurin's series 

Af(x)-i±Af'(x) + ̂ h*&r(x) + (37), 
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where Af (x) = f(x 4- h) — f (x), 

W(x)=f{x + h)-f'{x), 

will converge for | h \ _S P (38) 

and for any values of x. 
2n l~Bn 1 

For we have* ^ m V I2n = 9 " $9), 

and according to (36) we can choose a positive number e < 1 and an integer % 
such that 

! / , , l ) ( 0 ) | < f ^ r ) for n _ n 1 ; 

and this gives—x being supposed less than a given constant R in absolute value— 

l ' " W I < f f l ' ( » ! T , ^ ( T ) ' * » ) f » • • » - • 

and thus | A /w (a?) j < fe)^ . Z , 

where K is a certain constant. 

These formulas also prove that, under the condition (38), the series (37) will 
converge absolutely and uniformly in any finite portion of the plane of x. 

It is easy to see that the series (37) is equal to h ,f ' (x) for any value of x. 

For we have / ' ( * ) + ± / " (*) + ~ / ' " ( * ) + . . . = ^ > 

and as in this system the right-hand members and the f{n) (x) have the property 

V Â < P =\h\' 

HmJyi7^)-|<C_C 
we must have by (34) 

• 2 A/ w • |2 -y w - - T r ^ - i 2 n 
A/' (*) = A/ (a) - ^ A/ ' (*) + ?£- A/" ( * ) - . . . + ( - 1)»- ^ - A/ *»> (* )+ . . . 

...(40). 
Next consider the functional equation 

cj>(x-i-h) = <l)(x) + G(x) (41), 

* By the well-known formula : 

or by (21). 
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(j> (x) denot ing t he unknown function, h a given constant and G (x) a given in tegra l 
function with t he p rope r ty* 

Hm \/\GwJÖ) \<2~ (H=\h\) (42). 

Then if in (31) we put 

a0 = G(x), aY = G' (x), a2 = G" (x\ ..., 

x1 = h(j> (x), x2 = h$" (x), Xoo = h<j>" (x), ..., 

th is system will be.sat isf ied if <j>(os) is a solution of (41). T h u s if we impose on 
4>(x) the condition 

lim \/\~<p> (0) | < % (43), 

from which it follows t h a t 

X\ii\V\^(x)\<^ (44) 
H 

for every finite value of x, t he general resul t obtained, (formula 34) proves t h a t 

ty (x) = G (x) - \ G' {x) + B ^ G" ( * ) - . . . + ( - 1 ) » - ^ G &»> (x) + (45). 

As the r igh t -hand member converges uniformly in any finite region of t he 
#-plane we thus obtain <£ (x) by in tegra t ing t e rm by t e rm this expression and we 
arrive a t t he conclusion t h a t t he solution defined by (45) is the only solution of (41) 
satisfying the additional condition (43) i*. 

5. I n a similar manne r we may s tudy t h e functional equation, 

cj>(x + h)-cl> (x) - hf (x) = G (x) 
or, more generally, 

h2 hm 

</> (x + h) - </> {x) - h<p' (x) - 1 2 f (*') - • • • - j - $m (*0 = G(x). 

This problem will lead to a system of equat ions of t h e form 

h _ _ h* h3 

Xl + m + 2 x * + (m V2)(m + 3)'*':i + (m + 2)"(m"+ ~3)(m + 4 ) x * + - ~a°' 

•'''•'+ m + 2 x*+ < > + 2 ) 0 « + 3) *'4 + ' ' " ~ " ' ' 

h 
œ, + m+2a,4+ '"~ t t3 ' 

* As remarked above, it follows from this property that 
o 

lims/\CW{x)]<:-g 

for any given value of x. 
t C. Guichard has proved (Annales de VEcole Normale, Sér. in, t. 4, p. 285, 1887. Cf. Hurwitz, Acta 

Mathematica^ t. 20, p. 985) that if C (x) is an arbitrary integral function, equation (41) will always be 
satisfied by an integral function <p (x). Thus the values 

7i</>'(0), /?</>" (0), Ji0'"(O), 

will form an irregular solution of the corresponding system (31) if in (42) the sign < is replaced by > . 



ON SOLUTIONS OF SOME INFINITE SYSTEMS OF LINEAR EQUATIONS 

and if we put 

m 

m 4-1 ^ - hx hmxn 

e 1 yz ... -•-
1 \rn 

it will follow that 1, g1} g2,... 

are t he minors belonging to the first column of t h e de te rminan t 

h_ h2 | 
772 4 - 2 ' (m 4- 2) (m 4- 3) ' | 

h | 
m 4- 2 ' ! ' 

1, 

1, 

I n consequence, in order to have the division between the regular and the 
irregular solutions, we must in t roduce instead of 2TT t he absolute value £ of t he 
root of t he equation 

1 m 

which is nearest x = 0. 



ON THE FUNCTIONS ASSOCIATED WITH THE ELLIPTIC 
CYLINDER IN HARMONIC ANALYSIS 

BY E. T. WHITTAKER. 

1. Introduction. 

I t is well-known that the solution of the wave-equation 

dx2 + dy2 dt2 

for circular bodies, or of the potential-equation 

dx2 dy2 dz2 

for circular-cylindrical distributions, leads to the functions of Bessel : in the same way, 
the solution of these equations for elliptic bodies or elliptic-cylindrical distributions 
leads to the " elliptic-cylinder functions," which are defined by the differential equation 

| | + ( a + *» cos» *)# = <> (1), 

where a and k denote constants*. 

One reason for the importance of these elliptic-cylinder functions lies in the fact 
that they are not, like the functions of Legendre and Bessel, mere particular or 
degenerate cases of the hypergeometric function : the differential equation (1) is, 
indeed, the equation which most naturally presents itself for study, in the theory of 
linear differential equations, when the hypergeometric equation has been disposed 
of. I t has a further practical interest in connexion with Hill's theory of the motion 
of the moon's perigee. 

The solutions of the above differential equation are not, in general, periodic 
functions of z: but there are an infinite number of solutions which are periodic 
functions of z, of period 27r. (This is analogous to the fact that the solutions of 
Legendre's differential equation are not in general polynomials in z, although there 
are an infinite number of them—namely Pn(z) when n is any integer—which are 

* Mathieu, Liouville's Journal, (2), xm. (1868), p. 137. Recent papers by Butts, Amer. Journ. Math. 
xxx. (1908), p. 129 and Marshall, ibid. xxxi. (1909), p. 311 : recent inaugural dissertations at Zurich by 
Dannacher (1906) and Wiesmann (1909). 
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polynomials in z.) I t is these periodic solutions of the differential equation which 
are required in mathematical physics, and it is with them that the present paper 
is concerned. 

2. The elliptic-cylinder functions are the solutions of a certain integral-equation. 

The starting-point of the present investigation is a result previously published 
by the author*, that the general solution of the potential-equation is 

rz-rr 

V = f(x cos 6 4- y sin 6 4- iz, 6) d9, 
.'o 

where / denotes an arbitrary function of its two arguments. In order to obtain the 
solution in elliptic-cylinder functions, we replace x and y by the variables which are 
appropriate to the elliptic cylinder, namely f and v, where 

x = h cos £ cosh n, 

y — h sin £ sinh v. 

The potential-equation in terms of these variables becomes 

d2V d2V d2V 

W + ̂  + /l2(cosh2l,"cos2^ = 0' 
and the general solution of the equation becomes 

f27r 
V = f(h cos £ cosh v cos 6 4- h sin £ sinh n sin 6 4- iz, 6) do. 

Jo 

The solutions required in the harmonic analysis appropriate to the elliptic 
cylinder are of the form 

V=eim°X(Ç)Y(v), 

where X(£) denotes a function of £ alone and Y (n) denotes a function of n alone: 
substituting, we have for the determination of X and Y the equations 

-Ä + (A + ™a&a cos2 f) X = °> 

^ 4- ( - 4 - m2/i2 cosh2 *;) F = 0, 

each of which is equivalent to the equation (1). The corresponding solution of the 
potential-equation evidently takes the form 

C2ir 
Y= I cm (h cos £wsh y ws 9+ h sin Ç sinh y sin 6+iz) A /û\ J g 

Jo 
where </> (6) is a function as yet undetermined. From this it follows that the 
differential equation (1) must be satisfied by an integral of the form 

y (£\ _ j ßk (cos z coshi) cos 0+sin z sinh 17 sin 9) £ /g\ ^g 

Jo 
where n is arbitrary. Taking n to be zero, we have the result that the differential 
equation (1) must be satisfied by an integral of the form 

[2TT 

y(z)=\ e* cos * cos 0 (f)(0) de. 
Jo 

* Mathematische Annalen, LVII. (1903), p. 333. 
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In order to determine the function (/> (0), we substitute this integral in the 
differential equation, which gives 

f27T 

ehcoszCOSO (jp C 0 S 2 g + £2 C 0 S 2 ^ s j n 2 g _ jc c o s £ C 0 S # 4~ <̂ ) (£ (6) dO = 0, 
' 0 

or, integrating by parts, and supposing that $ (6) is periodic, 

f27T 

fc cos 0 cos 9 : 
T27T 

JO 

1 {</>" ((9) 4- a<f> (6) 4- &2 cos2 d<j> (6)} d6 = 0, 

which is evidently satisfied provided 

• ^ + (a + ^ co s2 ö) <£ = o. 

Thus we see that (f)(0) must be a periodic elliptic-cylinder function of 0, formed with 
the same constants a and k as y (z) itself ; but there does not exist more than one 
distinct periodic solution of the equation (1) with the same constants a and & : so 
that <jb (0) must be (save for a multiplicative constant) the same function of 0 as y (z) 
is of z. Thus finally we have the result that the periodic solutions of the equation (1) 
satisfy the homogeneous integral-equation 

f2ir 
y(z) + \ ekQOSZCO*6y(0)d0 = O (2). 

Jo 

It is known from the general theory of integral-equations that this equation (2) 
does not possess a solution except when X has one of a certain set of values X0, XL, X2, 
\3, ... : and when X has one of these values, say Xr, there exists a corresponding solu­
tion yr(z). This set of solutions yQ(z), yi(z), y^(z), ... are the periodic solutions of 
the differential equation (1) ; that is to say, they are the elliptic-cylinder functions 
required in mathematical physics*. 

3. Determination of the elliptic-cylinder junction of zero order, ce0 (z). 

We shall now make use of the result just obtained in order to derive the 
periodic solutions of the differential equation (1). 

When k is zero, the solutions of the equation (1) with period 2ir are obtained 
by taking a to be the square of an integer: the solutions are then 

1, cos z, sin z, cos 2z, sin 2z, cos 3^, sin Sz, 

As we shall see, the periodic solutions of the equation (1) when k is different 
from zero correspond respectively to these, and reduce to them when k tends to 
zero. We shall call these solutions 

ceQ(z), ceY(z), se^(z), ce2(z), se2(z), cez(z), se%(z), ..., 

cer (z) being the solution which reduces to cos rz when k is zero, and ser (z) being the 
solution which reduces to sin rz. 

* This integral-equation was mentioned, and ascribed to myself, by Mr H. Bateman in Trans. Camb. 
Phil. Soc. xxi. p. 193 (1909): but I have not previously published anything on the subject, the theorem 
having merely been communicated to Mr Bateman in conversation. 
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The elliptic-cylinder functions cer (z) and ser (z) both reduce to the circular-
cylinder or Bessel function Jr (ik cos z) when the eccentricity of the elliptic cylinder 
reduces to zero. 

We shall first determine the elliptic-cylinder function of zero order, ce0 (z). 

Since ceQ (z) reduces to unity when k reduces to zero, we see at once from the 
integral-equation (2) that X must reduce to — 1/27T when k reduces to zero. So write 

- TT-^ = l + ajc + a2k
2 4- a3k

3 -\- ..., 

ce, (z) = 1 4- fc&i (z) + k% (z) 4- k% (z) 4- ..., 

where bx (z), b2 (z), bz (z), ... are periodic functions of z, of period 27T, having no 
constant term. 

Substituting in the integral-equation (2), we have 

{1 4- ajc 4- a2k
2 4-...} {1 4- k\(z) 4- k%(z) 4-...} 

= ^- [ln\l + kco8z cos 0+~ cos2* cos2 0+..\{l+ kb, (0) + k% (0) 4- ...} d0. 
ATT Jo { l \ ) 

Equating the coefficients of k on both sides of this equation, we have 

1 f277 

h (z) 4- a1 = ^ - {cos z cos 0 4- bx (0)} d0. 
An Jo 

Since the integral on the right-hand side vanishes, we have 

b1(z) = 0, a1==0. 

Next equating the coefficients of k2 on both sides of the equation, we have 

1 f27r 
b2 (z) 4 - ^ = 5 - \b2 (0) 4-1 cos2 z cos2 0} d0 

^7TJo 

= \ cos2 z. 

Since b2 (z) is to contain no constant term, we must have 

b2(z) = £ cos 2z, a2 = \. 

Similarly by equating the coefficients of kz and ¥, we find 

h(z) = 0, a3 = 0, 

I / N ! A 7 

04(^) = 2 9 c o s 4 ^ a 4=2- 9 . 

The first terms of the lowest-order solution of the integral-equation 

|"2îT 

are therefore given by the equation 

"2îT 

ce (z) = X ek cos z cos Q ce (0) d9 
Jo 

k2 k4 

ce0 (z) = l + — cos 2s 4--^ cos 4s* + ... ; 
M. c. 24 
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the corresponding value of X is at once obtained by writing z~\ir in the integral-
equation, which becomes 

ce0 (^7r) = X\ ce0 (0) d0 = 27rX, 
Jo 

1 f2ir 

so we have ce, (z) = ^ - ce0 QTT) ^ cos* cos e ceo (#) ^0. 
^7T Jo 

By continuing the above procedure we could obtain as many terms as are 
required of the expansions, but we should not obtain a formula for the general 
term. In order to obtain this, we write 

00 

ce, (z) = 1 4- S A2r (k) cos 2rz ; 
r = l 

then since it is known that 

gwcoss = JQ (jm^ _ 2i J i (im) cos z - 2J2 (im) cos 2z 4-..., 

we can equate coefficients of cos 2rz in the integral-equation, and thus obtain 

1 f27r 

A2r (k) = ~ ce0 (fw) ( - l ) r . 2J2r (ik cos 0) ce0 (0) d0, (r = 1, 2, ... oo ). 

When on the right-hand side we substitute the expansions, and use the formula 

_ . I nnvW tì nr^a V^fìrlfì — _Ül i r2ir 

Y~ cos2^ 0 cos 2p0d0 : 

ion 

2TTJ0
 r 2**q+p\q-p\' 

the last equation becomes 

A „ _ k2r _ r (3r 4- 4) k2r+" 

We thus find for the elliptic-cylinder function of zero order the expansi 

, x -, , S f &2r / ^ + 4 r (3 r4 -4 ) Ì 
c,0 (,) = 1 4- ï ^ - 2 ^ - r 7 + T T r + T! + ' * j C0S ^ -

4. TAe o^er integral-equation satisfied by the elliptic-cylinder functions. 

In the same way we can show that the elliptic-cylinder functions are the 
solutions of the integral-equation 

y(z) + xl "eiksmzsmey (0\.<jr0 = 0, 
Jo 

and in particular that 
1 . f2?r 

ce0 (z) = ^r~ ce0 (0) cos (k sin z sin 0) ce0 (0)d0. 
lir Jo 

5. The elliptic-cylinder functions of order unity, ce1(z) and sex(z). 

The two elliptic-cylinder functions of order unity, which we denote by cex (z) 
and se1 (z), may be obtained in the same way : the integral-equation for ce1 (z) is 
found to be 

1 C2w 

cei (z) = - j - ce; (\TT) ekcos*cosö ceY (0) d0, 
fCTT J () 
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and from it we derive the expansion 
oo ! 1,21' y.l.2r-\-2 

CO! (z) = COS Z 4- S 
, " ! |24 r . r 4-1 ! r ! 24r+4 . r + l ! r + l ! 

+ 2^.r-l!TT2"!+-jC O S ( 2 r + 1 )^ 
Similarly 

. » f &2r rk2r+2 

se, (z) - sin z +*i\2«mr + l l r l + 2"+*.r + 1 ! r + 1 ! 

+ 2 4 ^ o . r , i ! r + 2 ! + - } ^ ( 2 r + l ) ^ 

The elliptic-cylinder functions of higher order can be determined by the same 
method directly from the integral-equation: the method may indeed be applied to 
solve a large class of integral-equations. 

24—2 



SUR LES SINGULARITES DES EQUATIONS 
DIFFÉRENTIELLES 

PAR GEORGES RéMOUNDOS. 

1. Dans un travail antérieur (Bui. Soc. Mathématique de France, t. xxxvi. 1908, 
" Contribution à la théorie des singularités des équations différentielles du premier 
ordre") nous avons étudié le problème de l'existence d'une intégrale de l'équation 
différentielle : 

°? % = «2/ +/(* ' . y\ («4=0) ( i ) 

s'annulant pour x = 0 et holomorphe dans le voisinage de ce point ; la fonction f(x, y) 
est supposée holomorphe dans le voisinage de œ = Q et y = 0 s'annulant pour ces 
valeurs et ne contenant pas de terme de la forme ay. Briot et Bouquet ont étudie* 
le même problème dans le cas particulier : 

« ^ = «y + *<£(*)> (2)> 

$(x) désignant une fonction holomorphe dans le voisinage de x = 0, et iîs ont établi 
un théorème intéressant cité dans mon travail ci-dessus indiqué. Ce théorème de 
Briot et Bouquet et mes recherches conduisent à la conclusion qu'il n'existe pas, en 
général, une intégrale holomorphe dans le voisinage de x = 0 et s'annulant pour x = 0 ; 
il n'en existe pas sûrement dans le cas où les coefficients de la fonction f(x, y) 
(développée en série de Maclaurin) sont tous réels et négatifs et le nombre a est 
positif. 

L'équation (1) permet de calculer de proche en proche les coefficients d'une série 
Taylorienne qui satisfait formellement à l'équation ; mais dans ce calcul fait par dériva­
tions successives ce n'est pas le terme x2y qui joue le rôle prépondérant, comme il 
arrive ordinairement, mais le terme ay qui ne contient pas la dérivée y' ; c'est là le fait 
essentiel qui caractérise la singularité qui fait Vobjet de cette communication : cette 
propriété morphologique est la cause essentielle pour laquelle la série entière est, en 
général, divergente. On s'en rend bien compte en étudiant mon travail plus haut 
cité, où l'on voit la présence de quelques facteurs qui entraînent la divergence et que 
j 'ai appelés facteurs de divergence. 

Je me propose d'indiquer une généralisation systématique de cette théorie en 
étudiant une singularité analogue qui se présente aux équations différentielles d'ordre 
quelconque. 

* Recherches sur les propriétés des fonctions définies par des équations différentielles (Journal de 
VÉcole Polytechnique, Cahier xxxvi, 1856, p. 161). 
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2. Nous donnerons, d'abord, une définition : Considérons une expression 

° - 0 > y>y> y"> . . . y ( m ) ) > 
dont chaque terme est un monôme entier par rapport à x, y et aux dérivées 

y'>y">-ym 

et faisons sur cette expression n dérivations successives ; si, après la nme dérivation, 
nous remplaçons x et y par zéro, il peut se faire que l'expression (E) ainsi obtenue ne 
contienne pas la dérivée y(™>+n) ; si nous désignons par V l'ordre le plus élevé des 
dérivées qui figurent dans l'expression (E), la différence V—n sera appelée force* de 
l'expression donnée. 

Cette définition entraîne les conclusions suivantes : 

(a) Toute expression de la forme xn aura sa force égale à — n. 

(b) La force de toute expression de la forme œpyQ est égale à — p — #4-1, les 
nombres p et q étant supposés entiers. 

(c) La force de toute expression P ne contenant ni x ni y est égale à 
l'ordre le plus élevé, des dérivées qui y figurent/ Si nous désignons p a r / l a force de 
l'expression P , la force du produit xq .P est égale hf—q. 

(d) La force d'un terme de la forme ayq est égale à 1 — q. 

(e) La force du produit d'une expression P par une puissance yq est égale 
à/— q, où le nombre / désigne la force de l'expression P. Il est, enfin, évident que 
la force d'une somme est égale à la plus grande des forces des termes. 

Cela posé, considérons une équation différentielle de la forme : 

y = <j> (x, y, y', y", ... y^), (3) 

dont le premier membre est de force zéro. Si la force du second membre est plus 
petite que celle du premier, c'est-à-dire négative, l'équation différentielle a deux 
propriétés importantes : 1°. Elle permet toujours de calculer par des dérivations 
successives les coefficients d'une série entière satisfaisant formellement à l'équation 
différentielle. 2°. Le terme y du premier membre joue le rôle prépondérant dans le 
calcul des coefficients de la série et non pas les termes qui contiennent la dérivée de 
l'ordre le plus élevé, comme il arrive dans les cas réguliers. 

Nous supposons, bien entendu, que l'expression <f>(x, y, y', y", ... y{m)) s'annulle 
pour #; = 0 et y = 0, quelques que soient les y', y", ... ym ; dans le cas contraire, 
les conditions initiales (x= 0, y = 0) ne seraient pas singulières pour l'équation 
différentielle. 

3. Nous ferons des applications utiles de nos considérations en prenant comme 
point de départ l'équation différentielle : 

x2y =ay + bx, (a + 0, 6 =J= 0) 

qui appartient à la catégorie des équations (3), parce que le terme ay est de force 
zéro, tandis que la force des autres termes est négative. Il est facile de voir que cette 
équation n'admet pas d'intégrale holomorphe s'annulant pour a? = 0, quelques soient 
les nombres a et b (voir le Traité d'Analyse de M. Picard, tome m. p. 39). 

* Il serait, peut-être, mieux de remplacer le mot force par le mot poids, d'après l'opinion de M. Borei, 
qu'il a bien voulu me faire connaître à la fin de ma communication. 
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Considérons maintenant l'équation différentielle : 

y = ax2y'+ bx + F(x, y, y', y", ... y^m)) (4), 

où F désigne un polynôme entier par rapport aux dérivées y, y", ... y{m), dont les 
coefficients sont des fonctions quelconques des x et y holomorphes dans le voisinage 
de x = 0 et y ~ 0 ; tous les coefficients des termes monômes du second membre sont 
supposés positifs. Si la force de l'expression F est négative, nous pouvons démontrer que 
l'équation n'admet pas d'intégrale holomorphe s'annulant pour x = 0. 

En effet, on constate aisément que la série entière, qui satisfait formellement (il 
en existe, parce que la force du second membre est négative) à l'équation (4), a ses 
coefficients respectivement plus grands que ceux de la série divergente donnée par 
l'équation différentielle : y — ax2y 4- bx. Nous en concluons que la série entière, qui 
satisfait formellement à l'équation (4), est aussi divergente et, par conséquent, elle 
n'admet pas d'intégrale holomorphe s'annulant pour x — 0. 

Les coefficients des deux séries, que nous venons de comparer, sont tous positifs. 
Nous avons ainsi obtenu un résultat très général concernant des équations différenti­
elles d'ordre quelconque. 

Il n'est pas sans intérêt de signaler particulièrement les équations de la forme : 

y = bx -tf(x, y) + axx
2y' 4- a2x^y" 4- a^x^y"' 4- ... 4- amx^ny{m) (5), 

oùf(x, y) désigne une fonction holomorphe dans le voisinage des valeurs x — 0 et y = 0 
à coefficients réels et positifs et les nombres b, a1} a2, as, ... am sont aussi supposés 
réels et positifs ; il faut faire aussi les hypothèses . 

fa ^ 3 , /L63 ^ 4, . . . [jLm ^ m 4 - 1 , 

pour que la force du second membre soit négative. L'équation (5) n'admet pas 
d'intégrale holomorphe s'annulant pour # = 0*; nous pouvons même remplacer le 
terme aYx2y par axx^y', où \xY ^ 2. 

On peut faire un certain rapprochement du résultat concernant les équations 
différentielles (5) avec le théorème bien connu de Fuchs sur l'existence d'intégrales 
régulières des équations linéaires. 

4. Je tiens ici à résumer les propriétés morphologiques des équations différenti­
elles, qui présentent la singularité sur laquelle je veux appeler l'attention des 
mathématiciens : 

1°. L'équation différentielle est satisfaite par les valeurs x — 0 et y — 0, quelles 
que soient les valeurs des dérivées qui y figurent. 

2°. L'équation différentielle nous permet de calculer une série entière unique 
qui satisfait formellement à l'équation et qui répond aux conditions initiales 

(« = 0,y = 0). 

3°. Ce n'est pas les termes contenant la dérivée du plus grand ordre qui jouent 
le rôle prépondérant dans le calcul des coefficients de la série par des dérivations 
successives; les termes de la plus grande force jouent ce rôle. Aucun des termes 
contenant la dérivée du plus grand ordre n'a la force maximum. 

* Il est, d'ailleurs, facile de prouver qu'il n'existe même pas d'intégrale algébroïde dans le voisinage du 

point # = 0 et s'annulant pour x = 0, parce que la force du second membre de l'équation (5) ne saurait 

jamais croître par la substitution x = tp, l'exposant p étant entier. 



ON THE CONTINUATION OF THE HYPER­
GEOMETRIC SERIES 

BY M. J. M. HILL. 

ABSTRACT. 

The object of this paper is to call attention to certain difficulties which arise 
in the attempt to apply the method of ordinary algebraic expansion, which has been 
successfully applied to series having one or two points of singularity to a series with 
three such points, viz. :—the hypergeometric series. 

The equation to be proved is 

/ M . t j - , + u - . ) . nn"«-^)M-iï F{"'ß'7'!,) 

The series F (a, ß, a 4- ß - 7 4-1, I - x) 

and xl~y F (a - 7 4-1, ß - 7 4- 1, 2 - 7, x) 

cannot be expressed in a series of integral powers of x. 

Hence in each series concerned only n 4-1 terms are taken, and an attempt is 
made to prove that the difference between the two sides tends to zero as n tends 
to 00, it being known that | x | and 11 — x | are each less than unity. 

The series xl~y {the first (w4-l) terms of F (a — 7 4-1, ß —7 4-1,2 —7, x)) is 
treated thus :— 

x^y is expanded in powers of 1 — x by the binomial theorem and (n 4-1) terms 
are retained. The terms retained are multiplied by the first (n 4-1) terms of 

F(a.-<y + l,ß-y+ 1, 2-y,x) 

and it is shown that the terms of more than n dimensions in x and 1 — x can be 
neglected. 

The terms in the product, which are retained, are arranged according to powers 
of x. 

Then the first (n-\-l) terms of F (a, ß} a 4-/3 — 7 4-1, 1 — x) are also arranged 
according to powers of x, and the coefficient of xr is transformed into two parts ; one 
of which is the coefficient of xr in 

n ( a 4 - / 3 - 7 ) n ( - 7 ) 
n ( a - 7 ) n ( / 3 - 7 ) 

F(a,ß,%x), 
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The ratio of the other part to the coefficient of xr in 

tends to unity as n tends to oo , but this does not prove that the difference between the 
other part of the coefficient of xr in F (a, ß, a 4 - /3 - 74-1 , 1 — x) and the coefficient 
of xr ]n 

tends to zero as n tends to 00 . 

I have in the paper expressed the difference in the form 

k0 (1 - x)n + lc1œ(l- x)n~l 4- k2x
2 (1 - x)n~2 4- ... 4- knx

n. 

From the forms of the coefficients k it is clear that, when v is small compared with 
n, the term kvx

v (1 — x)n~v tends to zero as n tends to 00, taking account of the 
fact that j x | and 11 — x \ are each less than unity. But when v is comparable with 
n, a further investigation is necessary to make the investigation complete. 

1. In the year 1902 I obtained by ordinary algebraic expansion the con­
tinuations of two series which have one singular point, viz. :—the binomial and 
logarithmic series, and of two series which have two singular points, viz. :—the 
series for arc tan x and arc sin x. (Proceedings of the London Mathematical Society, 
Vol. xxxv. pp. 388—416.) 

The object of the present paper is to call attention to the difficulties involved 
in attempting to apply the same processes to the case next in order of simplicity, viz. 
the hypergeometric series with three singular points. 

Although I have not surmounted all the difficulties, yet the attempt has given 
two interesting results, which I will just mention. Employing the notation ar to 
denote the product a (a 4-1) ... (a + r — 1), the first result (published in the Proceedings 
of the London Mathematical Society, pp. 335—341, 1907) is this:— 

a/3 a2/32 asßs 
1 4 r 7T. r . . . 4 — : — 

7 Z ! 72 SI 7S 

. (7 - «Wi (7 -_ß)t+i f1 + aß +...+ °*& 
Vt+i(y-*~ß)t+i V 7 + « + l ' " s!(7 + £+l ) s 

iß.. 
(y-a-ß)s\y,+l 

H . ( 7 - « ) ( 7 - f l ) , _ ' , ( 7 - « M 7 - / 3 ) , 
( 7 - a - / 3 + l ) ( 7 + s + l ) ' " ( 7 - a - / 3 + l) t(7 + s + l)t_; 

(I) 
And this when t — oo becomes 

l a . ^ 4 . , «.ft n ( 7 - l ) n ( y - t t - / 8 - l ) 
+ 7 «!7, n ( 7 - a - l ) n ( 7 - / 3 - l ) 

U(8 + l, y-l)(s+l)^-y | 1 + ( 7 - « ) ( 7 - / 3 ) , ^ 
( 7 - a - / S ) n ( s + l , « - l ) n ( s + l ) / 3 - l ) ( (y-a-ß+lXy + 8 + l) 

+ ( 7 - « M 7 - f l . + . . . t o c o [ (II), 
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which when the real part of 7 — a — ß is positive gives Gauss's Formula for the 
infinite series 

aß asßs 

7 S-Js 

n ( 7 - i ) n ( 7 - t t - / 3 - i ) 
V1Z' n ( 7 - a - l ) n ( 7 - j 8 - l ) ' 

The second result can be expressed thus :— 
ar—i Hr—i Let Ur — 

( 7 - l ) r ( 8 - l ) , ' 

Then B,!*?) -,-.-- JXp^iî=Êk BJ 'f. 

= r r / 7 - « 7- /5 \ arßr jr (1 ~a J~ß 
"s{ y y + S-a-ß) (7-l),(S-ï>, s{y + ry + S-a-ß 

(HI), 
from which (I) may be deduced by multiplying through by (8 — 1) and then putting 
8 = 1. 

When both r, s are oo and the real parts of 7 + 8 — a — ß and 8 are > 1, this 
gives 

1 / , aß a,/32 

' 1 + -K- + --K- + ... to 00 ( 7 _ 1 ) ( S _ 1 ) V 78 728.2 

= ! _ /-, . (7 -J0(7_rß) . (7-«X(7-/3X . fro „ 
( 7 - l ) ( 7 + 8 - a - / 3 - l ) V +

7 ( 7 + 8 - a - / 3 ) + 7 2 ( 7 + 8 - a - / S ) 2
+ - " 

(IV). 

The equation just written was first obtained by Dr Barnes. The more complete 
form from which it is deduced was published by Mr Whipple and myself in the 
Quarterly Journal of Pure and Applied Mathematics, No. 162, 1910. 

2. I proceed now to the problem which I have been endeavouring to solve :— 

It is to obtain a verification by ordinary algebraic processes of the equation 

If we take the series 

F (a, ß, « 4 - / 3 - 7 4 - 1 , l-x), 

and endeavour to expand it in powers, not of (1 — x), but of x, the coefficient of xr is 

/_T\r arßr 1 , (« + r)<ß +r)_, (« + r\(ß + r\ , 
i " l ! ( a + i 8 - 7 + l + r) + 2!(a + i S-74- l4- r ) 2 " + "•• • l r ! (a 4- ß - y 4-1) 

but the term in brackets is oo if the real part of (a 4- ß — y 4-1 4- r — (a 4- r) — (ß 4- r)) 
is positive, i.e. if the real part of (1 — y — r) is positive, which is the case for all the 
terms for which r exceeds the real part of 1 - 7. 
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Hence it is necessary to limit our consideration to a finite number of terms, say 
(n + 1), of the three hypergeometric series in the equation, and then to prove that the 
difference between the left- and right-hand sides of the equation will tend to zero as 
n tends to infinity. 

3. Taking then only (n 4-1) terms of 

F (a, ß, a + £ - 7 + l , l-x), 
and expanding these in powers of x, the coefficient of xr is 

/_ -jy <*rßr 
r\(a-rß-y-tl)r 

1 + (a + r)(/3 4-r) + ^ + (« + r)n_r (ß 4- r\ 
1 \(a + ß-y + l + r) '" (n - r) ! (a + ß - 7 4-14- r)n_ 

(VI). 

I transform the square bracket in (VI) by the aid of formula (I). 

The result consists of two parts, viz. :— 

the first part is 
/_ -, y *rßr (« ~ 7 + l)*+i (ß ~ 7 ±})t±i /yyiv 
V L) ri(a + ß-y+1)r(a + ß-ry + l + r)t+1(l-y-r)t+1'''

K h 

multiplied by the series 
! + (g + r)Q8 + r) + ... + . (« 4-r)n_r (/3 4- r)n_ r 

1! (a + ß-y + 2 + r + t) " ' ( w - r ) ! ( o + i 8 - 7 + 2 + r + £)n-r 

(VIII) ; 
the second part is 

/ - jy-H "rßr (« + 7%_r+1 (/3 + r%-r+1 

multiplied by 

1 + ( « - 7 + l ) ( / 3 - 7 + l ) + _ + (a - 7 + l)t 03 - 7 + 1). 
(2 - 7 - r)(a + ß - y 4- n 4- 2) ' " (2 - y- r)t(a 4- ß - y + n + 2)t 

(X). 
4. Consider the expression marked (VII). I t is 

«rßr , T v , (« - 7 + l)*+i (/3 - 7 + l)*+i 
V 1) 7r . r\yr

K J 1r ( « 4 - / 3 - 7 4 - l ) r + m ( l - 7 - r ) m 

= o^ft. ( g - 7 + l ) t + 1 (/3 - 7 4- l ) m ( - 1 ^ 7 , ( 1 - 7 4 - 1 + 1 - r),. 
r ! 7 r (« 4- / 3 - 7 + l)«+i (1 - 7)m (« + /3 ~ 7 + t 4- 2)r ( 1 - y-r)r' 

Now ( - l ) r yr = (1 - 7 - r)r. 

Hence the expression (VII) is 

*rßr (« - 7 + l)t+i (£ - 7 + IX+i (2 - 7 - r 4- Q, 
H 7 r (« + £ - 7 + lWi (1 - y)t+i («+ /3 -7 - I -24- t)f 

Now suppose £ to become 00 in comparison with r. 

T h e n (, + ̂ y + 2+ïj; b e C ° m e S *' 

and ( « - 7 + l ) m ( / 3 - 7 + l ) e + 1 b e c o m e s II(tt + / 3 - 7 ) I I ( - 7 ) 
a n d (a + / 3 - 7 + 1W(1 -7)(+x e C ° m e S n ( a - 7 ) n ( ^ - 7 ) ' 

Also the expression (VIII) tends to 1, as t tends to 00 in comparison with r. 



ON THE CONTINUATION OF THE HYPERGEOMETRIC SERIES 3 7 9 

Hence the product of the expressions (VII) and (VIII) becomes, when t— oo, 

n ( « + / 3 - 7 ) n ( - 7 ) « r / 3 , 

n ( « - 7 ) n ( / 3 - 7 ) r\yr' 

which is the coefficient of xr in the first term on the right-hand side of (V). 

5. Consider next the expression (IX). I t can be written 

+ ( - l )H- i 
an+i Pn+i 

(l-7-r)r!(n-r)!(o + /8-7+l)B+i 
an+1ßn+1 (-iy+i(ry-l)n+1 

(a + ß - 7 + 1)»+I (7 - l)«+i r !(n - r) !(1 - 7 - r)' 
It should be noted that as n tends to 00 

fl«+i ßn+i 

(a + ß - 7 + 1)„+1 (7 - 1)„+1 

tends to n (a + / 3 - 7 ) n ( 7 - 2 ) 
t e n a s t 0 n ( a - i ) n ( / 8 - i ) ' 
which is the coefficient in the second term on the right-hand side of (V). 

6. It remains therefore to see whether the difference between the first (n + l) 
terms in 

xl~yF(a-y + l, ß-74-l, 2-7, x) 
and the series 

2 ( - l ) r + 1 ( 7 - l ) n f i ^ | x ( a - 7 - r l ) ( / 3 - 7 + l ) 
rsss0r~!(7&-r)!(l - 7 - 0 I ( 2 - 7 - r ) (a 4 - /3 -7 4-^4-2) 

. ( g " 7 + l ) t ( ) 8 - 7 + l)t I /XTv 
' 1 ~(2- 7 - r M « + / 3 - 7 4 - ^ 4 - 2 ) J V ; 

will tend to zero as n tends to infinity, where t is oo compared with r, and as r may 
range up to n, we must regard t as oo compared with n. 

Let us write (XI) thus 

3oH(«-r)!(l-7^7)i1 + e"i (X I I>-
I proceed to show how to replace x1~yF(a — y 4-1, ß — 74-1, 2 - y,x) by a 

polynomial of degree n which differs from it by a quantity which tends to zero 
as n tends to 00 , when | x \ < 1 and j (1 — x) j < 1. 

Now 

#i-y = ( l - ( l _ t f ) ) i - y 

= l - ( l - 7 ) ( l - a O + ( ^ 

+ ( - 1 ) » ^ ^ ! ^ ^ i(l-y)...(l-y-n + l) 
n\ 

the remainder can be neglected if n is large and | 1 — x \ < 1. 

.•. &-V = 1 4- (7 - 1) (1 - x) 4- ^ ^ 2 (1 - xf 4- ... 4- ^ - ^ - ( 1 - x)n approximately 
L \ n i 

= T0 4- T X ( 1 - x) 4- T2 (1 - x)2 4- ... 4- T „ ( 1 - ff)n 

where T0 = 1, TW = — — ^ . 
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Let F (a - y 4-1, ß - y 4- 1, 2 - 7, x) = <r0 4- cr^ 4- . . . 4- <rnx
n, 

the remainder being negligible if | a ? | < l , and n large enough. 

x1~yF(a-y-\-l, ^ - 7 4 - l , 2 - 7 , ^) 

= [T0 4- Ti (1 — a?) 4- . . . + TW (1 — x)n] [o-fl + (T1«+ ... 4- a v ^ ] approximately. 

The terms in the product whose dimensions in x and 1 — x are greater than 
n are 

Tj (1 - X) <TnXn 

+ T2 (1 - xf (an^x^ + anx
n) 

4-

+ r n ( l -x)n(o-ix+ . . . 4- o « ^ ) (XI I I ) . 

Now let r be the numerical value of the greatest of the coefficients T1,T2, ... rn. 

Let cr be the numerical value of the greatest of the coefficients cr1, <r2, ... crn. 

Let p be the greater of the numbers | x |, | 1 — x |. Then the modulus of the sum 

of the terms in ( X I I I ) is less than 

crrpn+l 1 \ _ arpn+1 ( 1 - p \ _ arpn+1 f _ p (1 - pn) 

4- (1 4- p) ^ ~ 1 - P J 4- 1 - p2 ! ~ "1^7 \U 1 - p 

4-(14-/0 4- . . .+/ow^1) ' 1 4 - 1 - p " ) 

This is a finite multiple of narpn+1 which tends to zero as n tends to 00 since 

P < I . 

The terms of less than (n 4-1) dimensions in x and (1 — as) are 

o-o (T0 + T! (1 - a?) 4- . . . 4- rn (1 - .x')n) 

4- o-.x (T0 4- T2 (1 - a?) 4- . . . 4- T , M (1 - ^ f " 1 ) 

4- (72.^ (T0 4- Ta (1 - x) 4- . . . 4- T^_2 (1 - ä?)W"2) 

4-

4 - ö - 7 1 _ 1 ^ - 1 ( T O + T 1 ( 1 - ^ ) ) 

4- crnx
n(r0). 

The coefficient of xr is 

°o ( - I / [T,. 4- Tr+1 (r+1Cr) 4" . . . 4- Tn (nCr)] 

4- o-! ( - If-1 [ T M 4- Tr ( r C U ) + - - - + V ! W M ) ] 

4-

4- cr,p ( 1 ) # [Tr—p 4" Tr_p^i_ (̂ .—-p+xU,.— )̂ 4- . . . 4" Tn—p \n—pL>r—p)\ 

+ ov-i ( - 1) [T! 4- T2 (ad) 4- ... 4- Tn_?4i (n_r+1(7j)] 

4- o> [T0 4- Tj 4- ... 4- Tw_r]. 
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Now 

Tr—p « "TV—jj+l \r~p+i^r—p) + . •. 4" 'Tn—p Kn-p^r—p) 

(r — p)\ 
1 + 7- l+r-ft + (7-l+r-j3)2 + (7 - 1 4- r - p)n_r 

2! 

( 7 ~~ l )n-2J+l 

1! 

= (7 - 1)r-p (y+r~p)n-r ._ 
(r — p)\ (n — r) ! (r — p) ! (?i — r) ! (7 — 1 4- r — jp) 

_ n—p^n—r \ 7 """ l)n—p+i 

(?l — J)) ! 7 — 1 4" T — p ' 

Hence the coefficient of xY is 

(n — r) ! 

<r„ ( - I)'' ^ ( ^ ~ % i + aL ( - 1> v 7 n! 7 — 14 - r v 7 
,._! i i-ivn_ r (7 — 1)^ 

( n - 1 ) ! 7 - 2 + r 

+ ... + o- (_ ly-̂ P * ^ A = L i ? !)îi±i .+ ... 
^ (?i — _p) ! 7 — 1 4- r — p 

/ n \ n-r+i^n-r ( 7 ~~ l)w—»'+2 , n—r^n—r ( 7 ~ l )n-*r+i 
-f ÖV-1 ( - 1 ) 7 - 7~nrï~, r CFr (n — r + l)[ (n — r)\ 7 — 1 

Put t ing in the values of the cr's this becomes 

( -1) ' ' ( 7 - l V + x , ( a - 7 + l ) ( ^ - 7 + l ) 
+ • 

+ 

r ! (n — r) ! 7 — 1 + r 
( q - 7 + l ) 2 ( / 3 - 7 + l ) 2 

2 ! ( 2 - 7 ) 2 
( - 1 ) -

( 2 - 7 ) 

1 

(- vr 
( 7 - 1 ) » 

(r — 1) ! («, — r) ! 7 — 2 + r 

( 7 - 1 ) H - I 

(w - r) ! (r - 2) ! y - 3 4- r 
4-

4-
( « - 7 4 - l ) p ( ) Q - 7 + l ) p / - i y - ^ 1 ( T - I V - P + I 

p ! ( 2 - 7 ) , 

+ ( « - 7 + l ) » - i ( / 3 - 7 + l ) r - i <_ ; l ) 

(ft — r) ! (r — _p) ! 7 — 1 + r — p 

1. ( 7 - l ) H - r + 3 

+ 

+ 

( r - l ) ! ( 2 - 7 ) , _ 1 V ' ( f t - r ) ! l ! 
( t t - 7 + l ) r Q 3 - 7 + l ) r (7 - 1)„_.,.+1 _1 

r ! (2 - 7)r 

( - i y + i ( 7 - i V i 
(n — r) ! r ! (1 — y — r) 

7 — 1 (w — r) ! 

multiplied by 

( « - 7 4 - l ) ( / 3 - 7 4 - l ) 7 - 1 4 - r - _ 1 _ 
2 — 7 7 — 24 -^7—l4-? i 

(a - 7 4-1)2 (0-y+l)2y-l + r 1 

+ ( - l)*3,C* 

4-

(2-7)2 7 - 3 4 - r ( 7 4 - w - 2 ) ( 7 4 - w - l ) 

(a-.y + l)p(ß-y + l)p 7 - l + r 1 

+ ( - l ) - \ C U 

( 2 - 7 ) ^ 7 - 1 4 - r - p ( 7 4 - ^ - p ) ... (7 + ^ - 1 ) 

(a - 7 + 1 ) M (/3 - 7 4- 1 ) M 7 - 1 + r 1 

(2-7X-! 
+ (_ l ) r r (7 r (^_-7 + l ) , (yS-7 + l)r 7 - 1 + r 

7 (7 4- n• — r 4- 1) ... (7 4- n - 1) 
1 

( 2 - 7 ) , 7 — 1 (7 4- n — r) . . . (7 4- n — 1) 

1 2 ! n ! n ! 
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Let us write this 

(-r(y-iw. n , v 
( n - r ) ! r ! ( l - 7 - r ) v w " 

Then the polynomial which replaces the first (ft + 1) terms of 

x'-vFia-y + l, / 3 - 7 + 1, 2 - 7 , « ) 

i s | ( - l ) r « ( 7 - W ( X I V ) . 
y=0 (n — r) ! r ! (1 — 7 — r) x 7 

7. I t will be seen that the ratio of the coefficient of xr in (XIV) to that of xr 

in (XII) is 

1 + 6 / 

and this tends to unity as n tends to 00. But this is not enough to identify the two 
polynomials. 

I t is necessary to show that their difference, viz. : 

| i z lÇÇY 7 i i ) S H- l ( l f r _^ ) (xv), 
r=o (n — r)\r\(l — y — r) 

tends to zero as n tends to 00 , j x | and 11 — x | being each less than unity. 

I think that this can be done by expressing it in the form 

k0(1 - x ) n 4 - h x ( l - xj1-1 4- k2x
2(1 - x)n~2 4-... 4- knx

n (XVI), 

and examining the forms of the k's. 

I proceed to show how the values of the k's can be obtained. 

8. Let us now express the polynomial 
S0 4- o\tf 4- ... 4- Snosn 

in the form 

k0 (1 - x)n 4- k,x (1 - x)n~l 4- ... 4- krx
r (1 - x)n~r 4- ... 4- knx

n. 

Equating coefficients of powers of x we get 

o 0 = fc0 

°is=s toi — ftOjA/'o 

02 = K2 7 l_ 1L>1 fCi 4 - w02/Co 

03 = /£3 n—2^i^2 1 n—i^2^i rr^steo) 

and generally 

oj = &£ — ^t+iö^t-i 4- n-t+2C2kt„2 — ... 4- (— VfnCtko. 

Solving successively for the k's we get 

A?0 = o 0 

Äi = nCf
1S04-S1 

fe = 71^2^0 + W-l^Si 4" ^2 

^3 == n^3°o "f" 71—1̂ 2°1 "f" n—2^1 °2 + Ò3, 

and generally 
kt = ?iCto0 4- w_iC^ 8! 4- «-2^-282 4- ... 4- n-t+iC^t-i 4- St. 
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9. If » ( - i y + i ( 7 - i W „ 
r=o(n — r)\r\ (1 — 7 — r) 

be expressed in the form (XVI) then I find that 

fvv ~ : ( 7 - !)n+] 
(n —v)! • + (7 4- w - 1) (7 - 1 ) , (7 + n - 2)2 (7 - l)v_ 

4-...4-
(y + n-v)v(y-l) _, 

where the o-'s are as defined in Art. 6. 

If I ( - 1 ) ^ ( 7 - 1 ^ c 
=0 (n — T) ! r ! (1 — 7 — r) 

be expressed in the same form, then I find that 

K<n — 
(7 -1)« 

v (n-v)\v\(y-l)v 

^(v + l)! 
; 4- 7 

cr8(t;4-2)! 
- 4- . . . t o 00 

la + ß-y + n+2 (a 4- ß - y + n -r 2)2 

The condition for the convergence of this last series is satisfied for v<n, which is 
the case. 

I t is clear from the forms for kv that when v is small compared with n, then 

kvx
v (1 - x)n~v 

tends to zero as n tends to 00. 

But when v is not small compared with n a further investigation of the forms 
of kv is necessary before the demonstration can be completed. 



ON MERSENNE'S NUMBERS 

BY ALLAN CUNNINGHAM. 

These are numbers of form Mq — (2fl — \), with q a prime. They have the 
peculiarity of having no algebraic divisors, and of being for the most part composite 
numbers. 

In 1644 Père Mersenne affirmed* that, out of the 56 primes q :J> 257, only 
12 values of q gave Mq prime, viz., 

q = l, 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257; 

and that the remaining 44 values of q (< 257) gave Mq composite. The grounds for 
this assertion are not known, and it has not been found possible (even yet) to 
completely test it. 

Up to the present time— 

12 numbers (Mq) have been proved prime, viz. those given by 

q = l, 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 127; 

29 numbers (Mq) have been proved composite, viz. those given by 

q = 11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 7 1 ; [11 completely factorised] 

2 = 73, 79,83, 97, 113, 131, 151, 163, 173, 179, 181, 191, 197, 211, 223, 233, 239,251; 
[18 with one or more factors found]. 

Thus, out of the 12 numbers affirmed prune by Mersenne, 10 have been proved 
prime, one (M67) has been proved composite, and one (M257) remains unverified. Also, 
out of the 44 numbers affirmed composite by him, two (M61, M89) have been proved 
prime, 28 have been proved composite, and only 14 remain unverified (as to prime 
or composite character), viz. those given by 

q = 101, 103, 107, 109, 137, 139, 149, 157, 167, 193, 199, 227, 229, 241. 

All possible divisors under one million have been tried f for these 14 numbers : 
no divisors (< 1 million) were found. 

* Cogitata Physico-inathematica, Paris, 1644, Prcef. gen. Art. 19. 
t By the present writer, with assistance ; all the work has been done twice. Por the " t r ia l divisors" 

>200,000 two lists were prepared, one by M. A. Grérardin (of Nancy, France), one by the present writer, 
and then collated: the lists of " t r ia l divisors" have been published in the Journal Sphinx-Œdipe, see 
references in the bibliography below. 
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Thus, up to the present, three mistakes have been found in Mersenne's 
classification, viz. M67 proved* composite, and M61, MS9 proved prime. 

The Table below shows the prime factors-)- of all these numbers so far as nowT 

known. The names of the discoverers of the prime Mq, and of the factors of the 
composite Mq, are shown by their initials (according to the scheme below), and the 
dates of publication (or discovery) are annexed. A bibliography is also given below 
of authorities for each prime Mq and for each prime factor of a Mq. 

B. Bickmore, G. E., 1896. 
Co. Cole, F. K , 1903. 
C. Cunningham, Allan, Lt.-

Col., K.E., 1895-1912. 
E. Euler, L., 1*732-1750. 
F. Fermât, 1640. 

G. 
Fq. 
La. 
LI. 
Lu. 
P. 

EEFERENCES. 

Gérardin, A., 1912. 

Fauquembergue, E., 1912. 

Landry, F., 1867. 
Le Lasseur, 1878. 

Lucas, Ed., 1876-1891. 
Plana, Baron, 1859. 

Pw. 
Ra. 
R. 

i S-
1 T. 
i W. 

Powers, R. E., 1911. 
Ramesam, 1912. 
Reuschle, C. G*, 1856. 
Seelhoff, P., 1886. 
Tarry, H., 1911. 
Woodall, H. J., 1911. 

Factors of Mq = (2# — 1), [q prime]. 

q 

1 
1 2 

3 
5 
7 
11 ! 

13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67. 
71 
73 
79 
83 
89 
97 
101 
103 

Mq=(2«-

1 ; — p 
3; =p 
7; =p 
31; = p 
127; =p 
23.89 ; 
8191 ; - p 
131071 ; = p 
524287 ; = j> 
47.178481; • 
233.1103.2089; 
prime 
223.616318177 ; 
13367.164511353; 
431.9719.2099863; 
2351.4513.13264529 ; 
6361.69431.20394401 ; 
179951.3203431780337; 
prime 
193707721.761838257287 ; 
228479.48544121.212885833 
439. 
2687. 
167. 
prime Pw, T, 1911 ; 
11447. 

-1) 

j 

F, 1640 
E, 1750 
E, 1750 
E, 1750 ! 
F, 1640 
E, 1732-50 
E, 1772 
F, 1640 
P, 1859 

La, 1869; E, 1732 
R, 1856 
La, 1869 
LI, 1879 

Co, 1903 ; S, 1886 
Co, 1903 ; Lu, 1876 
; Ra, 1912 ; C, 1909 

E, 1732 
LI, 1878 
E, 1732 

Fq, 1912; Lu, 1891 
LI, 1883 

q 

107 
109 
113 
127 
131 
137 
139 
149 

, 151 
1 157 
| 163 
167 
173 

Ì 179 
181 
191 

| 193 
1 197 
1 199 
; 211 
| 223 
! 227 
| 229 
i 233 
! 239 
i 241 
!| 251 

Ì ! 2 5 7 

Mq = 

3391.23279.65993. 
prime 
263. 

18121.55871. 

150287. 

730753. 
359.1433. 
43441 
383 

7487. 

15193. 
18287. 

1399. 
479.1913.5737. B, 

j 503.54217. 

= (2«-l) 

C, 1908-9 ; LI, 1878 
Lu, 1877 
E, 1732 

C, 1909 ; LI, 1883 

C, 1908 

C, G, 1912 
R, 1856 ; E, 1732 

W, 1911 
E, 1732 

C, 1895 

Ll, 1883 
Ll, 1883 1 

Ll, 1882 
1896; R,1856; E, 1732 

C, 1.909 ; E, 1732 

Addendum. Mr R. E. Powers has (quite recently) determined tha t M2M also has no divisor < 1 million. 

* ikZo7 was the first mistake discovered (by Ed. Lucas in 1876; the factors were found by F. N. Cole 
in 1903). 

+ The semi-colon on right of the factors indicates complete factorisation. 

M. c. 25 
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SOME GENERAL TYPES OF FUNCTIONAL EQUATIONS 

BY GRIFFITH C. EVANS. 

I. T H E FUNCTIONAL EQUATION IN ONE UNKNOWN. 

In an endeavour to establish existence theorems for certain integro-differential 
equations I found it necessary to consider the subject of implicit functional equations, 
and was able to obtain some theorems relative to it. I discovered, however, that the 
principal method—an extension of one due to Goursat in treating ordinary implicit 
functions—and the principal theorem had been already developed by Professor 
Volterra this last spring at Paris in a course of lectures, the relevant portion of which 
he has very kindly put at my disposal* ! In this article I shall therefore consider 
a more special type of implicit equation, where the results admit of complete 
specification and immediate application. 

Professor Volterra developed the fundamental theory of what he called functions 
depending on other functions, and functions of curves, in several papers published in 
the Rendiconti of the Royal Academy of the Lincei in the year 1887 f. The relation­
ships of functions depending on other functions are called " fonctionelles " by 
Hadamard in his Lessons on the Calculus of Variations J. 

1. If we have two functions u(t) and cf>(t) so related that the value of u(t) for 
a particular value of t depends on all the values of <£ (t) throughout a certain interval 
ab, we say that u is a " functional " of <£ in ab and write, with Volterra, 

« ( * ) = - F | [ * ( T ) ] | , 
a 

b 

or, more simply, u~F\^> (r)]. 
a 

One example of such a functional is 

u(t)= fK(t,T)^(r)dr. 
J a 

b 

Another, of exceedingly special character, is max | $ (t) \, an expression which we are 
a 

going to use to denote the upper limit of | <£ (0 I in the interval ab. An entity of still 
b a 

more complicated character is expressed by max | F[<fi] \. Under some conditions, as 
a o 

* For an early example of such an implicit equation see V. Volterra: Sur les fonctions qui dépendent 
d'autres fonctions [C.R. 142, 691—695 (1906)]. See also the extension of the theory of integral equations 
to non-linear equations by E. Schmidt, T. Lalesco and others. [For literature, see e.g. Théorie des 
équations intégrales, T. Lalesco, Paris, 1912.] 

f V. Volterra : Sopra le funzioni che dipendono da altre funzioni [Rend, della R. Acc. dei Lincei, 
Voi. ni . fase. 4, 6, 7, agosto, 1887], Sopra le funzioni dipendenti da linee [Ibid. Vol. m. fase. 9, 10, 
novembre, 1887]. 

X J. Hadamard : Leçons sur le calcul des variations, Bk ii. ch. VII. Paris, 1910. 

25—2 
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Volterra has shown, the functional can be developed in terms of its argument by 
means of an infinite series of multiple definite integrals; and thus is defined by 
an extension of Taylor's theorem a class of functionals analogous to the analytic 
functions. In this article we shall consider a function to be a special case of 
a functional. 

The difference between the behaviours of linear integral equations with constant 
and with variable limits is well known. Although for certain questions one may be 
regarded as a special case of the other, the results in the special case are generally so 
much simpler that it is conveniently treated by itself. In respect to the linear 
integral equation the difference arises from the fact that when we have a variable 
upper limit the interval under consideration may be kept as small as we please, while 
with constant limits it is always the fixed length ab. Thus for the equation 

u(t) = cf>(t) + f K(t, r)u(r)dr (1), 
J a 

having obtained the solution u(t) for the values a£t£tlt we may rewrite it in 
the form 

u (t) = fa (t) + j K (t, T) U (T) dr, 

in which the fa(t) is a new known function, and proceed as before. 

This same advantage of specialization appears in the more general case of 
functional equations. I t is obviously this same property which is characteristic 
of the equation in functionals 

u(t) = F[ulr)] (2), 

which has the variable upper limit t. For having obtained the solution as far as 
t — £j the equation becomes 

u(t) = G[u{r)]9 

k 

and we may always keep the interval under consideration as small as we please. I t 
remains then merely to define a hypothesis that shall ensure the existence of a 
solution of the equation for an arbitrarily small region. 

This condition consists of two parts, one relating to the region of definition 
of the F and one relating, so to speak, to the stability of the equilibrium, somewhat 
similar to the ordinary Cauchy-Lipschitz condition. For the purpose of the applica­
tions we shall consider an argument depending on n -f 1 variables, for instance 
u(x, y, z, t) and a functional F over a certain space of n dimensions, for instance 
S : x, y, z, and over a variable interval tQt. 

t 
2. CONDITION I. Related to the functional F[u] there is a field for u, ivhich ive 

shall denote by %Xyztu, finitely or infinitely extended in regard to its components, such 
that the following property holds: 

The interval t0ti can be divided into a finite number of sub-intervals t0rlt TJT.,, ..., 
TntY, in such a way that if 

u, (t) = u*(t) = F for t,^t£ n 

and, uq (t), v2(t) lie in Hxyztu far r0<t^T.[+1 , 
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it folloivs that 
t t 

(i) Flu,], F[a2\ lie in Zxy2tF ) 
su st0 ,. 

(ii) max | F [«J - F[wj j ë A max j w, (t) - u2(t) j 
to St0 St0 Ti 

in which A is a positive constant less than 1. 

3. Other conditions of similar character for subsequent use are the following : 

CONDITION I'. This condition is the obvious generalization of I to n functions 
u, v,..., n functionals F, G, ..., and their corresponding field 

^xyztuv...' 

We shall replace (ii) by the statement 
t t t t ^ 

max j F \uu vl9 ...] — F [u2, v2, ...]\ è A (max | uL — u2 \ + max | vL — v2 j + ... ), 
t0 t0 Ti n 
t t t t 

max | G [ult vl9 ...]— G [u2, v2, ...] \ è A (max | ux - u2 \ + max \v1 — v2\ + ...), 
to t0 n ri 

in which for n functions u,v,...,A shall be a constant less than - . 
n 

4. We may regard the condition I as made up of two separate ones, I (i) and 
I (ii). Let us define I I (i) as the condition that we get from I (i) by replacing the 
%XyztF i n (i) by another field HxyztF. And let us define I I (ii) as the condition that 
we get from I (ii) by replacing the A in (ii) by another positive constant B, otherwise 
unrestricted. 

Similarly we can form conditions II '( i) and II7 (ii). The conditions II ' apply 
obviously to the case where the number of functionals in the system is not the same 
as the number of arguments. 

We may also consider the conditions I, II, I', II7 as applicable to functionals 
with constant limits ab, where, since there is no possibility of subdivision, the whole 
interval ab must be considered at one time. 

5. We have at once, by the usual method of successive approximations*, the 
following theorem : 

t 
THEOREM 1. If F[u] satisfies the condition I in the interval t^t,, there exists one 

Sto 

and only one solution of the equation 

n(x,y,z,t) = F[u(l71,i;,T)} ....(3), 
S to 

that lies in the field %Xyztu> 

If, in addition, the functional F is continuous in t except for a certain number 
of fixed values t', t", ... , when its argument u (x, y, z, t) lies in 2 and is continuous 
in t except for a finite number of discontinuities, then the unique solution of (3) in 2 
will be continuous in t except at the points t', t", . . . . 

* See P ica rd : Traité d'analyse, Vol. n . note 3 (Appendix). 
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6. In the case of the linear integral equation (1), with continuous kernel, %tu is 
defined by the relation 

| u (t) j ê max j u (T) | + e, (t-b < t ^ ti+1) 
to 

where e is a positive constant arbitrarily small or large. The sub-intervals can then 
be chosen in order to make A as small as we please. And this we may regard in 
general as the characteristic of a non-singular functional with variable limit : that the 
A may be made as small as we please by taking small enough sub-intervals. I t is 
true, for instance, if the functional possesses a derivative according to the definition 
of Volterra. 

An interesting special case of theorem 1 is the following : 
f X Jc 

The equation P (u (x)) + T 2 K{ (x, f) (u (£))* d% = 0, 
J a i — 1 

where P is a polynomial in u and P (u (a)) = 0 has all its p roots distinct, has p and 
only p continuous solutions u (x) in the neighbourhood of x = a, provided that K (x, £) 
is continuous for a ^ £ è x è a', a' > a. 

I t is sufficient if K (x, f ), instead of being continuous, have discontinuities not 
necessarily finite, distributed regularly*, provided that \K(x, %) \ è r (£), where 

r (£) d% is convergent. 

Similarly we can discuss the equation where appear integrals of higher order. 

7. For the sake of completeness in discussing the equation in one unknown let 
us consider the case of constant limits, and Professor Volterra's theorem on implicit 
functionals. We see that if for u sufficiently small, | u \ < M, we have 

\F[u]\<M, 
a 

b b b 

and | F [%] — F [u2] j è A max j n1 — u2 \, 
a a a 

where A is some constant, we shall have, for X sufficiently small, one and only one 
solution of the equation 

b 

u (x) = XP [u]. 
a 

This same result can be obtained by introducing the parameter into the functional 
; . . b 

itself as a new function $ on which it explicitly depends. This F[u, fa] shall be 
a 

continuous in u and </>f, and shall vanish for u — 0, (/> = 0. Moreover for $ constant 
and equal to zero, SP shall vanish when u = 0. The equation 

u = F[u, fa (4) 
a 

has then one and only one solution in the neighbourhood of to = 0, $ — 0 that changes 
continuously to u = 0 when <£ becomes $ = 0. 

* See M. Bôcher, Introduction to Integral Equations, Cambridge University Press, 1909, p. 3, for a 
definition of regularly distributed. 

t See V. Volterra, loc. cit. agosto, 1887, Nota i. 
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This lemma is sufficient to establish the desired theorem. Let us suppose that 

G[uyfa = 0 (5) 
a 

is satisfied identically for </> = 0, u = 0, and that the variation can be written in the 
form 

b b 
hG = Su (f) + fb G' [u, fa £ f ] hi (£) d& 

Ja a a 
b b 

+ 4»' [«, *, ft ft] H (ft) <*ft + ^ (ft ty (ft, 

which becomes for (f> = 0, u~0, 

&Q = 8« (ft + f V (ft ft) 8« (ft) dft + f r (ft ft) 8<£ (ft) rfft + A (ft S</> (ft. 
./a. Ja 

Professor Volterra shows that if the Fredholm determinant of this integral 
expression in hi does not vanish, the equation (5) can be rewritten in the form (4), 
and hence has one and only one solution in the neighbourhood of u = 0, <fc = 0. In 
fact, into the equation (5), there can be introduced in this way a large part of the 
well-known analysis of the Fredholm equation. 

The generality of this theorem can be inferred from the fact that if the functional 
F of equation (3) depends only on u and <fi and possesses functional derivatives in 
regard to them both, theorem 1 can be shown to be a special case of this implicit 
functional theorem. The property of possessing a functional derivative is however 
a more essential restriction in the case of functionals than is the corresponding 
property in the case of functions, and is not assumed in §§ 1—6. 

II. SYSTEMS OF FUNCTIONAL EQUATIONS. 

8. We have the following theorem : 
t _ t 

THEOREM 2. If the n functionals F[u, v, ...], G[u, v, . . . ] , ..., in n arguments 
Sto & tç 

u, v, ..., satisfy condition Y in the interval t0t1} there exists one and only one system of 
solutions of the system of equations 

u (x, y, z,t) = F [n (I v, £ T), v (£ n, £ t) , . . . ]) 
£ to S t0 

t t I (6), 
v (x, y, z,t)=-G [u (£, v Ç, T) , v (f, v, Ç, T) , . . .] 

S to S t0 \ 

such that the system u, v,... remains in %xyztuv...• 

If, in addition, the functionals P, G, ... are continuous in t, except for a certain 
number of fixed values t', t',..., when their arguments lie in %Xyztuv... and are con­
tinuous in t except for a finite number of discontinuities, then the unique system in 
2 satisfying (6) will have all its members continuous except at the points t', t", — 

9. THEOREM 3. If, in addition to satisfying condition I', the functionals 

tl = F[l &,...], v = G[l 6,...],..., 
m0 sto 

are so related that when 
0 = £ (< /> ) , . . . , 
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(L (fa), ... being certain differential relations in fa) it folloivs that v = L(it),..., then 
there is one and only one solution of the equation 

t 
u(x, y, z, t) = F[utL(u),...] (7), 

such that the system u, L(u),... remains in %xyztUì LìU), ...• 

The clause relating to continuity may also be added to this last theorem provided 
that there exists at least one system u, L(u),... in X such that u, L (u), ... are each 
continuous in t except for a finite number of discontinuities. I t is obvious that 
by assigning different properties of continuity to the functionals P, G, ..., different 
restrictions need be imposed on u, L (it),..., or in connection with theorem 2, on the 
functions u, v, 

In regard to this theorem it may seem that the choice- of the region S is no 
longer an obvious process. I t may be remarked however that for the equations that 
come up in practice the 2 is generally determined by relations of the form 

\u-fa\< M1} 

\v-fa\<M2, 

where </>, ty are certain functions put in evidence by the character of the special 
equation. 

10. Within this theorem are contained the existence theorems of many types of 
integro-differential equations. We see for instance that the equation 

u{t) = j>{t)+^{t,r)Q[u{r)d^yT (8), 

where Q is a polynomial in u and -7-, where K (t, r) and —ir1—- are continuous 
at ot 

except for discontinuities regularly distributed, for t0 ^ T ̂  t è tx, and are in absolute 
l ' é ­value less than r (%), where r (f ) dtj is convergent, and where K (t, t) = 0, has one 

J to 

and only one solution finite, with its derivative, and continuous wdth its derivative 
except for a finite number of discontinuities. This integral equation has application 
to the differential equation of Piccati. 

Another special case of some interest is the following. Let us consider the 
integro-differential equation : 

a (11 (t)) + <*! (u (T)) dr+ j dr i a2 (u (T), U (T)) dr 4- ... 
J t0 J to J to 

+ 1 dr ïTdr' fT ak+l (u (T), U (r'\ ...u (T*>)) dr" = 0 ...(9), 
J t0 J t0 J t0 

in which a represents a differential expression of the nth order in u (t), OLX represents 
a differential expression of the nth order in U(T) with coefficients continuous functions 
of t and T, a2 represents one of the 72th order in u(r) and u(r) with coefficients 
continuous functions of t, r and r, and so on. Let us suppose that the equation 

a^u(t))=p(t), 
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•(9'), 

in which p is an arbitrary function, can be written in the canonical form 

dnu _ p / du dn~lu\ 

W*~u{p> u' dt' '"9~d^J 
in which R is a rational integral function of its arguments. Then there is one and 
only one solution, continuous with its first n — 1 derivatives, that takes on, with its 
derivatives, at t = t0, the values u0, ?/0', ... u0

(n~1] respectively. For the equation (9) 
may be rewritten in the form of the system of equations following, the first of which 
is obtained by substituting for p (t) in (9') its functional value determined from (9), 
and the rest of which are determined by this and the initial conditions : 

dnu „f" * dnu~\ 

T dntr 

dt 

dn~lu 

~di" 

= P 

Jn-D + J JT 
'to *' drn 

ft rT rT(n-'0) 
= p0(t)+ dt dr ... F 

J to J to J to 

dnu 
dr (n~2] 

.(10). 

Defining 2 by the relations 

<P 
dtn 

\dn~: 

<M, !-^J<|^-i)| + 6; ... \u(t)\<\u0\ + e, 

M being chosen sufficiently large (its value depending on e), and e being chosen 
arbitrarily small or large, we see that the equation for u satisfies the conditions of 
theorem 3, and has therefore one and only one solution in S. 

11. Theorem 3 may be still further specialized to advantage. Representing by 
a (u), L (u), N (u), L' (u) differential expressions in u, we have the following boundary 
value theorem : 

THEOREM 4. The equation 
t 

a(u(x, y, z, t)) = P[u, L(u), ...] (11), 
to 

under the surface conditions 

f^[u,N(u),l,fa,fa,...fa] = 0, i = l,2, . . . ,m (12), 
to 

has one and only one regular* solution provided that the equation 

a (u) = p (x, y, z, t) 

under the same conditions has one and only one regular solution, that can be ivritten in 
the form 

u = M[p,L'(p), ...], 
Sto 

L(ü) = J\_p,L'(p),...], 
Sto 

t b 

where the functionals M, J, ... are such that M[P, L'(P), . . . ] , J[P, I!(P), . . . ] , ... 
StQ Sta 

are functionals of u, L (u), ..., that satisfy condition I \ 
* "Regular " means such that u, L («), ... exist and lie in S. 
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In fact the equations (11), (12) combined are equivalent to the equations 

u = M[P,L'(P), . . . ] , 
Sto 

L{u) = J[P,L'{P), . . . ] , 
Sto 

which by theorem 2 have one and only one solution in 2. 

12. I t is easily shown that the integro-differential equation of parabolic type 
offers an example of the application of this theorem. The equation may be written 
in the form 

d2u (x, t) du (x, t) ft
 D . . du (x, r) 7 _ _ _ ^ = _ _ _ _^B(tj T) _ _ _ dr> 

and be brought immediately under the theorem by the use of the properties of the 
Green's function belonging to the parabolic differential equation. This is substantially 
the analysis carried through already in its treatment*. 

Perhaps in regard to this parabolic equation it may be opportune to remark 
that a "" closed " form can be found for its solution ; i.e., it can be expressed by means 
of a finite number of quadratures in terms of the solution of a linear integral equation 
and the solution of the partial differential equation of parabolic type. The develop­
ment of this subject would be extraneous, however, to the scope of the present paper. 
The remark is introduced to illustrate the fact that although there is no assumption 
of linearity in the general theorems 1, 2, 3, 4, as soon as we seek for results convenient 
for calculation or close discussion we must introduce such an hypothesis,—at least in 
all the methods so far devised f. 

13. In order to tell when a given equation comes under the case of theorem 4, 
it is useful to have theorems about the transitivity of the relations expressed in 

t t 
conditions I and T. We have for instance the theorem: If F[u] and G[u] satisfy 

to to 

condition I, then 

F[G[u]} 
to t0 

satisfies condition I. 

In fact we can set up a series of sub-intervals t(), r/ , T / T / , ... r ^ , where the 
points T/, T2, ... rk' comprise all the points of division belonging to either P or G, 
taken in order, such that condition I is satisfied by both P and G wûth this set of 
intervals. Assuming then that the condition is satisfied by P[6r|V]] in the region 
t0Ti we have for the interval T̂  ri+l that if u lies in 2 then F[G [uj] lies in 2 and 

max | P [G [4]] ~F[G [u2]] \ £ AF mix | G [ i ] - G [u2] | 
^o tQ <̂ o to to to t0 tQ 

t 
^ A F A Q max | u± — u2\, 

Ti 

* Evans : SulT equazione integro-differenziale di tipo parabolico [Rendiconti della R. Acc. dei Lincei, 
Voi. xxi. fase. 1°, 1912]. For another treatment see L. Amoroso : Sopra un' equazione integro-differenziale 
del tipo parabolico [ibid, fase. 2°, et seq. 1912]. 

t Cf. for instance the method of Green's theorem and of partial solutions. 
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so that the condition is satisfied for the interval T/ T ^ / . Similarly it is satisfied for 
the first interval, and is therefore established by mathematical induction throughout. 
I t is obviously inessential that both functionals should commence at the same value 
t = tQ. 

The generalization of this theorem to systems of n functionals in n arguments 
is immediate. We have, still more generally, 

THEOREM 5. If the system of p functionals in n functions 

(a) F[u, v, ...], 

G[u, v, . . . ] , 

satisfies the condition IF (i), changing the space %Xyztuv into the space HX]JZIFQ..., and 
the system of n functionals in p functions 

(b) <S>[fafa,...], 

V[fa fa, . . . ] , 

satisfies IF (i), changing the space Hxyzt^_ back again to the space 2 ^ ^ . . . , and if in 
their respective spaces the systems of functionals satisfy condition IF (ii), thus 
determining two constants B1, B2, then the system of n functionals in n functions 

(1) Q[F[u,v, . . . ] , G [a, v, . . . ] , . . . ] , 

V[F[u, v, . . . ] , G[u, v, . . . ] , . . . ] , 

and the system of p functionals in p functions 

(2) f [ $ [ f t .. .] ' , M>tf, t , •••]> - . . ] . 

G{<t>[cf>,f, . . . ] , *[</,, f, . . . ] , . . . ] , 

satisfy the condition T, provided that 

£ 1 P 2 < 1 . 

14. This theorem finds its immediate application in theorem 4, a type of the 
boundary-value problem. It also finds its application in the following theorem 6, 
which wre call a type of the " canonical " problem. We give a very special theorem, 
of which the generalizations are obvious. 

THEOREM 6. If when fa (t) lies in a certain a-t} $, the equation 

has the n parameter solution 

fa(t) + F[ii(r)] = 0 
to 

t 
u(t) = h[fa(t), d, c2, ..., cn] 

to 

where cx, c2, ..., cn are the n independent parameters, then the equation 

G{icU] + F[a(r)] = 0 
to to 



3 9 6 GRIFFITH C. EVANS 

has an n parameter solution, provided that the functional 
£ T 

h [G[u], d, c2, ..., cn] 
to to 

t 
satisfies condition I for fixed values of c1} c2, ..., cn, and the functional G [u] satisfies 

to 

the condition I I (i) changing the 2^ u into the <rti G-

Moreover, all solutions of the equation that lie in 2 i} u are contained in this n 

parameter family. 

15. An interesting special case of this theorem is afforded by the equation of 
the third kind with variable limits 

f(t) u (t) = <j> (t) + f K (t, T) U (T) dr. 
ho 

With the special hypothesis that K (t0, 4)=j=0*, the equation can be treated by 
putting 

P [U(T)] = - / ( < ) u (t) + \*K (t0, t0) u (T) dr. 
to J to 

But a discussion of this special equation would be outside the scope of the present 
paper. 

* See Evans : Volterra's integral equation of the second kind, with discontinuous kernel [Transactions of 
the American Math. Soc. Vol. xu. Oct. 1911, p. 429], The results there obtained can however be much 
simplified. 



EINE NEUE RANDWERTAUFGABE FUR DAS 
LOGARITHMISCHE POTENTIAL 

VON H. A. V. BECKH-WIDMANSTETTER. 

z (x, y) soll innerhalb eines Kreises mit dem Radius 1 um den Ursprung der 
Gleichung genügen : 

dx2 dy2 

Prof. Wirtinger ist gelegentlich auf eine Randbedingung gestossen : 

x2
d!l+2xv^ + y2~- = Q 
dx2 J dxdy J dy2 

Das gibt Anlass sich zu vergegenwertigen, dass bisher nur solche Randwertauf­
gaben behandelt wurden, wo die Funktion selbst oder eine Ableitung nach einer 
bestimmten Richtung am Rand vorgegeben ist. Der Vortragende glaubt, dass es 
mathematisches Interesse hat andere Randbedingungen zu behandeln, wie diese : 

A, B, G sind Konstante, die gewissen Bedingungen nicht genügen dürfen, um sich 
nicht den alten Aufgaben zu nähern. 

Es werden Fourier'sche Reihen angesetzt : 
00 

z = bQ + 2 rk (ajc sin lc<j> + && cos kfa) ; 

00 

P (x, y) =f(fa) = d0 + 2 (cjc sin k<j> + dk cos kfa). 
&=i 

Die Lösung bleibt unbestimmt, bis auf eine Lösung TI der Aufgabe : 

Ax2^ + 2Bxym + Cfw = 0. 

Zu deren Bestimmung ergeben sich Gleichungen von der Form 

P«k + quk+z + «ä-H = 0, 

wobei sich p und q einfach aus A, B und G zusammensetzt und 

ajc = k (k — 1) ak ist. 

So kann man TI mit Hilfe elementarer Transzendenten linear in 8 willkürlichen 

Konstanten darstellen. 
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Für z erhält man Gleichungen wie 

Der Vortragende hat die Methode der Variation der Konstanten verschmäht und 
eine unmittelbare Behandlung der Differenzengleichung mit konstanten Koeffizienten 
gegeben, die ihm bequemere Ausdrücke liefert. 

Es gelingt die Fourier'sche Reihe für z darzustellen und nach Einführung von 

i r+îr 

Cfc = — I f(fa)smkfadfa, u.s.w., 
sogar zu summieren. Es ist so die Lösung bis zur Darstellung als bestimmtes 
Integral, dem Analogon des Poisson'schen, durchgeführt. Betreffs dieser ungemein 
komplizierten Ausdrücke verweist der Vortragende auf seine Arbeit in den Monats­
heften f. Math. u. Phys. xxiii. Jahrg. 1912. Er wünscht das Interesse der Mathe­
matiker auf dieses neue Gebiet zu lenken. Durch die vollständige Durchrechnung 
einer solchen Aufgabe hofft der Verfasser eine genaue Diskussion des Resultates 
eventuell eine weniger formale Gewinnung desselben anzuregen und glaubt die 
formale Rechnung selbst für ähnliche Aufgaben erleichtert zu haben. 



A MECHANISM FOR THE SOLUTION OF AN EQUATION 
OF THE rim DEGREE 

BY W. PEDDIE. 

In the well-known system of pulleys illustrated in the diagram below, the free 
end P of the last cord moves down through a distance 2n — 1 if the bar ad be moved 
up through unit distance. Here n is the total number of pulleys including the fixed 
one. Suppose now that ad be fixed, while a, b, c, d, are drums on which the 

Fig. l . 
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respective cords are wound. If a length a be let off the drum a, the free end of the 
last cord descends by the amount 2na, the number of moving pulleys being n. If, in 
addition, a length b be unwound from the second pulley, P descends farther by the 
amount 2n~1b. If finally, after the various lengths have been let off, or wound on, 
the first n drums, the (n •+ l)th drum be adjusted so that P retakes its initial position, 
the equation 

a .2w + 6 . 2 w - 1 + . . . = 0 

is satisfied. Thus the arrangement satisfies the conditions imposed by the relation 

axn-]-bxn-1 + ... = 0 

in the particular case in which x = 2. The fixed pulley may act the part of the 
drum a. 

If bed be vertical, the drums b, c, d, must be capable of sliding ; and, if they are 
so slid that the parts of the cords adjacent to them are kept horizontal, the equation 
is satisfied in the particular case in which x = 1. 

If the line bed be fixed at an angle 6 to the vertical, the drums being slid into 
positions in which the parts of the cords adjacent to them are perpendicular to bed, 
the corresponding root of the equation is 1 + sin 6. The plus sign occurs if bed 
slopes downwards to the right ; the minus sign occurs if it slopes downwards to the 
left. Either arrangement may be made the basis of construction of an instrument 
for finding the roots of an equation. I t is convenient to make the axes of the pulleys 
slide in parallel slots on a metal arm to which the arm bed is hinged, and the action 
of gravity on the pulleys is conveniently replaced by the control of cords wound on 
spring drums. To secure inextensibility thin steel wires may be used instead of 
cords. 4 

If bed be a fixed rigid arm, mechanical necessities prevent the axes of the 
pulleys coinciding with the axis of rotation of the arm carrying the pulleys. Hence, 
if the original displacements, measured parallel to 6, of the centres of the pulleys 
from the axis of rotation be a, ß, etc., the lengths of wire which have to be let 
off the corresponding drums are a —a, b — ß, etc., instead of a, b, etc. 

If desired this may be avoided by the following construction. Let pqrstuv 
represent the rotating arm ; qr, st, and uv, representing the lines along which the 
axes of the first, second, and third movable pulleys slide. The distances pq, rs, and 
tu, are of course equal to the radii of the sliding pulleys ; more strictly, they are 
equal to the radius of a pulley plus the semi-diameter of the cord (or fine wire) 
which is wound upon it. The fixed drum a has its axis coincident with the axis 
of the hinge p by which the moving arm is attached to the fixed arm pw along which 
the drum b slides. Arms rxy and tz are hinged to the moving arm at the points 
r and t ; and are compelled to remain parallel to pw by links wx and yz respectively. 

The cord which passes over the first movable pulley and is wound on the drum b 
is guided by a pin carried by the free end of an arm m which is rigidly attached to 
the axle of the pulley. The pin m is at a distance qp from the line of qr. Thus the 
free part of the cord between m and b is, when the drum b is slid into position, equal 
to pm sin 0 ; and a similar arrangement is made with each of the movable pulleys. 
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The mechanism must be so arranged that, when the whole link-work is closed up, 
9 being zero, the pin m is on the prolongation of the axis p ; the pin attached to the 

Fig. 2. 

second sliding pulley coincides with the prolongation of the axis r ; and so on. 
A length a is then unwound off the drum centred at p, and the first pulley slides out 
by the distance pm = a. So also does the second pulley ; but, when the rotating arm 
is turned through the angle 9, the second pulley is pulled back by the amount a sin 9. 
And it moves out through the additional distance b, if that length be unwound off 
the drum b. Thus the necessary condition is satisfied for the second pulley; and 
similarly for the others. 

The free end of the last cord being wound on a spring drum fixed at the outer 
end of the movable arm, the angular position of that drum is noted when, 9 being 
zero, all the adjustments of the pulleys have been made, i.e. when m coincides with 
p, etc. The lengths a, b, etc., having been let off the respective drums, which have 
been slid if necessary to their appropriate positions, if the drum at the end of the 
movable arm has retaken its initial angular position, one root of the equation at least 
is unity. If the end drum is not in its initial position, the angle 9 is increased, the 
drums being slid correspondingly, until the initial position is retaken. The value of 
1 — sin 9, which can be indicated directly on a scale by a pointer attached to the 
movable arm, is then a root of the equation. By appropriate graduation of the end 
drum, the sum of the terms of the function, for any value of the variable from 0 to 1, 
can be directly indicated. 

I t is presumed that the radius, p, of any pin m, is so small that rO is negligible 
so fir as scale readings are concerned. 

If no root of the equation lies within the limits 0 and 1, or at either limit, the 
equation must be altered so as to realise that condition. 

M. c. 26 
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Lastly, the instrument can be also used to solve an equation one degree higher 
than the number of movable pulleys. Thus one constructed to solve a cubic can 

Fig. 3. 

solve a quartic. Each term being divided by x, the last term will be, say, 1/x. If 
squared paper be fastened on the baseboard of the instrument, and the scale 
indicating x=l-sin9 be marked on it, as also the curve xy=l, any value of x, 
at which the reading of the end drum exceeds its initial reading by the value of y 
given by the hyperbola, is a root of the quartic. 

I t may be noted that the instrument, if set to solve a given equation with the 
left hand side equated to zero, will also give the solution of the equation with the 
right hand side equal to any constant different from zero, by altering 9 until the end 
drum has a reading differing from its initial reading by the value of that constant. 
Thus it can be used to trace the value of the function. 



SOPRA EQUAZIONI DI TIPO INTEGRALE 

Di VITO VOLTERRA. 

Lo studio delle funzioni di linee, o, come è anche chiamato, dei funzionali, che ho 
cominciato in maniera sistematica dal 1887, mi ha condotto a quello delle equazioni 
integrali lineari. In virtù dei principii dai quali sono partito, sono stato condotto, 
per primo, a considerare queste equazioni come il caso limite di equazioni algebriche 
allorché il loro numero e quello delle incognite crescono indefinitamente. Tale 
passaggio al limite è analogo a quello fondamentale del calcolo integrale. Ho poi 
considerato delle equazioni non lineari in una nota pubblicata nel 1906 nei Comptes 
Rendus de VAcadÀmie des Sciences e dei casi ancora più. generali nelle mie lezioni 
fatte lo scorso inverno alla Sorbona. 

Oltre alle equazioni integrali ho studiato le equazioni integro-differenziali 
dandone la teoria in vari casi, nei quali ho sempre fatto uso del principio da cui 
ero partito precedentemente. Le ho cioè riguardate come casi limiti di un numero 
infinitamente crescente di equazioni con un numero pure infinitamente crescente di 
incognite. Ma io qui desidero di ricordare alcuni teoremi che ho dati recentemente, 
i quali fanno rientrare tutte le precedenti trattazioni di equazioni integrali e integro-
differenziali come casi particolari. 

Ho perciò introdotto una speciale operazione che ho chiamato composizione che 
può considerarsi di due tipi diversi, cioè a limiti variabili e a limiti costanti. 

Date due funzioni FY (x, y), P2 (x, y) finite e continue, la composizione a limiti 
variabili o composizione di prima specie consiste nell' operazione 

J X 
FMÇ)F>{ty)di; (1), 

mentre quella a limiti costanti o composizione di seconda specie consiste nella 
operazione 

fV.teDÜUfcyJdf (2), 

ove p e q sono quantità costanti. 

Ora, se scambiando le due funzioni Fx e P2 nella prima formula (1) il resultato 
non cambia, ho detto che F1 e F2 sono permutabili di prima specie, mentre se il 
medesimo scambio non altera il resultato della seconda operazione (2) ho chiamato 
Fx e P2 permutabili di seconda specie. Ciò premesso ho dimostrato il teorema che 
combinando per somma, per sottrazione o, in generale, combinando lineamente con 
coefficienti costanti delle funzioni permutabili e combinando mediante composizione 

26—2 
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delle funzioni permutabili si trovano sempre funzioni permutabili fra loro e colle 
funzioni primitive. 

Ma le due proprietà più importanti sono le seguenti : 

1°. Se 

aYx + a2y + a?)z + ... -f aux
2 + a22y

2 + a12ocy + ... + alux
?- + am>xyz -f- (3) 

e un elemento di una funzione analitica di un numero qualsiasi di variabili e si 
sostituiscono ad x, y, z... le espressioni xFly yF2, zFz... ove Fl9 F2, Fd... sono funzioni 
permutabili di prima specie e si interpretano i prodotti e le potenze delle F1, P2, P3 ... 
(invece che come operazioni algebriche) come operazioni di composizione di prima 
specie, la serie che si trova e una funzione intera di x, y, z — 

2°. Se si sostituiscono nella (3) a x, y, z ... le espressioni xF1, yF2, zF3 ... 
essendo Fly P2, P3 ... funzioni permutabili di seconda specie e si interpretano i 
prodotti e le potenze delle F1} P2, P 3 ... come operazioni di composizione di seconda 
specie, e, se la serie (3) è il rapporto di due funzioni intere, anche la serie che si trova 
dopo la sostituzione e il rapporto di due funzioni intere di x,y, z — 

L'origine di questi teoremi va ricercata sempre nello stesso principio che 
corrisponde al solito passaggio al limite di cui abbiamo parlato. Infatti le operazioni 
di composizione (1), (2) possono riguardarsi come operazioni limiti di somme. Si 
considerino infatti le quantità 

™>ixh> nilh (ijt = 1, 2, 3 ... g). 

Si può dapprima considerare la somma 

2 , misn,h (4), 
. i+l 

e la permutabilità eli prima specie sarà data da 
, 9 - 1 , 9 - 1 

2S misnsh = 2 nismsh • (4'). 
i+l i+l 

Se passiamo al limite, coli' analogo procedimento del calcolo integrale, la 
operazione (4), da luogo alla composizione di prima specie e la condizione (4') alla 
permutabilità di prima specie. 

In modo simile la composizione di seconda specie può considerarsi come il limite 
della operazione 

Q 

i 

e la permutabilità di seconda specie come la condizione limite di 
# ff 
*-'s wiisn8]b = 2JS nismsjt. 
i i 

Ora si può cominciare dallo stabilire i due teoremi precedenti per il caso finito, 
il che non offre difficoltà, e procedere quindi alla loro estensione al caso infinito. 

Una volta stabiliti questi teoremi supponiamo che la serie (3) sia soluzione di un 
problema algebrico o differenziale. Se noi sostituiamo nelle equazioni algebriche 
o differenziali, ridotte a forma intera, alle lettere x,y, z ... le xFly yF2, zF3... e inter­
pretiamo i prodotti e le potenze delle Fl, P2, P3 . . . come composizioni otteniamo 
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equazioni integrali o equazioni integro-differenziali di cui le soluzioni sono immediata­
mente date per mezzo di funzioni intere o di rapporti di funzioni intere. 

Possono perciò enunciarsi i due principii generali : 

Ad ogni problema algebrico o differenziale la cui soluzione conduce a funzioni 
esprimibili mediante funzioni analitiche corrisponde un problema correlativo integrale 
o integro-differenziale (a limiti variabili, o di prima specie) la cui soluzione e data da 
funzioni intere. 

Ad ogni problema algebrico o differenziale la cui soluzione conduce a funzioni 
esprimibili come rapporti di funzioni intere di un certo numero di variabili 
corrisponde un problema integrale o integro-differenziale di seconda, specie (a limiti 
constanti) la cui soluzione e pure esprimibile mediante rapporti di funzioni intere 
delle stesse variabili. 

E' facile riconoscere che il problema della risoluzione delle equazioni integrali 
lineari non è che un caso particolarissimo fra i problemi generali che sono abbracciati 
dai due principii precedenti. 

La teoria delle funzioni permutabili da luogo a varie questioni che io stesso ho 
studiato. Essa conduce poi ad un' algebra che il Prof. G. 0. Evans ha approfondito 
in modo molto elegante e che lo ha condotto e resultati molto interessanti. I Prof1'1. 
Lauricella, Vessiot, Sinigaglia, Giorgi, Lalesco ed altri si sono pure occupati di 
questioni relative ad essa. 

Mi propongo ora di estendere ulteriormente queste considerazioni. Consideriamo 
un gruppo continuo di funzioni permutabili, per esempio prendiamo 

f(u | x, y) 
tale che, %h e u2 essendo due valori qualunque di u, si abbia 

/ . 
v fy 
/ O i I ^ ?)/(^21 £> y) d% = f(u2 \ oc, f ) f(ux | £ y) cl% =f(ih, u21 x, y). 

f(ih, u21 oc, y) sarà permutabile conf(u \ x, y), cioè 
fy fy 

f(u31 x, Ç) / K , u2 \%,y)d%= f(ih, u21 x, Ç)f(ik \Ç,y)dÇ=f (ih, u2, ih I oc, y), 
J x J X 

e così di seguito. 
Ciò premesso, estendiamo, col solito procedimento del passaggio dal finito 

all' infinito, un teorema dato precedentemente. A tal fine consideriamo la serie 
analoga a quelle di Taylor che ho dato fino dai miei primi lavori, cioè 

fb fb fb 
A + P(u1)/(w1) dux + \ l F' (u1} u2)/(wi) f(u2) duxdu2 

Ja J a J a 
fb fb fb 

+ F" {ih, u2, u.ò) f (ih) f (w3)/(ih) du,dti2du.ò + ... , 
J a J a J a 

ove le funzioni P sono simmetriche. Supponiamo che essa sia convergente allorché 
\f(u)\<M. 

Sostituiamo a questa serie Y altra 
fb fb rb 

A + F (ih) f (ih | oc, y) chh + I P ' {ih, u.^f(ih, w31 x, y) dihdu2 
Ja J a J a 

fb fb fb 
+ 111 P"(^i> u2, '«s)/(^i» u*> us\oc, y)dihdu2du3+ .... 

J a J a J a 
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Questa serie sarà convergente comunque grande sia il modulo di f(u \ x, y) purché 
sia finito. 

E' evidente che questo teorema è un' estensione del teorema 1°. E' facile 
vedere delle applicazioni di questo teorema. Consideriamo Y equazione del tipo 
trascendente 

(f> (u | x, y) =f(u | x, y) + I F' (u | u^f^ \ x, y) dv^ 
J a 

+ I I P " (u | ux, u2)f(ih, u21 x, y) du1du2 

J a J a 
fb fb fb 

-f I I F'"(u\u1,u2,us)f(u1,u2)u3\x,y)du1du2du3 + (la) 
J a J a Ja 

ove f(u \x,y) è la incognita. 
Supponiamo che 1' insieme delle funzioni date </> (u \ x, y) formi un gruppo 

continuo di funzioni permutabili, cioè 
fy fy 

<j> K I oc, f) (j) (u2 | f, y) d% = cf> (u21 x, f) 0 (u, \ Ç, y)d% = $ (u1} u2 \ x, y). 
J X J X 

Consideriamo d' altra parte 1' equazione 
fb fb fb 

(f) (u) =f(u) + F' (u | u^fiux) dux + F" (u | ul9 u2) f'(ih)f\u2) duYdu2 + — 
J a J a J a 

Se il determinante dell' equazione integrale 

f(u)+( F' (u | Uy)f(ux) du^ty (u) 
J a 

è diverso da zero, ho dimostrato che si può dare una soluzione dell' equazione 
precedente sotto la forma 

fb fb fb 
f(u) = (j>(u) -M <&'(u|Ui) </>(Ui)d%h + I I <I>"(u|u1} u2) (j>(ux) </>(u2)duYdu2 + ..., 

Ja J a J a 

valido finché il modulo di </>(%) è inferiore ad un certo limite. Ne viene che la 
soluzione della (la) sarà 

fb 
f(u\x,y) = <j>(u\x,y)+\ &(u\ux) <£(u, \x, y)dux 

J a 

+ I <É>" (u | uY, u2) (j> (ux, u21 x, y) dux du2 

J a J a 
fb rb fb 

+ 1 <&/"(u\u1,u2,u3)<j)(u1,u2,u3\x,y)du1du2du3 + (16) 
J a J a J a 

e non vi sarà più bisogno di alcuna limitazione circa la grandezza del modulo di 
cf) (u | x, y) purché finito. 

E' facile riconoscere quali sono le estensioni del teorema 2° e degli altri al caso 
che abbiamo adesso indicato, e le conseguenze ed applicazioni che possono trarsene. 



ELLIPTIC AND ALLIED FUNCTIONS; SUGGESTIONS FOR 
REFORM IN NOTATION AND DIDACTICAL METHOD 

BY M. M. U. WILKINSON. 

" Students of applied mathematics generally acquire their mathematical equip­
ment as they want it for the solution of some definite actual problem." (So wrote 
Prof. Greenhill, 1892.) An adequate mathematical equipment for the " discussion 
of definite physical questions " i s as necessary now as it was twenty years ago. But 
there is more for the student of modern science to study now than there was twenty 
years ago. And he is likely to find that the time he can devote to study is less than 
the time students could devote to study twenty years ago. Any reform, whether in 
notation, or in didactical method, which places, or tends to place, more time at the 
disposal of a student is surely worthy of consideration. The fate of Reforms, generally, 
is to be reformed away in a few years. But meanwhile they may have been extremely 
useful. 

The object of this paper is to suggest certain reforms, in Notation and Didactical 
Method, in the elementary treatment of Elliptic and Allied Functions. The Reforms 
I suggest may have been suggested before. But, if they have been, I do not think 
attention has been at all generally given to them. I am very anxious that " methods 
and matter of teaching " should be " progressively adapted " to meet the needs of those 
who " lack any exceptional capacity." I make three suggestions : 

The first is that the notation sn, cn, dn should be replaced by a notation based 
on the Weierstrassian notation of a, aly <T2, a3. 

The second is that the youthful student should be taught about the sigma 
function in a somewhat different way from that hitherto adopted. 

The third is that more attention should be paid to the case, where 

than has, I believe, been customary hitherto. 

Of course, at first, the four sigmas are only considered in their ratios one to the 
other. So I propose to represent, in this paper, those ratios thus, 

bs u. au — axu ; es u. au = a2u ; ds u. au = a3u ; 

defining bs, cs, ds by the differential equations • n v 

d bs u , d es u T n d ds u , ! 
—,— = — es u ds u ; —7— = — ds u bs u ; —7— =—bs u cs u\ 

du du du 
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and defining the Weierstrassian function, fu, thus. 

^ = - 2 (&u - erf kM - e2)i (pu - *,)* 

and 

so that 

and 

fdfu 
\ du 

•(2); 
= 4< ' - 9ifu - g$u - 9s) 

m = bs2 u + e1~ es2 u + e2 = ds2 u + e3 ^ 

du 
— — 2 bs u es u ds u •(3). 

The formulae so obtained are superior, both in elegance and simplicity, to the 
formulae hitherto used. 

Thus, in the addition theory, the old formulae will be replaced by 

(fv — fu) bs (u + v) — bs u es v ds v — bs v es u ds u, * 
or 

bs (u+v)(hs u es u ds v+hs v es v ds u)=ds u bs u ds f b su - (ßi—e3)csitcs A; 

or >...(4). 

•(5); 

bs (u + i>) (bs u cs -y ds v •+- bs # cs u ds i&) = bs2 u bs21> — (e1 — e2) (ex — e8) ; 

also bs (it -f w) bs (w - u) ( p — g>ẑ ) = bs2 u bs2w - (ex — e2) (ex — e3), 

etc., permuting (6, e^, (c, e2), (d, e3). 

These formulae are superior, both in elegance and simplicity, and in other ways, as 
is obvious if we consider the formulae which result. Thus, SU', Sij', etc., having the 
meanings they have in Elementary Treatises on Quaternions, we can take 

PSii' =hsv; PSij'= — e$(u + v); PSik' = dstt; \ 

PSji —csu; PSj]' — ds v ; PSjJc' = - b s (ii + v);\ 

PSki'= -da (u + v); PSkj' = hsu; PSkM = csv] 

where P2 = fu + fv + g> (w + w) — ^ — e2 — e3 J 

and if we take 

| SU', Sij'', Sik' , = + 1,^ 

i Sji', Sjf, Sjk' 
I Ski', Skf, Skk' 

P bs v = ds v cs i> + bs it bs (u + fl), 

and require that (for sign) 

P (bs2 u — bs2 v) = bs w es u ds t6 — bs v es i> ds ^ 

and the well-known equation (see Greenhill, p. 47, or Halphen, i. 25) 
f'v — np'w _ $'w — jjp'w __ f'u — f'v 
fv — fw fw — fu fu — @v 

is thus (replacing — whyu + v) simply expressed. 

Of all the ways of introducing Elliptic Functions to youthful students 
I think the spherical triangle is the best. Thus, suppose PQR to be a very 
small spherical triangle, the angles P and B being very small. 

•(6); 

Take - " 9 - ^ - « » - ^ s i n P P : 
ds (u + w)J 
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smPRQ = 

cos PQ ~ 

COSPPQ: 

(e2-e3y 
dsu 

bs u m 

ds u ' 

esu # 

ds u ' 

sin QPRJ*A--e*)* ; s inPQP - (,% - ^ • ; 
dsv ds^-pu) 

cos QR = 

cosQPP = 

bsv ( 

ds^ : 

CS V 

cos PR = 

cos P Q P = 

bs (w- 4- v) m 

ds (w- + v) ' 
cs (w 4- fl) 

ds v ' ds (w + A) ' 
But there are other ways, and I think some would prefer one way, and some 

another. 

As an instance of the simplicity obtained by the use of a notation such as I 
suggest, I would instance 

bs (7 - a) cs (a - ß) + es (ß - 7) ds (7 - a) + ds (a - ß) bs (ß - 7) = 0 ...(7) ; 

expressing in one formula six. 

And, replacing Halphen's co, co', by co, ico (so that' 
co, co', be both positive), we have 

cs2 co = e1 — e2 ; ds2 co = el — e3 

and bs v bs (co — v) = cs co ds co ; V (8). 

bs v cs (co ± v) = cs co ds v ; 

bs v ds (co ± v) = ds co es v ; 

etc., etc. 

As Greenhill and Halphen both show, all the formulae in the old notation can be 
readily transformed into the new, since, if 

sn (el — e3y x ds u = (ex — e3)
¥; 

we have cn (e1 — e3)% x ds u = bs u; r W/-

dn (d — e3)z xdsu = csu; , 
Another reform I would suggest is, to change the way in which the sigma 

function is introduced. I would suggest as follows, from (1), we find 

ld2a flda\2 . 1 d2h$u /_1_ d bs u\2 _ 1_ d2a, _ / l dcrA2. 
hau du J ax du2 \a1 du J J 

_ ^a __ / 1 da\2 

a du2 \adu) hau du2 

now 
1 d2 bs u 1 a7 bs u\2 

\ u du2 Vbs u du 

= 2 bs2 u + 2e1 - e2 

• ds2 u + es2 u 
es2 u ds2 

•es-

= bs2 u -
(e1 - e2) (ex - es) 

bs2 u 

(bs2 u + e1 — e2) (bs2 u + e1 — e3) 
ha2u 

= bs2 u — bs2 (co — u) 

(10). 

ha2u 

= fit — f(co — u) 

Hitherto in this paper the sigmas are only connected by their ratios. So we 
may assume another relation connecting a and a1} provided it is consistent with (1). 
So assume 

1 d?a / I daY2 _ \ 
a du2 \a du) ' I , . 

y- (11); 
1 d2ax (1 daX2 

71Ä?-U^)"" ( , ( a ," t t ) . 
then shall 
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1 d3a _ 3̂  da^ (Pa / 1 dçr\8 _ 
a du3 a2 du du2 \a du) 

df \ 
du 

a du* a2 du du3 + a2 [du2) ®U du2 

•(12); 

: - 6g>2 + glf + \g* 

,, , d'à . da d?a _ fd2a\2 , ( 
sothat Œ — - ï + z l \ + gA* du' 

d2< 
du du3 ' " Vd ;̂ " ^ r d̂ 2 VdJ l - 2 ^ 2 - 0 ...(13). 

doA2 

In like manner we can show that, in (13), a may be replaced by either 
oi, o-2, or 0-3. 

(13) is one of those differential equations which solve themselves. For, assuming 
. ... , i n dau d2au d3au , . ... -, , . P 

initial values for -=— , -J-J- , 7 3 > and an initial value, not zero, tor au, every 
subsequent differential coefficient can be found. But we do not get much further 
that way. But if we assume 

S=A exp ({eu2 + bu) a(u + a) (14); 

1 cPS _ / 1 dS\2
 = 1 d2o-(^ + a) _ / 1 do- (M + a)\* 

S du2 \S du) a(u + a) du2 \a(u + a) du 

For convenience I represent, thus, 

W-*ym = 8™-(^-WQ)(ssy, 

^(d-dy{SS) = S ^ - 4 , ~ . C ^ + 3 
du4 du ' du3 

dS\' = 
du/ W(4,)(ssy, 

%(d-dyn(ss) = s 
rf2"S 
dum ' •2re 

dSd^S 
du dum' 

^ + ... = Tf(2w)(SS); 

..(15). 

Then, 

W(4>)(S8) _ / F ( 2 ) ( S S ) \ 2
 = F(4)(«ro-) _ ( Tf (2) («ro-> 

S2 

so that we have 

S2 

F ( 4 ) (SS) = F ( 4 ) ( r e ) + 1 2 e F(2)(<re) + 6 g 2 . 
S2 

and 

F (4) (SS) 
£2 + 4 (ex + e2 + e3 - Be) 

_F(4)(<rcr) 

F (2) (SS) 
S2 

•••(iß); 

F(4)(<r«r) 

+ 4<(e1 + e2+es- Sé) 
W(2)(aa) 

4 e + 12e 
F(2)(ff«r) 

+ 6e2 

2 + 4 (e, + e2 + e3)
 F ( 2 j 2

( < r < r ) - 6e2 + 4e (e, + e2 + g.) 

/ = - 2 (e2es + e*ex + ejO - 6e2 + 4e (^ + e2 + es) 

so that the effect of the term, in the exponential, \eu*, is simply to decrease each of 
e1( e2, e„ by e. 
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I note here that, if au has to be = — a (— u), so that its initial value is 0, assuming 

the initial values of -y-, -y-r, -y- , to be A, B, G, we have 
du du3 du5 

and 

whence 

Now the equation 

du* du2duQ 

-4>AB-9l A2 = 0; 
-2AC + 2B2-g2A

2 = 0', 
2g,AG - 2g,B2 - 4<g2AB = 0 ; 

9i __ 92 
2AB AG-B2 

2 
A2' 

\2 I" d6a dad5a d2a d4a /d3a\2~ 
J +gi\_(r du6 + du du5 du2 du' \M3) _ 

-92 
dAa da d3a fd2a\2' 

f du4 + 4d7rd^ + d Wv _ 
= 0 

d7« 
fails to give us the initial value of ^—. But if we assume its initial value to be D, 

d9a dna 
by successive differentiation we can find initial values of -=—Q, ^—, etc. 

I observe here that by further differentiation we obtain a succession of equations. 
Thus, writing W(2n) for W(2n)aa, 

W(2) + a2.@ = 0; 

W(^ + giW(2)-±g2a
2 = 0: 

W(6)+giW(4) + 3g2W(2)-12g3a
2 = 0: 

W(8)+g1W(6) + 7giW(4i) + 4 8 ^ ( 2 ) + 1 2 ( 4 ^ 3 - ^ 2 ) ^ = 0; 

We can readily establish the formulae 

d2a (da 
du2 \du 

4-e1o-2+o-1
2 = 0, 

with similar formulae for a2, a3, and can thus check the results obtained by successive 
differentiation of 

W(*) + giW(2)-±g2a
2 = 0; 

which I will call the principal sigma equation. 

But, for beginners, I think that, just as the consideration of sines and cosines 
precedes the consideration of Elliptic Functions, so the consideration of the equation 

TT(4) = 0 

should precede the consideration of the principal sigma equation. 

To prevent confusion, in considering this case, I will put 

e1 = e] e2 = tàe\ e3 = /cse, 

where 
2TT . 2TT 

K4 = cos -^- -f i sm — , 

47T . 47T 
K8 = cos -~- + i sm -^- ; 
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so that 
1 - K8 1 + tf4 

and replace a, bs, cs, ds, by r, bt, ct, dt. 

The expansion of TU I find to be 
9/7 .J/13 >.19 o/25 

™ = ^ ~ T ~ - 6 r 2 ^ - 2 3 . 2 4 ^ ^ + 2 4 . 2 5 . 3 1 ^ ^ + . . . , 

where, in order that -~ = — 2V^3— èò, we must have 

T=24e*; 

and it will be readily seen that 

bt u = fâ et K4 u = K8 dt /c8u ; 

et u = /e4 dt /c% = #8 bt fc8u ; 

dt i£ = te4 bt #% = KS ct /c8^. 

And our addition formulae can readily be obtained, thus, 

T (ll + V) T (U — 1*) = T2 l^T1
2f — T^'l^T2^ = T2UT2V — T2UT2V — T2UT3

2V ~ T3UT2V ] 

Ti (U + V) Ti (U — V) = T ^ ' ^ T i 2 ^ — 3T 2 t iT 2 V ; 

T2 ('M 4- fl) T2 (tt — fl) = T2UT2V — SfC8T2UT2V] 

T3 (U + V) T3 (ll — V) = T3
2It T3

2fl — 3/C4 T2 M T2V) 

and we may here note the formulae 

T (̂  + X — 2^) Tj (# — a?) T 2 (0 — x) T 3 (5 — x) 

= r(x-y)rl(x- y) r2 (y - z) r2 (z - x) T3 (y - 5) T3 (5 - a;) 

- T (y - *) Ti {y - s) T 2 (2 - x) T 2 (a? - y) T 3 (2. - a?) T 3 (ä; - 2/), etc. ; 

r(y + z- 2x) Tl (y - s) T2 (y - z) r3 (y - z) 

+ T (z + X — 2y) Tj (# — x) T2 (# — Ä?) To (z — x) 

+ r(x + y-2z)Tl (x - y) T2 (X - y) T3 (x~y) = 0. 

One great interest in these r functions is that we can split into factors the 
formulae that present themselves in " Triplication." Thus 

TSU = STU [T,8 + ér2^6 + ßr4^4 - 3T8] 

= 3 TO (T;2 + T2) (T-/ + 3T2T1
4 + :3T47Y - 3T°) 

- ST (TL
2 + T2) [(TX

2 + T2):3 - 4Tö] ; 

TlSu = TX (TX
8 - IST^T 4 - 36T1

2T6 - 27r6) 

= Ti (TY2 + 3r2) (Tl
6 - 3TX

4T2 - 9TX
2T4 - 9T6) 

= T1(T1
a + 3T3)[fT1«-HTia+3Ta)8]; 

r23tt = T2 (T2
2 + 3K4T2) [f r2

6 - i (T2 + 3/C4T2)*] ; 

T»3W = T3 (T3
2 + 3*8T2) [ f T3

6 - £ (T3
2 + 3*8T2)3]. 
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And there are an enormous number of extremely interest ing formulae: for 

instance, 

b t fc4u ct fc2u dt K2U — b t fc2u ct tc4u d t K4U 
bt (K4 + K2)U = b t /c3 sJSu = 

hi2 K2U-ht2 K4U 

K4 b t u dt2 u + b t u et2 w 

/ c 8 c t 2 ^ - ^ d t H T ~ 

Since 

__ bt u (fc4fu — e + fau — K40) 

~ A:8 ct2a - /c4 dt2 u 

bt u (j»t6 — e) 
= —T^1— - , etc. 

V 3 . K7fU 

1 d2r / l dr \ 2 1 
? ^ T 4 2 UdJ ""T ( T5\' 

,u 
•eT,m+~}-h{1-*Twr~) 

we have T 2 ^ W = T2K4ufiàu = T2/c8ufK8u, 

and, as r/c4^ = K4TU; TK8U = «8TW, 

we have gm - K8@K4U = K4f/c8u. 

In the diagram the 0's signify where fu is equal to the reciprocal of the 

differential element, the ones where fu = e, the twos where fu — K4e, and the threes 

where fu = K8e. 



SUR LES EQUATIONS AUX DERIVEES PARTIELLES DU 

PREMIER ORDRE À TROIS VARIABLES INDÉPENDANTES 

PAR P. ZERVOS. 

1. Il est bien connu qu'à l'intégration de toute équation aux dérivées partielles 
du premier ordre à deux variables indépendantes on peut rattacher l'intégration 
d'une équation de Monge 

f(x,y,Z,y\z') = 0 (1), 

et inversement, étant donnée une équation de la forme (1) on sait depuis Monge que 
la solution la plus générale du problème consiste à prendre les équations 

AV A2V v=o, ^- = o, ^ = o m 
' Ace Aa2 v ; 

où V = 0 donne l'intégrale complète de l'équation adjointe 

F (x, y, z, p, q) = 0. 

2. Pour le cas où le nombre des variables est plus grand que trois ou l'ordre 
est plus grand qu'un nous avons des résultats très essentiels pour des cas assez 
généraux de MM. Darboux*, Goursatf, HadamardJ, Cartan§ et d'autres géomètres. 

Sans aborder ici le problème dans toute sa généralité je me propose de faire 
quelques remarques relatives à l'intégration d'une équation de Monge du deuxième 
ordre et à quatre variables. 

3. M. Goursat dans un très beau Mémoire inséré dans le journal de l'Ecole 
Polytechnique 1897 a fait remarquer qu'on peut rattacher à l'intégration d'un 
système linéaire en involution 

r + Xs + fjb = 0 

s + \t + v = 0 

l'intégration d'une équation de Monge du deuxième ordre 

f(x, y, z, y ,z, y", z") = 0, 

* Darboux, " Solutions singulières des équations aux dérivées partielles" (Mémoires des savants étrangers 
de VAcadémie," 1883). Darboux, "Sur la résolution de l'équation dx2 + dy2 + dz2 — ds2 et de quelques 
équations analogues" (Journal de Liouville, 1887). 

t Goursat, " Sur le problème de Monge," Bulletin de la Société Mathématique de France, 1905. 
X Hadamard, Annales de VEcole Normale, 1901. 
§ Cartan, Bulletin de la Société Mathématique, 1901. 
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et il a fait montrer que l'intégration de cette équation se ramène alors à l'intégration 
d'une équation du premier ordre et encore que, étant donné le système en involution, 
on peut obtenir directement l'équation de Monge sans reconnaître l'intégrale 
complète. 

4. Ici il s'agit de faire remarquer qu'on peut aussi faire correspondre à une 
équation aux dérivées partielles du premier ordre à trois variables indépendantes une 
équation de Monge du deuxième ordre en partant d'une intégrale complète de cette 
équation, et dans ce cas la solution de l'équation de Monge se donne par de formules 
très simples qui peuvent être considérées comme une extension des formules de 
Monge (lx). 

5. Soit, en effet, une équation aux dérivées partielles du premier ordre 

F(xx,x2, x3, x4, pi ,p2 jp3) = 0 (1), 

et V(xly x2, x3, xé, a1} a2, a3) — 0 une intégrale complète de cette équation. 

Outre l'équation V— 0 (2) formons les relations suivantes: 
4 dV l s d2V 
2 r̂~ dxi = 0 (3) 2 2~—~—daidak = 0 ...(6) 

i 4 d2V édV 3 4 d2V 
2 2 ~—~— dxidxk + 2 —̂ d?xi = 0 (4) 2 2 «—̂ — daidxh = 0 (7) 

2 ^ d a ; = 0 (5) 2 ^ - d 2 a , - 0 (8). 

Les relations (5), (6) et (7) sont homogènes par ra-pport aux da. On peut donc 
da da 

en général éliminer entre elles les rapports -~ et -—•) nous trouvons ainsi une 
équation contenant seulement des x, dx, d2x et a. Entre cette équation et les 
équations (2), (3) et (4) éliminons les a ; on trouve ainsi, en général, une équation de 
Monge de la forme 

T[X], x2, x3, «x>4, ax-[, ax2, ax3, ax^, a^x-^, a x2, a~"x3, a x^j —— \j ( «J ) . 

Donc à Vintégrale complète (2) de l'équation (1) correspond l'équation de 
Monge (9).) 

6. Mais on voit encore que l'équation (8) est une conséquence des équations (5), 
(6) et (7) et que les quatre équations entre les équations (2), (3), (4), (5), (6), (7) et (8) 
peuvent être considérées comme indépendantes, car étant données les relations (2), 
(5), (6) et (8) on aura, comme leurs conséquences, les relations (3), (7) et (4) et 
comme l'équation (9) est supposée comme résultant de l'élimination des a et da 
entre les relations (2), (3), (4), (5), (6), (7) nous concluons le théorème suivant : 

Une équation de Monge du deuxième ordre correspondante à une équation aux 
dérivées partielles du premier ordre à trois variables indépendantes, de la manière 
citée plus haut, aura comme solution celle qui se donne par les équations 

dV ^ d2V dV 
V = 0, 2 ~ - d o f = 0, t^dadajc^O, 2 ^ d 2 a , - = 0 , i, Jfe = 1, 2, 3. 

dai daidajc dai ' 
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7. Considérons, d'autre part, les relations suivantes : 

/ - \ 
F=0, 2 1 ^ = 0, 2 ^ - 1 1 ^ 1 ^ = 0, i = l,2,3,4, fc = l,2...(10). 

L'élimination des a entre ces relations (10) donnera* une équation de Monge du 
premier ordre, soit, qu'on a trouvé ainsi, l'équation 

</>(#i, x2, x3, x4, dx1} dx2, dx3, dx4) = 0 (11)-

8. Si on considère les x\, x2, œ3, x± comme de fonctions d'une variable indépen­
dante t on peut énoncer le théorème suivant : 

Les fonctions qui satisfont à l'équation (9) et les fonctions qui satisfont à 
l'équation (11) satisferont aux équations f 

A F A2 F 
Aa ' Aa2 

9. Il est facile de généraliser les résultats précédents et de leur faire des 
applications intéressantes. 

* Voir une Note de M. Bottasso présentée à l'Académie des Sciences de Paris le 13 Juin 1905 et deux 
Notes de moi présentées à l'Académie le 10 Avril et le 11 Septembre 1905. 

f M. Hilbert, dans un travail important ["über den Begriff der Klasse von Differentialgleichungen" 
(Festschrift Heinrich Weber, 5 März, 1912)] a donné des résultats très intéressants pour les équations de 
Monge du deuxième ordre à trois variables. Nous espérons d'y revenir prochainement. 

M. C 27 



EINDEUTIGKEIT DEE ZERLEGUNG IN PRIMZAHL-
FAKTOEEN IN QUADRATISCHEN ZAHLKÖRPERN 

V O N G. RABINOVITCH. 

Ich betrachte im Folgenden quadratische Zahlkörper mit der Diskriminante 
der Form 

D = 1 - 4m. 

Um Missverständnisse zu vermeiden will ich gleich ausdrücklich bemerken, dass 
ich keine Ideale eingeführt denke und also nur mit Zahlen operiere. Es gilt in 
diesem Falle der Grundsatz der Zahlentheorie nicht in jedem der betrachteten 
Zahlkörper, und wenn ein solcher Körper gegeben ist, so kann man sich also fragen, 
ob jede Zahl dieses Körpers nur auf eine Weise in Primzahlen zerlegt werden kann. 
Mit dieser Frage beschäftige ich mich im Folgenden. Diese Frage kann auch so 
formuliert werden : ist die Klassenzahl eines gegebenen Körpers gleich 1 oder 
grösser ? 

Dabei wende ich folgende Bezeichnungen an. Lateinische Buchstaben bezeichnen 
ganze rationale Zahlen, griechische—ganze (im allgemeinen) irrationale, ä bezeichnet 
die zu oc konjugierte Zahl. Jede Zahl £ des Körpers kann in der Form 

dargestellt werden, wo 

ist, und umgekehrt ist jede Zahl dieser Form eine ganze Zahl des Körpers. Die 
Norm der Zahl £ ist 

N% = x2 -f xy + my2. 

In einer Strassburger Dissertation zeigt Herr Jacob Schatunowsky, dass der 
Euklidsche Algorithmus in solchen Körpern, wenn m > 3 ist, im allgemeinen nicht 
anwendbar ist. Ich versuchte nun diesen Algorithmus zu verallgemeinern. Ein 
Schritt dieses Algorithmus besteht bekanntlich in der Bildung der Zahl a — ßrj, 
welche kleiner als die gegebenen Zahlen a und ß ist. Ich habe statt dessen den 
Ausdruck 

aC-ßy 
betrachtet. Dabei wurde ich zum folgenden Satze geführt. 
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Ist es möglich, sobald zwei Zahlen a und ß eines Zahlkörpers gegeben sind, von 
denen keine durch die andere teilbar ist, zwei Zahlen £ und r) desselben Körpers zu 
finden, welche der Ungleichung 

0 < N(aC~ßv)<Nß (1) 

genügen, so ist die Klassenzahl des betreffenden Zahlkörpers gleich 1. 

Um das zu beweisen, machen wir die Voraussetzung dass in einem Körper die 
Ungleichung (1) immer lösbar ist. Wäre die Zerlegung einer Zahl in Primzahlen 
nicht eindeutig, so müsste es, wie es leicht zu zeigen ist, im betreffenden Körper 
Zahlen geben, die durch eine Primzahl IT teilbar sind, die aber als ein Produkt von 
zwei Zahlen dargestellt werden können, von denen keine durch ir teilbar ist. 
Betrachten wir die Normen aller Zahlen, die in bezug auf eine Primzahl TT diese 
Eigenschaft haben, so muss es unter diesen Normen eine geben, welche nicht 
grösser ist, als jede der andern. Es sei dies die Norm der Zahl \A. Nach unserer 
Voraussetzung müssen zwei Zahlen £ und TJ existieren von der Eigenschaft, dass 
die Zahl 

\ju — irr — 7}\ (2) 

den Ungleichungen 
0<Nfi<N7r (3) 

0<Nfi<N\ (4) 

genügt. Multiplizieren wir (2) mit A, so bekommen wir 

yuA = £TTA - vXA. 

Der rechte Teil ist durch TT teilbar, also muss es auch //A sein. Die Zahl /JL ist 
wegen (3) durch ir nicht teilbar, A auch nicht, also gehört die Zahl fjuA zu den 
betrachteten. Es ist aber wegen (4) 

A ^ A ) < i \ T ( \ A ) ; 

das widerspricht der Annahme, dass die Norm der Zahl \A nicht grösser ist, als 
die Normen aller anderen solchen Zahlen, also ist die Zerlegung in Primzahlfaktoren 
eindeutig, die Klassenzahl des betreffenden Körpers ist 1. 

Die Umkehrung dieses Satzes ist auch richtig, ich werde sie aber nicht 
benutzen. 

Den eben bewiesenen Satz können wir auch in der folgenden Form aussagen : 
Ist die Klassenzahl eines Körpers grösser als 1, so gibt es in diesem Körper zwei 
solche Zahlen a und ß, .von denen keine durch die andere teilbar ist, dass die 
Ungleichung 

0<N(aC-ßr))<Nß (1) 

keine Lösungen besitzt. Ich teile nun beide Teile durch Nß (wie es Schatunowsky 
in einem ähnlichen Falle tut) und bekomme 

0<jv( | f -„ )< l (5). 

Ich kann jetzt auch so sagen. In einem Zahlkörper, wo die Klassenzahl > 1 ist, 

s es störende Brüche geben; dabei nenne ich e 

unmöglich ist, die Ungleichung (5) zu befriedigen. 

muss es störende Brüche geben; dabei nenne ich einen Bruch -= störend, wenn es 

27—2 
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ß 
Es leuchtet unmittelbar ein, dass wenn ein Bruch -= störend ist, auch die 

Brüche 

ß*C'. ßS' 

wo £ eine beliebige Zahl bedeutet, störend sein müssen. Indem ich diese Bemerkung 
anwende, zeige ich leicht, dass wenn in einem Zahlkörper störende Brüche vorhanden 
sind, notwendig störende Brüche von der Form 

2 - ^ (6), 
q 

wo p ^ q ^ m ist, existieren müssen. 

Unser bisheriges Ergebniss können wir auch so aussprechen. Die Klassenzahl 
eines Körpers ist grösser oder gleich 1 je nachdem es unter den Brüchen (6) störende 
gibt oder nicht. Betrachten wir jetzt die Normen der Zähler dieser Brüche, also die 
m — 1 Zahl 

p2—p + m (p — 1, . . . , m ~ 1) (7), 

und nehmen zunächst an, dass alle diese Zahlen Primzahlen sind. Ist dann q eine 
von 1 verschiedene Zahl < m, so sind die Zahlen p2—p + m und q relative Primzahlen 
und es gibt zwei Zahlen x und y, die der Gleichung 

(p2 — p + m) x — qy — 1 

genügen. Diese Gleichung können wir aber in der Form 

-— (p - * ) x - y = -

p — ' ò . 
schreiben, und in dieser Form zeigt sie, dass der Bruch nicht störend ist 

9. 
a N ( - ) = — < 1 ist 

\qj q2 

ist die Klassenzahl des Körpers gleich 1. 

Ist eine von den Zahlen 

p2 —p + m (p ~ 1, ..., m - 1) (7) 

(rational) zusammengesetzt, so kann sie einerseits als Produkt von rationalen Zahlen 
dargestellt werden, andernseits als Produkt der Zahlen p — ^ und p — Sr. Es ist 
leicht zu zeigen, dass p — ^ und p — ^ Primzahlen sind. Wir haben also in der Zahl 
p2 — p + m ein Beispiel einer Zahl, die in zwei verschiedene Reihen von Primfaktoren 
zerlegt werden kann, die Klassenzahl ist also grösser als 1. 

Wir haben somit den Satz gewonnen : 

Die Klassenzahl eines quadratischen Körpers ist grösser oder gleich 1, je nachdem 
in der Reihe der Zahlen 

p2 — p + m (p =1, ..., m — 1) 

zusammengesetzte Zahlen vorkommen oder nicht. 

An dieses Resultat schliesse ich folgende Bemerkungen an. 

Es gibt also keine störenden Brüche von der Form (6), also 
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Es ist längst eine Anzahl von Zahlkörpern mit der Klassenzahl 1 bekannt. Es 
sind dies die Zahlkörper mit den Diskriminanten 

- 7, - 11, - 19, - 43, - 67, - 163. 

Es ist aber unbekannt, ob es weitere solche Körper gibt und ob die Zahl solcher 
Körper endlich ist. Der mitgeteilte Satz führt diese Frage auf die folgende Frage 
über die Verteilung der Primzahlen zurück. 

Es gibt einige Primzahlen m, nämlich 

2, 3, 5, 11, 17, 41 

von der Eigenschaft, dass auch die Zahlen 

p2 — p + m (p = 1, ... , m - 1) 

Primzahlen sind. Gibt es noch solche Primzahlen, und gibt es deren eine endliche 
Anzahl oder eine unendliche ? Diese Frage ist, soweit ich weiss, ungelöst, und wir 
haben also für die andere Frage keine Antwort bekommen. 

In den speziellen Fällen lässt sich aber die rationalzahlentheoretische Frage 
leicht beantworten. Die Zahlen der Reihe (7) können auch in folgender Weise 
bekommen werden. Die erste ist m, die zweite m + 2, um die dritte zu bekommen 
addiere ich zur zweiten 4, die vierte bekommt man aus der dritten indem man 
6 addiert, dann kommt 8 u.s.f. Als Beispiel wähle ich die Zahl m = 11. 

1 1 + 2 

1 3 + 4 

1 7 + 6 

2 3 + 8 

31 + 10 

41 + 12 

53 + 14' 

67 + 16 

83 + 18 

101 

Diese kleine Rechnung beweist (da die Zahlen 11, 13 u.s.f. Primzahlen sind), dass 
der Zahlkörper mit der Diskriminante D = l — 4 .11 = — 43 die Klassenzahl 1 hat. 

Für m = 41 bekommen wir die bekannte Funktion 

p2-p+ 4>l, 

welche für die ersten 40 Werte von p Primzahlen ergiebt. 

Zum Schluss erlaube ich mir eine Vermutung auszusprechen. Die oberflächliche 
Betrachtung der Reihe (7) erlaubt in einem Falle die Klassenzahl des betreffenden 
Körpers anzugeben, nämlich wenn diese Zahl gleich 1 ist. Vielleicht wird eine 
genauere Untersuchung dieser Reihe erlauben die Klassenzahl in allen Fällen zu 
erkennen. 



ON AN ELEMENTARY METHOD OF DEDUCING THE 
CHARACTERISTICS OF THE PARTIAL DIFFERENTIAL 
EQUATION OF THE SECOND ORDER 

TA + T2t2 + T3t3 + 8181 + S2s2 + S3s3 + f7i (t2t3 - s,2) + U2(txt3 - s 2 ) 

+ J78 (t, t2 - s3
2) + TJA (t^ - s2s3) + U5 (t2s2 - s, s3) + U6 (t3s3 - S&) + V = 0 (1). 

BY J. H. PEEK. 

In the above-mentioned equation #, ?/, z are the independent variables, h is the 
dependent one, whereas 

dh dh _dh _ d2h _ d2h _ d% 
p = dx> q=zdy> r==dz> * 1 - ^ 5 2 = a ? 5 3 ~ a ? J 

d2h d2h d2h 
Si — ^r^T , S.3 = ^r-rr- , 6's = ; 

dydz' " 8^9^' * dxdy' 

and the coefficients are functions of a?, y, £, p, g, r. 

The method here developed is quite analogous to that exhibited in Dr Forsyth's 
treatise on differential equations in the case of two independent variables. We shall 
see in the following pages that the solution is of the form 

h = cf>(u, v, w), 

u, v, iv being the integral functions of one set of characteristics. Moreover the 
existence of the solution is bound to several conditions relating to the coefficients, 

and Un. vY, w-, are subiect to the condition ( ———- ) = 0 as well as u2, v9> w2. 
V pqr I 

The notation is held analogous to that of the case of two independent variables, 
so that z is an independent variable. 

We have 

dp — t1dx + s3dy + s2dz, dq = s3clx + t2dy + s1dz, dr = s2dx + s±dy + t3dz. ..(a), 

from which we obtain 

tx = -j- (dp — s3dy — s2dz), t2 = -, - (dq — s3dx — s-^dz), t3 — -y- (dr — s2dx — sYdy), 

and after multiplication 

Uh — si — -j—r (dqdr — sxdqdy — s^drdz — s2dqdx — s3drdx 
ay az 

+ s2s3dx2 + sLs3dxdy + s1s2clxdz), 
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tits — #22 = 7T77 (dpdr — sxdpdy — s2dpdx — s2drdz — s3drdy 

+ s2s3dxdy + srf'idy2 + sxs2dydz), 

txt2 — s3
2 = -7-77- (dpdg - sxdpdz — s2clqdz — s3dpdx — ssdqdy 

+ s2s3dxdz + s^dydz + ^^d^2). 

Multiplying the value of ^ by s1; of t2 by s2, of t3 by s3 we obtain 

t\Si — s2s3 = -j- (sxdp — sxs3dy — sxs2dz — s2s3dx), 

t2s* — 5i53 = T- (soda — s2s3dx — sxSodz — s^dy), 
ay 

t3s3 — SxS2 = 3- (s3dr — s2s3dx — s^dy — s^dz). 
az 

By substitution in the equation (1), it transforms into : 

Si (— T2dxdz2 — T3dx2dy + 8Ydxdydz — Ujdqdxdy — JJ^drdxdz — U2dpdy2 

— U3dpdz2 + Ußpdydz) 

+ 52 (— T-^dydz2 — T3dxdy2 + 82dxdydz — Uxdqdx2 — U2drdydz — U2dpdxdy 
— U3dqdz2jr U5dqdxdz) 

+ s3 ( - Txdy2dz - T2dx2dz + S3dxdydz - JJ^drdx2 — U2drdy2 — U3dpdxdz 
— U3dqdydz + UGdrdxdy) 

+ (Txdpdydz + T2dqdxdz + T3drdxdy + Ujdqdrdx + U2dpdrdy 

+ U3dpdqdz + Vdxdydz) 

+ (s2s3dx + s^gd^/ + Si^d^) ( îTidtfj2 + ?72d;*/2 + f/3d^2 — U4dydz — Urjdxdz - U6dxdy) = 0. 

Now we put 

t/id^2 + D^d?/2 + ?73d^2 - U4dydz - U5dxdz - U6dxdy == 0 (2). 

Transforming the coefficients of Sj, s2, s3 by means of this relation we obtain 

Sida? {— r2d^2 — T^dy2 + 8xdydz + ZTj (dpdx — dqdy — clrdz) — U5dpdz — U6dpdy], 

s2dy {— Txdz2 — T3dx2 + 82dxdz + CT2(dqdy — dpdx — drdz) — U4dqdz — U6dqdx}, 

s3dz {— Tid^2 — T2d#2 + 83dxdy + ?73(drdz — dpdx — dqdy) — U^drdy — U5drdx], 

so that the equation (1) may be satisfied by putting 

Vdxdydz + T^dpdydz + T2dqdxdz + T3drdxdy 

+ U1dqdrdx+ U2dpdrdy+ U3dpdqdz — 0...(3), 

f/id^2 + L^d?/2 + f/gd-̂ 2 — JJ^dydz — U5dxdz — U6dxdy = 0 (4), 

- r2d^2 - 2"3dy2 + Sxdydz + E^ (dpd# - dgd^/ - drdz) - U5dpdz - U6dpdy = 0 (5), 

- Tid^2 - jT3d^2 + S2dxdz + ?72 (dgdy - dpd# - drdz) - U4dqdz - U6dqdx = 0 (6), 

- TYdy2- jP2d#2 + 83dxdy + CTS(drdz-dpdx- dqdy)- U.drdy- U5drdx = 0 (7). 
We will show no c/> (u, v, w) to be a solution which satisfies the equations 

(3) - (7) . 

Representing by ^~ the expression 

du du du du du /ox 

dx+Pdh+dp^dq8^^8* ( 8 ) ' 
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we have 
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d(f> __ d(j) Su d(f> Sv d(f> Sw 

du Sx dv Sx div Sx ' dx 

d(f> d(f> Su d(j> Sv d(j) Stv 

dy du Sy dv Sy 9t<; Sy ' 

d<j> __ 9(jE> Su d(j> Sv 9<£ Siu 
dz du Sz dv Sz dio Sz ' 

Eliminating <f> from these equations, u, v, w have to satisfy 

Sii Sv Sw 
Sx Sx Sx 

0 .(9). 
Su Sv Sw 

Sy Sy Sy 

Su Sv Sw 
Sz Sz Sz 

By substitution of the value of j - from (8) and the corresponding values, (9) 

takes the form 

T,% + TX + T9% + (£ / + &') 8l + (&/ + &/) «s + (Si + Si) ss + L\ (t2t, - s?) 

+ U2 (UU - si) + U3 (UU - si) + (Ui
1+ Ui) (U *! - s.S.,) + ( ÜJ- + Ui) (t2s2 - «,*„) 

t-i ss s2 

, , . , „ „ „ , rr, (uvw\ 
+ (Ui+ Ui) (Us, - «i*») + V + {--) 

in which 

2Y = 

27 = 

Si = 

expression 

du du 

dp dy 

du 

dh 

dv dv dv 

dp dy y dh 

dw dw dw 

dp dy dh 

du du 

dx ^ dh 

dv dv 

dx ^ dh 

dw dw 

dx *• dh 

du du 

dx ^ dh 

dv dv 

dx * dh 

dw dw 

dx ^ dh 

du 

dy 

dv 

dy 

dw 

~dy 

du 
dy 

dv 

dy 

dw 

ây 

du 

dv 

dz + i 

dw 

du 
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dw 

du 
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dw 
f«äs 

du 

dh 

dv 

'afe 
dw 

"dh 

du 

Tz 

dv 

dz 

dw 

dz 

du 
dq 

dv 

dq 

dw 
dq 

2Y 

Si 

du du 
dx dh 

dv dv 
dx+Pdh 

dw dw 
dx " dh 

du du 
7)nn -f g^ dx 

dv „ 
dx*p™ 

dv 
dix 

dw dw 
dx " dh 

Sä 

du 
dq 

dv 
dq 

dw 

3? 

du 
dr 

dv 
dr 

dw 
dr 

Si = 0(10), 

du > du 
dz dh 

dv dv [_ ^ — 
dz dh 

dw dw 
dz dh 

du du 
dz + rdïi 

dv ^ dv 
dz dh 

dw dw-
dz dh 

SJ = 

du 
dr 

dv 
dr 

dw 
dr 

du du du 
dy + qdh 

du 
dz dh 

dv dv 
dy + qdh 

div dw 
dy+qdh 

dv ^ dv 
dz dli 

dw dw 
dz dh 
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Si 

Si = 

u:-

Ui 

W = 

UJ = 

du du 
dx ^ dh 

dv dv 
dx+Pfà 

dw dw 
dx dh 

du du 
dx ^dh 

dv dv 
dx dh 

diu dw 
Tc^Pdh 

du du 
dy: + qdh 

dv dv 
dy + qdh 

dw dw 
dy + qWi 

du du 
dz dh 

dv dv 
dz + rdh. 

dw dw 
dz dh 

du du 
dx dh 

dv dv 
dx *dh 

dio dio 
dx+Pdh, 

du du 
dyJrqdh 

dv dv 
dy + qdh 

diu diu 

dy + qdfi 

du du 
dy+q¥i 
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dp 
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dw 
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dw diu 
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dp 

dw 

dp 

du 

dq 
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dq 

dw 
dq 

, 8S = 

I 
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Ui = 

Ui = 

Ui = 

du du du 
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dw dw dw 
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In order that <j> (uvw) may be a solution of the equation (1) in which ! ^ s3 s2 

ss t 

S2 S1 t3 j 

fuvw\ 
fails, we must therefore have ( —— 1 = 0, this being its coefficient in the equation (10). 

The functions u, v, w have to satisfy the equations 

du du\ 7 (du du\ , (du du\ 7 du , du 7 du -, rw-t -i \ 
Bx+Pdh) dœ+ {dy+qdh) dy+ {dz + rd!J dz+ dpdp+d-q

dq+drdr = 0iU)' 
dv\ 7 (dv dv\ 7 (dv dv\ 7 , dv 7 dv 7 9v 7 ^ / 1 ox 

«te+*äs)<to+ fe+salj dy+ fe+rä/Ü dz+ dpdp+ dqdq+ ä > = 0 (12)' 
8w 8wA 7 /3w 3w\ 7 /3w dw\ 7 3w 7 8w 7 9?# 7 ^ / 1 0 , 

The solution of these equations with respect to dp, dq, dr is 

(uvw\ 
\dp = - U-ldx + Uedy + TJr2dz, 

\pqr) x u 

C uvw\ 
\p~jr) dq = V«dx ~ U*dy + U'dz' 

M^\ dr = Uidx + Uidy - Uidz. 

The solution with respect to dx, dy, dz gives three equations more, as well as those 
(uvw\ 

with respect to dp, dq, dz and to dp, dr, dy. Putting now ( — - j = 0, we obtain 

subsequently the following 12 equations : 

U^dx-Uidy- Uidz = 0 (14), 

-Uidx+U2dy~ Uidz = 0 (15), 

-Uidx-Uidy+U3'dz = 0 (16), 

V'dx + T.'dp + Sidq + Sidr^O (17), 

V'dy + Sidp + T2'dq + Sidr = 0 (18), 

V'dz + Sidp + Sidq + Ts'dr = 0 (19), 

Us'dp+ Uidr+T2'dx-Sidy = 0 (20), 

Us'dq+ Ut
1dr-S,*da>+.Tl'dy = 0 (21), 

U,'dp+Ut
1dq + T,dx-Si

1dz = 0 (22), 

Uidq+U2'dr-Sidx + T1'dz = 0 (23), 

Uidp+ U.'dq + Tidy-Sidz^O (24), 

Uidp+ U1'dr-S1*dy + TJdz = 0 (25). 

From the equations (14)—(25) we derive other ones, from which the indices 
1 and 2 in the right upper corner of the coefficients have disappeared, according to 
the relations 

Si + Si = SÏ, Si + Si = S2, Si + Si = Si, 

Ui+Ui=Ui, Ui+Ui=Ui, Ui+Ui=Ue'. 

file:///p~jr
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Calculating (14) dx + (15) dy + (16) dz, 

we obtain U(dx2 + U2dy2 + U3dz2 - U(dydz - U(dxdy = 0 (26). 

From (16) dr + (20) dx + (21) dy, 

we obtain 

T(dx2 + T^dy2 - 8(dxdy + U( (dpdx + dqdy - drdz) + U(dydr + U(dxdr = 0 

(27), 
from (15) dg + (22) dx + (23) dz, 

T(dx2 + Ti'd^2 — S(dxdz + [77 (dpdx -\-drdz — dqdy) + U(dqdz + U(dxdq — 0 

(28), 
from (14) dp + (24) dy + (25) dz, 

T(dy2 + T(dz2 — S(dydz + £7/ (dqdy + drd# - dpdx) + U(dpdz + JJ^dpdy = 0 

(29). 
Multiplying the equations (14) to (25) respectively by dqdr, dpdr, dpdq, dydz, 

dxdz, dxdy, dqdz, dpdz, drdy, dpdy, drdx, dqdx, and adding we obtain 

Vdxdydz + T(dp dydz + T(dqdxdz + T(drdxdy + U( doc dqdr 
+ 11 (dy dpdr + U(dzdpdq = 0 (30). 

Comparing the equations (26) to (30) with (3) to (7) we see, that besides the 

condition (• j = 0, the conditions 
\pqrj 

f]~ f~ 'T3~"8,~ 82~ 83~ U\ ü2~ U3~ UA U5 U6 V "Aöl) 

must be satisfied in order that </> (uvw) may be a solution of the equation (1), viz. 
12 equations corresponding as to the number to the equations (14) to (25). In the 
case that those 12 conditions should be satisfied the solution of (1) is identical 
to that of the equation 

TX + TX + TX + SX + 82s2 + SX + U( (t2t3 - s2) + U( (t,t3 - s2) + U( (t,t2 - s3
2) 

+ U( (tlSl - s2s3) + U( (t2s2 - Sls3) + U( (t3s3 - sxs2) + V = 0 (32). 

f UVU)\ 

This is the same as equation (10) in the case ( -—n j = 0, and its solution is </> (uvw) 

under condition that ( ) = 0, which therefore is a solution of (1) under the same 
\pqrj v 7 

condition. 
In the case that the coefficients Ul, U2, U4} U5, UG do not contain p, q, r, 

/uvw\ 
the condition ( J is satisfied by choosing an integral of the equation (2) as u, 

\pqi / 
v or w. 

In general it will not be possible to integrate the equations (3) to (7). The first 
condition that this may be the case is that these equations can be transformed into 
other ones of the first degree as to the differentials dx, dy, dz, dp, dq, dr. I t is not 
easy to discern from the equations in the form hitherto obtained if this may be so. 
I have sought therefore to put them in a form more apt to that purpose, which 
is arrived at in the following manner. We calculate 

U2 {(3) dx + (6) drdy + (7) dqdz} + (6) l\dydz. 

file://-/-drdz
file:///pqrj
file:///pqrj
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After transforming the coefficient of dqdr by means of (4) and after division by dydz 
we derive 

(U2V-TJ3)dx2~T2dz2 + T1S2dxdz-T1U,dqdz-2T1U 
+ U2S2drdx- U2

2dr2- U2U3dtf- U2U,dqdr = 0 (33). 

In the same manner 

/73{(3) dy + (7) dpdz + (5) drdx) + (7) T2dxdz 
gives 

(U3V-T1T2)dy2-T2dx2^83T2dxdy + (U381- UJ\)drdy- U/T2drdx-2U3T2dpdx 
+ U3S3dpdy- U3

2dp2- UxU3dr2- U3U5dpdr = 0 (34), 

and U, {(3) dz + (5) dqdx + (6) dpdy) + (5) T3dxdy, 

(U1V-T2T3)dz2~T3
2dy2 + S/l\dydz + (U1S2-U/T^ 

+ U&dqdz- U,2dq2- U,U2dp2- U.U.dpdq^O (35). 

The equations (33) to (35) may be written 

(U2V- T,T3 + \82) dx2 + (\V? - TJ2U3) dq2 + (U2S3 - J762\ - ±U<S2) dxdq 
- (l\dz - \82dx + \U,dq + U2dr)2 = 0 (36), 

(U3V- T,T2 + 183
2) dy2 + (\Ur2 - U, U3) dr2 + (US81 - UJ\ - $U6S9) dydr 

~(T2dx-^83dy + ^U,dr^ U3dp)2 = 0 (37), 

(U1V-T2T3 + {S1
2)dz2 + (\Ui-U1U2)df + (^^^ 

-(Tzdy-\S1dz + \TJ%dp + U.dqf^O (38). 

In the same manner the combinations 

U3 {(3) dx + (6) drdy + (7) dqdz} + (7) l\dydz, 

U1 {(3) dy + (7) dpdz + (5) drdx} + (5) T2dxdz, 

U2 {(3) d^ + (5) dgdtf + (6) dpdy} + (6) T3dxdy, 

give respectively 

( ^ ^ - ^ r . + i ^ d ^ + d ^ 2 - U2U3)dr2 + (U3S2- U/l\-±U,83)dxdr 
- (T,dy - \83dx + ^UJr + ^ d ? ) 2 = 0 (39), 

(U,V- T2T3 + Ì&»)dy2 + (Jf/5
2- ffxZ78)dp2 + (UA -UQT2- ^UA) dydp 

- (T2dz - ^81dy + \U4p + U.dry^O (40), 

(U2V- TJ3 + l8i)dz2 + ( i [7 6
2 - U.UOdq2 + ÌUA- U4T3-±UA)dzdq 

- (T3dx - \82dz + ±U6dq+ U2dp)2 = 0 (41). 

The six equations (36) to (41) are symmetrical with respect to the variables. We 
see from them that the condition for being dissolvable into factors of the first degree is 
that the first three terms in each of them be a quadric, viz. that the product of the 
first two coefficients be equal to four times the quadric of the third. In that case the 
equations are the sum or the difference of two quadrics, dissolvable in real or complex 
factors of the first degree. 

I need scarcely mention that three of these factors from three different equations 
must be an exact differential in order that $ (u, v, w) may be a solution. 

As every combination u, v, w must satisfy the above six equations only three of 
them can be independent. Confining therefore the consideration to three of them, 
we must conclude in general eight different combinations of three linear factors to 
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exist. Should each of these combinations furnish an integrable system, then there 
would be as many different intermediate integrals of the equation (1). How far this 
is possible I cannot decide. From the general theory we may conclude, if one of the 
systems furnishes four integrable combinations, all the remaining systems to be 
identical with it (Encyclopédie der Mathematischen Wissenschaften, German edition, 
il. i. 3. page 393). 

If in each of three equations the first three coefficients should vanish, the 
equation (1) is satisfied only by one combination u, v, w. 

The case of two independent variables x and y is derived from the more general 
case of three variables by equalizing to zero in (1) T3) 81} 82, TJ2, U4, U5 and ?76; and 
by putting in equations (36) to (41) 

dz = 0, dr = 0, 

so that these equations reduce to the following two : 

( U3V- T, T2 +183
2) dy2 - (T2dx - \83dy + U3dp)2 = 0, 

(ILJ- T,T2+ lS3
2)dx2-(T,dy- \S3dx+ U3dp)2=Q. 

These equations are identical with those which in the theory of the equation with 
two variables result after introduction of the values of \, obtained from the solution 
of an algebraical equation of the second degree. In our theory we avoid the intro­
duction of X, which introduction from an elementary point of view may seem to be 
not quite justifiable. 

The equation a% + b% + c2t3 = 0 .., (42) 

has no intermediate integral derivable from the above method. We may conclude 
this from the equations (36) to (41) as well as (5) to (7), which both reduce to 

b2 dx2 + a2 dy2 = 0, c2 dx2 + a2 dz2 = 0, c2 dy2 + b2 dz2 = 0. 

Multiplying the first by &, the second by b2 and taking the difference, we obtain 

c2dy2 - b2dz2 = 0, 

which in combination with the third would furnish 

dy = 0, dz = 0 (43). 

These in combination with the equation (3), which reduces to 

a2dpdydz + b2dqdxdz + c2drdxdy = 0, 

and is therefore identically satisfied by (43), give no system of three integrable 
combinations. 

The equation (42) is of special interest for the case that a2 = b2 = c2, which 
equation, known under the form 

V 2 F = 0 , 

is integrable in a direct manner after a method given in my brief treatise, Applications 
importantes de la théorie du quaternion exponentiel, edited by H. Eisendrath, 
Amsterdam. I t contains a general method of constructing cases of motion of 
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unlimited fluids*. I t was in searching after a method for the further case of free 
or fixed boundaries that I wished to solve the equation (1). However the solution of 
the latter problem, as it seems to me, is to be sought for in another direction, the 
equation concerned not giving rise to integrable combinations of the equations (36) 
to (41). The solution given above seems however not to be found anywhere, so that 
the communication may be of some interest for other cases. 

Without difficulty we may extend the above method to the more general case 
that the equation (1) contains the further term 

I * i s<3 s, 

W s3 t2 Sj 

I #2 1̂ h 

Resolving the three equations (a) with respect to dx, dy, dz, we find 

h s3 

S'i t2 

S2 Si 

1 
Sdx 

and by development, 

tl SS S2 

s3 t2 s1 

S2 Si t3 

dqdy -\-drdz 

dp 
3dx 

dp 

dq 

dr 

\pzH • 

s2 

Si + Sdy 

dp 

dq 

dr 
+ Sdz 

tl 

S3 

So 

s3 

U 
s, 

dp 

dq 

dr 

<A dq ,, , oX dr 
{ti t2 — S3 ) • 

(M i - s2s3) • 
dpdx + drdz 

( M 2 - W -
dpdx-\- dqdy ,, N 
-£——-—-L-± {to _ s s \ 

Sdxdy v 8 " l "} Sdydz X"1V1 ^'ò/ Sdxdz 

Substituting the values of the minors from page 422 we obtain 

ti s?> Â 

So t.2 s^ I = •— |dp dq dr — s1 dp (dq dy + dr dz) — s2 dq (dp dx + dr dz) 
ax ay az 

— s3dr (dpdx + dqdy) + (s2s3dx + s^dy + s1s2dz) (dpdx + dqdy + drdz)}. 

By substitution in equation (1) we find that equation (3) is to be amplified 
by the term Wdpdqdr, (4) by W(dpdoc + dqdy + drdz), whereas the equations (5), 
(6), (7) are to be amplified respectively by — Wdp2, — Wdq2, — Wdr2. The equations 
(14), (15) and (16) obtain the additional terms W'dp, W'dq, W'dr, consequently the 
equations (26) to (30) are to be modified in a manner quite analogous to that of the 
equations (3) to (7), whereas in the equations (36) to (41) the coefficient in the second 
term is to be modified, viz. \U(t — U2U3 being amplified by WTly \Ur2 — TJ1U3 by 
WT^iUi-U^hjWT,. 

* In this brief treatise I proved every function of a certain variable, under condition that a2 -b2~c2 = 0, 
to satisfy the equation V2V=0. For constructing cases of motion it is however necessary, that the function 
should be developable in series according to positive or negative powers of the variable, which powers prove 
to be spherical harmonics. In spite of the fact that my developments have given rise to an objection in 
the Jahrbuch für die Fortschritte der Mathematik, Bd. 40, pp. 146—148, they are quite reliable, the result of 
the integration over surfaces excluding the lines along which a certain denominator is zero, being 0, as I 
proved in a letter to the critic concerned. The Jahrbuch not inserting anticritiques I propose to revert to 
the subject in a subsequent publication. 

file://-/-drdz


ON POWERS OF NUMBERS WHOSE SUM IS THE SAME 
POWER OF SOME NUMBER 

B Y A R T E M A S M A R T I N . 

"The powers that be."—Romans, xiii, 1. 

Square numbers whose sum is a square, and cube numbers (more than two) 
whose sum is a cube, have been known for centuries. 

So far as the present writer is aware, the late Dr David S. Hart of Stonington, 
Connecticut, was the first to find biquadrate (fourth-power) numbers whose sum is a 
biquadrate number. Dr Hart communicated the sets of such numbers that he found 
to the writer who made them known in a paper read before the Mathematical Section 
of the Philosophical Society of Washington, Nov. 30, 1887, entitled ' On nth-
Power Numbers whose Sum is an ??th Power,' an abstract of which was published 
in the Bulletin of the Society, Vol. x, pp. 107—110 of the Proceedings of the 
Mathematical Section. In that paper the writer found fifth-power numbers whose 
sum is a fifth power. See also Educational Times Reprint, Vol. L (London, 1889), 
pp. 74—75. 

The methods (which are tentative) employed by Dr Hart are as follows : 

First Method. Put 8 = the sum to x terms of the nth powers of the natural 
series ln, 2n, Sn, 4n, 5n, etc. to xn ; assume an auxiliary formula (s + m)n — sn = a; then 
the difference d of the two formulas S — a, = S — (s + m)n + sn, must, if possible, be 
separated, by trial or otherwise, into nth-power numbers, all different. Then 

S -[8 - (s + m)n + sìl] + sn = (s + m)n (I), 

where x may be any number, and s, m any numbers that will make 

[(s + m)n — sn] < S, s being not less than x. 

Second Method. Put the auxiliary quantity (s + m)n - sn = d!, and divide d!, if 
possible, into nth-power numbers as before directed for d ; 

then these nth powers + sn — (s + m)n (II). 

As an example of the first method, for biquadrates, take n — 4, 5 = 1 4 , ni = l, 
a> = 9; then £ = 15333, a = 154 - 144 = 12209, S- a = 3124 = 74 + 54 + 34 + 24 + l 4 ; 
S - (1* + 24 + 34 + 54 + 74) + 144 = 154, or 44 + 64 + 84 + 94 + 144 = 154, five fourth-power 
numbers whose sum is a fourth power, which are the smallest known all different. 
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For an example of the second method take s = 44, m = 1, n = 4 ; then 

d' = 454 - 444 = 352529 = 244 + 124 + 24 + l4 ; 

therefore l4 + 24 + 124 + 244 + 444 = 454, 

another set of five biquadrate numbers whose sum is a biquadrate. 

In the paper read before the Philosophical Society of Washington I used the 
notation 

SXin =ln + 2n + 3n + 4n + 5n + ... + xn, 

but have long since discarded it and use 

S (xn) = ln + 2n + Sn + 4?l + 5n + ... + xn, 

which is simpler and much easier to put in type. 

Dr Hart contributed a paper, ' Square Numbers whose Sum is a Square,' to the 
Mathematical Magazine, edited and published by the writer of the present paper, 
Vol. I, No. 1 (January, 1882, Erie, Pa.), pp. 8—9 ; and a paper on ' Cube Numbers 
whose Sum is a Cube,' to Vol. I, No. 11 (July, 1884, Erie, Pa.), pp. 173—176. In 
these papers Dr Hart used the methods described above. 

I published a paper, c About Biquadrate Numbers whose Sum is a Biquadrate,' 
in the Mathematical Magazine, Vol. n, No. 10 (Jan., 1896, Washington, D.C.), 
pp. 173—184, in which I employed the general tentative formula 

S ( a ^ ) - r = 6» (Ill) , 
devised by me in 1887, where 

S (xn) = ln + 2n + 3W + 4n + 5n + 6n + ... + xn ; 

b must be greater than x, and r must be separated, if possible, into nth-power 
numbers all different and none greater than x11 ; take these nth-powers from S (xn) 
and the sum of the remaining nth powers will be = bn. 

When n = 4, we have 

8(x*) = l4 + 24 + 34 + 44 + 54 + ... + x* = ôL- x (x + 1) (2x + 1) (Sx2 + Sx- 1). 

Examples. 1. Let n = 4, x = 14 ; then S (144) = 127687. 

Take b = 15, then 

r = 77062 = 134 + 124 + l l 4 + 104 + 74 + 54 + 34 + 24 + l4 ; 

therefore 14 + 24 + 34 + 44+ ... + 1 4 4 - (14 + 24 + 34 + 54+ 74 + 104 + 114+ 124+ 134) 

= 44 + 64 + 84 + 94 + 144 = 154, 

five biquadrate numbers whose sum is a biquadrate, the same as found by formula (I). 

2. Let n = 4, x = 28 ; then S(x*) = 3756718. Take 6 = 35, then 

r = 2256093 = 274 + 254 + 244 + 234+204 + 1 9 4 + . . . + 54 + 34+24 + l 4 ; 

therefore 14+24 + 3 4 + 44 + 5 4 + . . . + 2 8 4 - ( l 4 + 2 4 +3 4 + 5 4 + . . . + 1 9 4 + 204+234 

+ 244 + 254 + 274) = 44 + 214 + 224 + 264 + 284 = 354, 

another set of five fourth powers whose sum is a fourth power. 
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This set of numbers could have been more easily found by formula (II), which 
may be simplified as follows : 

Take any two numbers p and q, and put pn — qn = d ; then, transposing, we have 

qn + d=pn, 

where d must, if possible, be separated into nth powers, all different and q not among 
them, and we shall have 

qn + (those nth powers) = pn. 

3. Find eight biquadrate numbers whose sum is a biquadrate. 

Let p = 31, q = 26, n = 4 ; then will 

d = 314 - 264 = 466545 = 204 + 184 + 174 + 164 + 144 + 104 + 84, 

and 84 + 104 + 144 + 164 + 174 + 184 + 204 + 264 = 3 L4. 

4. Find ninety biquadrate numbers whose sum is a biquadrate number. 

Using formula (III), let « - 100 ; then £(1004) = 2050333330. Take 0 = 212 
and we have r = 30370194 = 724 + 424 + 244+ 144 + 104 + 84 + 44 + 34 + 24 + l4; taking 
these biquadrates from 

8 (1004) = l4 + 24 + 34 + 44 + 54 + 64 + ... +1004 

we have left 

54 + 64 + 74 + 94 + l l 4 +124 +13 4 +154 + 164 + 174 + ... + 234 + 254 + 264 

+ 274+ ... + 414 + 434 + 444 + ... + 7l4 + 734 + 744 + ... +1004 = 2124. 

The sets of biquadrates whose sum is a biquadrate given above in Examples 1 
and 3, were first found by Dr Hart and communicated to the writer previous to 1887. 
He also found and communicated the following sets : 

l4 + 24 +124 + 244 + 444 = 454, 

44 + 84 + 134 + 284 + 544 = 554, 

l4 + 84 + 124 + 324 + 644 = (55' ; 

24 + 84 + 154 + 164 + 244 + 324 = 354, 

24 +104 +124 + 134 +184 + 344 = 354 ; 

24 + 64 + 84 +104 +124 + 204 + 214 = 254, 

64 + 74 + 1 0 4 + 1 2 4 + 144 + 224 + 424 = 434 ; 

44 + 54 f 84 + 104 + 124 + 204 + 244 + 304 + 364 + 444 = 514 ; 

24 + 84 + 104 +124 + 144 + 154 + 164 + 204 + 224 + 244 + 264 + 324 + 364 = 454 ; 

l4 + 34 + 54 + 64 + 74 + 104 +124 + 144 + 154 + 164 + 184 + 194 

4.204 + ... + 284 + 304 + 314 + 324 + ... + 414 + 424 = 724. 

There was published in the Mathematical Magazine, Vol. 11, No. 12 (Sept. 1904), 
pp. 285—296, an able and valuable paper, ' On Biquadrate Numbers,' by Mr Cyrus 
B. Haldernan, of Ross, Butler Co., Ohio, in which he finds, by rigorous methods of 
solution, many sets of 5, 6, 7, 8, 9, etc., biquadrates whose sum is a biquadrate, from 
general formulas each of which will give an infinite number of sets. He was the first, 
so far as the writer knows, to find such numbers by a general formula. 

M. c. 28 
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I will give here one of Mr Haldemans general formulas for finding five 
biquadrates whose sum is a biquadrate taken from page 290, Vol. II, of the 
Mathematical Magazine, which is as follows : 

(8s2 + 40s£ - 24£2)4 + (6s3 - 44s* - 18J2)4 + (14s2 - 4s£ - 42£2)4 

+ (9s2 + 27f )4 + (4s2 + 12t2Y = (15s2 + 45£2)4, 

where s and t may have any values taken at pleasure. 

Examples. 1. If s = 1 and t = 0, we have 

44 + 6 4 +8 4 + 94 + 144 = 154, 

the same as previously found by other methods. 

2. Taking s = 2, t = — 1, we find 

224 + 284 + 634 + 724 + 944 = 1054. 

The writer contributed to the International Congress of Mathematicians held at 
Paris, France, August 9—12, 1900, a paper entitled ' A rigorous Method of Finding 
Biquadrate Numbers whose Sum is a Biquadrate,' which was published in the 
Proceedings of the Congress, pp. 239—248, and later, with alterations, additions, and 
corrections, republished in Vol. ii of the Mathematical Magazine, pp. 325—352, under 
the title 'About Biquadrate Numbers whose Sum is a Biquadrate.—II,' where a great 
number of sets of biquadrates whose sum is a biquadrate are found by rigorous 
formulas. 

See also, Educational Times Reprint, Vol. xx (London, 1874), p. 55. 

Below, one of the many methods of solution is given. 

To find five biquadrate numbers whose sum is a biquadrate number. 

Solution, Let v, w, x, y, z be the roots of the required biquadrates, and s the 
root of their sum; then 

v* + w* + xA + ?/4 + zl = s4 (1). 
Assume 

i/2 ~~" e2 u2 + e2 

v — 2a, w^a — b, œ = a + b} z = ^ — , s = -—^— ; 
2e le 

then, by substitution we have the condition 

(2ay + (a-by + (a + by + f+(^--e
e^^(^)i C2)-

Expanding, transposing and uniting terms, 

2(3a2 + 62)2 + n4 = ^ ^ (3). 

Transposing y4 and multiplying by 2e2, 

4e2 (Sa2 + 62)2 = y2 (y4 + e4) - 2eHf = y1 (y4 - 2e2y2 + e4) 

= f(y2-e2)2. 

Extracting square root, 
2e (Sa2 +b2) = y (y2 - e2) ; 

whence b2 = ^ - ~ ^ - 3a2 

2e 
.(4). 



POWERS OF NUMBERS WHOSE SUM IS THE SAME POWER OF SOME NUMBER 4 3 5 

In (4), take y — 2e and we get 

b2 = Se2 - Sa2 = 3 (e + a) (e - a) = m^eÇal ? s a y . 

from which a = 
(m2 — Sn2) e 

m2 + 3n2 

Taking e — 2 (m2 + Sn2) we have 

• o / * Q o\ 7 m(e-a) 
a— I (m2 — on2), b = —- = limn 

v n 

v = 2a = 4 (?n2 — 3 ft2), w = a — b = 2m2 — 12mn — 6n2, 

x — a + b = 2m,2 + 12mn — 6?i2, ?/ == 2e = 4 (m2 + Sri2), 
z = ^ e = % e = 3 (m2 + 3ìI2), 0 = ^ + 1 = £ e = 5 (m3 + 3»»2). 

Zß z Ze Z 

Substituting in (1) we have the following identity : 

(4m2 - 12n2)4 + (2m2 - 12m?i - Qii2)4 + (4<m2 + 12n2Y 

+ (2?n2 + 12mn - ßn2)4 + (3m2 + 9^2)4 = (5m2 + 15n2)4 (5), 

where m and n may have any values whatever chosen at pleasure. 
Examples. 1. Taking m = 2, n = 1, we have 

44 + 214 + 224 + 264 + 284 = 354. 

2. Taking m = 1, n = 2, we get 

24 + 394 + 444 + 464 + 524 = 654. 

3. Taking m = 4, n = l, we find 

224 + 524 + 574 + 744 + 764 = 954. 

To the International Mathematical Congress held in connection with the World's 
Columbian Exposition, at Chicago, U.S., August, 1893, the writer contributed a paper, 
' On Fifth-Power Numbers whose Sum is a Fifth Power,' which was published in the 
Congress Mathematical Papers, Vol. I, pp. 168—174, and later republished, with 
additions and corrections, in the Mathematical Magazine, Vol. n, No. 11 (December, 
1898), pp. 201—208. 

Examples. 1. Using the formula 

q> + d = p», 
take p = 12, q = 11, and we have 

d - 125 - l l 5 = 87781 = 95 + 75 + 65 + 55 + 45 ; 

therefore 45 + 55 + 65 + 75 + 95 + l l 5 = 125, 

a set of six fifth-power numbers whose sum is a fifth power, and the least known. 

2. Take p = 30 and q = 29 ; then 

d = 305 - 29* = 3788851 = 195 + 165 + l l 5 + 105 + 55 ; 

therefore 58 + 105 + l l 5 + 165 + 195 + 295 = 30*, 

another set of six fifth powers whose sum is a fifth power. These are the only sets 
of six now known, but others probably exist. 

28—2 
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3. Take p = 32, q = 31 ; then 

d = 4925281 = 185 +165 +155 +145 +13 5 + l l 5 + IO5 + 85 + 75 + 65 + 35 ; 

.-. 35 + 65 + 75 + 85 +106 + l l 5 + 135 + 145 + 155 + 165 + 185 + 315 = 325, 

twelve fifth powers whose sum is a fifth power. 

4. Using formula (III), take x = 35, n = 5 ; then 

£(355) = 333263700. 

Take b = 50, then 

r = 20763700 = 265 + 245 + 145 + l l 5 + 105 + 95 + ... + 23 + l5, 

and we have 

125 +13 5 +15 5 +165 + 17s + ... + 235 + 255 + 275 + 285 + 295 + ... + 345 + 355 = 505, 

21 fifth-power numbers whose sum is a fifth power. 

A paper, c About Sixth-Power Numbers whose Sum is a Sixth Power,' was 
contributed by the writer to the Fourth Summer Meeting of the American Mathe­
matical Society, held at Toronto, Canada, August, 1897, and published in the 
Mathematical Magazine, Vol. II (January, 1904), pp. 265—271. 

Examples. 1. Using formula (III), take x = 23, n = 6 ; then 

>S(236) = 563637724. 
Take b = 28, then we have 

r = 81747420 = 196 +176 +146 + l l 6 +106 + 86 + 36 ; 

therefore 

P + 26 + 46 + 56 + 66 + 76 + 96 + 1 2 6 + 1 3 6 + 156 + 1 6 6 + 186 + 206 + 216 + 226 + 236 = 286, 

sixteen sixth-power numbers whose sum is a sixth power. From this set many others 
may be obtained. V 

2, Multiplying the set found above by 36 and also by 146, and substituting for 
the value of 846 in the second product, we have 

36 + 66 + 126 + 146 + 156 + 186 + 216 + 276 + 286 + 366 + 396 + 456 

+ 486 + 546 + 566 + 606 + 636 + 666 + 696 + 706 + 986 +1206 +1686 

+ 1826 + 2106 + 2246 + 2526 + 2806 + 2946 + 3086 + 3226 = 3926, 

thirty-one sixth powers whose sum is a sixth power. 

These two sets of sixth powers whose sum is a sixth power were communicated 
to the New York (now American) Mathematical Society, October 3, 1891, in a paper, 
' On Powers of Numbers whose Sum is the Same Power of Some Number,' which 
paper was published in the Quarterly Journal of Mathematics, Vol. xxvi. (London, 
1893), pp. 225—227. See also, Btdletin of the New York Mathematical Society, 
Vol. i, No. 2, p. 55. 

Many other sets of fifth powers whose sum is a fifth power, and of sixth powers 
whose sum is a sixth power, are contained in the papers by me noted above ; but 
space considerations preclude their reproduction here. 
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The writer is not aware that any person besides himself has ever discovered sets 
of sixth-power numbers whose sum is a sixth power. 

In 1910, Dr Edouard Barbette, Professor of Mathematics, Institut Francken, 
Liege, Belgium, published a monograph of 154 quarto pages, entitled ' Les sommes 
de pièmeB puissances distinctes égales à une pième puissance.' 

On page 141 he finds 
44 + 64 + 84 + 94 + 144 = 154, 

and on page 146, 
45 + 55 + 65 + 75 + 95 + 115 = 125, 

by practically the same tentative methods, including notation, used by me in my 
paper published in 1887, in which the above numbers were found 23 years before the 
appearance of Dr Barbette's book. 

I have deposited in the Library of the British Museum copies of all my papers 
and work on the subject of the present paper (except the paper published in the 
Quarterly Journal of Mathematics of which I had no reprints), where they can be 
seen by members of the Congress and others who may wish to consult them. 



SUR L'INTÉGRATION LOGIQUE DES ÉQUATIONS 
DIFFÉRENTIELLES ORDINAIRES 

PAR JULES DRACH. 

Je me propose de donner ici un aperçu rapide des points essentiels de la théorie 
d'intégration que j'ai développée depuis 1893 pour les équations différentielles 
ordinaires (ou encore les équations linéaires aux dérivées partielles). Eu égard au 
caractère particulier de cette théorie, je lui ai donné le nom d'intégration logique par 
opposition aux termes intégration géométrique ou intégration par séries qui me 
paraissent devoir caractériser les anciennes méthodes de Lagrange, Cauchy, Jacobi, 
etc....où l'on ne fait pas intervenir la nature des coefficients ou celle des solutions. 

JJintégration logique de l'ensemble des équations différentielles ordinaires aboutit 
à partager cet ensemble en types irréductibles et irréductibles les uns aux autres et 
à caractériser chacun de ces types. Pour une équation déterminée 

dny _ ni dy d71-1^' 

où la fonction / fait partie d'un domaine de rationalité bien défini, on pourra indiquer 
une méthode régulière (malheureusement théorique dans les cas généraux) pour 
reconnaître à quel type elle appartient—c'est-à-dire, au fonds, quelles sont les 
transcendantes les plus simples qui permettent d'exprimer rationnellement les 
éléments de la solution générale. 

D'une manière générale, si l'on considère une équation aux dérivées partielles 

v s \ ?>z . dz A dz „ , N 
X ( * ) -ä i + ^äs; + - + i l"äü-0 (a) 

dont les coefficients sont des fonctions des (n +1) arguments x,xl9 ...,xn appartenant 
à un certain domaine de rationalité [A], le système fondamental de solutions 
zl9 z2, ..., zn de l'équation (a) que l'on peut regarder comme le plus simple est défini 
par des relations : 

dzx dzn 

a \zlt ...,zn, — , ..., g— , ...) = ai(x, œl9 ...,#«) 

( i - = l , . . . , & ) 

dans lesquelles les premiers membres sont tous les invariants différentiels rationnels 
et rationnellement distincts, d'un certain groupe de transformations Y des éléments 
z1} z2, ..., zn regardés comme, fonction des variables xx, x2, ..., xn non transformées; 
les seconds membres sont des fonctions de ai, ^ , ..., xn qui appartiennent au domaine 
de rationalité [A]. Le système précédent est irréductible, c'est-à-dire que toute 
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relation de même nature compatible avec les précédentes (vérifiée ainsi que ces 
dernières par un système fondamental au moins) en est une conséquence nécessaire ; 
il est également primitif, c'est-à-dire qu'on ne peut abaisser l'ordre des équations du 
système ou augmenter le nombre de ces équations qui sont d'un ordre donné en 
passant à un autre système fondamental. Je dis que le groupe T est le groupe de 
rationalité de Véquation et que les solutions les plus simples de (a) sont des fonctions 
de (n + 1) arguments x,x1} ...,xn, attachées au groupe T ; ces fonctions sont en général 
définies simultanément et ne peuvent être séparées. 

On peut prendre pour groupe T un des types de groupes déterminés a priori 
par S. Lie—mais la théorie actuelle s'établit de façon directe et algébriquement ; elle 
redonnerait donc ces types s'il était nécessaire. 

Sophus Lie avait appliqué lui-même sa théorie des groupes de transformations 
à l'étude des équations différentielles, mais ses travaux, entièrement distincts de ceux 
dont il s agit ici, ne s'appliquaient qu'à des équations particulières parmi celles que 
nous étudions et ne donnaient que des résultats incomplets, qui valables dans un cas 
idéalement général ne subsistaient plus nécessairement pour un exemple particulier. 
La théorie des groupes avait donc donné des conclusions intéressantes pour l'intégra­
tion mais ne paraissait pas essentielle pour l'étude des équations différentielles. En la 
retrouvant dans ses traits fondamentaux à partir de ces équations j'espère avoir établi 
qu'elle est une discipline inséparable de Vétude des transcendantes du Calcul Intégral. 

On remarquera l'analogie profonde entre ces résultats et ceux que l'on doit 
à Galois pour la résolution logique des équations algébriques. C'est en effet l'étude 
de la théorie algébrique de Galois et de l'extension remarquable, maintenant classique, 
de cette théorie aux équations différentielles linéaires, faite par M. Emile Picard en 
1887, qui m'a conduit à rechercher les raisons cachées de la perfection et du caractère 
définitif de ces théories et les conditions les plus générales sous lesquelles ces qualités 
peuvent être conservées. 

ÉQUATION DU PREMIER ORDRE. 

I. Formes-types et Groupes correspondants. 

1. Considérons une équation du premier ordre 

t-A(*>ï> • w 
où nous supposons d'abord, pour fixer les idées, A rationnel en x et y ; nous définirons 
son intégrale générale par une relation 

z (x, y) = const. 

où z est une solution particulière quelconque de l'équation aux dérivées partielles 

X ( , ) = ! + ,L ( „ , * ) ! („). 

Cette dernière donne l'expression de toutes les dérivées de z prises une fois au 
moins par rapport à x, au moyen des dérivées prises seulement par rapport à y et des 
variables x, y. S'il existe par suite une relation 

•ci I dz dz \ 
FKx>y>z>Tx> dy> - H <a>« 
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rationnelle par rapport à tous les éléments qu'elle renferme et compatible avec 
l'équation (a) sans en être une conséquence nécessaire on pourra supposer qu'il y figure 

seulement les dérivées -- , ^—2, ... prises par rapport à y (et aussi l'écrire sous 

forme entière). 

Supposons d'abord que, quel que soit le choix de la solution z (autre qu'une 
constante), il n'existe pas de relation telle que (a'), je dis alors que l'équation (a) est 
générale. Toutes ses solutions particulières sont des transcendantes de même nature ; 
elles sont définies aux transformations près du groupe ponctuel général à une variable 
Z = F (z) où F est arbitraire, par l'équation (a) elle-même : je les appelle fonctions de 
deux variables x, y attachées au groupe Z — F (z) (F arbitraire) dans le domaine 
rationnel. 

S'il existe des relations telles que (d), auquel cas je dis que (a) est spéciale, 
considérons celles qui sont d! ordre minimum par rapport aux dérivées de z et parmi 
celles-là, une quelconque de celles où le degré par rapport à la plus haute dérivée 
de z est le plus petit possible. La relation (d) est alors nécessairement d'ordre au plus 
égal à trois et il est possible de choisir z de façon à lui donner l'une des quatre formes-
types suivantes : 

<«> * = E ( ^ ) = f ë f ) (ffl,)> 
si elle est d'ordre zéro. Il existe pour l'équation (a) une solution rationnelle; on 
peut la prendre de façon que le polynôme 

P(x,y)-zQ(x,y) 

ne soit pas decomposable quelle que soit la constante z. 

La solution générale de (1) est algébrique. 

(/3) Q =K{*,y) («')> 

si elle est d'ordre 1 ; n est un nombre entier positif, supposé le plus petit possible. 

La fonction rationnelle K (x, y) doit satisfaire à l'équation résolvante 

qui ne peut admettre qu'une seule solution rationnelle. 

La transcendante z est définie, aux transformations près du groupe linéaire 

Z = ez + a (en=l); 

on l'obtient par la quadrature 

z= \%lK(dy - Adx). 

En d'autres termes il existe un multiplicateur de l'équation 

dy — Adx^O, 

au sens d'Euler, dont la puissance n est rationnelle en x, y. 
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(7) Si la relation (d) est du second ordre, on peut prendre pour forme-type 

p-J(œ,y)¥ = 0 (d), 
dy2 v dy 

où J (x, y) est rationnel et doit vérifier la résolvante 

V/T. TdA d2A „ 

Cette résolvante ne peut avoir qu'une seule solution rationnelle. La transcendante z 
est définie, aux transformations près du groupe 

Z = az + b (a, b constantes arbitraires). 

On l'obtient par les quadratures superposées 
dA 

AJ + -r— )dx V - I Jdy -Ixia-v -x— l t** 

z= eJ V VJ (dy-Adx). 

En d'autres termes, pour l'équation dy—Adx = 0, la dérivée logarithmique d'un 
multiplicateur d'Euler est rationnelle. 

On peut encore définir z par le système suivant : 

dz . rr dz Tr 

to = -AK> dy = K> 

dK i . T dÂ\ „ dK TTr 

où l'on reconnaît que K est donné à un facteur constant près multiplicatif; z est 
ensuite donné à une constante additive près. 

(S) Si la relation (d) est du troisième ordre, on prendra pour forme-type 

dzd'z s id2z\2 /dzy n . ,. 

où la fonction rationnelle I (x, y) doit vérifier l'équation résolvante 

Cette équation résolvante ne possède qu'une solution rationnelle. La transcendante z 

est définie aux transformations près du groupe projectif général Z— - j , où 

a, b, c, d sont des constantes, par les équations (a) et (d). 

On peut l'obtenir au moyen des opérations théoriques suivantes :— 

Détermination de J par le système de deux équations de Riccati: 

• c r / T N r ' à A d 2 A _ d J T . T n 

Détermination de K au moyen de J, comme plus haut; 

Détermination de z au moyen de K, comme plus haut. 

Ainsi, à deux quadratures près, la détermination de z se ramène à l'intégration 
d'un système de deux équations de Piccati dans le cas où ce système ne possède pas 
de solution rationnelle. 
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Dans les cas (ß), (7), (S) je dis que la transcendante z est une fonction de x et y 
attachée, dans le domaine rationnel, aux groupes respectifs 

Z = ez + a ( e w =l ) , Z = az + b, Z = ™—„ 
cz + d 

II. Groupes de Rationalité. Solutions Principales. 

2. Les formes-types que nous avons adoptées pour la relation (d) ne se 
conservent pas quand on remplace la solution z par une autre solution u. Si l'on 
pose, par exemple, 

z = $ (u), 
on obtient dans le cas (8) 

f2^-}(|)4+[K2/}-/]g)V'2 = 0 (a'), 
où {</>, u} représente l'invariant bien connu de Cayley 

<j>' 2V>V ' 9 'du' '" 

et cette relation n'est rationnelle que si la fonction <£ satisfait à une relation 

{</>, u} = R (u), 
où R est rationnel. 

Dans ce dernier cas (qui se présente toujours si <£ est rationnel) la forme de la 
relation (d) est l'une de celles qui satisfont aux deux conditions imposées plus haut : 
d'être d'ordre minimum par rapport aux dérivées de u relatives à y et d'être de degré 

d^u 
le plus petit par rapport à la dérivée ^-- d'ordre le plus élevé. 

On peut l'écrire sous la forme 

1 - î ( 1 W > ® * - ' < ^ 
dy \dy/ 

où le premier membre est l'invariant caractéristique du groupe de transformations 
(u, v) défini par 

dht / ^ j A 2 

dv* S dv2\ .fdu\2 

^2[^)+R{U\TV)-R^' 
dv \ dv / 

quand on étend ce groupe en y regardant u comme fonction de la variable y non 
transformée. 

Tontes les fois où nous choisissons la relation (d) de façon à satisfaire aux deux 
conditions précitées, elle exprime que l'invariant caractéristique d'un certain groupe 
de transformations en (u, v) a une valeur rationnelle en x, y ; cette valeur est, suivant 
les cas, K, J ou I. 

Je dis que le groupe de rationalité de la solution u est le groupe en (u, v), 
à équation de définition rationnelle, dont l'invariant caractéristique est connu ration­
nellement en x, y. 
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Parmi ces groupes de rationalité, nous avons choisi plus haut les groupes-types 
que l'on peut ici caractériser en disant que leur invariant caractéristique ne dépend 

du d2u 
pas de u mais seulement des dérivées ^- , ^—,.... Ces groupes de rationalité types 

correspondent à la solution z que l'on peut regarder comme la plus simple. Bien 
entendu, cette solution la plus simple n'est définie qu'aux transformations près qui 
conservent les formes-types des relations (d). 

3. Il est essentiel de montrer quels sont les groupes de rationalité qui se 
présentent pour la solution principale, au point x = x0, de l'équation 

c'est-à-dire pour la solution qui pour x = x0 prend la valeur y. 

(a) Dans le cas où z est rationnel en x, y cette solution principale u est 
définie par R(x,y) — R(x0,u), c'est-à-dire est algébrique. 

(ß) Si z est défini aux transformations près Z^=ez-\-a, (en = 1) on a, pour 
déterminer la solution principale, les équations 

X (u) = 0, K (x0, u) (^J = K(x, y) ; 

elle'est donc définie aux transformations près du groupe (u, v) où 

K(xQ,ii)i^J =K(œ0,v), 

transformations qui sont en général transcendantes. 

(7) Si z est défini aux transformations près Z — az + b,\& solution principale u 
est déterminée par les équations 

&u 

X(u) = 0, d£ + J(œo,u)d^J(x,y) 

dy 

aux transformations près (u, v), qui satisfont à 

dM 
dv2

 T, xdu T/ x ~^ + J(x0,u)lv = J(x0,v). 

dv 

(S) Enfin lorsque z n'est défini qu'aux transformations près du groupe projectif 

Z= -j, la solution principale u de (1) est déterminée par les équations 
cz + a 

d*u / 9 ^ \ 2 

*«•>-*• ï - l ï W - > ( £ ) ' - ' < . . » > 
dy \dy/ 
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aux transformations près (u, v) du groupe qui a pour équation de définition 

dht /^u\2 

dv2 S dv2\ l t x (du\2
 T, 

dv \ dv / 

L'importance de la considération des solutions principales u (x, y, xQ) résulte de 

ce que la solution de l'équation (1) ~~~ = A (x, y) qui prend la valeur y0 pour x = x0 

est donnée par la relation implicite 

u (x, y, x0) = yQ 

qui, d'après une remarque de Jacobi, s'écrit aussi sous forme résolue 

y = u(x0,y0,x). 

La solution y de l'équation (1) qui prend en x = xQ la valeur y0 est donc une 
fonction des trois arguments x0, y0, x dont la nature peut être mise en évidence, 
dans tous les cas de réduction. 

Observons que le groupe de rationalité de u dépend des valeurs des invariants 
rationnels K, J, I, œ qui complique singulièrement l'étude des propriétés de y alors 
que celles de z sont si simples. 

4. Il convient de remarquer ici que lorsque le groupe de rationalité d'une 
solution, et par suite le groupe de rationalité-type de l'équation 

dx 
= A(x,y)..... (1) 

est déterminé, il y a lien d'étudier les réductions qui peuvent se produire dans la 
difficulté de la recherche de z à partir des invariants du groupe-type. Ces réductions 
correspondent à la possibilité d'obtenir z à l'aide de fonctions d'un seul argument 

(dz\n 

attachées au groupe-type ou à l'un de ses sous-groupes. Par exemple, si K ou 

est rationnel, il peut se faire que z puisse s'obtenir par des quadratures de différen­
tielles algébriques portant sur des fonctions d'un argument œ (x, y), rationnel en x 
et y. 

De même si J(x,y) est rationnel, on voit que, dans tous les cas, l'introduction 
de la transcendante eu, fonction d'une variable u attachée au groupe u'' = au, permet 
d'obtenir K par une quadrature 

K^e", w= jjdy- (AJ+Y~) d®> 

et il y aura lieu de chercher si cette dernière quadrature ne peut pas s'exécuter par 
l'introduction de logarithmes d'arguments rationnels en x, y. 

De même encore, dans le cas (S), si par exemple I dépend de y seul, on voit 
r) r 

que J qui vérifie ^~ = 1 + ^J2 s'obtiendra en y par l'intégration d'une seule équation 
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de Piccati rationnelle en y et sa détermination complète se ramènera à l'intégration 
d'une autre équation de Piccati en x seul. 

Mais à un premier examen, on peut regarder ces réductions, qui ne modifient 
pas le groupe de rationalité, comme secondaires. 

III . Extensions du domaine de Rationalité. Adjonction de Transcendantes. 

5. Jusqu'à présent nous avons supposé, dans l'équation 

% = M<°,y) •• (i), 

A (x, y) rationnel. Rien d'essentiel n'est changé à la théorie précédente lorsqu'on 
étend le domaine de rationalité par l'adjonction de fonctions algébriques en x, y ou de 
transcendantes bien définies. 

Par exemple si la relation algébrique entière 

/ ( * , y , 0 = 0 

est irréductible et de degré n en f, toute fonction rationnelle en x, y, Ç se ramène d'une 
seule manière à la forme 

Poto y) + Pi(%> y)g + ---+j>n-iQp,y)Jnzl 

<i(x>y) 

où les p et q sont des polynômes en x, y sans diviseur commun. On peut répéter 
tout ce qui a été dit plus haut, dans le domaine [£], pour une équation 

où A est rationnel en x, y, Ç. Les n f ou - J équations qu'on obtient en remplaçant 

f par ses n valeurs dans A (x, y, £), ont le même groupe de rationalité. 

La théorie s'applique donc à une équation du premier ordre, de degré quelconque 

F(x,y,-y-\ = 0, que nous écrirons ~f~ — Ç avec F (x, y, f ) = 0. 

On peut aussi adjoindre au domaine de rationalité des transcendantes bien 
définies) voici ce que nous entendons par là. 

Considérons un système différentiel formé d'équations 

. / du du d2u \ -

(i = l , . . . ,A) , 

dont les premiers membres sont des polynômes entiers en x, y, u, r - , ^-, .,., où u est 

une fonction de deux variables x, y ; on sait par des procédés réguliers qui ne compor­
tent que des opérations rationnelles, reconnaître si ces équations sont compatibles 
c'est-à-dire possèdent au moins une solution u (x, y) dépendant des deux arguments 
x et y. On sait, dans ce cas, déduire des équations données un système différentiel 
(S) qui définit, dans un domaine algébrique convenable [A], certaines des dérivées de 
u, que l'on appelle principales, au moyen des autres qui sont dites paramétriques—et 
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dont sous certaines conditions de convergence, les valeurs pour x = xQ, y — y0 peuvent 
être choisies arbitrairement. 

Toute fonction rationnelle des dérivées de u et de x, y, s'exprime sous une forme 
unique, au moyen des dérivées paramétriques et des variables, dans le domaine 
algébrique [A]. 

Cela étant rappelé, deux cas peuvent se présenter. Il peut se faire qu'on ne 
puisse ajouter aux équations de (2) aucune équation nouvelle, rationnelle par rapport 
à tous ses éléments [c'est-à-dire aucune relation entière entre les dérivées paramé­
triques dont les coefficients appartiennent au domaine [A]] sans cesser d'avoir un 
système compatible (le nouveau système n'admettrait plus comme solutions que 
des constantes, ou des fonctions de x seul ou de y seul). Je dis alors que le système 
(2) envisagé comme définissant des fonctions u de deux variables x, y est irréductible. 
La transcendante u est bien définie : le calcul des fonctions rationnelles de x, y, u-, 

~-, ^- , ... (mod. 2) peut se faire sans ambiguïté. 

Si l'on peut ajouter aux équations (2) une ou plusieurs équations nouvelles (a) 
sans cesser d'avoir un système compatible, les diverses solutions u (x, y) de (2) ne se 
comportent pas de même dans le domaine [A]. Je dis que u n'est pas bien défini par 
(2), qui est réductible. 

Dans ce cas on peut toujours supposer qu'on a ajouté à (2) assez d'équations 
nouvelles (a) pour former un système (2 + a) irréductible ; aux divers systèmes (er) 
possibles correspondront autant de types de transcendantes u (x, y) bien définies 
vérifiant (2). Enfin si l'on veut raisonner sur la transcendante u (x, y) qui vérifie 
les équations (2) sans satisfaire à aucune des équations (<r) il faudra compléter les 
équations (2) en ajoutant des inégalités qui expriment qu'aucun des premiers 
membres des équations (a) n'est nul. Il sera en pratique inutile d'écrire ces 
inégalités, étant bien entendu que dans le calcul des fonctions rationnelles de u et 

de ses dérivées —• , — , ..., les dérivées paramétriques se comporteront comme des 
ox o y 

indéterminées. 
Ce qui vient d'être dit pour les fonctions u (x, y) de deux variables s'applique 

évidemment aussi aux fonctions d'une seule variable. 

L'exemple le plus simple d'une transcendante bien définie est la fonction 
exponentielle ex ; elle est définie par la relation 

—- = u avec (u =fc 0) 

et n'est pas separable de eu où c est une constante quelconque. Adjoindre par 
conséquent la transcendante ex au domaine de rationalité c'est écrire le système 
irréductible 

/v\ du n du 

et en tenir compte dans le calcul (addition, multiplication, division, dérivation) des 

fonctions rationnelles de x, y, u, ^~ , ^- , 
° dx dy 
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Si l'on considère une équation 

d£=A(X,y,n) 

dont le second membre est rationnel en x, y, u, on peut donc répéter dans le domaine 
[u] tout ce qui a été dit pour un domaine rationnel absolu. 

6. A un certain point de vue les fonctions arbitraires d'un ou de plusieurs 
arguments déterminés se comportent comme des transcendantes bien définies. 
Par exemple pour l'équation de Piccati 

^ | = a0(x) + a,(x)y + a2(x)y2 (1) 

la résolvante en I possède, lorsque a0, aly a2 sont arbitraires en x, la seule solution 
rationnelle 1 = 0. Si l'on cherche à quelle condition la résolvante en / possède une 

— 2 
solution rationnelle on trouve que pour cette solution J — où %(oc) est une 

solution de l'équation de Riccati. Ce n'est donc que dans le domaine [£] obtenu 
par l'adjonction d'une solution particulière de l'équation de Riccati que cette équation 
se réduit. . 

De même, si dans une équation (1) -~ = A (x, y) dont le groupe de rationalité 

est l'un des groupes-types (a), (/3), (7), (S) on remplace x et y par deux fonctions 

arbitraires x (u, v), y (u, v) des 

obtient une nouvelle équation 

d (x u) 
arbitraires x (u, v), y (u, v) des arguments u et v, pour lesquelles ~-~-' ( =fc 0, on 

AU y)d~-d^ 
dv __ \ du du , ,. 
du dy A , ,dx 

qui dans le domaine formé par l'adjonction des fonctions arbitraires x (u, v), y(u, v) 
(ce qui entraîne toujours l'adjonction de leurs dérivées) a le même groupe de 

dz d2z dz 
rationalité. Le calcul des expressions explicites rationnelles de ^-, ^ 2 : ~-, 

djï_sldtf 
dz 2\dz 
dv \dv j 

= * , t > 

au moyen des valeurs de 

se fait sans difficulté. 

*-%• ' - f - ' - ' . . » I 
dy 

On peut naturellement supposer que x et y sont des expressions rationnelles en 
u, v, (/>i(n), <jh(y)y • • • > tyify), ̂ 2(0> • • • > % to i>)> • • • y o u l e s fonctions cj>1, c/>2, ..., fa, yfr2i ..., 
% (u, v) sont arbitraires et former ainsi des équations du premier ordre dépendant de 
fonctions arbitraires dont le groupe de rationalité est déterminé, mais rien ne serait 
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plus facile que de revenir d'une telle équation à l'équation (1) -—= A (x, y) qui a servi 

à la construire. 

Il est plus intéressant de chercher à exprimer rationnellement, dans un domaine 
algébrique [A], A et K, ou A et J, ou i et J au moyen de x, y, et d'une ou de 
plusieurs fonctions arbitraires d'une ou de deux variables ainsi que de leurs dérivées 
jusqu'à un ordre fixé, de manière à satisfaire aux équations résolvantes : 

X(K) + nKd~ = 0, X(J) + Jd~+~==Q, 
dy dy dy^ 

Z(I) + 2 / | 4 + ? 4 = 0. 
dy oys 

On parvient alors à des types généraux d'équations dont le groupe de rationalité est 
connu et qui ne se ramènent pas à des équations déterminées par un changement 
explicite des variables. 

Toutes les fois où l'on remplace dans l'une de ces équations les arbitraires qui 
y figurent par des transcendantes bien définies on pourra chercher à réduire le groupe 
de rationalité—et la réduction obtenue sera définitive. 

On se trouve ainsi amené à des problèmes " de Diophante " que l'on peut résoudre 
méthodiquement, mais sur lesquels je n'insisterai pas ici. J'ajoute qu'on peut se poser 
et résoudre des problèmes analogues dans le domaine obtenu par l'adjonction aux 
variables x, y, d'une ou de plusieurs transcendantes, u, bien définies en x, y. 

Comme exemple d'une équation renfermant des éléments arbitraires, dont le 
groupe de rationalité est le groupe projectif général (S) je donnerai l'équation 

y 

4>' 
fa 

0 

0 

1 

1 

1 

0 

0 

y 

$ 
yîr 

4 

0 

y2 

</>2 

ylr2 

c/> + -v/r 

2 

yZ 

C/)3 

fa3 

<£2 _|_ ^ 2 _ 4 ^ 

3((/> + t ) 

= 0 •(1) 

pour laquelle dans le domaine [c/>, fa formé par deux de ses solutions particulières, la 
résolvante en / possède la solution rationnelle 

/=_?. 1 

2 (y-$)(y-*)' 
unique lorsque (/> et y\r demeurent arbitraires. 

IV. Détermination du Groupe de Rationalité (Groupe-type). 
Intégration algébrique de l'Equation du Premier Ordre. 

7. Pour déterminer le groupe de rationalité (type) d'une équation 

îrA^^ w. 
où A appartient à un certain domaine de rationalité [A], il est nécessaire de savoir 
décider, par un nombre fixé à l'avance de calculs élémentaires, si l'une des équations 
résolvantes 

X (*) = (>, X(K) + nKdA=0> X(J) + JdA+
d^ = 0> X(/) + 2l |^ + | 4 = 0 

dy dy ôif dy dys 
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possède dans le domaine [A] une solution rationnelle. C'est là un problème qui est 
loin d'être résolu. 

On peut commencer les essais en cherchant si z peut être rationnel, puis si 
K peut être rationnel, etc.... on est alors certain que l'équation résolvante que l'on 
étudie (sauf l'équation en z bien entendu) ne peut avoir qu'une seule solution ration­
nelle. Au contraire si l'on aborde d'emblée l'étude de la résolvante en I et si l'on 
trouve une solution rationnelle, il peut y en avoir d'autres lorsque l'équation en 
J possède elle-même une solution rationnelle. On aura donc à étudier, après avoir 
trouvé / , les deux équations de Riccati qui déterminent J pour décider si elles 
possèdent ou non une solution J rationnelle ; ce n'est que dans le dernier cas que le 
groupe de rationalité est le groupe projectif général. 

Supposons pour fixer les idées A (x, y) rationnel, écrivons l'équation (1) 

-~ = -~ ' y\ où a, ß sont deux polynômes en x, y sans diviseur commun. 
dx ß(x, y) r J J 

Dans l'hypothèse générale où =-- =/= 0 et où ß est dépourvu de facteurs multiples 

on montre aisément que si / est rationnel : 

d2ß /dß\2 

T = dJlMdJLÌ 4-A 
ß 2 \ / 3 / + / 3 i ? ' 

et les polynômes S, R sans diviseur commun doivent satisfaire aux relations, où 
T désigne un polynôme auxiliaire: 

dR ~dR -p a , orp -ndß (dß dd 
ady+ßdx=^R' aS + ßT = Rdy(dx+dy 

adÂ + 8
dA = s( +

dâ-2-)-STdl3-
dy dx ^ \ dx dy) dy 

+ R '^ä (d-? + dÄ) + 3 dl A ^ + dÄ) -ß — (-+ d£ ) 
dy2 \dy dx ) dy dy \dy dx} dy2 \dy dx ) 

Si le groupe de rationalité est le groupe projectif général, il n'existe qu'un seul 
système de polynômes, R, S, T, 7 satisfaisant à ces conditions. 

On voit que R égalé à zéro définit des solutions particulières algébriques de 
l'équation (1) et même toutes les solutions particulières algébriques. Le polynôme 
R étant connu, la détermination de S et T s'ensuit. 

Des conclusions analogues peuvent être énoncées lorsque le groupe de rationalité 
est le groupe linéaire. L'invariant / , s'il est rationnel s'écrit 

d_ß 
Jy H 

J~J~R> 

et l'on doit avoir ct — - + ß —̂ = yR. 

M. c. 29 
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aB/9a dß\ ' (dK_dH\ 
' ~ dx \dy dx ) \dy dx J '' 

dR/da W\_R(tä_dHx 
7 dy[dy+dx) P\dy dx)'' dy \dy dx) \dy dx J ' 

où le polynôme auxiliaire K satisfait à la condition 

• * + / * - * d + ! ) . 

qui est d'ailleurs une conséquence des précédentes. 

Ces relations expriment simplement l'intégrabilité de l'expression 

fHdy + Kdx 
')—'-R — ' = \(ßdy — adx) « 

et l'on reconnaît comme plus haut, que R égalé à zéro définit toutes les solutions 
particulières algébriques de (1). 

Enfin si l'équation possède un multiplicateur dont la puissance n soit ration­
nelle, z est donné par la quadrature 

--j^Q(ßdy-adx), 
Q 

où les polynômes P , Q doivent satisfaire aux relations 

«If̂ S^e. 
dy öx 

j _ n ldÄ d_* 
' \dx dy, 

P, 

qui expriment que P = 0 et Q = 0 définissent des solutions particulières algébriques, 
convenablement associées, de (1); on voit d'ailleurs que toutes les solutions par­
ticulières algébriques doivent annuler P ou Q. 

Ainsi la difficulté principale est, dans tous les cas, la détermination de toutes les 
solutions particulières algébriques de (1). 

La remarque suivante permet quelquefois de les obtenir. Supposons que 
du 

l'équation -~ = A (x, y), à étudier, dépende de certains paramètres X, /i6, ..., et que 

pour un système de valeurs X0; JJLQ, ... de ces paramètres on sache déterminer son 
groupe de rationalité T ; il est clair que le groupe de rationalité G qui correspond au 
cas général aura T comme sons-groupe. En particulier les solutions algébriques du 
cas général devront se réduire pour X = X0, /x = />i0, ... à des fonctions algébriques 
connues. 

8. On n'a étudié jusqu'à présent que le cas où l'équation 

z ^ ! + a ! = ° ^ 
possède une solution z rationnelle, c'est-à-dire où l'équation (1) ^ = " ^ ^' s'intègre 

ax pi [x, y ) 
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algébriquement. Dans un Mémoire célèbre (Bulletin des Sciences Mathématiques, 
1878) Mr Darboux a montré que la connaissance d'un certain nombre de polynômes 
irréductibles (p (x, y) satisfaisant à des identités X (<£) = M$, c'est-à-dire d'un certain 
nombre de solutions particulières algébriques de (1) permet de construire la solution 
générale de (1) ou au moins un multiplicateur. Plus récemment, MM. Poincaré, 
Painlevé et Autonne, dans des mémoires bien connus, ont cherché à déduire de 
l'étude des points où A (x, y) est indéterminé (points singuliers) la limitation du 
degré de l'intégrale algébrique irréductible de (1) en faisant intervenir la forme 
analytique des intégrales au voisinage des points singuliers. 

Je me bornerai à indiquer ici quelques résultats auxquels on parvient par 
une voie tout élémentaire. 

Si l'équation (1) -~ — ~( où a et ß sont des polynômes en x, y de degré 

m s'intègre algébriquement, son intégrale générale peut être définie par une relation 

P(x,y) + zQ(x,y) = 0, 

où P , Q sont des polynômes d'un certain degré p et où on peut supposer, d'après 
Poincaré, que P + zQ n'est pas decomposable pour toute valeur de z. On en déduit 
aisément les relations 

3PBQ ^n^LM, X(l) = (2M-^-f)L, 
dx dy dy dx ' V ty dx j 

d'où l'on peut conclure que L est un polynôme de degré 2p — (m + 1) divisible par 
^a-i s-j_ y on a pour une valeur convenable f de z:P + ÇQ — (f)aty. Ce polynôme L dont 
l'introduction est due à M. Darboux (loc. cit.) qui en a également reconnu la significa­
tion profonde, ne renferme d'ailleurs pas d'autres facteurs que ceux qui peuvent être 
multiples dans P + zQ pour des valeurs convenables de z. 

Supposons d'abord qu'il n'existe pour z que deux valeurs exceptionnelles pour 
lesquelles P + zQ possède un diviseur multiple ; on peut admettre qu'elles sont z = 0 
et z — oo , c'est-à-dire que 

P = < ^ ^ . . . 0A«A, 

Q = fablfah.--fah* 

où les a et les b sont entiers. On a dans ce cas 

PQ 
ß = - j - = $102 ..- <j>hfafa ... fa 

et le degré de XI est égal à ( m + 1 ) : le polynôme O de degré (m + 1) satisfait en 
outre à l'équation 

qui exprime que -^ est un multiplicateur pour ßdy — adx. 

29—2 
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On sait donc trouver O dont le degré est connu et sa décomposition en facteurs 
indécomposables donne les <f> et les A|T. Formons les polynômes Si et 2} de degré (m — 1) 
définis par les identités 

X (cf)i) = Si (pi, X (fa) = Tj fa ; 

on aura immédiatement a1S1+ ... + ahSh = M, 

b1T1+...+bhTk = M, 

d'où l'on conclut l'existence d'une relation linéaire à coefficients entiers, positifs ou 
négatifs, sans diviseur commun, entre les S et les T: 

a A - f . . . +ahSh-b1TJ- ...-bkTk = 0. 
Cette relation est unique et sa formation effective sépare les T, dont le coefficient est 
un entier négatif, des S dont le coefficient est positif ; elle donne par suite les groupe­
ments qui constituent P et Q. 

Ainsi l'intégrale P + zQ = 0 a pu être formée, mais le degré des polynômes P et Q 
n'est connu qu'après la construction effective de ces polynômes. Le principal objet de 
Poincaré paraît, au contraire, avoir été de limiter d'avance ce degré. 

On aurait pu tout aussi bien partir de l'identité 

& </>i <j>h fa fa 

qui détermine sans ambiguïté les entiers a et b. 

9. L'intérêt de la solution précédente, applicable quelle que soit la forme des 
polynômes ce et ß et la nature des points communs aux deux courbes a = 0, /3 = 0, 
s'augmente si l'on observe que la même méthode peut réussir alors qu'il existe trois 
ou quatre valeurs exceptionnelles de z. 

Admettons qu'il existe trois valeurs remarquables de z donnant lieu à des 
identités 

P + z1Q = A = <f>a(j>^ . . .f, 

P + z2Q = B = fafa*...faf 

P + z*Q = ö=xüXS1 •••X'' 
où l'on a mis en évidence les exposants a, b, c, les plus élevés des facteurs indé­
composables multiples du premier membre. Peut-on former une expression 

A^B^Ct . 
O = —- jl— o u £ V) £ ^ s o n t des entiers, qu on peut supposer sans diviseur 
commun, qui se réduise à un polynôme de degré indépendant de p (degré inconnu, 
du polynôme P + zQ) et par conséquent connu ? 

Il faudra d'abord choisir £, m Ç de façon que 

£ + 7? + f=2X 

puis il suffira que l'on ait 

a% ^(tt — 1)X, 

On en déduit aisément 

2£ > t t - l 
f + rç + f 'a'~' 

brj^(b-l)X, 

2V ^ 6 - 1 
£ + *, + £'" b ' 

cÇ>(c-l)\. 

2? ^c-1 
Î + V+Ç'" c 
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d'où l'on conclut que a, b, c devront satisfaire à l'inégalité 

a b c 

dont les solutions sont respectivement 

a = 2, ò = 2, c = 2 , 3, ..., n, .... 

a = 2, 6 = 3, c = S, 4, 5, 6. 

a, - 2, 6 = 4, c = 4. 

a = 3, 6 = 3, c = 3. 

Dans tous ces cas une puissance fractionnaire convenable de X2 donne un multipli­
cateur de la différentielle ßdy —adx \ bien plus, on connaît l'expression en AjB de 
l'intégrale correspondante. On sait donc former par un nombre limité de calculs, les 
polynômes A et B. 

Voici le résultat le plus intéressant : si l'on suppose a = 2, 6 = 2, c = n on peut, 

sans connaître la valeur de n, former le polynôme XI = —JJ-, de degré 2(m + 1); 

l'expression —j-^- est un multiplicateur de la différentielle ßdy — adx. On a 

d'ailleurs : 

-d(-
ßdy —adx _ \B 

Vß (A t _\ /A' 
si G= A+ pB, 

ce qui permettra d'obtenir A et B. 

Mais sauf les cas extrêmes, où - + 7 + - = l ) o n a plusieurs systèmes de valeurs 
a b c L J 

possibles pour £, y, f, donc au moins deux multiplicateurs, c'est-à-dire l'intégrale 
algébrique elle-même. 

Lorsqu'il existe quatre valeurs exceptionnelles de z pour lesquelles P + zQ 
renferme un facteur multiple, la méthode précédente ne s'applique plus que si les 
facteurs multiples sont doubles. Si l'on écrit pour les quatre valeurs exceptionnelles 

P = 4 = c/>2f, Q = B = fafa, 

P + \Q=C = x2x'> P+^Q = D = 626', 

ABGD 1 
le quotient XI = —f— est un polynôme de degré 2 (m + 1) et - ^ est un 

Lt Y12 

multiplicateur de ßdy —adx. On a d'ailleurs 

(A\ 
ßdy — adx __ \B > 

Vß /A [A \JA 

ce qui permettra d'obtenir A et B. 
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V. Gomment on tire parti de la connaissance d'une relation rationnelle 
dz dz 

vérifiée par une solution de l'équation ^r + A ~- = 0. 
ox ou 

10. Jusqu'à présent, nous nous sommes proposé de définir et d'obtenir la solution 
dz dz 

la plus simple de l'équation X (z) = ~- + A r - = 0, celle qui est attachée au groupe 

de rationalité-type. Mais il y a lieu d'indiquer une méthode régulière qui permette 
d'utiliser au mieux la connaissance d'une solution quelconque de l'équation précédente, 
c'est-à-dire en fait, d'une relation rationnelle quelconque entre les éléments 

dz d2_z 
dy' dy2 

compatible avec l'équation (a). 

Soit P {*>**>%> $ ' - ) = °> 

cette relation supposée d'ordre p et mise sous forme entière; la relation 

Z ( P ) = P 1 = 0 

est également une relation entière du même ordre, vérifiée par la même solution z. 
Si cette relation n'est pas identique à la précédente, on en peut conclure par 
élimination de la dérivée d'ordre le plus élevé, une relation entière d'ordre inférieur 

Q[x,y,z, ~, ... j = 0 compatible avec (a); on raisonnera sur celle-ci comme sur la 

première et il est clair qu'on trouvera ainsi une relation entière 

£ = 0 

telle que l'on ait identiquement X (S) = MS (où M ne dépend que de x et y) et dont 
toutes les autres sont des conséquences. 

Regardons maintenant dans S, z comme fonction d'un argument u que nous ne 
précisons pas : on pourra mettre S sous la forme 

s-&('•£>-)**{"'»%'-) 
où le nombre h est le plus petit possible, ce qui exige que les ^ ne soient liées par 
aucune relation linéaire et homogène à coefficients constants et qu'il en soit de même 

pour les k (qui sont des polynômes en z, — , — , . . . ) . 

On conclut alors de l'identité X (S) = MS 

les h identités X (&) = Jfft (i = 1, ..., h). 

Ces identités expriment simplement que les équations 

du 

" 7 £ ~ i = a ^ « - L . . . . A - i ) 

sont compatibles avec la relation X(u) — 0, lorsque les fonctions «; (u), en général 
transcendantes, sont choisies de manière que ces équations soient compatibles quand 
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on y regarde x comme un paramètre et y comme la seule variable. Si l'on détermine 
par conséquent ces fonctions a{ (u) de manière que le système précédent possède la 
solution u qui pour x = xQ se réduit à la fonction de y définie par y = </> (u), c'est-à-dire 
si l'on pose 

&U, $(u\ (£)>•>-

& («o, </>to>, (£)> — 

en calculant ( ^ - j , (ô-
2)> ••• P a r ^es f ° r m u l e s 

w< 

on a des équations rationnelles lorsque <£to est rationnel. 

Le système rationnel ainsi obtenu définit, dans tous les cas, u aux transformations 
près d'un groupe. On peut donc en déduire par un procédé régulier, pour une 
solution convenable z, l'expression rationnelle en x, y, de l'un des invariants que nous 
avons désigné par K, J, I (si l'on n'en déduit pas z lui-même). 

Ainsi, dans tous les cas, la connaissance d'une relation rationnelle entre 
dz 

x, y, z, ~-, ... compatible avec l'équation (a) entraîne par un calcul régulier, la 

connaissance de l'invariant rationnel de l'un des groupes-types. 

On ne peut pas affirmer que ce groupe-type est le groupe cle rationalité de 
l'équation (a); il y aura donc lieu d'étudier la détermination ultérieure, dans le 
domaine de rationalité adopté, des invariants J, K ou z. 

Toutes les fois où l'on a pu attribuer à une solution particulière z de l'équation 
dz dz 

(a) X (z) = ^- + A ~- = 0, une propriété qui se traduit en dernière analyse par une 

dz 
relation rationnelle entre x, y, z, —, ... on est donc certain que l'on se trouve dans 

l'un des cas de réduction indiqués au début; c'est-à-dire que l'équation 

aHfcy) • <u> 
est spéciale et que la détermination de z se ramène, dans le cas le moins avantageux, 
à des quadratures et à l'intégration de deux équations de Riccati. 

Supposons, par exemple, qu'il existe une solution z de (a) qui soit un polynôme 
dn+1z 

entier en y d'ordre n ; l'équation â~^+ï = 0 doit être compatible avec (a). En 

appliquant la méthode précédente on trouve (même sans faire intervenir u) d'abord 
la condition définitive de compatibilité et ensuite l'expression explicite de 

d2z %dz _ j 
dy2 ' dy ~ 

De même si l'on suppose qu'une certaine solution z s'exprime rationnellement 

en y, z = jy/\ , oh. P et Q sont d'ordre n par exemple, la même méthode conduit, 
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quand n est donné, à l'équation de condition que doit vérifier A (x, y) et ensuite à 
l'expression rationnelle de / (x, y) dans le cas le plus défavorable. 

Bien entendu, si l'on ne fixe pas n, on ne peut qu'affirmer la réduction sans 
donner l'expression de / ou la condition à laquelle A doit satisfaire. 

VI. Exemples de déterminations du Groupe-type de Rationalité. 

11. Je me propose d'indiquer ici quelques exemples, empruntés à la Géométrie, 
d'équations du premier ordre dont j 'ai pu déterminer le groupe de rationalité. 

Le premier est relatif à l'équation différentielle qui définit les lignes de courbure 

de la surface des ondes de Fresnel. 

La surface étant définie par les équations 

v •„ „o n aX2 bY2 cZ2 . 
X2 + Y2 + Z2 = ß, — à + —-g + 5 = 0, 

a—ß b—ß c—ß 
et la variable \Ja désignant la distance de l'origine au plan tangent en (X, Y, Z), 
M. Darboux (Leçons sur la théorie des surfaces, t. IV, note vin) pose ß = a + - et 

trouve pour équation différentielle des lignes de courbure 

^(S2-^(£)+^+^"+2~> , iv,=o ^ 
où les accents indiquent des dérivées par rapport à a et où 

fy = af(a) = a(a — a)(a — b)(a— c). 

Dans le cas où f(a) se réduit à un polynôme du second degré, un artifice 
ingénieux lui permet de ramener l'intégration de (1) à des quadratures de différen­
tielles algébriques. A notre point de vue, si l'on pose alors 

du u2 

— + -si = 0 avec fyis2 + ufy'ts + ufy + -^ fy" = 0, 

l'équation — — + ^ —- = 0 est telle que la résolvante en ( — J possède dans le 

domaine \yr\ la solution rationnelle 

/dzV 1 
Kdu) n3 (1 — or) ' 

le groupe de rationalité est donc Z—ez-\-a ( e 8 =l ) . La même forme de multipli-
du 

cateur convient à toutes les équations ^ - + -cr = 0 où -or est une fonction de u et 

de a définie par la relation implicite iCà (1 — vr) = vy'àfy ( a + — ), quelle que soit la 

fonction fy. 

C'est l'étude du cas précédent, envisagé comme cas limite, qui m'a conduit à 
la solution du cas général où fy est du quatrième degré. 

Supposons que fy commence par le terme a4, l'équation à étudier se conserve par 

la transformation u = j et si l'on pose 

a>2 = - éfyu3 + u2 (fy/2 - 2fyfyf/) - *fy2u 
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la même transformation remplace l'équation -y- = ---- , — par la même équation en t, 

où co est changé de signe. Pour l'équation 

v . v dz ufy' + œ dz 
X (z) = - - + — ~ T — 5- = 0 

la résolvante en f — j possède dans le domaine [œ] la solution rationnelle 

dzV _ fy 
du) U(KQ — CùKÎ) 

avec K0 = u {fy' (u2 + fy) + nc/> (2a + / " ) ] , K^tf-fy; 

le groupe de rationalité est donc, comme tout-à-1'heure, Z=ez+a (e3 = 1). Ainsi, 
dans le cas général, la transcendante z est donnée par la quadrature 

attachée à la surface (co, u, a) du neuvième degré. 

12. Un autre exemple intéressant est celui de l'équation différentielle des lignes 
asymptotiques des surfaces générales du troisième degré. 

J'ai pensé que sur les surfaces générales du troisième degré les seules lignes 
asymptotiques algébriques devaient être les 27 droites. 

L'examen d'un cas particulier, celui de la surface 

xò + yò 

z = xy + —g— 

dont les lignes asymptotiques sont transcendantes et données par la quadrature 

df= ydy + (ì + ^l-xy)dx = Q 

(P+coQf 

où P — y6 — 4 + Sxy, Q=xy — 4<, co— Vs2 — rt (quadrature qui se ramène à celle d'une 
différentielle binôme non exprimable) a confirmé cette hypothèse et m'a montré 
comment les 27 droites intervenaient. 

Voici le résultat général : Soit XI (x, y, z) = 0, l'équation, mise sous forme entière, 
d'une surface du troisième degré ; en différentiant totalement quatre fois cette 
équation, on obtient un résultat qui, pour cr2 = r + 2sm + tm2 = 0, se réduit à 

^4+4.3xy=o, 

N ,, , v , .v df df df df , df (dm t 

ou 1 on a pose X ( / ) = -f- + m-—- = ^- + m~- + TT- hr~ + m " 
x \ « / • r i - , , r i n . J „ „ ^ a . rìfYYì \ r i n n 

dm\ 
dx ' "vdy dx ' ""dy ' dm\dx ' " 3^// 

d3# d4^ 
et où <r3 = -v-3 = a + 3ßm + 37m2 + Sm3, <r4 = -7-̂  = X0 + 4Xxm + .... 

L'équation précédente exprime simplement que pour chaque ligne asymptotique 

( p—j ö"3 #s£ l'inverse du cube d'un multiplicateur. 
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_ 4 

En d'autres terms (~ä~~) cr>à~ * (dy — mdx) — df 

est une différentielle exacte (les surfaces réglées sont exclues); le groupe de 

rationalité dans le domaine [z, *Js2 — rt\ est simplement / ' = e / + a , (e8 = 1). 

Un résultat analogue peut s'énoncer pour les lignes qui satisfont à l'équation 
différentielle de degré (n — 1) 

dn~Yz A 

^-1 = d ^ = ° 
sur les surfaces algébriques de degré n, dont l'équation peut s'écrire 

XI = a0z
2 + fy, (x, y)z + fyn (x, y) = 0. 

Ces lignes sont données par la quadrature de différentielle algébrique 

_ (n + 1\ - -
df= l — j an (dy — mdx) = 0, 

où m désigne une racine de l'équation 

_dn~1z (n-l) dn~xz _ 

Les surfaces pour lesquelles o-w s'annule en même temps que cw_i sont naturellement 
exclues. Pour en revenir aux lignes asymptotiques des surfaces du troisième degré, 
j'observerai qu'une réduction du groupe de rationalité de leur équation ne peut se 
produire que si toutes ces lignes sont algébriques ; j 'ai étudié en détail, à ce point de 
vue, les vingt et un types projectifs de ces surfaces (non réglées). 

On déduit aisément des résultats précédents, par l'emploi d'une transformation 
dualistique (ou d'une transformation de Lie qui change les droites en sphères) 
d'autres résultats relatifs aux lignes asymptotiques (ou aux lignes de courbures) 
de surfaces algébriques ; mais nous ne pouvons pas y insister ici, pas plus que sur 
des observations analogues aux précédentes relatives à d'autres formes de l'équation 
différentielle des lignes asymptotiques ou de courbure. 

Je donnerai cependant, à cause de son élégance, la proposition suivante dont la 
forme seule est nouvelle. Soit XI (x, y, z) = 0, l'équation générale d'une surface du 

second degré et (1) ~^-—m avec 1 + m2 + (p + qm)2 = 0, l'équation différentielle de 

ses lignes de longueur nulle. On trouve sans difficulté 

dm __ 1 &2 -3T (m) 
dy ~ 2 cr2 

avec cr2 = r + 2sm + tm2, cr/ =2(s + tm), X(f) = -J- + m~- + ~-X (m). 
v ' w 7 àx dy dm ^ ' 

Différentions totalement trois fois l'équation XI = 0 ; le résultat où l'on fait -^ = m, 

exprime que, pour la forme différentielle dy — mdx, a2~
 ¥ ( ̂ — J est un multiplicateur 
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Ainsi les lignes de longueur nulle des surfaces du second degré sont données par la 
quadrature 

7 . du —mdx 
df= v - = 0 ; 
J / /any 

V *'\dz) 
le groupe de rationalité de l'équation (1) dans le domaine [z, m] est 

/ ' = e/+«> (e3 = l) . 

VII. Classification des points singidiers. Forme analytique des Intégrales 
dans le voisinage des points singuliers. 

13. La théorie d'intégration que nous venons d'exposer pour l'équation 

2=^> w 
a mis en évidence l'intérêt qu'il y a à définir la solution générale de cette équation 
par une relation implicite 

z to y) — const., 

où z vérifie X (z) = ^- + A ^- = 0. 
dx dy 

En choisissant la solution z la plus simple, on a défini la solution u principale en 
x = xQ par la relation z (x, y) = z (x0, u) et il y aura lieu de dégager de cette relation 
implicite les propriétés de u ou de y. 

Cette méthode n'est pas limitée au cas où A (x, y) est une fonction bien définie ; 
elle conduit dans l'hypothèse où A (x, y) est, dans le voisinage de chaque point, 
méromorphe ou algébroïde, à une classification précise des points singuliers de (1) 
dont je veux indiquer les traits essentiels. 

Si au voisinage d'un point x —xQ, y = yQ, A ou -r est holomorphe, on sait que u 

est holomorphe en x, y, y0 ; le point x0, y0 est ordinaire. 

Nous dirons qu'un système de valeurs xQ, y0 est singulier, pour une fonction 
A(x, y) méromorphe, lorsqu'au point, x = x0, y — y*, A est indéterminé. Il con­
viendra d'ajouter, pour envisager les cas où x0 ou bien y0 seraient infinis, les 

systèmes analogues pour la transformée de (1) par x = -^, y=jr- Considérons, au 
A Y 

voisinage d'un point singulier x0, yQ, l'équation 

X{,) = % + A(*,y)*=0 (a); 

il peut se faire qu'il existe une solution z de cette équation, qui soit méromorphe au 
voisinage de x0, yQ. Dans ce cas il en existera une infinité, puisque fy (z) où fy est 
méromorphe en z est méromorphe, en x, y, avec z. Je dis alors que le point x0, yQ 

est un point singulier apparent. 

On devra donc comme problème préliminaire décider si l'équation (a) peut 
posséder une solution z holomorphe au voisinage de x = xQ, y=-yo, ou au moins 
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méromorphe, c'est-à-dire si en posant A = -= où a et ß .sont holomorphes, les deux 

équations 

a^ + ß^-MP adQ + ßdQ-MO 
ady+ßdx-MI' ady + ßdx~MQ 

peuvent posséder, pour une même détermination de la fonction holomorphe M, deux 
solutions holomorphes distinctes P et Q (ou une solution holomorphe P + XQ 
dépendant linéairement d'une constante X). 

Il est facile de former des exemples de points singuliers apparents ; on n'a qu'à 
partir des expressions de P et Q et prendre par exemple 

lorsque ces expressions n'ont pas de facteur commun, ou si l'on se donne 

P = fy^fy^ ... fyh^ Q = ^ ^ ... ^ k \ 

les fy et les -v/r étant holomorphes pour x = x0, y = yQ avec P(x0, y0) = Q (xQ) y0) = 0 
prendre pour a et ß les quotients des expressions précédentes par 

L = fy^-1 fy^-1... ^ i - 1 ^ 2 - 1 . . . . 

Supposons que le point (x0, y0) ne soit pas un point singulier apparent: il peut 
se faire que l'équation résolvante en K 

7) A 
X(K) + nK?£ = 0 

dy 
possède une solution K méromorphe au voisinage de (w = x0, y — y0) pour une valeur 
positive de n aussi petite que possible. 

Dans ce cas, il ne peut en exister qu'une seule : s'il y en avait deux, leur quotient 
serait une solution méromorphe de l'équation (a) ; on aurait donc un point singulier 
apparent. Je dis alors que le point singulier (xG, y0) est du premier ordre. Pour 
reconnaître un tel point, on aura d'abord à rechercher si la résolvante en K peut 
posséder une solution holomorphe au voisinage de (xQ, y0) pour une valeur entière 
de n positive ou négative mais différente de 1. Si cela n'a pas lieu, on posera 

P K — j^.,P et Q s'annulant tous deux en (x0, yQ) et l'on cherchera s'il est possible de 

trouver P et Q holomorphes de manière à vérifier les deux équations 

a-dy+ßdx=VQ> 

dy dx \dy dx 

pour une même fonction holomorphe 7. 

Il est bien aisé de former des exemples de points singuliers du premier ordre— 
où l'équation (1) s'intègre par l'adjonction de transcendantes attachées au groupe 
Z= ez + a, (en — 1) et ne dépendant que d'un argument. 

dY 
Ainsi, si l'on prend l'équation X -^ + Y(1-XY) = 0, où X, Y sont des fonctions 
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holomorphes de x et y s'annulant pour x = 0, y = 0, on a pour une telle équation dont 
la solution générale est définie par 

Z=j£y+\OgX, 

(xdY YdX) 
V dy dy) 

Z2F2 

dx 
dy 
X 

l'expression méromorphe ~- = K = 

Un antre exemple, simple et général, d'un point singulier du premier ordre est donné, 

en œ = 0, y = 0, par l'équation ~~ — -5, où a = Xx + . . . , ß — /ny + . . . , les termes non 

écrits étant du second ordre au moins, lorsque - n'est ni une quantité réelle négative, 

ni un entier positif, ni l'inverse d'un tel entier. MM. Poincaré et Picard ont établi 
que l'on peut alors poser 

Q (*, yY ' 

P et Q étant holomorphes au voisinage de x = 0, y — 0 et s'annulant en ce point. 
Dans le cas le plus général où p, : \ est complexe, ou bien réel et irrationnel, on 
a donc en prenant Z = log z, 

dP dQ 

Le cas où /u : X est un entier positif ou l'inverse d'un tel entier et où l'intégrale 
z peut s'écrire sous la forme 

S(x,y) 
X (x, y) + h log x to y) 

où h est une constante, S et X des fonctions holomorphes donne encore un point 
singulier du premier ordre. Si h = 0 avec fi = X (point dicritique de M. Autonne) on 
a simplement un point singulier apparent. 

S'il n'existe pas pour la résolvante en K, de solution méromorphe au voisinage 
de too, y0), il peut se faire qu'il en existe un pour la résolvante en J, 

T d2z dz v ,TX TdA d2A . 
J=W%> Z ( J ) + J â , + a 2 /

2 = = a 

Il est clair qu'il n'en peut exister qu'une seule, sans quoi on retomberait dans le cas 

précédent. Je dis alors que le point (x = xQ, y = y0) est singulier du second ordre. 

On donnerait aisément les équations résolvantes à vérifier par des fonctions holo­

morphes, s'annulant toutes deux lorsque J et -y ne peuvent ni l'un ni l'autre être 

holomorphes. 

Pour obtenir un exemple simple de point singulier du second ordre, on n'a qu'à 
former une équation (a) X (z) = 0, dont le groupe de rationalité soit le groupe 
linéaire et pour laquelle J soit le quotient de deux polynômes s'annulant en xQ, yQ. 
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Je donnerai simplement l'équation 

r»? /« \ 0 a — 2c a — cn 

26 (2x + y) + c^2 + - y — ^ + - g - 2/2 

d^ 07 , _ x a + c 0 c + 2 a 0 

26 (.<?? - 2y) + -^— #2
 Q ^ + c?/2 

dy x f ~ arct§ ~ 
pour laquelle J= -£ 2 ou encore z=le x (ßdy — adx). 

p X" + y" J 

Supposons enfin que l'équation résolvante en J ne possède pas de solution méro­
morphe au voisinage du point xQ, y0, il peut se faire que la résolvante en I, 

dH / 8 ^ \ 2 

' - < , » i - f § f • 
dy \dy) 

dA d^A 
c'est-à-dire X (I) + 21 ——h -^-^ = 0, en possède une. Elle ne pourra en avoir qu'une 

seule. Le point x = x0, y — y0 sera dit alors singulier du troisième ordre. 

Par exemple, si l'on envisage l'équation de Riccati 

dy _ a0 (x) + a1 (x) y+a2 (x) y2 

•(i), dx c (x) 

où aQ, ax, a2, c sont des fonctions holomorphes de x, dont les extrêmes a0 et c 
s'annulent pour x = 0, on sait que l'équation aux dérivées partielles en / admet la 
solution 7 = 0; le point singulier est en général du troisième ordre et si l'on observe 

— 2 
que l'expression de J peut s'écrire J= ^ où X doit vérifier l'équation (1) on 

peut affirmer que pour que le point x — 0, y = 0 soit seulement du second ordre il 
faut et il suffit que l'équation (1) possède une solution particulière X méromorphe au 
voisinage de x = 0. Ce n'est évidemment que dans des cas exceptionnels que cette 
circonstance se présente. 

Lorsqu'un point singulier n'est ni du premier ni du second ni du troisième 
ordre, je dirai qu'il est général. On peut également construire sans difficulté des 
exemples de points singuliers généraux. 

(Il serait facile de donner une classification analogue, en supposant A algébroïde 
au voisinage de chacun des points singuliers.) 

L'intérêt de cette classification réside évidemment dans ce fait que s'il existe une 
relation 

compatible avec l'équation 

•ni dz d2z t ^ 
F^y'Z'dy'W"^0' 

X^J£+Afy-°' 
qui soit rationnelle en z, =- , z—, ... 
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et dont les coefficients sont méromorphes en x, y, au voisinage de x = x0, y — y0, 
cette relation a l'une des formes-types obtenues au début. Il suffit de remplacer 
le mot rationnel par rationnel au voisinage de x = x0, y = yQ ; les démonstrations 
subsistent. L'extension du domaine de rationalité peut également se faire de la 
même manière. A chaque point singulier correspond ainsi un groupe-type dont 
l'invariant est rationnel au voisinage de ce point : on en déduira une représentation 
analytique de l'intégrale en faisant appel à des transcendantes simples (logarithmes, 
exponentielles, etc.) qui subissent précisément au voisinage du point singulier con­
sidéré les mêmes transformations que z. 

Le guide naturel dans cette recherche est la théorie de Fuchs, pour les équa­
tions différentielles linéaires du second ordre. (Cf. aussi F. Marotte, Annales de la 
Faculté des Sciences de Toulouse, 1898.) 

Il me reste à faire observer que si l'on suppose A = -=, au voisinage du point 

singulier considéré, quotient de deux fonctions holomorphes quelconques, il ne sera 
pas possible de réaliser effectivement la classification précédente: l'existence d'un 
point singulier non général, ou d'un point singulier apparent, peut entraîner une 
infinité de conditions distinctes (théorie des centres de Poincaré). 

Mais il n'en sera plus de même si l'on admet simplement que a et ß sont 
rationnels ou font partie d'un domaine [A] bien défini. La plus grande difficulté 
à résoudre (formation des conditions d'existence de développements holomorphes 
convergents an voisinage du point singulier) amène seulement à distinguer pour 
chaque degré des cas généraux (où a et ß commencent par des termes de ce degré 
déterminé, dont les coefficients ne satisfont pas à certaines conditions d'égalité et 
d'inégalité, et où les termes de degré supérieur ont des coefficients arbitraires) 
et des cas particuliers où ces conditions n'étant plus satisfaites, tout se passe 
comme si le degré déterminé était augmenté d'une ou de plusieurs unités. Mais 
il peut se faire qu'il y ait indéfiniment des cas d'exception. Ce n'est donc que 
si a et ß sont entièrement déterminés qu'on peut espérer, dans tous les cas, épuiser 
la question. 

L'emploi des fonctions majorantes en donne alors le moyen : il s'agit de ranger 
les dérivées de la fonction inconnue de façon que le rang croisse avec l'ordre de 
dérivation et que toutes les équations qui déterminent les dérivées d'un certain 
ordre donnent l'expression de chacune d'elles au moyen des dérivées de rang 
précédent. Les exemples classiques dus à Poincaré et à M. Picard montrent com­
ment on peut ainsi majorer les modules de chacune de ces dérivées et trouver 
des conditions suffisantes pour la convergence des fonctions inconnues. 

ÉQUATION D'ORDRE QUELCONQUE. 

I. Systèmes irréductibles réguliers. Groupe de rationalité. 

14. Soit une équation différentielle ordinaire 

yw =f(œ, y, y', ..., y^) (1), 
où / appartient à un certain domaine de rationalité ; je définirai sa solution générale 
par n relations 

$i(x,y,y',...,y{n-v) = ci (i = 1, ..., n), 
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où les fyi forment un système fondamental de solutions de l'équation 

*w=£+!^--+^/=° (2), 
et je me propose de fixer les caractères du système fondamental le plus simple de 
l'équation (2). 

Prenons tout de suite au lieu de (2), l'équation 

z<*)=a+^l+-+ 4-è=° (I)-
où les A sont des fonctions de x, x1} ..., xn appartenant à un certain domaine de 
rationalité [A] [pour fixer les idées, on pourrait supposer simplement les A ration­
nels]; les éléments zlt z2, ...,zn de tout système fondamental vérifient les relations 

avec D=f=0, où les Di sont des déterminants fonctionnels dont la formation est 
immédiate ; par exemple 

D^ d(z1} ..., zn) 
U yXj, . . . , XnJ 

En d'autres termes les quotients ~ sont les invariants différentiels indépendants 

du groupe ponctuel général Tn 

Zî = fyi(z1, ..., zn) (i = l, ...,n), 

étendu en regardant les z comme fonction des (n + 1) variables x, xY, ..., xn non 
transformées. Si le système (a) est irréductible, c'est-à-dire si toute relation 

/ dz dz \ 
rationnelle (entre zlf z2, ..., zn et leurs dérivées —^, ..., ^-, . . . j d'ordre quelconque 

\ OXi OXQI J 

dont les coefficients sont des fonctions des variables x, x1} ..., xn appartenant au 
domaine [A] compatible* avec les équations (a), en est une conséquence nécessaire, je 
dis que l'équation (I) est générale. Tous les systèmes fondamentaux z1} ..., zn sont 
des transcendantes de même nature, ce sont des fonctions des (n + 1) variables 
x, œl9 ..., xn attachées dans le domaine [A], au groupe ponctuel général Vn. 

Tous les invariants différentiels rationnels de ce groupe Yn sont des fonctions 

rationnelles des quotients -^ et de leurs dérivées et sont par suite connus ration­

nellement dans [A]. 

Si le système (a) est réductible, c'est-à-dire s'il existe des relations rationnelles, 
compatibles avec les équations (a) sans en être une conséquence nécessaire, on peut 
distinguer certains systèmes fondamentaux des autres. 

En ajoutant aux relations (a) les relations nouvelles dont nous supposons 
l'existence, on obtiendra un système (8) que l'on peut supposer complété de façon 
à ce qu'il soit irréductible. Aux divers systèmes fondamentaux correspondront 
divers systèmes (S) ; il s'agit de choisir celui qu'on devra regarder comme le 
plus simple. 

* J'entends par là simplement qu'un système fondamental z1, ..., zn, au moins, la vérifie. 
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Pour cela, s'il existe des systèmes (S) renfermant des équations d'ordre zéro 
(c'est-à-dire rationnelles en zlf ..., zn) on prendra tous ceux (S0) qui en renferment 
le plus grand nombre, parmi ceux-là on prendra tous les systèmes (S^ qui renferment 
le plus grand nombre d'équations du premier ordre, puis parmi ceux-là on prendra 
tous ceux (S2) qui renferment le plus grand nombre d'équations du second ordre, et 
ainsi de suite. 

Le raisonnement ne se continue pas indéfiniment. M. Tresse a établi en effet 
qu'à partir d'un certain ordre assignable, toutes les équations d'un système com­
patible quelconque sont des conséquences nécessaires des équations d'ordre inférieur. 
D'ailleurs tout système (S) renfermera certainement des équations d'ordre 0,1, 2 ou 3. 

On obtient ainsi des systèmes (Sp) irréductibles, qui déterminent tous un même 
ensemble de dérivées principales—(au sens de MM. Méray et Riquier). On peut 
former pour ces systèmes (Sp) continués jusqu'à un ordre convenable (et même pour 
chaque ordre de dérivation) une résolvante algébrique qui définit une combinaison 
linéaire et homogène à coefficients rationnels arbitraires, de ces dérivées principales 
au moyen des dérivées paramétriques. Si ces résolvantes n'ont pas le même degré, 
on prendra enfin, parmi les systèmes (Sp) ceux (S) qui donnent des résolvantes de 
degré minimum. 

Ce sont ces systèmes (2) que j'appelle systèmes irréductibles réguliers : le nombre 
des équations de chaque ordre et le degré de la résolvante algébrique sont les mêmes 
pour tous ces systèmes. 

On peut encore dire que ces systèmes (2) sont à la fois irréductibles et primitifs 
en entendant par là qu'aucune transformation 

zi = fy{(Zl, ..., Zn) (i=l,...,n), 

où les fyi sont définis par un système différentiel rationnel quelconque, ne peut 
jamais augmenter le nombre des équations du système (2) qui sont d'un ordre donné, 
ou abaisser le degré de la résolvante algébrique correspondante, en conservant les 
nombres analogues attachés aux ordres plus petits. 

15. Les systèmes irréductibles réguliers sont susceptibles d'une forme re­
marquable qui justifie leur choix. 

On peut écrire les équations nouvelles (2) sous la forme canonique 

ßif^i , •••> **>9 r̂> ...J = «i to a?i, ..., œn) ( ï = l , ..., k) . . . . , .(2), 

dans laquelle les Vii sont des invariants différentiels, rationnellement distincts, d'un 
groupe T de transformations en zx, ..., zn formant pour ce groupe Y un système 
complet d'invariants et les â  des fonctions de x, œly ..., xn appartenant au domaine 
de rationalité adopté [A]. 

Les transformations (z, Z) du groupe V sont entièrement définies par les 
relations 

^[Z1,...,ZJ^,..)^Ì{Z1,...,ZJ§1,..) 0 = 1,...,*), 
M. c. 30 



4 6 6 JULES DRACH 

où les variables xl, ..., xn n'interviennent qu'en apparence. Il suffira d'y faire 
oo1 — 2!1) ,,,}xn = zn pour obtenir la forme canonique des équations de définition du 
groupe T, au sens de Lie. 

J'ai appelé le groupe T groupe de rationalité de l'équation spéciale ( I ) ; il 
possède les propriétés fondamentales du groupe de rationalité (au sens de Galois) 
des équations algébriques: 

1°. Tout invariant rationnel de Y est égal à une fonction des variables 
x, xl, ..., xn rationnelle dans le domaine [A]. 

2°. Toute fonction rationnelle de z1} ..., zn et de leurs dérivées, à coefficients 
rationnels dans [A], et qui est égale à une fonction rationnelle dans [A], est une 
fonction rationnelle des invariants de F à coefficients rationnels dans [A]. 

Je dis que les transcendantes zlt ..., zn sont des fonctions des (n + 1) variables 
x, œly ..., xn attachées, dans le domaine [A], au groupe Y. 

On doit observer tout de suite que le groupe Y n'est déterminé qu'à certaines 
transformations près : toute transformation {z, z) qui change un système irréductible 
régulier (2) en un système de même nature (2') change le groupe Y en un groupe 
homologue (Y') qui sera le groupe de rationalité pour les solutions de (2'). Il faut 
et il suffit pour cela que les équations de ( r ) soient transformées par (z, z') en 
équations rationnelles de même ordre. 

J'ajoute en passant que si le système (2) renferme des équations d'ordre zéro, en 
nombre p, elles peuvent s'écrire z1 — R1, ..., zp — Rp, où les R sont rationnels dans 
[A], les autres équations de (2) ne renfermant plus que zp+li ..., zn et le groupe 
intransitif Y correspondant est formé de transformations 

Zi = Zi ( i = l , ...,p), Zp+j^=fyj(z1, ..., zn) (j = l, ..., n-p). 

IL Forme normale d'un système irréductible régulier. 

16. Une méthode particulière, dont je vais indiquer l'essentiel, m'a permis 
d'obtenir pour les systèmes irréductibles réguliers une forme normale, nouvelle, qui 

/ 7)7 \ 
met en évidence les propriétés précédentes. Soit P (Z, —, x ) un polynôme entier par 

rapport aux éléments Zl9 ..., Zn et à leurs dérivées d'ordre quelconque relatives aux 
variables xx, ..., xn dont les coefficients sont des fonctions rationnelles de x, xl, ..., xn 

dans le domaine [A]. Si l'on regarde les Z comme des fonctions indépendantes des 
n arguments z1} ..., zn (qu'on ne précise pas davantage) et si l'on exécute les 
transformations 

dZ^dZ dz, dZ dZn 
dxi dzY dxi '" dzn dxi ' 

d2Z_ _d^dz1dzl dZ_ d2zx 

öXidxj dz2 dxi dxj '" dz1 dxidxj '"' 

on pourra toujours écrire une identité 

dz \ | 7 / dz\ r f dz 
nz'k'*)-Hz>W*{*>te. 
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où les li ne dépendent que des Z et de leurs dérivées par rapport aux z et les fy que 
dz 

des variables et des dérivées ^- ; nous supposerons que le nombre h est le plus petit 

possible, ce qui exige que les U d'une part, les fy d'autre part ne soient liés par aucune 
relation linéaire et homogène à coefficients constants. 

Les fy, qui ne sont d'ailleurs définis qu'à une transformation linéaire à coefficients 
constants près, seront dits coordonnées du polynôme P ; leur introduction met en 
évidence de façon simple la manière dont se comportent les polynômes tels que 
P, quand on exécute sur les Z une transformation ponctuelle. 

/ 7) 7" 
Soit Li(Z) ce que devient lAZ,-^-\ quand on y fait zx —Zx, ..., zn = Zn\ on dz) 

a évidemment 

*(*5-')-!*<*>6(«5 
D'autre part si les z1 sont des fonctions quelconques des z, on a encore 

^)f i(f l ,'l)=Kz'^)ft (*'!)• 
d'où l'on conclut que la transformation (z, z') fait subir aux fy et aux li deux trans­
formations linéaires adjointes. 

Je ne veux pas insister ici sur l'étude générale des fonctions rationnelles en 
77 

Z, ^—, ... dans un domaine [A] faite en partant de la considération des coordonnées : 

groupe des transformations qu'admet P , permutation des polynômes P entre eux, 
formation du système différentiel qui définit P quand on y regarde les z comme 
donnés et les Z comme arbitraires, Il s'agit simplement de montrer l'usage des 
coordonnées fy pour l'étude des systèmes irréductibles réguliers. 

Supposons d'abord que les éléments Zx, ..., Zn constituent un système fonda­
mental déterminé, pour une équation 

ir , rrs dZ , dZ . dZ ._-

dont les coefficients appartiennent au domaine [A], et que de plus le polynôme 
P satisfasse à une identité 

X(P) = MP, 

qui est la condition nécessaire et suffisante pour que l'équation unique 

'{'•s-')-» 
forme avec le système 

X(Zi) = 0 (i = l, ...,n) (II) 

un système complètement integrable. 

On en conclura que les éléments zx, ..., zn qui représentent un système 
fondamental quelconque satisfont aux identités 

z. = . . . = z = JM \X, X,, ..., Xn), 
fy fy 

30—2 
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ou encore que les équations 

—/—dz\ = 0 ^ 1 ' '"> z^ (iz=2> •••> h) 

^ \x' £) 
sont toujours vérifiées, pour un choix convenable des fonctions (en général trans­
cendantes) ai par un système fondamental particulier quelconque. 

Si l'on veut que le système précédent admette la solution qui pour x — x0 

satisfait aux conditions 

Z% \&o ? ^i •> • • • ? ^n) '== fyi \^i •> - ' • > ffl-n) \1 == -*•> • • • J n), 

çiy7'o) ^u •••> ?̂i> ~\ ? 
il suffira de poser ai — 1 , / . . 3 0 1 V 

çi [XQ, X1} . . . , & ' n , ~ , . . . I 

et de calculer les seconds membres au moyen des z, en partant des formules 

Zi = fyi(œu ..., xn) (i = l, ..., n) 

résolues en x1: ..., #w. 

Pour que le système précédent soit rationnel, il suffira de choisir un système 
fondamental qui, pour x = xQ, satisfait aux conditions 

Xi = Ri(z1} ..., zn) ( i = I , ..., n), 

où les Ri sont rationnels. C'est ce qui arrive toujours pour la solution principale 
en x — x0 de l'équation (I) qui est définie par 

Mi —Zi p o u r œ = œ0. 

17. Considérons maintenant un système irréductible régulier (2) vérifié par Z1} 

..., Zn et supposons que jusqu'à un certain ordre AT, tel que les équations distinctes 
d'ordre (N-\~p) s'obtiennent en dérivant simplement jusqu'à cet ordre les équations 
d'ordre N, le système (2) renferme k relations entières, rationnellement distinctes, 

/ , = <), ...,/* = 0 (S) 

(c'est-à-dire qu'aucun des polynômes f ne s'exprime sous forme entière avec les 
autres). 

Remarquons tout de suite que s'il existe pour l'équation (I) p solutions 
rationnelles distinctes z1 = R1, ..., zp — Rv l'adjonction au domaine [A] de p fonctions 
algébriques (xu ..., xp, par exemple, des arguments xp+1, ...,xn, zlf ..., zp) ramène 
l'équation (I) à une équation à (n— p + l) variables seulement, dépendant des para­
mètres zli ..., zp dans le domaine modifié [A']. On peut donc supposer en modifiant 
[A], qu'il n'existe pas de solutions Zi rationnelles dans ce domaine [A]. 

J'ajoute en passant qu'il y aura lieu de chercher après avoir déterminé Rly ..., Rp 

s'il n'est pas possible d'exprimer rationnellement ces fonctions au moyen de p autres 
rl9 ...,rp appartenant au même domaine, sans que la réciproque soit vraie; ce n'est 
qu'à cette condition que les solutions rationnelles zly ..., zp seront les plus simples. 
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Formons le polynôme P = u^fi + ... + ukfk 

où les u désignent des polynômes arbitraires en x, xly ..., xn et mettons en évidence 
les coordonnées de ce polynôme P, en introduisant les éléments z1} ..., zn d'un système 
fondamental quelconque, on aura 

et le système pourra se remplacer par les équations 

1 

Z ( P ) = P, = 2 ^ ( ^ = 0, 
1 

X(P i _ J ) = P i_ I = l i , Z t _ a ( f i ) = 0. 
1 

h 

La relation P fc= 2 kXk(fy)^0 étant une conséquence des précédentes, on en conclut 
i 

l'existence d'identités 

Xk(fy) = ß«fy + ßiX (fy) + ... + ß^X^(fy) (i = 1, . . . , A). 

Il est aisé de montrer que le nombre h des coordonnées de P est nécessairement 
égal à (k +1) . Si l'on avait h^k on déduirait des équations de (2) une ou plusieurs 
relations rationnelles qui seraient vérifiées par les éléments z1, ..., zn d'un système 
fondamental quelconque et qui ne se réduiraient pas à des identités—ce qui est 
impossible. 

Si l'on avait h = k + r on pourrait former en partant du système précédent un 
système rationnel comprenant rk équations d'ordre au plus égal à N. En rangeant 
les £ dans un ordre convenable on peut montrer que chaque coordonnée dont 
l'indice dépasse (k +1 ) donne une équation au moins distincte rationnellement 
des k premières formées en partant de fy -. fyfy+i. 

Le système (2) étant résolu par rapport à li} ...,lk pourra donc s'écrire : 

' f 7 ' 
v ÔZJ v dxJ ( i = l , . . . , Jfe) ( i l ) . 

7 l ry dZ\ A / dZ 

C'est la forme nouvelle que je voulais signaler; je l'appelle forme normale des 
équations (2). On conclut immédiatement des équations (II) que l'on peut trouver 
un système irréductible régulier (27) possédant la solution zly ...,zn qui satisfait pour 
x — xQ aux conditions 

Xi = i t ^ yZ1, ..., Zn), 

où les Ri sont n fonctions rationnelles indépendantes. Il suffira de poser 
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en calculant les a$ par les formules 

\ ( ^ 1 

l±i I XQ, X1, ... , Xn i -p. •> • • • 

£A [X0,X1,...,Xn,,~ , . . . I 
dz-

où l'on remplace les xt et les ^ par leurs expressions en zu ...,zn. 
En particulier, il existe un système irréductible régulier (20) qui possède la 

solution principale en x — x^, c'est-à-dire celle qui satisfait pour cette valeur de x 
aux conditions 

Xi=Zi(i = l, . . . , n ) ; 

on l'obtient en prenant 
_ L±i \ß'o ' #?11 • • • > Wn , 1 , . . . ) 

i\ (.X'0, Xi, . . . , xn, 1, . . . ) 

où le second membre se déduit de -^ en faisant 

dzi dzi 
Xi^Zi, ~—= 0, ^—= 1 , . . . . 

ÔXk ÔXi 

Le système initial (2) peut s'écrire, en faisant Zi = Zi, 

dZ\ 
Li(Z) __ A*r' aw 

w*) A^gy 
et l'on passe de l'une de ses solutions zl9 ..., zn h une autre solution Zx, ..., Zn en 
satisfaisant simplement aux relations 

' *ML AM 
^ { 7dZ\ Lk+l(z) (*•£) 

qui sont les équations de définition du groupe de rationalité Y, correspondant à (2). 
On reconnaît là l'ensemble des transformations (z, Z) qui n'altèrent pas la forme 
de la relation unique 

P = 0. 

Enfin, si l'on observe que dans la forme normale (XI) les éléments z1, ...,zn 

peuvent être regardés comme arbitraires et si l'on y pose 

z--x- ^ - 0 d-^-~] 
dxk dxi 

on obtient la nouvelle forme 

h(z,-) 
\ ofl?/ &i\M> oo1}..., xn, ±,...) ((y;\ 

j (y dZ\ A(x,x1} ...,xn,l, . . .) 
l^{Z'dx) 
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qui prouve que les invariants différentiels du groupe de rationalité Y (ce sont les 
premiers membres) sont, dans le domaine de rationalité adopté, des fonctions 
rationnelles de x, xly ...,xn. Cette forme (XI7) est la forme canonique signalée 
plus haut. 

/ 77\ 
Il convient de signaler ici que les invariants relatifs lAZ, ~ ) du groupe Y 

subissent, quand on exécute sur les variables x (non transformées par Y) une trans­
formation quelconque du groupe ponctuel général Yn, une simple transformation 
linéaire et homogène. 

Les invariants absolus de Y, j 1 - , subissent donc une transformation projective. 

En adjoignant au besoin la racine p-ihme d'une fonction du domaine de 
/ 77\ 

rationalité [A], on peut toujours s'arranger pour que lk+1[Z, — J soit une puis-

7 (7 7 \ 
sance entière du déterminant fonctionnel ^rr}1~~~1—\; • 

0 \Xj, ..., xn) 

III . Formation des résolvantes. 

18. Considérons le polynôme P qui nous a servi à obtenir la forme normale du 
système irréductible régulier (2) : si l'on met en évidence les coordonnées on a 

*-!*(*i)K*&)-
et nous avons observé qu'une transformation (z, z') donne lieu à l'identité 

H*-"M* I H « &(*£)• 
On en conclut que l'on a des identités : 

' • ( 4 S - S ( ê H K J ) f - 1 " > • 

où les z et les z sont des variables quelconques. Faisons dans ces identités z\ = œli..., 
z'n — ®n et en même temps zx = x\, ...,zn — xn: elles s'écriront 

Si l'on pose maintenant 

n'% = %i+ foi (i=l, ..., n), 

en définissant les hxi par 

Sx Sxj _ Sxn 

1 -̂ -î An 

où l'on suppose hx infiniment petit, ce qui revient à prendre 

x i — Xi + X (Xì) hx 
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Z1,...,Zn seront des invariants pour la transformation infinitésimale précédente et 
l'on aura, par exemple, en écrivant 

h [dZ — -^- dx1... — ïT— dxn) — 0, 
V 3#i dxn J 

\dxi) 'X' \dxj \dxidxj '" dxi dxj 
etc 

Les formules classiques du changement de variables (x, x) nous permettent aisément 
fdx'\ 

d'obtenir des expressions fiy f ~— j telles que l'on ait identiquement 

^ i ( â = H J (£) (i, j = 1, -. -, h) ; 
Kdx) h3\dxJ 

on les aurait d'ailleurs immédiatement en résolvant les équations évidentes 

2 **, i {£) Xi, « (£) = 6* (j,S = l,..., h), \dx) hS\dx 

avec €jS = 0 pour j ^ 5, e# = 1. 

T n , 3«/i s> dAi dx'i 1 ^ 3 ^ 
Les formules =r— = bx . -— , ^— = 1 + ox . -̂ — 

d^ dxk ôxi dxi 

f7\ y \ 

donnent alors aisément le coefficient de hx dans le développement de /^ J[K~)-

Ce coefficient »# est un polynôme formé avec les dérivées des A en xly ...,xn. Il 
nous suffit d'égaler les coefficients de hx dans les deux membres de toutes les 

/ 77\ 
équations qui définissent les li(Z,~}\ pour obtenir 

^ \ ' c>/ = ®v(^œi> •••»a '»0'j(^ g r̂j (i = l, ...,h) ...(R0). 

Ce système (R0) est le système résolvant des invariants relatifs lAZ, -̂ —J cZw groupe 

de rationalité Y : on voit qu'il est linéaire et homogène. 

Pour obtenir le système résolvant dont dépendent les invariants absolus 

W J £•£•-) 

nous poserons, en supprimant l'indice {k + 1) pour avoir des formules plus simples, 

J^W^Ai ( i = W ) (S)' 
3äJ 

file:///dxidxj
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et le système précédent s'écrira 

IX (Ai) + AiX (l) = l^v(x) Aj 

X (l) — l^jCOjAj, 

d'où encore 
X (Ai) + AitjWjAj^XjOijAj (i = l,...,k) ....(R). 

Pour que ce système résolvant (R) soit linéaire il faut et il suffit que l'on puisse 

/ 7)7\ 

choisir l'un des ^ f Z, — J de façon que tous les «# correspondants soient nuls—c'est-

à-dire que cet lAZ, -~\ ne renferme pas de dérivées des Z. dx / 

19. Lorsque le groupe de rationalité est Y le système résolvant ne peut posséder 
OVUNE SEULE SOLUTION RATIONNELLE. Si l'on avait en effet un autre système 

dz\ 
li. . 

= \ ; (i = l, ...,&) (or), 

f dz 
\fjx 

l(z -
\ ' dx, 

vérifié par un système fondamental au moins z1} ...,zn, il est impossible qu'il existe 
des solutions communes aux deux systèmes (a), (2). 

Nous avons vu plus haut que ces deux systèmes peuvent recevoir la forme 

Li(Z) _ ^V'dxJ 
Lk+1(Z) , dZ 

V dx 

où —-r-1 se réduit à A{ pour Zp — xp (p — l,...,n) 

et - ^ =-!lilâ 
Lk+1(z) 8 ^ | -

h-
où — -K se réduit à \$ pour zp — xp(p = 1, ,. . , n). Si tous les Xi ne sont pas égaux 

aux A^ de même indice, les expressions ~ et ~ ne sont pas identiques, mais les 

identités 

nous permettent de former un système rationnel comprenant les équations, en 
nombre 2k: 

A^U-V h-(x,~) 
l \ ' d x j % \ dx , / x r -i i\ 

*{»'&) H"« as. 
et satisfait par un système fondamental. Il suffit toujours de prendre le système 
fondamental qui satisfait pour x = x0 aux conditions 

xp = Rp(uu ..., un) (p = 1, ..., n) 
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où les Rp sont n fonctions rationnelles distinctes. Le système (2) ne serait donc 
pas irréductible et régulier. 

IV. Exemples. Groupes-types de rationalité. 

20. (A) Soit l'équation aux dérivées partielles à trois variables 

T(f)^t + A(u,v,t)l + B(u,v,t)
d£=0, 

dont nous désignons par x, y deux solutions distinctes. Si le groupe de rationalité 

est (Y) Y = fy (y), X = -rrr~\ où <f> es^ arbitraire, les équations de définition 

— - 0, X •=- = x, 
dx ày 

du du 
expriment simplement que l'on a XdY — xdy, d'où l'on conclut que x ~ et x ~- sont 
les deux invariants au moyen desquels tous les autres s'expriment. En écrivant que 
le système 

x ^ - X = 0, x ^ - a = 0, (a) 
du dv ^ w 

reste invariant par l'opération T (f), on a les résolvantes que doivent vérifier X et p 
(rationnels dans le domaine adopté) : 

v ' du du I 

On pourrait aussi déduire de là l'équation unique à laquelle doit satisfaire le 
quotient 

dy 
du _ \ 

dv 

On remarquera aisément qu'avec les équations (a) tout système irréductible 
régulier renferme une autre équation du premier ordre, qui en est une condition 
d'intégrabilité : 

dx dy dx dy d/ju dX 
du dv dv du du dv ' 

La méthode générale conduit alors pour la forme normale aux équations 

•m 

3 (x, y) 

sur lesquelles on raisonnera comme plus haut. 

Par exemple, si l'on pose 

X0 = X (t0, x, y), fi0=/jb (tQ: x, y), 

doo_xdx dy_xdy 
du dv du dv 

X%¥ -X™ 
dy dx 

djjb dX d (x, y) 
du dv d (u, v) 
d(X,Y) 1 ' 
3 (x, y) 
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le système de solutions (oc, y) de T(f) = 0 qui pour t = tQ prennent respectivement 
les valeurs u et v (système principal pour t = t0) est défini par les équations 

dx dx dy dy dfi dX d (x, y) 
a " ^ du ~dv __ du dv _d(u,v) du dv 

fl0 —XQ fyf*o_j^o 1 
dx dy 

On voit quelle est la complication de ces équations, où interviennent les valeurs 
particulières de X et ft; alors que les éléments les plus simples, correspondant au 
groupe-type de rationalité, sont définis par les équations 

F „ 3 F X8K 
OU dv 

Y P 
Z = 3 F ' 

dv 
dont les deux premières forment un système complet qui peut être quelconque. 

21. (B) Considérons encore le cas où le groupe de rationalité est le groupe fini 

X = 
ax + 6 

7 = 
ay+b 
cy + d cx + d' 

a, b, c, d étant les constantes arbitraires. 

Nous définirons ce groupe par l'équation aux différentielles totales 

dXdY _ dxdy 

(X^Ty^ïx-^f 
qui nous donne immédiatement les trois invariants du premier ordre 

dx dy dx dy dx dy dx dy 
du du du dv dv du dv dv 

•K —7Z—-T-r- = M> 

.(H, 

•(S). 

.(R), 

(x-yY ' (x-yf >"> { œ _ y y 
Les fonctions rationnelles X, \x, v devront satisfaire au système résolvant : 

du du 

P( / , ) + 2 - X + ^ + ^ j / , + 2 - , = 0y 

m / x . dA dB 
1{")+dv-v + 2dv» = 0 

qui ne possédera qu'un seul système de solutions rationnelles. 
On obtient aisément la forme normale du système (2), il suffit de résoudre les 

trois équations 
3 X 3 7 3 X 3 7 3 X 3 7 3 X 3 7 3 X 3 7 3 X 3 7 
3a? dx (dx\2 dx dy dy dx dx dy dy dy (dy\2 _ 

(X - Y f {dît) + (X-Yf dû du + (X- Y)2 [du 
= X 

3 X 3 7 
dx dx dx dx 

' (X-Yydudv 

3 X 3 7 , 
dx dx i'ox\2 

(X - Yf [dv, 

dX 3 7 3X 3 7 
dx dy dy dx (dx dy dx dy 

(X -

3 X 9 7 dXdY 

du dv dv du 

dXdY 

+ 2 

dXdY 
dy dy dy dy 

(X - Yf du dv 

dx dy dy dx dx dy 
(X-Yf 

dy dy fdy\2 

dv dv+ {X-Yf\dv/ 

...(")> 
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par rapport aux trois invariants absolus du groupe. Mais cette résolution n'est pas 
nécessaire pour l'application de la méthode de transformation des équations (H) indiquée 
plus haut. 

Il convient d'observer ici que si l'on définit ( r ) par l'invariance de -. -r- la 
• . 0» - y) 

permutation de x et y est possible, on doit donc la faire figurer explicitement 
dans (r). 

Les invariants évidents 
dx dy 
du du ~ 
" " ' dj=ß> 
dv dv 

sont donnés par les équations symétriques 

a + ß = - , aß = -
v 

La résolvante, dont dépend a, 

T(a) + ~-ad~ = a(a~-~ 
du dv \ dv du 

admet deux solutions a, ß dont les fonctiqns symétriques élémentaires sont ration­
nelles. 

Si a et ß sont rationnels tous deux, la permutation de x et y n'est pas possible : 
le système irréductible régulier s'obtiendra en ajoutant aux équations précédentes (2) 
une nouvelle équation rationnelle qui résulte de ce que 

où A est rationnel : cette équation est simplement 

dx dy dx dy 
du dv dv du __ . 

<> - y)2 

22. (C) Des circonstances analogues se présentent toutes les fois où le groupe 
de rationalité ( r ) comprend des transformations finies non engendrées par ses trans­
formations infinitésimales, autrement dit est un groupe complexe. 

Supposons par exemple que ce soit le groupe : 

X = / ( * ) , 7 = g (y), 

où f et g sont arbitraires, la permutation de x et y étant possible. Les quotients 

dx dy 
du du 0 

är0' dTß> 
dv dv 

peuvent s'échanger par les transformations du groupe. Ce sont leurs fonctions 
symétriques qui sont rationnelles, et si l'on pose 

aß = X, öL + ß = fi 



SUR ^INTEGRATION LOGIQUE DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES 477 

le système irréductible régulier est formé des deux relations identiques : 

dxV_ dxdx x ( / 3^y_ 0 \ 
du) du dv \dv) ~~ j _ 

W> 

(!)"-«l!-(!lH 
avec ^-, J~^{± 0. Le système résolvant dont une seule solution est rationnelle sera 

3 (n, v) 

*v>-'fè-t)+*t-<-*>ê-*\ 
* « • > £ - * G ? - £ ) - * £ - I < E > 

Lorsque a et ß sont rationnels, le système régulier (2), au lieu de se composer 
des deux relations linéaires écrites plus haut, comporte trois équations quadratiques, 
l'équation nouvelle étant 

^ = « - / 3 . 
3 (u, v) 

On verrait sans difficulté que ces équations sont rationnellement distinctes, bien 
qu'elles soient fonctionnellement dépendantes. 

Les trois équations du système irréductible régulier (2) conduisent aisément à la 
forme normale (O) où interviennent les quatre invariants relatifs du groupe 

dx dx ' dx dy dy dx ' dy dy dx dy dy dx ' 

Les remarques que l'on vient de faire suffisent pour rendre compte des diverses 
circonstances qui peuvent se présenter lorsqu'on veut utiliser pour la théorie de la 
rationalité les types de groupes à n variables (engendrés par leurs transformations 
infinitésimales) donnés par Lie et M. Cartan, quand ils sont imprimitifs. 

D'abord un groupe G engendré par des transformations infinitésimales peut être 
compris dans un groupe complexe Y : on obtient Y en ajoutant à f f u n nombre fini de 
transformations, formant groupe, et appartenant au plus grand groupe H dans lequel 
O est invariant. 

On aura ainsi divers types de groupes Y correspondant aux divers types de 
groupes finis contenus dans H. 

En outre si Y est imprimitif et se définit comme sous groupe du groupe 

^ = <fc(*i> •••%) (* = 1> --.,p) 

Zk = (ojc(zY, ..., zp, zp+u ..., zn) (k =p + q + ... + 1, ..., n), 

où les fyi, tyi, ..., œjc ... sont arbitraires, il peut arriver que certains ensembles de 
variables z, en même nombre, subissent des transformations appartenant à un même 
groupe (définies par les mêmes équations différentielles). 

Le groupe Y comprendra alors normalement les permutations qui échangent 
entre eux les éléments homologues de ces ensembles. Il pourra y avoir une réduction, 
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par adjonction de grandeurs algébriques du domaine de rationalité [A] à un groupe 
engendré par des transformations infinitésimales, mais la forme normale du groupe 
restera composée d'équations d'ordre élevé en nombre surabondant, c'est-à-dire que les 
premiers membres de ces équations seront rationnellement mais non fonctionellement 
distincts. 

Il est clair que si le groupe Y est imprimitif et compris dans H, on peut obtenir 
pour le système irréductible régulier correspondant une forme réduite, que j'appelle 
encore forme-type et qu'on obtient en faisant jouer à H le rôle joué dans la théorie 
générale par le groupe ponctuel général r n . 

On obtiendra ainsi des groupes de rationalité-types identiques à peu de chose 
près aux types de groupes adoptés par Lie: les invariants rationnellement indé­
pendants de ces groupes Y sont connus rationnellement dans [A] et réciproquement, 
mais le nombre des invariants relatifs de Y (invariants qui subissent toujours une 
transformation linéaire, quand on exécute une transformation de H) peut dépasser le 
nombre des équations rationnellement distinctes, parce que dans la forme normale 
réduite les dénominateurs des premiers membres ne sont plus nécessairement 
identiques. 

23. (D) Un exemple simple éclaircira cela : 

Supposons pour l'équation 

T(/)- |+^(«,«,tr) | + B(t«,«)g-0, 

•(r), 

dont x, y sont deux solutions distinctes, le groupe de rationalité 

où fy et ty sont arbitraires. Sous cette forme on a, pour le groupe, les équations de 
définition 

3 F 3 7 = 3 X 
dx ' dy dx' 

et l'on obtient immédiatement les invariants fonctionnellement distincts 

dy dx dy dx dy 
du du dv dv du __ 

~y= ' W1 * fi 
dv \dv 

d'où l'on peut déduire deux relations linéaires 

^-xf ï -o , j * x|? fc o (A). 
du dv ou dv r dv v J 

En leur appliquant la méthode générale, on trouve 

^(^_x-W — ß~xdA = o 

dx \du dv) dy \du dv) ' 

dx \du dv) dy \du dv) ^\dxdv dy dv) ' 
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où l'on voit apparaître quatre expressions linéairement distinctes : 

37 3 7 3X 3X 
dx' dy ' dx' dy' 

au lieu de trois que demande la théorie si le système (A) est irréductible régulier. 

Mais on forme aisément le système irréductible régulier qui comporte trois 
relations du premier ordre et s'écrit sous la forme normale 

dx dx\2 (dx dx\ (dy dy\ (dy dy\2 idx dy dx dy 
du dv) \du dv)\du dv) \du dv) \du~dv dv du, 

3F y _ ? Z ^ (VIS* (d-XX 
dy) dy dx \dx) \dx) 

où l'échange de x et y est possible. 

Ces trois relations sont du type 

A = h2 = hk = k2, 
mais deux d'entre elles, comprenant A, ne permettent jamais de conclure, sans 
restriction, h — k. 

Si maintenant on considère (F) comme sous-groupe de 

y - * W l (H,, 
X - / ( * , < / > | 

le système (A) conduit pour informe normale réduite à 

dy dy dX 
du dv __dx 
dy ' dx dx dY' 
dv du dv dy 

avec T— =f= 0. 
dy 

Y. Réduction du Groupe de Rationalité. 

24. Le problème de l'intégration logique, pour une équation 

v/ \ ^z , A 3# , , . dz _ /T. 
X^'di+Ä^+-+Ä*d^=0 • (I)' 

exige la résolution des questions suivantes : 

1°. Détermination de tous les types Y de groupes contenus dans le groupe 
ponctuel général Yn, à n variables zY, ..., zn dont les équations de définition sont 
rationnelles. 

Ce problème peut être regardé comme résolu en principe par les recherches de 
Lie et de M. Cartan. 

2°. Détermination du groupe de rationalité Y de (I). 

Chaque type de groupe (Y') est caractérisé par un système complet d'invariants 
différentiels, quand on y regarde les z comme des fonctions de n variables xx, ..., xn 

non transformées-, ces invariants différentiels sont liés à ceux de Yn qui sont les 

file:///du~dv
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quotients -~ par un système résolvant qui possède une solution rationnelle en 

x, œ1} ..., xn quand Y' renferme le groupe Y. 

Si Y/ coïncide avec Y, ce système résolvant ne possède qaune seule solution 
rationnelle: le groupe de rationalité est donc aussi le plus petit groupe dont les 
invariants différentiels sont rationnels dans [A]. 

Lorsque Y est connu la nature des transcendantes zx, ..., zn attachés à ce groupe 
est fixée : une décomposition du groupe Y mettra en évidence leurs propriétés 
essentielles. 

Soit I \ un plus grand sous-groupe invariant dans Y dont les équations de 
définition sont rationnelles ; ses invariants différentiels subissent par les trans­
formations de T des transformations formant un groupe YjYx qui ne possède pas 
de sous-groupe invariant maximum (groupe simple). 

Soit de même F2 un plus grand sous-groupe (à équations rationnelles) invariant 
dans Y1 ; les invariants de T2 subissent par les transformations de Y1 des transforma­
tions formant le groupe Y^Y^, etc 

Au bout d'un nombre limité d'opérations (la limitation résulte du fait que tout 
groupe F^ possède au moins un invariant rationnel n'appartenant pas aux précédents 
et de l'application du théorème de M. Tresse) on tombe sur un groupe Yp formé de la 
transformation identique. Le groupe Yp^ est simple. 

Les équations qui constituent un système irréductible régulier (2) peuvent donc 
s'écrire de manière à mettre en évidence : 

Un système définissant zx, ..., zn au moyen des invariants différentiels de Yp_Y\ 

Un système définissant les invariants de Yp_Y au moyen de ceux de r^_2, 
etc., 

Un système définissant les invariants de YY au moyen de ceux de Y qui sont 
rationnels dans le domaine [A]. 

Je dis que les transcendantes zY, ..., zn attachées à Y sont amenées à faire partie 
du domaine de rationalité par des adjonctions successives de transcendantes attachées 
à des groupes simples. Mais la réduction précédente, utile pour manifester les 
propriétés des z, demeure théorique. On montre aussi que le nombre des groupes 
r^ et les types des groupes Yi/Yi+1 sont, à peu de chose près, déterminés. 

Jusqu'à présent nous avons raisonné, dans l'hypothèse d'un groupe de rationalité 
intransitif, 

Zt1 — z1} . . . , /jp — 'P> 

Zp+i = fyp+i(zu ..., zp, Zp+1, ..., Zn) ( i = l , ..., n-p) 

sur les transformations des Zp+i} en regardant zly ..., zp comme adjoints au domaine 
de rationalité. Mais il serait facile de tenir compte aussi de la nature des coefficients 
des transformations précédentes e n , ^ , ..., zp. Tout se passe comme si l'on étudiait 
dans l'équation 

dZ . , dZ__ . , dZ 
oop+1 

X{Z) = dl;
 + Ä*+1dx- + - + Andx~ = 0> 
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dont les coefficients dépendent de x, xp+1, ..., xn et des paramètres z1, ..., zp, les Zp+i 

à la fois comme fonction des x et des paramètres z. 

Il est donc nécessaire d'envisager dans la formation du système irréductible 

régulier (2) les éléments ^-, ..., ^—~-, ... en même temps que les dérivées 
OZi OZiVZj 

oZ d2z „ , A 1 1<p . . , . 
~ , ••-, ö ^ > •••• Cela entraîne quelques modifications qui n atteignent 
uffip+i OXp^_iOXp^.j 

rien d'essentiel. Des exemples simples suffisent à mettre en évidence ces modifi­
cations. 

Observons cependant que les transformations des coefficients des Zp+i(i=l, ... 
n—p) peuvent être de forme beaucoup plus générale que celles des Zp+i entre eux; 
comme cela résulte de la recherche des types de groupes intransitifs. 

L'exemple évident, signalé par M. Cartan, du groupe 

X=--x, Y=y, Z = z Jrf(x, y), 

où / est quelconque, ou bien est la solution la plus générale d'un système quelconque, 
linéaire, d'équations aux dérivées partielles 

à coefficients dépendant seulement de x et y et qui peut se présenter pour l'équation 

sous des conditions faciles à donner—c'est-à-dire pour une équation de premier ordre 

3w n , .v 

-^ = C(x,y,w,t), 

dépendant de deux paramètres—fait prévoir la complication possible des transfor­
mations du groupe F de rationalité quand on laisse des paramètres dans l'équation 
étudiée1. 

VI. Gomment on tire parti de relations connues satisfaites par un système fondamental. 

25. Avant de passer aux applications particulières, je signalerai que la considéra-

tion des coordonnées d'un polynôme P [Z, ^- , x) permet, par une méthode régulière de 

calcul, de déduire de tout système d'équations rationnelles vérifié par Zu ..., Zn et 
leurs dérivées en œl9 ..., xn un autre système (peut-être réductible) ayant la forme 
canonique. Si Ton traite en effet ce système de la même.manière que le système 

* La théorie précédente d'intégration logique des équations linéaires aux dérivées partielles a été 
résumée dans des Notes aux Comptes rendus de VAcadémie des Sciences (1893, 1895) et développée dans ma 
thèse (Annales de VÊcole Nomiate Supérieure, 1898), la définition des systèmes irréductibles réguliers aux­
quels s'appliquent exclusivement les raisonnements et conclusions de ma thèse a été communiquée en 
Octobre 1898, à MM. Painlevé et Vessiot, qui avaient amicalement appelé mon attention sur l'ambiguïté de 
certains énoncés. La théorie des coordonnées des polynômes, avec son application à la détermination de la 
forme normale d'un système irréductible régulier, a été exposée dans un mémoire présenté en 1902 
à l'Académie des Sciences et qui a commencé à paraître aux Annales de la Faculté des Sciences de Toulouse 
(1908). 

M. c. 31 
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régulier (2) tout ce que nous avons dit subsiste, fors que le nombre h des coordonnées 

de P peut être (k + r), où r est quelconque. En résolvant les k relations obtenues par 

rapport à lx, ..., lk on a le système 

k = ï h ^ (* = l,...,fc) (A), 

d'où l'on déduit les identités en zly . . . , zn 

X (%)-». 

qui permet tent de former le système compatible, rationnel : 

-^ = oyîj(z1, . . . , zn) (i = l, . . . , k', j = l , . . . , r) (B), 

où les coy sont calculés de manière que le système précédent possède la solution qui 

pour x = xQ satisfait aux conditions 

Xi = Ri(zu ..., zn) (i=l,...,n), 

où les Ri sont rationnels et quelconques. 

Les équations ^ = 24+j w i j (* = 1> • ••> &) demeurent inaltérées quand on exécute 
sur les z une transformation (z, z) qui conduit d'une solution du système (B) à une 
autre et réciproquement. 

Eu égard à la transformation linéaire des ^ quand on passe des z aux z, on 
trouve que ces transformations (z, z) satisfont aux conditions, en nombre rk: 

f^ w)Mpj {/)+Xi^+j (3?) %ïr'g {z) w^h+iLmw) ^(/)+Xk+qM (a?) 
(i = l , . . . , * ; j = l , . . . , r ) . . . ( C ) . 

On établirait aisément qu'elles définissent un groupe T dont on a rationnellement les 

invariants. Ce groupe n'est pas nécessairement le groupe de rationalité de X (z) = 0 
puisque (2) n'est pas même irréductible. 

26. J e voudrais encore faire remarquer qu'il est aisé de préciser de quel secours 

peut être Xintégration d'une équation 

pour celle d'une autre équation aux mêmes variables 

Soient respectivement 7 l 3 . . . , 7 n et Zu ..., Zn les éléments de deux systèmes fonda­
mentaux : s'il existe de tels systèmes pour lesquels les transcendantes 7^ et Zj ne sont 
pas étrangères, c'est-à-dire pour lesquels on peut ajouter aux équations Y (Fi) = 0, 

dYi y dZj 
OXp OX/p 

appartiennent au domaine de rationalité adopté et renfermant effectivement les deux 

Z(Zj) = 0 des relations rationnelles en 7 , , — - , . . . , ZA, ^ , . . . dont les coefficients 



SUR 1?INTÉGRATION LOGIQUE DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES 4 8 3 

systèmes de fonctions Y1, ..., Yn, Zx, ..., Zn\ l'application de la méthode générale qui 
a servi à transformer (2) conduit à les mettre sous la forme 

fl* (^ a#) = û>^ ^ = 1, •••'̂ , 

n^ (Z' tx) = °W (*' Y> ï ' - ) 0' = 1 — r), 
où les O sont tous les invariants rationnels et rationnellement distincts d'un certain 
type de groupe T de transformations en Z1, ..., Zn et où les w sont rationnels dans le 
domaine [A] formé par l'adjonction à [A] de 71? ..,, Yn. On peut d'ailleurs supposer 
que les cofc+j sont également des invariants différentiels pour un groupe (7) de trans­
formations en Ylt ..., Yn. 

Enfin le système précédent peut être supposé irréductible et primitif] il contient 
alors normalement des équations 

ïlk+r+l f Y, -g-H = œk+r+l (#) (' = 1, • • • , <*)> 

qui donnent avec les précédentes l'expression rationnelle de tous les invariants distincts 
du groupe (7). 

APPLICATIONS. 

I. Equation du second ordre. Equations différentielles linéaires. 

27. L'étude de l'équation 

T(f)Jl+A(t,u,v)dlu + B(t,u,v)l=0, 

faite d'après les principes précédents, n'entraîne pas d'autre difficulté—et celle-là 
insurmontable dans le cas général—que de reconnaître si un système résolvant formé, 
a, ou non, une solution rationnelle. En effet Lie, et après lui M. Cartan, a donné 
tous les types de groupes finis et infinis à deux variables engendrés par leurs trans­
formations infinitésimales et l'on en déduit sans difficulté les groupes complexes. Le 
nombre de ces types croît assez vite quand on passe d'une variable à deux : il y en a 
effet une soixantaine et quelques-uns renferment un entier arbitraire. Mais la 
plupart sont imprimitifs, c'est-à-dire que parmi les invariants différentiels figure par 
exemple : 

^ : ^ = X. 
du' dv 

La solution y de T(y) — 0 est donc donnée par un système complet de deux équations 
—système qui peut être quelconque—et se distingue nettement des autres. 

Quand on envisage seulement les groupes primitifs, on n'en trouve que six—dont 
trois sont finis : 

Groupe général. 

Groupe dont les transformations multiplient les aires par une constante. 
31—2 
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, 3 (x, y) 
" 3 (n, v) ' 

1 dB , 1 3D 
53^ = X e t 5¥^ 

sont rationnels. 

Groupe des transformations qui conservent les aires : 

D = 3 (œ, y) 
d (u, v) 

est rationnel. C'est le multiplicateur de Jacobi. 

Groupe projectif général. 

Les invariants s'obtiennent en observant que l'équation aux différentielles 
totales, dxd2y - dyd2x=0, demeure inaltérée par les transformations du groupe. 

Groupe linéaire général. 

Les invariants s'obtiennent en observant que le système 

d2x = 0, d2y = 0, 

admet les transformations du groupe. 

Groupe linéaire spécial. 
n ( r 7/ i 

Avec les équations précédentes, on a -̂V-' \ = B où B est rationnel, c'est-à-dire 
3 (u, v) 

que l'élément d'intégrale double dxdy est invariant. 

K e m a r q u o n s en pas san t q u e toutes les fois où le groupe de rationalité est fini (e t 
cette remarque est générale) les transcendantes x, y peuvent être amenées à faire 
partie du domaine de rationalité par des adjonctions de transcendantes attachées à des 
groupes linéaires. 

Ceci augmente l'importance des recherches faites dans les cas où le groupe de 
rationalité est linéaire, ce qui arrive toujours lorsque dans l'équation 

•xr / \ dz A dz . dz 
X(z) = ^+A1^~ + . . . + i i w _ = 0 

dx dœ1 dxn 

les Ai sont linéaires en xl, ..., xn. 

On retrouve ainsi comme cas particulier, soit directement, soit en faisant inter­
venir l'équation adjointe de Lagrange, la théorie de M. Emile Picard pour les équations 
différentielles linéaires. Mais on n'ajoute rien d'essentiel à cette théorie. Les obser­
vations faites par Fuchs et M. Darboux sur les propriétés des intégrales algébriques 
se présentent simplement de façon nécessaire. 

II . Problème Normal de Lie. 

28. Il est bien clair que la théorie d'intégration logique des équations aux dérivées 
par t ie l les d o n n e le moyen de préciser p o u r tous les problèmes de la théorie des groupes 
de Lie (le domaine de rationalité étant fixé) la difficulté de la solution, cette difficulté 
étant toujours caractérisée par un groupe de rationalité. Dans certains cas les 
avantages qu'elle apporte sont de pure forme, mais il n'en est pas toujours ainsi. Lie 
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et ses élèves ont fait appel, suivant les méthodes habituelles, à des changements de 
variables transcendants et à des déterminations successives d'éléments indissolublement 
liés. 

Par exemple, Lie est revenu à diverses reprises sur l'étude des systèmes complets 
d'équations linéaires aux dérivées partielles qui admettent des transformations 
infinitésimales. Il énonce ainsi le problème normal de sa théorie. 

Une équation 

A ( / ) = S«,(*'1; . . . , av + 1 ) | £ = 0 (1) 

à (r +1 ) variables admet les r transformations infinitésimales indépendantes 

1 

qui satisfont aux conditions 

Xh ( / ) = S a (.*„..., *v+1) | £ (k = 1, ..., r), 

(Xi , Xk) = XCilcs Xx (f)', 

on suppose qu'il n'existe aucune identité 

4>(x)A(f) + t<t>h(x)Xh(f) = 09 

où les (/> sont quelconques et l'on demande d'utiliser le plus possible la connaissance 
des Xjc(f) pour l'intégration de l'équation. 

En supposant que l'équation A (f) = 0 soit la plus générale possible parmi celles 
qui satisfont à ces conditions, Lie a indiqué une méthode de détermination successive 
des solutions de (1), mais le groupe de rationalité n'a pas été mis en évidence. C'est 
ce groupe, qui est linéaire, qui caractérise pour nous la simplification apportée dans 
l'intégration.' 

Par exemple, si les Xi forment un groupe integrable dépourvu de transformation 
distinguée, le système obtenu en ajoutant à (1) les équations 

Xi{f) + Ei(f) = 0 (i = l,...,r) 

où les Ei(f) définissent le groupe adjoint, admet r solutions pour lesquelles on peut 
prendre 

Z1 = ei- coi (xx, ..., xr+1) (i = l, ..., r). 

Les œ sont des fonctions de xx, ..., xr+1 attachées ce un groupe linéaire integrable. 

III . Groupes infinis simples. Equations les plus générales qui leur correspondent. 

29. Il résulte des recherches de Lie qu'il existe, à n variables, quatre types de 
groupes infinis simples] M. Cartan a démontré qu'il n'y en a pas d'autres. Ce sont : 

(1e) le groupe ponctuel général Tn à n variables ; 

(2°) le groupe Vn dont les transformations conservent les volumes ; 

(3°) le groupe Wn des transformations de contact, qui n'altère pas l'équation 

dz — pidoCi — ... — pndxn = 0 

où n = 2k+ 1 et où z, xY, ..., xk, plf ..., pk sont les n variables transformées ; 
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(4°) le groupe de transformations à n = 2k variables qui conserve l'intégrale 
double 

dœ1dy1 + ... + dxkdyk. 

Il est facile d'indiquer des équations spéciales, dépendant de fonctions rationnelles 
arbitraires en nombre aussi grand que possible, dont le groupe de rationalité F est 
l'un de ces groupes simples. 

IL—Pour le groupe Vn dont l'équation de définition est 

d(X1, ..., Xn) _ 
0 \Xi, ..., xn) 

si l'on regarde les x comme des fonctions de t, u1} ..., un satisfaisant à 

*</>-!+<+"+'-£-* 
l'invariant différentiel caractéristique est 

j \ O \X\, • •. , xn) 

d(ul9 ..., Un)' 
et la résolvante correspondante, 

^>+i>(t+-+Ä:)=0 ' 
est l'équation au multiplicateur de Jacobi. On obtiendra l'expression la plus générale 
de B, Aly ..., An en posant 

DAiJ^ (* = 1, . . . , » ) 

avec D + - - 1 + -^-2+ ... + - ^ = 0. 
dih du2 dun 

L'équation cherchée est donc 

n 7 Y r ï = d(Q>i,/) . d (<*>*, f) , . 3 (o)n, f) 
KJ } 3 (t, ih) "*" 3 (*, u2) "*" * ' * ^ 3 (t, un) ' 

où les co sont des fonctions arbitraires en uly ..., un et t, dans le domaine de rationalité 
adopté. 

III.—Si l'on veut que l'équation 

dz — p1dx1 — ... — pkdxk = 0 

soit une relation invariante entre (2k + l ) = n solutions, formant un système fonda­
mental de l'équation 

*</>-!+*'£+"-"-&-* 
il faut et il suffit pour cela que les rapports des expressions 

dz dxx dxjc 
diti * l du-, ' " ^h dui 
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soient des invariants pour le groupe de rationalité. On pourra donc poser 

dz — pj dx1 — .. . — pkdxk = p (À,! dih + .. . + X2kdu2k + du2k+1), 

où les Xi seront des fonctions rationnelles. Ces invariants devront satisfaire aux 

équations résolvantes : 

J ' w + ^ 7 . — P X I + • • • + ^ - • P X ^ + . - • — - P = o , 

( i = l , . . . , 2&), 

d'où l'on conclut simplement : 

3z^ 3 ^ 

dA1 dA2k+l 
Aj + . . . + (i = l, . . . , 2fc)./.(R). 

1 l^2*+l ,V1 3^2*+lJ 

Pour résoudre le système (R), j e pose 

A2k+1 = — {\o + \1A1 + ... + A2fc42fc}, 

où X0 est une nouvelle inconnue et l'on reconnaît facilement que toutes les dérivées des 

Ai disparaissent des équations (R). Ces équations sont donc simplement 2k équations 

linéaires aux inconnues A1} A2, . . . , A2k et X0 demeure arbitraire. 

Si l'on pose, pour la symétrie, t = u0 et 

3X^ dXj d\j . d\i 
ôuj diii ou2k+1 ou2k+1 

uv 
(i,j = 0 , 1 , ...,2k), 

le système qui définit les Ai peut s'écrire 

«ufo + w ù A + .. . + o)ii2kA2k = 0 

On aura donc pour l'équation cherchée 

(i = 1, 2k). 

£lT(f) = 

df 
dt 

û>io 

Û>2fc, 0 

X0 

3£ . 
duY 

0 . 

W 2 f c , l • 

X, . 

*' du,k 

•• Wl ,2fc 

.. 0 

.. X2fc 

8/ 1 

0 

0 

1 

= 0, 

avec D. = || û)^-||. 

Quand les X sont pris arbitrairement dans le domaine de rationalité, les Ai sont 
également rationnels et le groupe de rationalité est bien Wn. Ce résultat est 
d'ailleurs lié à la réduction de \du1+... + du2k+1 à sa forme canonique. I l est 
nécessaire de supposer les X choisis de façon que la réduite soit bien à (2& + 1) 
éléments. On peut appliquer ceci à part i r de k = 1 et former, par exemple, une 
équation 
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dépendant de trois fonctions rationnelles arbitraires de u, v, w, t et dont le groupe de 
rationalité est défini par 

dZ — PdX = CT (dz — pdx), 

c'est-à-dire est le groupe des transformations de contact du plan. 

IV.—Supposons enfin qu'il s'agisse d'obtenir une équation 

T{f) = %+AS + ... + A*$-=0, 
dt olii • oiujc 

dont le groupe de rationalité soit formé des transformations qui conservent l'élément 
d'intégrale double 

dx1dy1 + ... + dxkdyk 

(les x et les y étant 2k solutions convenables de T (f) = 0). Si u;, et Uj sont deux 
quelconques des variables u1} ..., u2k l'expression 

3Q?i, yù 3 (x2, y2) d(xk, yk) 
d (IH, Uj) 3 (ui, Uj) " ' 3 (in, Uj) 

est un invariant; désignons par ^ son expression rationnelle en t, u1} ..., u2k. On 
forme aisément le système des résolvantes pour les /x,# : 

dA, dA* _dA, dA* 
'du, W+'~ + du, ^j~'du~j

flli + "- + dm' 
T(ilè + -j^:H + ••• + I ^ ^ M = ^ / ^ + ••• +-^:^2k,i ( i j = i , •••> 2k) • ••(&)> 

mais ici se présente pour la recherche des A une difficulté qui tient à ce que les JJLìJ 

ne sont pas arbitraires. 

Ils doivent satisfaire à toutes les identités 

dui din d'Uj J ' 

et ces conditions nécessaires sont suffisantes. Observons qu'en posant 

#1 ~ T . . . + Xk — — Öj, 
dtij d'Uj J 

ces fonctions a sont données par les équations—évidemment compatibles: 

On passe de la solution particulière a<b, ... de ces relations à la solution la plus 
générale 2^, ... en posant 

ti=<Ti + ~ (i=l,...,2k), 

din 

où O est arbitraire en ux, ..., u2k et t. 

On peut donc dire que l'expression 

CTjdu, + ... + cr2kdu2k 

est définie à une différentielle totale additive près dVL par les équations précédentes ; 
il en est donc ainsi de 

x1dyl + ... +xkdyk. 
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En d'autres termes, les éléments X, 7 les plus généraux qui satisfont aux 
conditions imposées sont liés à un système particulier x, y par l'équation aux 
différentielles totales 

X1dY1+ ... + XkdYk = x1dy1 + ... +xkdyk + dfl, 

où O est arbitraire en t, u1} ..., u2k ou bien encore en xly ..., xk,yu ..., yk et t. 

Le groupe de rationalité peut donc aussi se définir comme l'ensemble des 
transformations en œlt ..., xk, ylf ..., yk qui conservé 1 UNE DIFFÉRENTIELLE EXACTE 
près la forme 

xxdyx + ... -\rxkdyk. 

Soit alors Xi
dJh + ...+Xkp = (Ti + p (; = !,..., 2*), 

oui din oui 
où œ et les x, y sont inconnus; les résolvantes correspondantes sont 

rn { 3o)\ dA1 ( d(o\ dA2k f dco\ ~ ,. -, ~7X /T^X 

Si l'on pose ^ W + ^î-^i + . • • + A2ka2k = (/), 

où nous pouvons cette fois regarder cp comme connu, les A sont donnés par le 
système 

L'équation cherchée est donc explicitement 

dih 

MT(f) = 

dt 

30-j d<j> 

dt dui 
0 

3L 
du2k 

= o, 

I dt +dikh ^ - ° 

où i f =11^11; elle dépend des 2k fonctions a1, ..., cr2k arbitraires dans le domaine 
de rationalité. La fonction <\>, si elle n'est pas la dérivée en t d'une fonction du 

domaine, doit être conservée. Lorsque cfi = ~~ où ^ appartient au domaine, on peut 

supprimer </> de l'équation en modifiant les c^. 

Tout se passe ici pour les cr comme dans le problème où il s'agit de déter­
miner a1} cr2, fjb12 en uly u2 dans un certain domaine de rationalité, de façon que 

^ —^—2 = ^i2; on n'a pas toutes les solutions en se donnant arbitrairement cr1, a2 

dans le domaine. 

Les transformations infiniment petites du groupe de rationalité (bien connu 
dans la théorie des transformations de contact) sont obtenues en résolvant 

h (x,dy1 + ... + xkdyk) = dfl . Bu, 

ce qui donne 

où <£ demeure arbitraire. 

x\^Xi + ^-hii, y'i=yi 
d<f> 
dx, 

- on (i = 1, ..., k), 

31—5 
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IY. Systèmes complets d'équations linéaires. 

30. Un système complet, mis sous la forme de Jacobi, et composé de p relations 
dz dz 

à (m+p) variables, résolubles en — , ..., ^—, définit des transcendantes Z1} ..., Zm 

fonctions de (ra + p) variables et attachées au groupe ponctuel général Ym ou à l'un 
des sous-groupes types Y, dans le domaine de rationalité [A] dont font partie les 
coefficients. 

La théorie de la rationalité pourrait, en effet, se développer comme pour une 
seule équation, p des variables (xT, ..., xp par exemple) jouant le rôle de la variable 
unique x et les autres xp+l, ..., xp+m jouant le rôle des variables principales. 

Il est bon d'observer que les transcendantes ZY, ..., Zm seront définies par des 
systèmes auxiliaires 2 identiques à ceux qui se présentent pour (m + 1) variables: il 
y aura seulement à envisager pour chacune d'elles les p relations 

X,(Z) = 0, ...,Xp(Z) = 0, 

qui sont les seules où interviennent ^—, ..., ^— . 
OX\ OXip 

Une réduction théorique du problème permettra de n'ajouter ces relations que 
successivement: d'abord toutes celles qui renferment des dérivées en x1} c'est-à-dire 
X1(zi) — 0, puis toutes celles qui renferment des dérivées en x2, etc. C'est à ce même 
point de vue théorique qu'un système complet integrable, de deux équations de Riccati 
à deux variables, se ramène, d'après M. Darboux, à deux équations successives à une 
seule variable. 

Cette observation s'applique encore pour ramener, d'une manière générale, la 
détermination des fonctions de plusieurs variables attachées à un groupe fini, à une 
succession de déterminations de fonctions d'une seule variable attachées au même groupe, 
dans des domaines convenablement choisis. 

On peut aussi envisager l'une des équations du système et fixer son groupe de 
rationalité, sachant qu'elle possède des solutions qui satisfont aux (m+p — 1) autres 
—c'est-à-dire appliquer à une seule équation la théorie générale. 

La méthode de Jacobi peut d'ailleurs être présentée comme une simple appli­
cation de cette théorie générale. Supposons, par exemple, que pour l'équation 

*(/>-g+<+~+^g-<> 
on sache qu'une solution au moins, / , vérifie une équation linéaire qu'on écrit 

on en déduira immédiatement, en appliquant X ( / ) , ce qui donne 

X('f) + ^ f = 0 0-1,...,»), 
\pXi) ÔXi OXj 

où Vi^XQù-BiAt) (* = l , . . . , n ) . 

(B'{f) est précisément le crochet de Jacobi [X, S] obtenu d'un seul coup.) 
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Si B'(f) est distinct de B(f), on formera de même X [R (f)] = B" (f) et 
ainsi de suite. On ne s'arrête que lorsque B{k) (f) est combinaison linéaire de 
B, B, ..., B*-*. 

Le système ainsi obtenu s'écrit aussi, en regardant f comme fonction de 
z1} ..., zn'. 

dl S(*-i» (^) + ... + ^ £(*"« (Zn) = 0, 

et puisque l'opération X ( / ) ne l'altère pas, on peut en le résolvant par rapport à 

•—- , :.., ~- en tirer un système rationnel (2) comprenant k (n — k) relations du premier 

ordre, dont on pourra disposer de manière qu'il admette une solution zY, ..., zn satis­
faisant pour x = x0 à des conditions initiales données : 

Xi = Ri(zl9 ..., zn) (i = l,...,n). 

Mais parmi tous ces systèmes de k (n — k) relations figurent également ceux qui 

résultent des hypothèses —-= ... =-^- = 0 , / arbitraire en zk+1, ..., zn-i, c'est-à-dire 
ÔZi ôzk 

les équations linéaires 

£<« (*«) = <>, (i=0,l,...,(k-l)),(l = k + l,...,n), 

qui expriment que Zj.+1, ..., zn sont des solutions communes aux (k+1) équations 

B®(f) = 0, X ( / ) = 0. 

Ce sont donc toutes les solutions de ce système, et il est nécessaire et suffisant, 
pour que l'hypothèse du début soit justifiée, que k < n. 

V. Equations aux dérivées partielles du premier ordre, non linéaires. 

31. On sait qu'une intégrale complète de l'équation 

Z(z, œl9 ..., xp,p1} ...,pn) = a (1), 
dz 

où pi = r-;, peut, d'après Lie, être définie par les équations 
ÔXi 

Xi(z, x1} ..., xn,p1} ...,pn) = ai (i = l, ..., n), 

où les Z et les X satisfont à une identité 

dZ— P1dX1 — ... — PndXn = p (dz —p1dx1 — ... —pndxn) (2), 

dans laquelle les P sont connus rationnellement du moment où les X le sont. 

Les Z, X, P vérifient les conditions 

[Z, Xi] = [Xi9 Xk] = [Pi, Pk] = [Pu Xk] = 0, 

[Pi,Xi]=P, [Pi,Z] = PPi, 

[z,p] = pfz-p>, [x,,p] = p ^ , [P,p] = p a | , 
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qui sont suffisantes pour l'existence d'une identité (2) et où l'on a posé, suivant. 
l'usage : 

n* HO £ (dF/d® 3<ï>\ 3^/3f^ • dF\ 
i=i]9pi VŜ 'i &s y 3p* \dxi Fl dz , 

L'équation [#>/] = 0 0 ) 
.' . P P 

à (2n +1) variables possède donc les solutions X1? ..,, Xn, Z et ~, ..., -^. 

Pour fixer le groupe de rationalité qui leur correspond j'observe qu'un autre 
système de déterminations, 

dZ— QldY1~ ... — QndYn—cr(dz —pxdxx — ... —pndxn), 

donne dZ - P1dX1 - ... - PndXn = £ (dZ- Q1dY1 - ... - QndYn). 
cr 

Les X et les P sont donc définis, par l'identité (2), à une transformation de contact 
près qui conserve Z. Il est aisé d'en déduire la transformation la plus générale subie 

P Pi 
par X1? ..., Xn, p^, ...> -p^; on n'a qu'à former les équations finies d'une transforma-
tion de contact en partant des équations directrices, parmi lesquelles on fera figurer 
Z = z. 

P P 
Les éléments X1? ..., Xn, ^~ , ..., •— sont donc en général inséparables: bien que 

les (n — 1) derniers s'expriment avec les premiers, les conditions auxquelles ils doivent 
satisfaire n'isolent pas les X et on ne peut songer à les déterminer isolément 

Cela n'aurait de sens que si le groupe de rationalité était imprimitif, les X étant 
transformés entre eux. 

Cependant comme les P font partie du domaine de rationalité défini par les. 
X on n'augmente pas la difficulté du problème en se proposant de les obtenir tons. 

32. Examinons d'un peu plus près l'équation à deux variables 

Z(x, y, z,p, q) = a, 

et l'équation linéaire correspondante 

[Z,F] = 0 (I). 

Soit dZ— PdX— QdY— p(dz — pdx — qdy); 

si nous posons P = TQ, il existera pour (I) un système de 3 solutions X, 7, T qui 
satisfont aux deux relations 

[X, 7 ] = 0, [T, 7 + T X ] = 0. 

Si f, v, 0 désigne un système particulier de valeurs de X, 7, T on a évidemment 

X = X&v,6,Z), Y=Y(Ç,v,d,Z), T=T(Ç,V,8,Z), 
et ces trois fonctions de quatre variables devront satisfaire aux relations 

d&0) d{V,d) V' 
d(T> 7 ) _ ß dj!LD 4. T{d(T,X) d(T,X)}_ 

s <& ë) a {V, e) + \ d (£, e) d o,, ô) } U; 
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qui sont les équations de définition du grgupe de rationalité. Il est facile d'obtenir 
ses transformations infinitésimales ; soit 

X = Ç + ex, Y=v + ey, T = 0 + et, 

l'une de ces transformations où x, y, t sont des fonctions à déterminer de £, v, 0 et Z ; 
on aura explicitement 

œ = w> y-^^v,o,z)-ef0, 

t = Q <ty _ dA 
dn 9f ' 

où </> demeure arbitraire en £, 97, 0, Z. 

Parmi les réductions qui peuvent se présenter pour le groupe Y, lorsque Z est 
choisi de manière particulière, je signalerai celle qui correspond à l'existence d'une 
solution rationnelle p pour l'équation 

Les éléments P, Q, X, Y sont donnés par 

PdX + QdY= dZ'— p(dz — pdx — qdy), 

donc définis à une transformation homogène de contact près à 2 variables et 

X, 7, p sont donnés à une transformation de contact du plan près. 

Si l'équation à étudier est 

F(x,y,z,p,q) = 0, 

nous pouvons l'écrire en adjoignant la fonction algébrique q au domaine de rationalité: 

La méthode de Lagrange conduit à chercher une fonction cfi (x, y, p) telle que 

dz = pdx +fdy, 

où p est donné par c\> (x, y, z, p) = a, soit integrable par une seule relation en x, y, z, 
dépendant d'une nouvelle constante. La fonction p est solution de l'équation 

qui s'écrit développée 

Elle admet en général trois solutions inséparables. Désignons par ty(x, y, z, p) une 
seconde solution ; pour que les deux équations 

cf) (x, y, z, p) = a, ^ (x, y, z, p) = b, 

dx dz du 
soient compatibles, il faut — r— = — , 

_JL _|_ p -JÜ J JL 

dx r dz dp 
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et l'on reconnaît immédiatement qu'alors 

dz —pdx —f(x, y, z, p)dy = X(d(f> — wd^\r), 

dp dp 

définit la troisième solution. Ces trois éléments cp, w, ty sont connus à une trans­
formation de contact du plan près : si / est arbitraire le groupe de rationalité est 
donc le groupe de transformations de contact du plan. 

Il serait facile d'indiquer tous les types possibles de réduction. Je ferai simple­
ment observer que si z disparaît de l'équation q = f(x, y, p), auquel cas il suffit de 
chercher cf> de façon que </> (œ, y, p) = a rende integrable pdx +f(x, y, p) dy, l'équation 
qui définit cp est 

' v ^ ; dx dp dp dx dy 

Elle admet le multiplicateur 1, et le groupe de rationalité du cas général est formé 
des transformations 

a (<£»,¥) 

33. Des remarques analogues aux précédentes peuvent se faire pour l'intégration 
d'un système en involution 

Z = a, Ji. i = ci], . . . , 2L q = aq: 

Tout se passe comme si, dans la résolution de l'identité 

dZ — P1dX1 - ... — PndXn = p (dz —p1dxl — ... —pndxn), 

ou dans l'intégration de [Z,f] = 0, on connaissait rationnellement X1? ..., Xq. 
On sait que la transformation infinitésimale de contact la plus générale en 

Z, Xly ..., Xn, Pi, . • •, Pn J 

est définie par les formules 

t dw (dw^ dW\ y v dw w 

où W fonction caractéristique est quelconque en z, x1} ..., xn, ply ..., pn. 
Les transformations qui n'altèrent pas les éléments z, œlt ..., xq satisfont donc 

aux conditions 
dW dW v 317 

qui expriment que W —pnF\z, xl, ..., xn,-
q^, . . . , ^ z 

Pn Pn 

On déduira de là les transformations infinitésimales subies par 

T T Pq±l Pn^l 
Xq+1, . . . , Xn, - , . . . , , 

Pn Pn 
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qui sont les (2n — 2q — 1) solutions du système en involution 

0 , <f>) = (x{, 4>) --
autres que les solutions rationnelles z, 

En posant 

on aura 
IJn 

dF dF 
dxq+i . g+1 dxn ' 

=--0 ( i = l , ...,q), 

Xi, . . . , Xq. 

(i = i , . . . > - l ) ) , 

(* = ! , . . . , ( * i - l ) ) , 

où F est arbitraire en 

Z, Xi, . . . , Xq, Xq-^-i, . . . , Xn, (ûq^, . . . , (ùn» 

Comme F renferme à la fois les x et les œ, ces éléments sont donc en général 
inséparables : pour que les x se déterminent séparément il faut et il suffit que les 

-— ne dépendent plus des co, c'est-à-dire que F soit linéaire en coq+1, ..., con-i. Les x 

subiront alors une transformation ponctuelle et les œ les transformations projectives 
qui en résultent lorsqu'on étend le groupe ponctuel. 

Il est bien évident que la théorie de la rationalité, à la fois logique et nécessaire, 
permet de discuter les diverses méthodes proposées par Jacobi, Cauchy, Mayer, 
Lie, etc., pour intégrer les équations (où systèmes d'équations) non linéaires à une 
inconnue. Les méthodes où l'on se propose la détermination successive ou partielle 
des éléments d'une intégrale complète ne se justifient que dans des cas particuliers ; 
il n'y a guère que l'emploi des caractéristiques de Cauchy (ou de leurs équivalents) 
qui peut être légitimé. 

VI. Problème de Pfaff. 

34. Il s'agit de ramener une forme différentielle donnée 

A = a^dUi + ... + andun, 

à l'un ou à l'autre des types 

dy-x1dy1~ ...-xpdyp, 

x1dyl + ...+xpdyp, 

où les y et les x sont des fonctions indépendantes des n variables ult ..., un. 

1°. Si l'on a A = xfly^ + ... + xpdyp, 

les équations aü^ + ... + ain%n = UiÇo (i = l, ...,n) (1), 

où aik = -^- — ~t, possèdent (n — 2p + 1) systèmes de solutions linéairement distinctes 

les équations 

z«</> = &|£ + - + &»|; = 0 (* = i,...,(«-2p + i)) ...(A) 

formées avec ces solutions constituent un système complet dont les solutions sont 

X2 Xp 
2/i> y^ -••> y2i> ~> •••> ~ • 



4 9 6 JULES DRACH 

Le groupe de rationalité de ce système complet est dans le cas général (c'est-
à-dire lorsque que les a$ sont pris, dans un domaine de rationalité fixé, de la manière 
la plus générale de façon à satisfaire aux conditions précédentes) le groupe général 
des transformations de contact à (2p — 1) variables résultant de l'identité 

x1^dy1 + ^dy2+...+X^dy,^ 

X' 

Les éléments yi, ~ sont donc en général inséparables ; les transformations du groupe 
x1 

de rationalité les échangent les uns dans les autres. Toute tentative de détermina­
tion séparée clés y et des x ne peut avoir de sens que s'il y a une réduction du groupe 
de rationalité et s'il devient un groupe de transformations ponctuelles en yx, ...,yn 

étendu. 
Quand le système complet (A) est intégré, la fonction x1 est connue explicitement. 

2°. Si l'on a k — dy — x1dy1 — ... — xpdyp, 

les équations (1) ne sont satisfaites que si £0 = 0 et possèdent (n — 2p) solutions 
linéairement distinctes; le système complet 

^(/)=^|+... + L | ; = 0 (A), 

formé avec ces solutions, admet lui-même les solutions 

y ii • • • ? y pi ^ u • • • ; x,p 5 

son groupe de rationalité est dans le cas général défini par l'identité 

X1dY1 + ... + Xpdyv — x1dy1 + ... 4- xpdyp + d£l, 

où II demeure arbitraire en xY, ..., xp, y1} ..., yp. C'est donc le groupe simple pour 
lequel, l'élément d'intégrale double dxldy1 + ... +dxpdyp demeure invariant. 

Ici encore toute tentative de détermination séparée ou successive des éléments 
xx, ..., xp, y1, ..., yp n'a de sens que si le groupe de rationalité se réduit. Dans le cas 
où ce groupe est réduit à un groupe ponctuel en yli ..., yn étendu, on pourra trouver 
un système définissant seulement les y ; les x seront alors connus sans nouvelle inté­
gration. On observera ici que lorsque le système (A) est intégré, y est donné par une 
quadrature de différentielle totale. 

Les remarques précédentes nous permettraient avec le tableau des types de 
groupes *de contact à 2p + l ou 2p variables d'indiquer sans difficulté tous les cas 
de réduction qui peuvent se présenter dans la détermination de la forme canonique 
de A. 

Si l'expression A est inconditionnelle, c'est-à-dire si l'on a n = 2p ou n — 2p + 1, le 
système (A) se réduit à une seule équation, qui se trouve pour des raisons évidentes 
être celle obtenue dans la formation des équations les plus générales à groupes simples. 

35. Pour terminer cet.exposé, déjà trop long, je me bornerai à signaler que la 
théorie de la rationalité s'applique encore dans l'étude des groupes de fonctions 
introduits par Lie (détermination des fonctions distinguées d'un groupe, réduction 
du groupe à la forme canonique, etc....), dans celle des équations aux dérivées 
partielles du second ordre qui peuvent s'intégrer par les méthodes de Monge, 
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d'Ampère ou de M. Darboux, enfin dans l'étude générale des systèmes d'équations 
linéaires aux différentielles totales : la transformation du système en un autre où 
le nombre des différentielles est réduit à sa plus petite valeur peut se faire par 
l'intégration d'un certain système complet (E. V. Weber, Cartan) dont il y a lieu 
de préciser le groupe de rationalité. 

J'ai indiqué en détail pour le premier ordre, comment, en remplaçant le mot 
rationnel par rationnel dans un certain voisinage, on pouvait déduire de la même 
théorie une classification précise des domaines singuliers d'une équation 

•xr / x dz A dz A dz _ 

(ou d'un système complet) basée sur la nature des invariants différentiels rationnels 
dans ce voisinage. Le principe de cette classification subsiste dans le cas général, 
puisque la réduction d'un système irréductible régulier à la forme normale et l'unicité 
des solutions du système résolvant relatif au groupe Y (qui remplace le groupe de 
rationalité au voisinage du domaine étudié) se conservent. Il y a là un domaine 
immense ouvert à la curiosité des chercheurs—mais où l'on rencontre des difficultés. 
sérieuses, alors que les applications précédentes sont de nature facile. 

Enfin le problème qui consiste, dans un domaine de rationalité bien déterminé 
[A], à reconnaître, par un nombre limité à l'avance de calculs élémentaires, quel est 
le groupe de rationalité d'une équation donnée 

• x r f \ d z A d z . d z _ . 

s'impose également à l'attention. La principale difficulté est toujours la détermina­
tion de tous les polynômes P irréductibles dans [A], qui satisfont à une identité 

X(P) = MP. 

Ce n'est que dans des cas exceptionnels qu'on peut le résoudre. 
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