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1 INTRODUCTION

1 Introduction

Credit risk stress testing is one of the main aspects of macrofinancial supervisory stress tests.

Stress testing originated in the 1990s as part of banks’ internal risk management, when they

wanted to estimate the effects of a possible negative trend in price development. As Siemsen and

Vilsmeier (2017) point out, supervisory stress tests were introduced after the 2008 banking

crisis and in the following years. These tests aim to determine commercial banks’ capital needs

and ensure financial stability. The European Central Bank (ECB) conducted a substantial test

in 2014 to ensure the adequate capitalization of the largest banks in the euro area. Nowadays,

national central banks in Europe periodically execute supervisory stress tests (since 2015 in

Germany) to evaluate the capital reserves of smaller institutions as well.

The purpose of credit risk stress tests is to estimate the Expected Loss (EL) of credits given to

debtors by the bank. This is done for a “normal” baseline scenario and an adverse scenario, in

which a strong recession is simulated using different macroeconomic indicators. The expected

loss depends on the Default Probability (PD), which is the probability that a debtor will default

within a given time horizon; the Loss Given Default (LGD); and the Exposure at Default (EaD),

which is calculated using the following equation: ELt = LGDt · PDt · EaDt, t denoting a point

in time. A baseline or adverse scenario is typically twelve quarters long. This research focuses

on forecasting the PD time series for this period using multiple macroeconomic indicators and

past PD values. The question arises as to which explanatory variables are appropriate for the

dataset. This problem is widely referred to as model uncertainty.

According to Clyde and George (2004), methods using Bayesian statistics to address model

uncertainty have evolved remarkably over the last few decades. As early as 1978, Leamer (1978)

worked on regression selection based on prior beliefs, where he proposed different methods of se-

quentially dropping variables. Bayesian Model Averaging (BMA) was first described by Raftery

(1995) and forms the basis of the current benchmark method for credit risk stress testing. How-

ever, regression-based models are not the only useful approach. Chipman et al. (1998) were the

first to use a Bayesian approach to tree models to solve the problem of variable selection. Since

then, this approach has led to the development of several successful models. Guth (2022) used

multiple estimation methods, such as shrinkage, regression, tree models, and neural networks, on

a dataset of expected default frequencies and macroeconomic variables for Austria to compare

their prediction accuracy and robustness. As far as we know, this was the first comparison of

methods in a credit risk stress testing context.

In this study, we perform a similar comparison of methods for the German banking sector, divid-

ing debtors into seven economic sectors, resulting in seven independent models per method and

seven comparisons. We analyze three regression-based and two tree-based methods that deal

with model uncertainty differently in detail. Bayesian Model Averaging (BMA) uses a large num-

ber of small regression models and combines them into a single model using a weighted average

based on posterior model probabilities. Modified Bayesian Model Averaging is quite similar, but

it applies multiple filters to combine only a subset of econometrically and economically plausi-

ble models. This method is the closest to the so-called Benchmark Constraint Bayesian Model
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Averaging (BCBMA) that is currently used in German stress tests, as described by Siemsen and

Vilsmeier (2017). Additionally, BCBMA creates a one-factor model by mapping macroeconomic

conditions to a single systemic factor using quantile mapping. Elastic Net, developed by Zou

and Hastie (2005), is a combination of Lasso and Ridge regression. That means, an Elastic Net

is based on a linear regression model, but it shrinks the model parameters using an additional

constraint that can set parameters to zero, thereby performing variable selection. Bayesian

Additive Regression Trees (BART), introduced by Chipman et al. (2010), are based on a combi-

nation of a large number of relatively small regression trees. A posterior distribution is placed

over the space of possible tree structures, from which new candidates are sampled. The model

prediction is obtained by averaging the outputs of the sampled ensemble. In contrast, Extreme

Gradient Boosting (XGBoost), developed by Chen and Guestrin (2016), builds the model in a

sequential manner. At each iteration, a new regression tree is added to the existing ensemble,

selected to most effectively reduce the remaining error of the model. Additionally, we compare

the estimations of these models with those of two much simpler methods that do not use any ex-

ogenous variables to get an idea of how helpful complex models are in general for estimating PDs.

This research work is constructed as follows: The dataset is introduced in Section 2, including a

detailed description of the sectors and macroeconomic indicators. This section also outlines the

necessary time series transformations required for reliable estimation. The subsequent part cov-

ers the training and forecasting procedures, along with hyperparameter tuning for each model.

Section 3 presents the theoretical background of the methods under consideration, including a

mathematical explanation of how they address model uncertainty and generate forecasts. Fore-

casting results are discussed in Section 4, where the performance of the different models is

compared. This section also provides a brief overview of consistent scoring functions and intro-

duces the four evaluation metrics used. Particular attention is given to forecasts during periods

of crisis, as estimated probabilities of default (PDs) under adverse scenarios have direct impli-

cations for a bank’s required capital reserves. Section 5 concludes with a discussion of these

results and recommendations concerning a possible switch in the current forecasting method.
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2 Forecast Design

In this section, we first provide a detailed explanation of the default probabilities and the

macroeconomic indicators that we use to explain them. Then, we discuss the data used for the

training process and the estimated values. Additionally, we use a similar algorithm to tune the

models’ hyperparameters.

2.1 Data

The data to which the methods that will be analyzed are applied consists of the dependent vari-

able Probability of Default (PD) and various macroeconomic indicators as explanatory variables.

All data are available as quarterly data, i. e. they were measured at the end of March, June,

September and December of each year. We describe the data in more detail below.

2.1.1 Endogenous Variable of Interest

Institutions must report loans of e 1 million (e 1.5 million until 2015) or more to an individual

borrower or borrower unit at the end of each quarter. The Deutsche Bundesbank collects these

loans in the Bundesbank’s credit register dataset.1 Since 2008, this dataset has also included

the probability of default for each loan, which is based on the Internal Ratings-Based (IRB)

approach. This approach requires institutions to estimate the probability that a borrower will

default within the next twelve months. These estimates rely on historical data and statistical

models, and they are validated by banking supervision.

For each economic sector, the PDs at the loan level are weighted by loan volume and averaged.

The Deutsche Bundesbank extracted Information on volumes, PDs and sectors at the loan level

from the Bundesbank’s credit register and provides the aggregated data for this research project.

The seven sectors that will be analyzed here are:

• Sovereigns: Nations with rating class BB or better (Sov)

• High-Risk Sovereigns: Nations with rating class B or worse (Sov-HR)

• Financial institutes (Financial)

• Non Financial Corporates: not secured by mortgage (NFC-nonRE)

• Households: not secured by mortgage (HH-nonRE)

• Non Financial Corporates: Collateral in the form of commercial real estate (NFC-RE)

• Households: Collateral in the form of residential real estate (HH-RE)

For each sector there is a time series with quarterly data from March 2008 to December 2022

(t = 1, . . . , 60). The methods are compared separately for each time series, which may lead to

different results regarding the predictive quality of the methods depending on the sector.

1For more information see https://www.bundesbank.de/de/aufgaben/bankenaufsicht/einzelaspekte/
gross-und-millionenkredite/ueberwachung-des-kreditgeschaefts-hinsichtlich-gross-und-millionenkredite-598938
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2 FORECAST DESIGN

Assuming we have decided on one of the seven sectors, we have the time series PD1, . . . , PD60

of default probabilities, where PD1 corresponds to the PD from March 2008 and PD60 to that

from December 2022. To obtain the endogenous variable, which we will use in the models, we

apply the following transformations.

Definition 2.1 (Delta-Logit-PD). The time series of Logit-PDs is defined by

zt := log

Å
PDt

1− PDt

ã
, t = 1, . . . , 60. (2.1)

The time series of Delta-Logit-PDs is defined by

yt := ∆zt = zt − zt−4 = log

Å
PDt

1− PDt

ã
− log

Å
PDt−4

1− PDt−4

ã
, t = 5, . . . , 60, (2.2)

where ∆ denotes the year-on-year change.

Remark 2.1. The logit transformation (2.1) guarantees that our predictions of the PDs represent

interpretable probabilities after the back-transformation with

P̂D =
1

1 + exp(−ẑ)
. (2.3)

Since the exponential function only returns positive values, P̂D will only take values in the

interval (0, 1).

The second transformation, i. e. the ∆-transformation in (2.2), ensures the stationarity of the

time series that will be fitted to the models. To validate the stationarity of the Delta-Logit-PDs

we use the Augmented Dickey-Fuller test.

2.1.2 Macroeconomic Indicators

For the choice of exogenous variables, we follow Siemsen and Vilsmeier (2018) and Guth (2022).

The following macroeconomic indicators are also available on a quarterly basis between 2000

and 2022. Their values are shown in Figure 1.

• Construction Price Index (CHPI ): An average value of indices for office buildings and

industrial buildings, including turnover tax; available from the Federal Statistical Of-

fice of Germany - Consumer prices → Construction price indices → Residential build-

ings and non-residential buildings on https://www.destatis.de/EN/Service/OpenData/

short-term-indicators.html#461634

• Residential Property Price Index (RHPI ): An index for purchase prices of new and ex-

isting apartments and houses; provided in the ECB’s Statistical Data Warehouse data

portal - https://data.ecb.europa.eu/data/datasets/RESR/RESR.Q.DE. T.N. TR.TVAL.

4D0.TB.N.IX

• Unemployment Rate (UNEMP): For persons aged from 15 to 74; also available in the Sta-

tistical Data Warehouse - https://data.ecb.europa.eu/data/datasets/IESS/IESS.Q.DE.S.

UNEHRT.TOTAL0.15 74.T
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2 FORECAST DESIGN

• Long-Term Interest Rate (BONDS ): Loans with a maturity of ten years are used, the

counterpart sector is not specified; also available in the Statistical Data Warehouse -

https://data.ecb.europa.eu/data/datasets/IRS/IRS.M.DE.L.L40.CI.0000.EUR.N.Z

• Short-term Interest Rate (SWAP1Y ): We use the Euribor for a term of twelve months; also

available in the Statistical Data Warehouse - https://data.ecb.europa.eu/data/datasets/

FM/FM.M.U2.EUR.RT.MM.EURIBOR1YD .HSTA

• Gross Domestic Product for Germany (GDP): seasonally adjusted; published by the Fed-

eral Reserve Bank of St. Louis - https://fred.stlouisfed.org/graph/?g=X0vl

• Consumer Price Index (CPI ): For non-food and non-energy items, seasonally unadjusted;

also provided by the Federal Reserve Bank of St. Louis - https://fred.stlouisfed.org/graph/

?g=X2c4

• Gross Domestic Product for the United States (USGDP): seasonally adjusted; also pro-

vided by the Federal Reserve Bank of St. Louis - https://fred.stlouisfed.org/graph/?g=

X0AP

• Gross Domestic Product and its Main Components for the 27 EU Countries (EUGDP): sea-

sonally adjusted; provided by EUROSTAT - https://ec.europa.eu/eurostat/databrowser/

view/naidq 10 gdp/default/table?lang=de

• DAX Performance Index (DAX ): Closing prices on the last day of each quarter; available

at Yahoo Finance - https://finance.yahoo.com/quote/DAX/

Remark 2.2. As with PDs, all macro variables are differentiated before being used as exogenous

variables in the model. This means that we build the difference to the previous quarter and to

the same quarter from the previous year. Let Xt, t = 1, . . . , 60 be the time series of one of the

macro variables. Then

XY
t = ∆Y log(Xt) = log(Xt)− log(Xt−4), t = 5, . . . , 60, and

XQ
t = ∆Q log(Xt) = log(Xt)− log(Xt−1), t = 5, . . . , 60,

(2.4)

are used as explanatory variables. Note that UNEMP is already a rate variable and, like BONDS

and SWAP1Y, can also take negative values. Therefore, we do not use the log-transformation

here and instead use XY
t = ∆Y Xt and XQ

t = ∆QXt. As we use the quarter-on-quarter changes

and the year-on-year changes of each macroeconomic variable, this results in a total of 20

explanatory variables. After this transformation, all time series except BONDS, SWAP1Y, CPI

and CHPI are stationary with a probability of more than 95 percent. We only use deltas and

not growth rates, as these do not lead to a higher probability of stationarity in all but two cases.

2.2 Training and Testing

In the context of credit risk stress testing, we can use the entire time series as a training data

set. The resulting model is used to estimate default probabilities for the next three years (twelve

quarters). Although we are working with time series, the estimates are not traditional forecasts.
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Figure 1: Macro variables between 2008Q1 and 2022Q4

In training the model, we analyze the extent to which the exogenous macro variables and the lags

of the endogenous variable affect the target variable. The values of the exogenous variables are

taken as given for the forecast horizon, i. e. the next 12 quarters. Consequently, the estimation

procedure approaches an estimation that would be applied to no time series data. However, due

to the lags of the endogenous variable, there are time series effects in the estimation. This means

that the PDs must be estimated sequentially, as the current estimate may affect the subsequent

ones.

In our case, we have to divide the data set into a training and a testing data set in order to

be able to evaluate the out-of-sample performances of the examined methods. Analogous to

the stress testing context, the testing data set always directly follows after the training data

set and has a length of twelve quarters. If we were to test on only a single time interval, this

could negatively influence the result of the comparison. A procedure that is actually worse

could appear to be superior because the time series in the test interval happens to match that

procedure well. To avoid this, we test on different intervals by varying the length of the training

data set. Before defining the training and testing data sets mathematically, we reindex the
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2 FORECAST DESIGN

endogenous and exogenous time series such that t = 1 corresponds to March 2009, and t = 56

corresponds to December 2022.

Definition 2.2. Let y = (y1, . . . , y56) be the dependent time series resulting from (2.2) and

X ∈ R56×(N+K) the data matrix containing all N exogenous variables as outlined in (2.4) and

the K lags of the endogenous variable that are used in the model. We define the training data

set DTr and the testing data set DTe in the j-th iteration as follows:

DTrj := (yTrj ,XTrj ), where yTrj := (y1, . . . , yj+3), XTrj := X[1:(j+3),:] (2.5)

DTej := (yTej ,XTej ), where yTej := (y1, . . . , yj+15), XTej := X[(j+4):(j+15),:] (2.6)

One single iteration consists of the following four steps:

1) Train model on (y1, . . . , yk) and X[1:k,:]

2) Predict next value ŷk+1 using X[k+1,:], the corresponding exogenous values

3) Replace yk+1 by ŷk+1 in X

4) Repeat 2) and 3) until twelve values in a row have been predicted

In step 2, we take the next row of X as given, as this corresponds to the specified scenarios in

the context of stress tests. In step 3, the true values y must be replaced by the estimates ŷ, as

these are unknown in the application context and later estimates also depend on the previous

estimates.

We follow Guth (2022) and start the first iteration with a small data set of length 4 to train our

first model, i. e. DTr1 =
(
(y1, . . . , y4),X[1:4,:]

)
. Once the model has been computed, we estimate

ŷTe1 = (ŷ5, . . . , ŷ16) using the test data set DTe1 . In particular, we use the exogenous values of

the forecast horizon X[5:16,:] and we may use lagged endogenous values (y1, . . . , y4) depending on

the model. Subsequently we evaluate our estimation using yTe1 = (y5, . . . , y16). If X contains

one lag of y, we have to carry out a stepwise estimation. At first, we calculate ŷ5 using X[5,:] and

y4, then calculate ŷ6 using X[:,6] and ŷ5 and so on. After each iteration we increase the length

of the training data set by one resulting in

DTr41 =
(
(y1, . . . , y44),X[1:44,:]

)
and DTe41 =

(
(y1, . . . , y56),X[45:56,:]

)
(2.7)

in the last iteration. Please note that – due to the limited PD time series – the training time

series begins with a higher index if the model contains lags. For example, if the model contains

two lags, we must start our training data at i = 3, since we need y1 and y2 as explanatory values

for our first model. This procedure is precisely described below in the algorithm 1.

2.3 Hyperparameter Tuning

For the methods described in the next chapter, different hyperparameters must be set. These

affect the training algorithm. Since they do not change dynamically during training, it is im-

portant to set them manually beforehand.

7



2 FORECAST DESIGN

Algorithm 2 How to train models of different lengths and estimate Delta-Logit-PDs for the
next twelve quarters

1: L← empty list
2: if No lags in model then
3: for j = 1 to 41 do
4: Train model on yTrj := (y1, . . . , yj+3) and XTrj := X[1:(j+3),:]

5: Estimate ŷTej = (ŷj+4, . . . , ŷj+15) using model and XTej := X[(j+4):(j+15),:]

6: Save ŷTej in L at position j
7: end for
8: else if One lag in model then
9: for j = 1 to 40 do

10: Train model on yTrj := (y1, . . . , yj+4) and XTrj := X[2:(j+4),:]

11: ▷ (y2, . . . , yj+4) as dependent, (y1, . . . , yj+3) as lagged explanatory variable
12: V ← empty vector
13: vol← yj+4 (vector of lags)
14: for k = 1 to 12 do
15: Estimate ŷj+4+k using model and X[(j+4+k),:] and vol
16: Save ŷj+4+k in V at position k
17: vol← ŷj+4+k

18: end for
19: Save V in L at position j
20: end for
21: else if l > 1 lags in model then
22: for j = 1 to 41− l do
23: Train model on yTrj := (y1, . . . , yj+3+l) and XTrj := X[(l+1):(j+3+l),:]

24: ▷ (yl+1, . . . , yj+3+l) as dependent, (y1, . . . , yj+2+l) as lagged explanatory variable
25: V ← empty vector
26: vol← (yj+6−l, . . . , yj+5) (vector of lags)
27: for k = 1 to 12 do
28: Estimate ŷj+3+k+l using model and X[(j+3+k+l),:] and vol
29: Save ŷj+3+k+l in V at position k
30: vol← (vol[2:], ŷj+3+k+l)
31: end for
32: Save V in L at position j
33: end for
34: end if

8



2 FORECAST DESIGN

We perform a grid search to find the most effective hyperparameter tuple. This involves setting

possible values for each hyperparameter. Each possible combination of these values is then

tested, and the combination that gives the best result is used for the final model. This procedure

can be very time consuming even with just a few hyperparameters, so it is not possible to test

many values per parameter. In particular, this method will not find the optimum for parameters

over a continuous range of values. The hyperparameters we examine and the values we ultimately

use are described in the chapters on the respective methods.

To evaluate how good a combination of hyperparameters is, we start with a training time series

t = 1, . . . , 4 of length four and estimate y for the next twelve quarters as described above.

Estimates are compared with actual values using the Mean Squared Error (MSE). The training

time series is extended by one quarter, and the procedure is repeated until the final training

time series of length 42 and which ends in 2019Q4 is reached. The arithmetic mean is calculated

from the MSE values. The hyperparameter combination is evaluated on the basis of this mean.

9
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3 Methods

This chapter introduces the regression- and tree-based methods selected for comparison in this

study. For each approach, models are trained and their forecasts evaluated to assess the adequacy

of the respective methods for the given dataset of PD time series.

3.1 Modified Bayesian Model Averaging

The current state-of-the-art credit risk satellite method is precisely described by Siemsen and

Vilsmeier (2018). It is called Benchmark-Contrained Bayesian Model Averaging (BCBMA) and

combines a classical BMA approach with a structural filter derived from a Merton/Vasicek model

(benchmark model). In this model, the distributions of macro variables are fitted to past values

for estimation. The value of a single systemic factor is derived from the quantiles of a macroe-

conomic scenario in these distributions using quantile mapping. Then, the model translates this

value into a PD. If estimates of a model deviate too far from those of the benchmark model,

this model is filtered out. For reasons of complexity, we do not include the benchmark filter in

this research work. For further information, see Vasicek (2002).

We call our methodModified BMA because we incorporate three macroeconomic and statistically

motivated filters into the BMA method. With the exception of the benchmark filter, we adhere

exactly to the descriptions of Siemsen and Vilsmeier (2018). The main problem with a simple

OLS model is the short observation period. The short PD time series contains hardly any

observations that can be attributed to specific macroeconomic events. The explanatory variables,

some of which are highly correlated, lead to serious model uncertainty. If the available exogenous

variables were used in a single linear model, there would be a risk of overfitting. OLS estimates

outside the observation period would be sensitive to the model specifications and therefore less

reliable.

The main idea of BMA to deal with this problem is to generate many linear models with only

a few exogenous variables each. Unsuitable models are filtered out. The remaining models are

merged into a single model using a weighted average based on their posterior model probabili-

ties. We start with an autoregressive distributed lag (ADL) model equation that describes the

relationship between the delta logit PDs and the macroeconomic variables:

yt = α0 +

K∑
k=1

αkyt−k +

L∑
l=0

β′
lxt−l + εt (3.1)

y is defined by (2.2), ε is the residual and K ∈ N and L ∈ N denote the number of endogenous

and exogenous lags. xt ∈ R20 is a vector of the ten QoQ and ten YoY differences of the

macro variables, i. e. the t-th row of the matrix X. αk ∈ R and βl ∈ R20 denote the model

parameters that are later estimated using the OLS method, α0 denotes the intercept parameter.

For variables that do not appear in a model, we enter zeros in the appropriate places in β so

that all parameter vectors have the same length.

We now create a separate model for each possible combination of exogenous and endogenous

variables, where the maximum number of explanatory variables is N . Since we have a total

10
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of 20 macroeconomic variables available, this results in
(20(L+1)+K

N

)
models, each with its own

model equation (3.1). We define the model space as the set of parameters that occur in one of

the models:

M :=

{
(α0, α1, . . . , αK , (β0)1, . . . , (β0)20, . . . , (βL)1, . . . , (βL)20)i

∣∣∣∣∣1 ≤ i ≤
Ç
20(L+ 1) +K

N

å}
(3.2)

(βx)y denotes the parameter value for macro variable y of lag x. Each parameter vector mi ∈M
represents a specific unique model. In order to filter out the unimportant models and identify

the meaningful models on which the final model is based, we carry out the five steps described

below in turn. In each step, we reduce the model spaceM using a specific filter. The indicators

on which the individual filters are based are:

• Step 1 – Adjusted Coefficient of Determination

• Step 2 – Akaike Information Criterion

• Step 3 – Correlation coefficients of exogenous variables

• Step 4 – Autocorrelation of residuals

• Step 5 – Signs of Long Run Multipliers

In a sixth step, the remaining models are combined to form a final model.

Step 1 – Leaps and bounds

SinceM so far consists of the models of all possible combinations of exogenous variables, it can

be assumed thatM contains some models that do not help us estimate y. Therefore, in a first

step, we want to filter out most models by keeping only models inM with up to four explanatory

variables. This reduces the likelihood of overfitting, especially in the case of a short training

time series. Furthermore, fewer co-variables also mean fewer possibilities for collinearity. For

each model size we only keep the Q best models. Q should be chosen sufficiently large. To rank

the models, the adjusted R2 is used as a benchmark. Furnival and Wilson (2000) developed an

algorithm that finds these models in an efficient way without calculating the parameters and

R2 values of all models. The best method that works with our dataset is regsubsets of the R

package leaps. We set Q = 40 because it is the maximum number that does not produce any

errors with our relatively small dataset. At this point the filtered model space contains only 140

models, 40 models with four, three and two explanatory variables each and 20 models with only

one variable.

Step 2 – Occam’s window

At this point, we estimate all Q models inM. Madigan and Raftery (1994) use Occam’s win-

dow to identify the relevant subset of the model space. To do this, they use the posterior model

probabilities pi := p(mi|D) given our data D. D denotes the training data set which is used for

model mi. p(mi|D) indicates the probability that mi is the correct model and thus shows us

11



3 METHODS

how well it fits our data D. Instead of calculating pi we follow Burnham and Anderson (2002)

and approximate the posterior model probability by

pi ≈
exp(−0.5∆i)∑Q
j=1 exp(−0.5∆j)

=: δi, (3.3)

with ∆i = AICi − min
1≤j≤Q

{AICj}, AIC denoting the Akaike Information Criterion. We will

describe in more detail later why we can approximate pi by δi. For a threshold o ∈ R, we

remove all models mi from the model spaceM for which

max
1≤j≤Q

{δj}

δi
> o. (3.4)

In this way, we keep all models that are at most o times less likely to be the right model than

the best model.

Step 3 – Multicollinearity filter

We only want to consider models based on a combination of macro- variables whose pairwise

correlation is below a certain threshold γ ∈ R. Let mi be a model from the remaining model

space M. mi contains the macro variables xi = {x̂1, . . . , x̂ni}, i. e. variables in xi have a non-

zero parameter, ni being the number of variables in mi. If j, k ∈ {1, . . . , ni}, j ̸= k, exist such

that

Corr(x̂j , x̂k) > γ (3.5)

then mi is filtered out ofM.

Step 4 – Autocorrelation filter

Next, we want to filter out all models with first order autocorrelation. In this case, the

value of one residual would depend significantly on the previous one. In the model equation

εt = ρ1εt−1 + νt, the estimator ρ̂1 would be significantly different from zero. Siemsen and

Vilsmeier (2018) recommend using the Durbin-Watson test. It is known that the test underes-

timates autocorrelation when the model is autoregressive. In our models, where there are lags

in the dependent variable, the test statistic is biased. The recommendation is therefore to use

the Durbin-h test, whose test statistic is not biased by autoregression. Nevertheless, we use the

Durbin-Watson test to compare the described procedure.

Step 5 – Sign restrictions

As part of this filter, we make some assumptions about the impact of macro variables on PDs.

We formulate concrete ideas about the effect of shocks to certain macro variables. If a model

does not fit these assumptions, it is filtered out ofM. To do this, we exogenously impose sign

restrictions sj on the estimated long-run multipliers (LRM). The LRM of a macrovariable x̂j is
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defined as

θj :=

∑L
l=0(β̂l)j

1−
∑K

k=1 α̂k

. (3.6)

If, for example, we do not use the first lag of the dependent variable in the model, then the

parameter α̂1 would be zero. Let mi ∈ M be a model that contains the macro variables

xi = {x̂1, . . . , x̂ni}. Then mi is filtered out if at least one j ∈ {1, . . . , ni} exists such that

sgn(θj) ̸= sj . (3.7)

Like Siemsen and Vilsmeier (2017) we impose the following signs on the macro LRMs:

Macro Variable LRM Sign

UNEMP +
BONDS +
GDP -
CHPI -
RHPI -
DAX -
EUGDP -
USGDP -
CPI 0
SWAP1Y 0

The positive sign of the LRM of UNEMP means that we assume that rising unemployment will

lead to higher PDs in the long term. A zero means that these LRMs remain unconstrained.

Step 6 – Model averaging

After these five steps, we have generated the filtered model space from the unfiltered model space

M, which we denote by M. Let R = #M be the number of remaining models. To combine

these into a weighted average, we need to recalculate their posterior model probabilities with

pi ≈
exp(−0.5∆i)∑R
i=1 exp(−0.5∆i)

= δi. (3.8)

Now we use them as weights when calculating a single parameter vector as follows:

mBMA =

R∑
i=1

δimi, with mi = (α0, α1, . . . , αK , (β0)1, . . . , (β0)20, . . . , (βL)1, . . . , (βL)20)i

(3.9)

We analyze the following hyperparameters:
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Para Financial NFC-nonRE Sov NFC-RE HH-nonRE HH-RE Sov-HR

o 30 30 30 30 30 30 30
L 0 0 0 0 0 0 0
γ 0.9 0.8 0.9 0.7 0.9 0.7 0.7
DW 0.1 0.1 0.1 0.1 0.1 0.1 0.1

3.2 Bayesian Model Averaging

In addition, we will analyze the Bayesian Model Averaging (BMA) method and compare the re-

sults with those of the modified variant of the previous chapter. BMA was described by Raftery

(1995) and was also implemented in the R library BMA which we use in this research work.

The biggest difference to the modified version is that no macroeconomic filters are used here.

Instead, all possible models are considered and weighted according to their posterior model

probability.

The model equation of a single linear model remains (3.1) and does not change. The same

20 macro variables and possibly their lags and the lags of the dependent variable are considered.

The posterior model probability for a model mi given our dataset D is then approximated by

pi = p(mi|D) =
exp(−0.5BICi)∑Q
j=1 exp(−0.5BICj)

= δi. (3.10)

Then we apply Occam’s window to cut off all models that are o times less likely to be the right

model than the likeliest one. All remaining models form the basis for the final average model.

We analyze the following hyperparameters:

Para Financial NFC-nonRE Sov NFC-RE HH-nonRE HH-RE Sov-HR

o 30 30 30 20 20 20 30
L 0 0 0 0 0 0 0
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3.3 Approximating the Posterior Model Probability

Let us now briefly examine why the approximation to the optimal weighting of the models in

(3.10) makes sense.

Let A and B be events and P a probability distribution with P(B) ̸= 0. By Bayes’ theo-

rem we know that for the conditional probability P(A|B), given that B is true, the following

equation holds:

P(A|B) =
P(B|A)P(A)

P(B)
(3.11)

P(A) and P(B) denote the prior probabilities of A and B. If we identify the event A with the

case that model mi is the correct one and event B with the case that we observe data D which

denotes our dependent time series yt, we can derive the following expression for posterior model

probability:

P(mi|D) =
P(D|mi)P(mi)

P(D)
(3.12)

P(mi) is the prior model probability, where we can make assumptions about the model. As we

do not make any assumptions beforehand, this value is #M for all models. P(D) is the total

probability P(D) =
∑

m∈M P(D|m)P(m) which can also be treated as constant.

The following theorem, i. e. the so called BIC approximation, is essentially taken from Raftery

(1995).

Theorem 3.1. For large samples and under the constraint of equal prior model probabilities,

the following proportionality holds:

P(mi|D) ∝ P(D|mi) ≈ exp

Å
− BIC

2

ã
(3.13)

The Bayesian information criterion (BIC) is defined as

BIC = k lnn− 2 ln L̂,

where k denotes the number of parameters estimated by the model, n denotes the sample size

and L̂ = P(D|θ̂,mi) denotes the maximum likelihood with θ̂ being the likelihood-maximizing

parameter vector.

Proof. Since P(mi)/P(D) is the same constant for every model mi ∈ M, P(mi|D) ∝ P(D|mi)

follows directly from equation (3.13). P(D|mi) is defined as

P(D|mi) =

∫
P(D|θi,mi)P(θi|mi)dθi. (3.14)

θi denotes the parameter vector of model mi. In the following, we keep a specific model and do

not mention it in the equations in order to keep the complexity low.
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We use the interior of the integral to define g(θ) := ln (P(D|θ)P(θ)) and consider a Taylor series

expansion

g(θ) = g(θ) + (θ − θ)T g′(θ) +
1

2
(θ − θ)T g′′(θ)(θ − θ) + o(||θ − θ||2),

θ being the value of θ that maximizes g. g′(θ) denotes the vector of first partial derivatives and

g′′(θ) is the Hessian matrix of second partial derivatives. g′(θ) = 0 because θ maximizes g. Thus

g(θ) ≈ g(θ) +
1

2
(θ − θ)T g′′(θ)(θ − θ).

This estimation is good for large n, since the θ with a large distance to θ have a low probability

and therefore contribute little to the integral (3.14). Thus

P(D) =

∫
P(D|θ)P(θ)dθ

=

∫
exp

(
g(θ)

)
dθ

≈ exp
(
g(θ)

) ∫
exp

Å
1

2
(θ − θ)T g′′(θ)(θ − θ)

ã
dθ

= exp
(
g(θ)

)
(2π)

k
2 |A|−

1
2 .

(3.15)

In the last step, we used that the density of the multivariate normal distribution integrates to

one, with A := −g′′(θ) and |A| denoting the determinant of A.∫
exp

Å
1

2
(θ − θ)T g′′(θ)(θ − θ)

ã
dθ =

∫
exp

Å
− 1

2
(θ − θ)TA(θ − θ)

ã
dθ

=
»
(2π)k|A−1|

= (2π)
k
2 |A|−

1
2

Since the error in equation (3.15) is O(n−1) according to Tierney and Kadane (1986) we get

lnP(D) = lnP(D|θ) + lnP(θ) + k

2
ln(2π)− 1

2
ln |A|+O(n−1).

It is known that the inverse variance-covariance matrix A converges to the Fisher information

matrix in large samples. According to Raftery (1995) |A| ≈ nd|i| with an O(n−1/2) error term.

Thus,

lnP(D) = lnP(D|θ) + lnP(θ) + k

2
ln(2π)− k

2
lnn− 1

2
ln |i|+O(n− 1

2 ). (3.16)

Most of the terms in equation (3.16) are of order O(1) or less. Finally, we arrive at

lnP(D) = lnP(D|θ)− k

2
lnn+O(1).
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By plugging in the definition of the BIC, we can prove the claimed approximation:

exp

Å
− BIC

2

ã
= exp

Å
ln(L̂)− k

2
lnn

ã
≈ exp

Å
lnP(D|θ)− k

2
lnn+O(1)

ã
= P(D)

The error term of order O(1) shows that the error in this estimate does not disappear even with

an infinite amount of data. Raftery (1995) discuss this further and show that the error converges

to zero with the correct choice of prior distribution. We will not go into this further as the BIC

approximation has already been proved at this point.

For our modified version of the BMA method, instead of using this BIC approximation we follow

Burnham and Anderson (2002) and base our model weights in (3.3) on the slightly different

Akaike information criterion which is defined as

AIC = −2 ln(L̂) + 2k.
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3.4 Elastic Net

In this section, we will first explain how OLS, Lasso, and Ridge regression differ from each

other. We will then describe the Elastic Net, which was introduced by Zou and Hastie (2005)

and combines these shrinkage methods.

The basis for all methods is an OLS regression (ordinary least squares) as described in (3.1).

We will now use a simpler notation:

y = Xβ + ε

The design matrix X ∈ RT×(20·(L+1)+K+1) contains the values of all 20 exogenous variables

and can also contain L lags of these variables and K lags of the target variable. β ∈ Rp,

p = 20 · (L + 1) + K + 1, contains all corresponding regression coefficients and the intercept.

β̂OLS = (X′X)−1X′y is the solution of the optimization problem

min
β

T∑
t=1

(yt −Xtβ)
2.

Ridge regression was developed to circumvent the problem of collinearity between multiple

explanatory variables. McDonald and Schwing (1973) were able to show that this approach

can be helpful in some cases-unlike other methods that work by eliminating variables. Ridge

regression is described in detail in McDonald (2009). We will only briefly describe the model

here. The minimization problem is extended by a penalty term that penalizes high absolute

values of beta more severely. This depends on a parameter λ ∈ [0,∞).

β̂Ridge(λ1) := argmin
β

[
T∑
t=1

(yt −Xtβ)
2 + λ1

p∑
j=1

β2
i

]
= (X′X+ λ1I)

−1X′y

Lasso regression (least absolute shrinkage and selection operator) was developed by Tibshirani

(1996) and combines two different approaches to compensate for the weaknesses of OLS regres-

sion. Similar to Ridge regression, a Lasso model can shrink parameters and thus increase the

prediction accuracy of the model. Unlike Ridge, Lasso can also set these parameters to zero and

thus perform variable selection. This puts the focus on the more important features and makes

the results easier to interpret. This is done by the following minimization problem:

β̂Lasso := argmin
β

T∑
t=1

(yt −Xtβ)
2, subject to

∑
j

|βj | < λ2, λ2 ≥ 0

Since ||β||1 is not differentiable, the solution set is angular, with corners on the axes. The

optimum is often located at one of these corners, where one or more coefficients are equal to

zero.

Zou and Hastie (2005) describes two specific weaknesses of the Lasso method. On the one hand,

if there are more regressors than observations, no more regressors can be taken into account than

there are observations. Second, there are cases with few regressors, many observations, and high

correlation between some regressors where Ridge regression is superior. Zou and Hastie (2005)

therefore developed the elastic net, which solves the problems of Lasso and works similarly in
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cases where Lasso performs well. Here, an L1 and an L2 penalty term are added, which are

weighted with the parameters λ1, λ2 ∈ [0,∞):

β̂ = argmin
β

[
T∑
t=1

(yt −Xtβ)
2 + λ1

p∑
j=1

β2
j + λ2

p∑
j=1

|βj |

]

With α := λ1/(λ1 + λ2) we have to solve the optimization problem

argmin
β

[
T∑
t=1

(yt −Xtβ)
2

]
subject to (1− α)||β||1 + α||β||2 ≤ t for some t.

For α = 0, we obtain the convex, but not strictly convex, Lasso penalty. For α = 1, this becomes

Ridge regression. By choosing alpha in (0, 1), we obtain a strictly convex but not differentiable

penalty function. This allows us to combine the positive shrinkage properties of Ridge and

the variable selection of Lasso in one model. However, since this leads to overshrinkage, the

estimator must be corrected by a factor:

β̂elastic net = (1 + λ1)β̂

Another advantage of Elastic Net over Lasso is the grouping effect. This refers to the property

that the model assigns very similar coefficients to highly correlated variables. With a group

of highly correlated or even identical variables, Lasso would select one of them to remain in

the model. Elastic Net, on the other hand, recognizes this group of variables and assigns them

similar coefficients accordingly.

For implementation, we use the function glmnet of the R package GLMNET. We perform a

grid search with zero and one exogenous lag and α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. In three sectors

the Ridge regression turned out to be the dominant method, the Lasso estimation is superior in

only one economic sector. We will refer to the Elastic Net estimation as ELN. Note that α is

defined differently in the R package and Ridge regression is performed with α = 0.

The following hyperparameters turned out to be the best:

Para Financial NFC-nonRE Sov NFC-RE HH-nonRE HH-RE Sov-HR

α 0.4 1.0 0.0 0.4 0.2 0.0 0.0
L 1 0 1 0 0 1 1
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3.5 Tree Based Models

Let us first explain how a binary regression tree works and then how we can combine multiple

trees to get a sum-of-trees model. A regression tree is a non-parametric model which helps us

to make predictions about a target variable based on a vector of explanatory variables. Let xt

be the vector of explanatory variables – a row of X from Definition (2.2) at time t and xjt the

j-th component of xt. Let X denote the feature space, the space which all the vectors of the

explanatory variables are elements of, i. e. X = Rd, d being the number of explanatory variables.

The core idea of regression trees is to divide X into disjoint regions R1, R2, . . . , RB ⊂ X with

R1 ∪ R2 ∪ · · · ∪ RB = X . The prediction for y-values will be the mean of the observations in

each region.

To perform a single split we have to define a subset A ⊂ X such that either xt ∈ A or xt /∈ A.

Typically, these decision rules are based on a single component xjt ∈ R of xt and

A = {x ∈ X |xj ≤ c}, c ∈ R. (3.17)

For a given region A (or AC = X \ A), the prediction for the y-value belonging to x ∈ A (or

x ∈ AC) is the mean of y in that region:

ŷA =
1

|A|

T∑
t=1

yt · 1{xt∈A} , ŷAC =
1

|AC |

T∑
t=1

yt · 1{xt∈AC}

The parameter c ∈ R and the feature j is selected so that the sum of squared errors

SSE(j, c) =
T∑
t=1

(
yt − ŷA

)2 · 1{xt∈A} +
(
yt − ŷAC

)2 · 1{xt∈AC}

is minimized. Once the optimal split of X is found, this process is repeated recursively for the

regions A and AC until a stopping criterion is met or no further reduction in the SSE can be

achieved. We receive the B disjoint regions of X mentioned above and a set of parameter values

M = {µ1, . . . , µB}. Each parameter value in M belongs to one of the regions and denotes the

predicted target value in that region:

µi := ŷRi =
1

|Ri|

T∑
t=1

yt · 1{xt∈Ri}

Definition 3.1. Let T denote a binary regression tree consisting of a set of interior node

decision rules of the form (3.17) and a set of terminal nodes. Let M = {µ1, . . . , µB} denote a

set of parameter values associated with each of the B terminal nodes of T . A single-tree model

is defined by the equation

y = g(x;T,M) + ε, ε ∼ N (0, σ2), (3.18)

where g(x;T,M) is the function that assigns µi to x if x ∈ Ri.

Now we consider m binary trees, m ∈ N, each of which has different decision rules and a different
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set of parameter values. The number of terminal nodes per tree can also vary.

Definition 3.2. Let Tj , j = 1, . . . ,m be binary trees and let Mj be the set of parameter values

associated with Tj . A sum-of-trees model is defined by the model equation

y =
m∑
j=1

g(x;Tj ,Mj) + ε, ε ∼ N (0, σ2). (3.19)

Since the model can also contain trees that depend on a single feature, we can also model

the main effects of the features. Trees that depend on two or more features, i. e. explanatory

variables, can represent different interaction effects of different orders. Thus, with a large number

of trees m, the model offers a high degree of representational flexibility.

3.5.1 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) were introduced by Chipman et al. (2010) and rep-

resent a statistical learning method that combines machine learning with a Bayesian framework.

BART models the response variable as a sum of regression trees, each constrained by a regu-

larization prior, which allows capturing non-linear interactions within the data. Guth (2022)

compared 43 methods in the context of credit risk stress testing to predict default probabilities.

BART turned out to be the overall winner method. It is also widely used to analyze causal

inference and treatment effects, e. g. by Dorie et al. (2022). For implementation, we use the

function wbart of the R package BART.

For fixed m, a sum-of-trees model is determined by (T1,M1), . . . , (Tm,Mm) and σ. Large trees

and a large m can usually lead to redundancy across the tree components in the sense that many

different choices of the trees result in the same or a very similar model. Next, for a fully Bayesian

approach, it is necessary to impose prior distributions on every parameter in the sum-of-trees

model. The priors help us to regularize the influence of large tree components. The few small

trees should retain a certain importance in representing main effects and low-order interaction

effects.

Chipman et al. (2010) restrict their choice of priors to those that satisfy the following condition:

P
(
(T1,M1), . . . , (Tm,Mm), σ

)
=

Å m∏
j=1

P(Tj ,Mj)

ã
P(σ)

=

Å m∏
j=1

P(Mj |Tj)P(Tj)

ã
P(σ)

=

Å m∏
j=1

Å Bj∏
i=1

P(µij |Tj)

ã
P(Tj)

ã
P(σ)

Bj denotes the number of terminal leaves of tree Tj , i. e. #Mj , µij ∈ Mj . They use the same

forms for all P(Tj) and for all P(µij |Tj). Only three different priors need to be developed in

this way.
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Prior for P(Tj)

To determine this prior Chipman et al. (2010) follow the recommendations by Chipman et al.

(1998). There are three aspects that specify P(Tj), namely:

1) The splitting probability of a node

2) The distribution on the splitting variable assignment

3) The distribution on the splitting rule assignment

Let dη ∈ N0 denote the depth of node η, i. e. the number of splits above η. The probability of

node η being split is

Psplit(η) = α(1 + dη)
−β, α ∈ (0, 1), β ∈ R+

0 .

α is the probability that the first node of the tree will be split, β is a parameter to control for

the shape of the trees. A higher β makes deeper nodes less likely to split, which puts higher

probability on “bushy” trees whose terminal nodes do not vary much in depth. Next, we impose

a uniform distribution on the variables that can be used to split the feature space. This means

that when a node is split, each explanatory variable has the same probability of being the feature

on which the decision rule is based. This choice represents the prior information that at each

node available predictors are equally likely to be effective. Finally, we choose the parameter

c uniformly from the available observed values of the previously chosen predictor. This choice

represents the prior information that for each available predictor the available split values are

equally likely to be effective.

Chipman et al. (2010) recommend keeping the individual trees quite small by using the param-

eters α = 0.95 and β = 2. In this case 92% of the trees in the sum-of-trees model will have

between two and four terminal nodes.

Prior for P(µij |Tj)

In the sum-of-trees model, the following equation for the conditional expectation value of y

holds:

E[y|x] =
m∑
j=1

µijj , 1 ≤ ij ≤ Bj

Here, ij is the index of the leaf of tree j to which x belongs. We impose a normal distribution

with parameters µµ and σ2
µ on the µij ’s. Since they are a priori independent and identically

distributed, E[y|x] has the a priori distribution N (mµµ,mσ2
µ).

The aim now is to choose the parameters of the distribution so that it produces plausible

values for y with a high probability. The minimum and maximum values ymin and ymax of the

observations y in the data set are used as a reference. By setting

mµµ − k
√
mσµ = ymin and mµµ + k

√
mσµ = ymax

for a preselected parameter k we can control the highly probable region of our prior.
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Now we shift and rescale the time series of the endogenous variable y such that ymin = −0.5
and ymax = 0.5. Now the parameters are

µµ = 0 and σµ =
1

2k
√
m
.

Using µij ∼ N (0, σ2
µ) we shrink the tree parameters towards zero. This allows us to reduce the

influence of a single tree on the whole model. According to Chipman et al. (2010), k between

1 and 3 gives good results, k = 2 is recommended as a default. Since the structure of the

regression trees is invariant to monotonic transformations of the explanatory variables, we can

simply transform y without taking any further steps.

Prior for P(σ)
As the prior distribution of σ2 we use an inverse chi-square distribution σ2 ∼ νλ/χ2

ν , λ being a

scale parameter, and ν denoting the number of degrees of freedom. Again, we use the given data

to obtain a plausible form of the distribution of σ. As an estimation σ̂ of σ we can use either

the standard deviation of y or the residual standard deviation of a least squares regression of y

on all explanatory variables. First we pick a value for ν and then choose λ so that

P(σ < σ̂) = q

for a chosen percentile parameter q ∈ (0, 1). Chipman et al. (2010) recommend the default

setting (ν, q) = (3, 0.9). A higher q or less degrees of freedom would lead to a more aggressive

setting in which much mass is concentrated in a relatively small interval.

Sampling the posterior distribution

Our next goal is to derive the posterior distribution

P((T1,M1), . . . , (Tm,Mm), σ|y), (3.20)

given the observed data y. For this purpose, Chipman et al. (2010) use a Gibbs sampler. This

means that m pairs (Tj ,Mj), j = 1, . . . ,m are drawn successively, while all other trees (Tk,Mk),

k ̸= j remain unchanged. The draw (Tj ,Mj) therefore only depends on the residual

Rj = y −
∑
k ̸=j

g(x;Tk,Mk).

The draw from (Tj ,Mj)|Rj , σ is done in two successive steps. First, we draw the tree structure

from Tj |Rj , σ using the Metropolis-Hastings algorithm described in Chipman et al. (1998). This

algorithm uses the Tj from the previous iteration and either grows a node by splitting a terminal

node into two new ones (GROW), turns a parent of two terminal nodes into a terminal node

by collapsing its children (PRUNE), changes the splitting rule of an internal node (CHANGE),

or swaps the splitting rules of a parent-child pair that are both internal nodes (SWAP). The

action and the node on which it is performed are selected at random. Second, we draw the set

of parameter values Mj |Tj , Rj , σ from a normal distribution for each µij . Having done this, we
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are ready to calculate the subsequent residual Rj+1. After the m draws of (Tj ,Mj) we draw

σ|T1, . . . , Tm,M1, . . . ,Mm, y from the previously described inverse gamma distribution. This

hole process represents one iteration of our algorithm.

The chain must be initialized with m single-node trees. Then iterations are performed until a

satisfactory convergence is achieved. After a sufficient burn-in period, we continue by generating

a sequence of (T1,M1), . . . , (Tm,Mm), σ of length K that, according to Chipman et al. (2010),

is converging in distribution to the posterior (3.20). To estimate the y value for a given x we

can approximate the posterior mean E[f(x)|y] by calculating

1

K

K∑
k=1

fk(x), fk(x) :=

m∑
j=1

g(x;T k
j ,M

k
j ),

where (T k
j ,M

k
j ) denotes (Tj ,Mj) from the k-th place in our generated sequence.

Algorithm 3 Posterior Sampling

1: Initialize T 0
1 , . . . , T

0
m,M0

1 , . . . ,M
0
m as single-node trees

2: while No satisfactory convergence in distribution do
3: Metropolis-Hastings algorithm for each j ∈ {1, . . . ,m}
4: Sample σ from inverse gamma distribution
5: end while
6: Overwrite T 0

1 , . . . , T
0
m,M0

1 , . . . ,M
0
m with last trees from previous loop

7: for k = 1 to K do
8: for j = 1 to m do
9: Build T k

j using MH algorithm on T k−1
j

10: Build Mk
j by sampling from normal distribution

11: Sample new σ
12: end for
13: end for

We analyze the following hyperparameters:

Para Financial NFC-nonRE Sov NFC-RE HH-nonRE HH-RE Sov-HR

m 50 200 200 200 200 200 200
k 2.5 2.5 2 2.5 2.5 2.5 2.5
ν 5 7 7 5 7 5 3
q 0.9 0.75 0.9 0.75 0.9 0.75 0.99
L 0 1 0 0 1 1 0

3.5.2 Extreme Gradient Boosting

Extreme Gradient Tree Boosting (XGBoost) is a machine learning system for tree boosting de-

veloped by Chen and Guestrin (2016). A single regression tree acts as a weak learner here. For

each iteration, a new tree is added to the existing model that best improves the model. The

stronger ones among the weak learners are weighted higher, whereas the really weak ones are

ignored. According to Chen and Guestrin (2016), XGBoost has been superior to other methods

in many challenges in machine learning and data mining. For implementation, we use the func-
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tion xgb.train of the R package xgboost.

A data point is given by (xt, yt), xt ∈ Rd, yt ∈ R, t ∈ {1, . . . , T}. We use equation (3.19) to

define the function ϕ that estimates the target value for a single data point:

ŷt = ϕ(xt) :=
m∑
j=1

g(xt, Tj ,Mj)

In each iteration step we want to minimize

L(ϕ) :=
T∑
t=1

l(ŷt, yt) +
m∑
j=1

Ω(Tj .Mj),

Ω(Tj ,Mj) := γBj +
1

2
λ||µ(j)||2, µ(j) = (µ1j , . . . , µBjj),

where l is a differentiable convex loss function that measures the quality of the prediction and

Ω penalizes the complexity of the trees used in the model. Penalizing complex regression trees

helps to avoid large trees and over-fitting. In each iteration, we add the tree which most improves

the current model. With ŷ
(i)
t being the prediction for yt after the i-th iteration, we want to add

the tree (Ti,Mi) which minimizes

L(i) :=
T∑
t=1

l(yt, ŷ
(i−1)
t + g(xt, Ti,Mi)) + Ω(Ti,Mi)

≈
T∑
t=1

[
l(yt, ŷ

(i−1)
t ) +

∂l(yt, ŷ
(i−1)
t )

∂ŷ
(i−1)
t

g(xt, Ti,Mi) +
1

2

∂2l(yt, ŷ
(i−1)
t )

∂(ŷ
(i−1)
t )2

(g(xt, Ti,Mi))
2
]
+Ω(Ti,Mi).

We can simplify this term by omitting the constant part and restructuring the sum. Let Ib =

{t|xt ∈ Rb} be the instance set of leaf b. Then our objective looks as follows:

L(i) =
T∑
t=1

[∂l(yt, ŷ(i−1)
t )

∂ŷ
(i−1)
t

g(xt, Ti,Mi) +
1

2

∂2l(yt, ŷ
(i−1)
t )

∂(ŷ
(i−1)
t )2

(g(xt, Ti,Mi))
2
]
+Ω(Ti,Mi)

=
T∑
t=1

[∂l(yt, ŷ(i−1)
t )

∂ŷ
(i−1)
t

g(xt, Ti,Mi) +
1

2

∂2l(yt, ŷ
(i−1)
t )

∂(ŷ
(i−1)
t )2

(g(xt, Ti,Mi))
2
]
+ γBi +

1

2
λ

Bi∑
b=1

µ2
bi

=

Bi∑
b=1

[Å∑
t∈Ib

∂l(yt, ŷ
(i−1)
t )

∂ŷ
(i−1)
t

ã
µbi +

1

2

Å∑
t∈Ib

∂2l(yt, ŷ
(i−1)
t )

∂(ŷ
(i−1)
t )2

+ λ

ã
µ2
bi

]
+ γBi

Once we have fixed a tree structure Ti for the i-th iteration, we differentiate L(i) by µbi and

calculate the optimal weights Mi by

µ∗
bi = −

∑
t∈Ib

∂l(yt,ŷ
(i−1)
t )

∂ŷ
(i−1)
t∑

t∈Ib
∂2l(yt,ŷ

(i−1)
t )

∂(ŷ
(i−1)
t )2

+ λ
.

To develop the structure of the tree Ti, the split candidates are compared step by step and
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the one that best complements the previous model is selected in the sense that L is minimized.

Split candidates are computed for each explanatory variable. As the computational complexity

is usually too high to compare all candidates of a continuous variable, Chen and Guestrin (2016)

use weighted quantile sketches. In this method, percentiles of the explanatory variables are used

as split candidates.

With ht :=
∂2l(yt,ŷ

(i−1)
t )

∂(ŷ
(i−1)
t )2

let Dk = {(xk1, h1), . . . , (xkT , hT )} be the multi-set of the k-th feature

values and the corresponding second-order gradient. We define the rank function rk : R −→ R+
0

as

rk(z) =
1∑

(x,h)∈Dk
h

∑
(x,h)∈Dk,x<z

h.

Now we try to find candidate split points {sk1, . . . , skl } ⊂ {xk1, . . . , xkT } such that

|rk(skj )− rk(s
k
j+1)| < ε, sk1 = min

t
xkt , skl = max

t
xkt ,

for a given parameter ε ∈ (0, 1). This means, there are approximately 1/ε split candidates per

explanatory variable. After finding the best split, we repeat this procedure in the new leafs until

a maximum depth of Ti is reached. This is the local variant, where new candidates are calculated

after each split. Although this is more computationally intensive, it is also more accurate than

the global variant, in which all split candidates are only calculated once at the beginning.

We analyze the following hyperparameters:

Para Financial NFC-nonRE Sov NFC-RE HH-nonRE HH-RE Sov-HR

η 0.1 0.1 0.1 0.5 0.1 0.1 0.1
d 8 6 8 8 4 8 4
L 0 0 0 1 0 0 0
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Symbol Meaning Possible Values

η Learning Rate 0.1, 0.3, 0.5
d Maximum depth 4, 6, 8
L Exogenous Lags 0, 1
o Occam’s window 10, 20, 30
γ Correlation coefficient 0.7, 0.8, 0.9
DW DW-Test Statistic 0.1, 0.2
m Number of Trees 50, 200
k Prior for σµ (BART) 1.5, 2.0, 2.5
ν Degrees of Freedom 3, 5, 7
q Quantile (BART) 0.75, 0.9, 0.99
α Mixing parameter (EN) 0, 0.2, 0.4, 0.6, 0.8, 1

Table 1: Declaration of Hyperparameters
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4 Forecast Results

In this chapter, we will first explain which loss functions are suitable for analyzing the predic-

tions. Then, we explain how to give more weight to predictions within adverse scenarios. Next,

we evaluate and compare the models’ estimations regarding different criteria. To maintain clar-

ity in this subsection, we provide a detailed explanation of the results for one sector and briefly

mention notable findings from the others. All figures and tables can be found in the appendix.

4.1 Consistent Scoring Functions

Varian (1975) compared three estimation methods in a simulation study. One method used a

statistically sound and meaningful estimate. The other two estimated a constant value for the

entire time series. When evaluating the mean scores of the estimates, different results were

obtained depending on the scoring function. This shows that the correct choice of scoring

function is of great importance. First, we will explain a few basic elements to understand which

scoring functions are suitable for evaluating our predictions and start with some definitions in

a decision-theoretic setting. All of the following definitions and theorems are summarized by

Gneiting (2011).

Definition 4.1. 1) An observation domain O ⊆ Rd comprises the potential outcomes of a

future observation, an action domain A ⊆ Rd comprises potential actions of a decision

maker, i. e. the prediction. In our case of point forecasting D := O = A = R. A

prediction-observation domain is the Cartesian product D = D ×D.

2) A loss function L : A×O → [0,∞), L(a, o) represents the loss incurred when the decision

maker takes the action a ∈ A and the observation o ∈ O materializes.

3) A scoring function S : D → [0,∞), S(x, y) represents the loss or penalty when the point

forecast x ∈ D is issued and the observation y ∈ D materializes.

4) Let F be a family of potential probability distributions for the future observation Y that

takes values in D. The optimal point forecast under F ∈ F for Y is the Bayes rule

x̂ = argmin
x∈D

EF [S(x, Y )].

Definition 4.2. A statistical functional, or simply a functional, is a mapping from a class of

probability distributions to a Euclidean space, a subset of R in our case:

T : F → P(D), F 7→ T (F ) ⊆ D.

The mean functional maps a probability distribution to its expectation value and is therefore

single valued:

TM : F → R, F 7→ T (F ) = EF [Y ], for Y ∼ F

We only have to consider the mean functional TM because the regression-based models and the

tree-based models estimate the mean. They first estimate the expectation value as the most
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likely materialization of y for different regressions/trees and then build an average of those

values.

Definition 4.3. The scoring function S is consistent for the functional T relative to the class

F if

EF [S(t, Y )] ≤ EF [S(x, Y )],

for all F ∈ F , all t ∈ T (F ) and all x ∈ D. It is strictly consistent if it is consistent and equality

implies that x ∈ T (F ).

In other words, the expected score should be the lowest if we estimate the most likely value.

In our case T (F ) = EF is single valued. Therefore, EF [S(x, Y )] should have its minimum at

x = T (F ).

Definition 4.4. The functional T is elicitable relative to the class F if there exists a scoring

function S that is strictly consistent for T relative to F .

The following theorem is needed later when we prove our scoring functions to be consistent.

Theorem 4.1. Let T be elicitable relative to F . Consider a weight function

w : D → [0,∞).

Let F (w) ⊆ F denote the subclass of probability distributions in F such that F (w) has a density

proportional to w(y)f(y), f(y) is proportional to the density of a F ∈ F , and w(y)f(y) has finite

integral over D. Define the functional

T (w) : F (w) → P(D), F 7→ T (w)(F ) = T (F (w)).

Then the following holds:

1) T (w) is elicitable.

2) If S is consistent for T relative to F , then S(w)(x, y) = w(y)S(x, y) is consistent for T (w)

relative to F (w).

3) If S is strictly consistent for T relative to F , then S(w) is strictly consistent for T (w)

relative to F (w).

Theorem 4.2. Let F be the class of compactly supported probability measures on the interval

I ⊆ R with finite first moment. Let S be a scoring function that satisfies the follwing assumptions

on the domain D = I × I:

A1) S(x, y) ≥ 0 with equality if x = y

A2) S(x, y) is continuous in x

A3) ∂xS(x, y) exists and is continuous in x whenever x ̸= y

Then the following holds:
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1) The mean functional is elicitable relative to the class F .

2) S is consistent for the mean functional relative to F if, and only if, it is of the form

S(x, y) = ϕ(y)− ϕ(x)− ϕ′(x)(y − x) (4.1)

where ϕ is a convex function with subgradient on I, y is the realization of the real value

and x is the forecast estimation.

3) If ϕ is strictly convex, S is strictly consistent for the mean functional relative to F on I

for which both EF [Y ] and EF [ϕ(Y )] exist and are finit.

The form (4.1) is a Bregman divergence Dϕ(y, x) = ϕ(x) − ϕ(y) − ϕ(y)(x − y) = S(x, y). We

will use the following scoring functions, some of which are consistent for the mean functional,

to evaluate our estimation results.

Squared Loss

The first scoring function that we use is the squared loss S1(x, y) := (x− y)2. By averaging over

all scores this results in the mean squared error (MSE). We can easily prove that S1 is consistent

for the mean functional by setting ϕ(x) := x2. Since ϕ′′(x) = 2, ϕ is strictly convex. Then,

S(x, y) = y2 − x2 − 2x(y − x) = x2 + y2 − 2xy = (x− y)2.

Exponential Loss

Our second scoring function is called exponential loss and is defined by S2(x, y) := ey − ex −
ex(y − x). Again, to prove its consistency, we have to show that S2 is of the form (4.1). We

do so by simply setting ϕ(x) := exp(x) which is a strictly convex function. Consistency follows

directly from Theorem 4.2.

Linear Exponential Loss

The linear exponential loss function, developed by Varian (1975), is a asymmetrical function

defined by

S3(x, y; a) := ea(x−y) − a(x− y)− 1, a ∈ R \ {0}.

This is a mix of the exponential and linear loss function. We can freely select the parameter a

to adjust the function as desired. For a > 0, the score is particularly high when x > y. In other

words, overestimates are penalized more severely than underestimates. If we select a < 0, the

score grows exponentially with y−x. In this case, underestimations are penalized more heavily.

For the analysis of the estimates, we choose a = 1 and a = −1:

S3+(x, y) = S3(x, y; 1) = ex−y − (x− y)− 1 and

S3−(x, y) = S3(x, y;−1) = ey−x − (y − x)− 1

To prove the consistency of S3(x, y; a) we pick ϕ(x; a) = 1/a2 exp(ax). Since ϕ′′(x; a) =
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exp(ax) > 0 for all x ∈ R, ϕ is strictly convex. It holds

Dϕ(·;a)(x, y) = ϕ(x; a)− ϕ(y; a)− ϕ′(y; a)(x− y)

=
1

a2
eax − 1

a2
eay − 1

a
eay(x− y)

=
1

a2

[
eax − eay − aeay(x− y)

]
=

1

a2
eay

[
ea(x−y) − a(x− y)− 1

]
=

1

a2
eay S3(x, y; a) =: S3(x, y; a).

S3 is therefore a Bregman divergence and strictly consistent for the mean functional relative to

F by Theorem 4.2. Define the weight function

w(y; a) := a2e−ay.

Then, by Theorem 4.1, S3(x, y; a) = w(y; a) · S3(x, y; a) is strictly consistent for the weighted

mean functional T (w) relative to the class of weighted probability distributions F (w).

Although the consistency of S3 is not ensured for the non-weighted mean functional, it will also

be used to compare estimation results. An asymmetrical scoring function could provide new and

interesting insights, and we could not find any consistent ones defined on negative real numbers.

31



4 FORECAST RESULTS

4.2 Weighting by Time Period

In the context of stress testing, reliable predictions in adverse scenarios are particularly im-

portant. Adverse scenarios are characterized by extremely unusual behavior of macroeconomic

variables. Since they occur very infrequently, our already short time series contain hardly enough

data to test the models in adverse scenarios with sufficient accuracy. For this reason, the aim of

this chapter is to present a method for giving more weight to erroneous estimates in crisis years.

The European Financial Crisis Database forms the basis for the definition of crisis periods. It is

freely available on the website of the European Systemic Risk Board (ESRB).2 The global

economic crisis began in August 2007 and lasted until June 2013 in Germany, according to the

ESRB. In addition, another economic crisis, triggered by the outbreak of COVID-19, began in

March 2020 and lasted until April 2021.

Gneiting and Ranjan (2011) state the following theorem:

Theorem 4.3. Suppose that f is the sampling density of the random variable Y . Let S0 be any

proper scoring rule and let w be a weight function such that 0 <
∫
w(y)f(y)dy < ∞. Then the

expected value of the weighted score

S(g, Y ) = w(Y )S0(g, Y )

is minimized if we issue the density forecast

g(y) =
w(y)f(y)∫
w(y)f(y)dy

.

This means that a weighted scoring rule is inappropriate for the original density prediction. This

result also holds for consistent scoring functions, since they are a special case of proper scoring

rules. If we add an observation-based weighting function to a consistent scoring function, this

new scoring function will no longer be consistent for the same function. For more on scoring

rules and how they differ from scoring functions, see Gneiting (2011). Taggart (2022) shows

how a scoring function can be partitioned to focus on specific regions, such as the tails of the

distribution of observations, without losing the consistency property. The weight depends mainly

on the region in which the observation y is located.

Since we cannot say with certainty how PDs in different economic sectors will behave in adverse

scenarios, the weighting should not be based on observation y. Instead, we assign a higher

weight to forecasts that fall within a crisis period, regardless of the actual value of the estimate.

This means that we artificially multiply forecasts and scores in crisis periods. Assuming that

the definition of crisis periods depends only on macroeconomic variables and not on the PDs

themselves, the weighting is independent of observation y. This preserves the consistency of the

scoring function.

Let y1, . . . , yt for t = 4, . . . , 42 denote the training time series of Delta-Logit-Default Probabilities

and ŷht , h = 1, . . . , 12 the forecast time series for the following twelve quarters yt+h for each t.

Let ŷPt := (ŷ1t , . . . , ŷ
12
t ) denote the tuple of the twelve forecasts from time point t. We now

2https://www.esrb.europa.eu/pub/financial-crises/html/index.en.html
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simply multiply the occurrence of ŷPt by the number of forecasts in ŷPt that are within a risk

horizon. The new quantity of the tuple ŷPt is denoted by

Qt := 1 +
12∑
h=1

1{t+h∈TR}, TR := {n ∈ N | 5 ≤ n ≤ 16 ∨ 43 ≤ n ≤ 47}.

Since our data series starts in 2008Q1 and the training time series starts in 2009Q3 due to lags,

t = 5 corresponds to 2010Q3 and t = 47 corresponds to 2021Q1.

This also means that forecasts made shortly before or after a crisis period are weighted slightly

more heavily. This makes sense, as it results in a kind of smooth transition at the boundaries

of the crisis periods. We will use this weighting exclusively for prediction scores in the next

chapter and compare them with the unweighted version.
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4.3 Description of Results

The initial step in the research process involves the comparison of the graphs that represent the

forecasts. This is followed by an analysis of the distribution of forecast errors, with the objective

of ascertaining whether there is a discrepancy in their nature depending on the distance of the

predicted quartal. Here, we use four different scoring functions and point out their effects on the

results. Subsequently, the Diebold-Mariano test is employed to determine whether the errors

differ significantly among the analyzed methods. Finally, we analyze the feature importance

of several models with respect to differences between different economic sectors and different

forecasting methods.

To analyze the results, we transform the Delta-Logit-PDs from (2.2) and their forecasts back

into normal PDs by calculating

ẑt = zt−4 + ŷt, t = 5, . . . , 8

ẑt = ẑt−4 + ŷt, t = 9, . . . , 60
(4.2)

iteratively. Afterwards, we apply the back-transformation

P̂D =
1

1 + exp(−ẑ)
(4.3)

in order to get plausible probability values. We will use these transformed forecasts in all the

following chapters.

4.3.1 Forecasts

Here we show only the forecasts for the financial institutes sector as an example. The graphs

for the other six economic sectors can be found in the appendix.

In the top left corner of Figure 2, we can see the time series of forecasts for the next time point.

The BMA forecasts, i. e. the forecasts for which we used predefined methods for the standard

Bayesian Model Averaging, are not shown here because the PDs are so high that they disrupt

the figure. Initially, with a very short training time series, the predictions for the next quarter

still differ relatively. In addition, they are relatively volatile compared to the real PD time series.

With a training time series of 20 quarters or more, the predictions of MBMA, BART, XGBoost

and ELN hardly differ at all. The volatility decreases and the shape of the prediction graphs

resembles the shape of the graph of the real time series. Extreme PDs, i. e. local minima and

maxima, are difficult to predict. This can be seen from the fact that peaks like in 2015Q3 only

appear later in the predictions. The further the predicted value is from the last known PD,

the less the predictions seem to describe the actual PD time series. Instead, they more closely

reflect the true time series at a past point in time.

We observe similar trends in other sectors. For example, PDs for non-real-estate backed house-

hold credits show a sustained downward trend over the entire period (Figure 8). The one-step-

ahead predictions of all three methods are close to the actual values and fluctuate to a similar

extent. However, the times of local minima and maxima of actual and predicted values usually

do not match, indicating that the exogenous variables are only of limited use for the models. As
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h increases, the h-step predictions sometimes deviate somewhat further from the true graph and

lie above or below it for several consecutive quarters. There seem to be only small differences be-

tween the predictions of the different methods. These differences are more pronounced in other

sectors. For the non-financial corporate sectors (Figures 16 and 18), the MBMA predictions de-

viate further from the graph of actual PDs than the other methods. Here it is particularly easy

to see how an increase and subsequent decrease in true PD affects the estimates. Estimating

the next twelve quarters at a point in time between the increase and decrease in PD will result

in an overestimate because the decrease will not be captured by the models. The further out

the forecast, the greater the overestimation.
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Figure 2: Forecasts of BART, ELN, MBMA and XGB plotted over the true PD time series. The
number above each figure (i. e. h) denotes the distance (in quartals) of the forecasted value. For
example, in the lower right corner we only there are only 12-step forecasts. Graph for BMA is
left out. Sector: Financial. Source: Deutsche Bundesbank, Bundesbank’s credit register, 2008
until 2022, Calculated by Deutsche Bundesbank (black line) and own calculation

Forecast Horizon – Examples

In Figure 3, we see the forecasts for the next 12 quarters from the time points 2010Q4, 2013Q4,

2016Q4 and 2019Q4. In the first period which ends in 2013Q4 the estimates of MBMA are

higher than those of BART, XGBoost and ELN. Here, the underlying training time series is

very short and no method can produce estimates that come close to the real time series. In the

second period, it is very interesting to note that all estimated time series have peaks at the same
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points in time although there are no peaks in the real time series. However, the peaks are much

smaller for MBMA, which is why only MBMA can approximate the real time series. XGBoost,

BART and ELN produce extremely high estimates here that do not match the PD data at all.

In the third period, all estimated time series have a similar shape and are not far from the real

time series. Especially the MBMA and ELN forecasts are very close to each other. In the fourth

period, however, in which the PD suddenly rises sharply and then falls back to its previous level

after a year, there are major differences. The ELN and BART predictions fluctuate around

the same level. The MBMA and XGBoost models predict a significant increase in PD. With

MBMA, this increase occurs too early and falls back to a level similar to the true time series

toward the end of the period. With XGBoost, the increase occurs too late and therefore does

not decline within the forecast period. However, this forecast is the only one that reaches the

same level as the true PD. Overall the predictions in the last time span are more volatile than

in the previous one. This indicates that there is at least a correlation between the explanatory

variables of the models and the PDs.

0.000

0.005

0.010

0.015

0.020

2012 2014 2016 2018 2020 2022
Quartal

P
D

Method

BART

ELN

MBMA

REAL

XGB

Figure 3: Forecasts of BART, ELN, MBMA and XGB plotted over the true PD time series.
Forecasts are presented for a 12-quarter time horizon starting in 2010Q4, 2013Q4, 2016Q4,
and 2019Q4 (between the vertical dotted lines). Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation

The graphs for the data on the other sectors of the economy can be found in the appendix. Figure

15 on PDs for household loans secured by real estate (HH-RE ) is particularly interesting. Here,

all methods are able to predict the true time series well at certain points in time. BART and

ELN perform very well, while MBMA and XGBoost overestimate the PDs.

4.3.2 Scores

Now, we analyze the residuals of the predictions, using the different consistent scoring functions

described in Section 4.1. To maintain consistency in the scoring functions, the estimates must

not be converted back into plausible default probabilities. Instead, we will consider the original
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Figure 4: Average score grouped by h-step forecast under four different scoring function. The
scoring functions are described in detail in Section 4.1. The mean squared error is shown at the
top left, and the mean exponential loss is shown at the top right. The other scoring functions
describe the Linear Exponential Loss for a = 1 and a = −1. Score 3 is higher for overestimated
and Score 4 is higher for underestimated values. All scoring functions are consistent for the mean
functional. Sector: Financial. Source: Deutsche Bundesbank, Bundesbank’s credit register,
2008 until 2022, Own calculation

delta logit PD predictions ŷ. Again, let y1, . . . , yt for t = 4, . . . , 42 denote the training time

series of Delta-Logit-Default Probabilities and ŷht , h = 1, . . . , 12 the forecast time series for the

following twelve quarters yt+h for each t. Figure 4 shows graphs of four different scores. The

corresponding scoring functions are:

• Score 1: S1(ŷ, y) = (ŷ − y)2 (Squared Loss)

• Score 2: S2(ŷ, y) = exp(y)− exp(ŷ)− exp(ŷ)(y − ŷ) (Exponential Loss)

• Score 3: S3+(ŷ, y) = exp(ŷ − y)− (ŷ − y)− 1 (LinEx Loss, a = 1)

• Score 4: S3−(ŷ, y) = exp(−(ŷ − y)) + (ŷ − y)− 1 (LinEx Loss, a = −1)

We can see twelve scores per method, each for four different scoring functions. The value at

position h on the x-axis shows the average score of the predictions of all models for the h-th

value after the last known PD. So here, the average is taken over the h-step predictions of all

39 models with varying training time series length.

Sh
s =

1

39

42∑
t=4

Ss(ŷ
h
t , yt+h), h = 1, . . . , 12, s ∈ {1, 2, 3+, 3−} (4.4)
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We compare the scores of the methods explained above with each other and also with the scores

of two simple prediction methods. For one, we use the last known value as an estimate (Last):

ŷht := yt, h = 1, . . . , 12, t = 4, . . . , 42

For the second estimate, we calculate the average of all previous known values (Avg):

ŷht :=
1

t

t∑
i=1

yi, h = 1, . . . , 12, t = 4, . . . , 42

Since the next 12 quarters are estimated from each point in time, these values are constant.

Let us first look at the results for the financial institutions sector as an example. The remaining

charts can be found in the appendix. In principle, the XGBoost, Avg, ELN and BART methods

seem to be better than the MBMA and Last method under all four scoring functions because

they have much lower score values. Their scores are slightly lower at h = 1 and remain at a

lower level as h increases. The scores of Last and MBMA increase with h and perform visibly

worse. The choice of the scoring function has a greater effect on the result here. While the

MBMA method under S3+ performs better than the simple estimation method Last for almost

all h = 1, . . . , 12, its scores rise significantly under S3−, while the Last scores tend to fall

slightly. This suggests that MBMA tends to underestimate the Delta-Logit-PDs, while Last

tends to overestimate them.

Figure 5 shows graphs similar to those in Figure 4. However, rather than calculating the normal

average, the scores are weighted when determining the average. If an estimate is within or close to

a risk period, the residual can be included in the average up to twelve times. Section 4.2 explains

this in more detail. While the scores of XGBoost, BART, ELN, and Avg stay almost constant

over time across all scoring functions, MBMA’s scores increase significantly. This clearly shows

that MBMA performs the worst among the methods presented here, particularly during times of

crisis. BART, XGBoost, and Avg perform best with data from the sector Financial. This result

is independent of the choice of scoring function. Please note that interpreting the meaning of

over- and underestimation is quite difficult since we are talking about Delta-Logit-PDs in this

subsection.

Similar results were found in other economic sectors. MBMA and Last have higher scores, while

the scores of the other methods are relatively close to each other. However, the scores tend to

increase when the forecast is further in the future (i. e., a higher h value). Figures 22 and 23

for the sovereign sector show that scores increase more with rising h when predictions in crisis

periods are weighted more heavily. Unlike in the financial sector, the risk-weighted scores of

MBMA and Last are nearly equal to the scores of the other methods. MBMA does not appear

to be inferior in exceptional situations.

The comparison between BART and XGBoost is interesting in the HH-nonRE sector (Figures

20 and 21). Here, BART has a lower score than XGBoost among all scoring functions. However,

when examining the risk-weighted scores, the outcome is reversed.

In almost all sectors, the simple estimation method, Avg, is one of the most effective. In the NFC-

nonRE sector (Figures 30 and 31), however, Avg yields poorer estimates. Last and BART are
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Figure 5: Medium score grouped by h-step forecast. This graph is similar to Graph 4. The
difference is that here, the score value is calculated as the average of a weighted list of scores.
The weighting is based on defined crisis periods and is described in more detail in Section 4.2.
Sector: Financial. Source: Deutsche Bundesbank, Bundesbank’s credit register, 2008 until 2022,
Own calculation

the best methods here instead. Comparing scores 3 and 4 shows that Avg mainly overestimates

the delta logit PDs. This is primarily because of the nearly monotonically falling true time

series. As an average of past values, the Avg estimate is usually too high.

4.3.3 Boxplots

Now let’s take a closer look at the distribution of the residuals. To do this, we will examine the

Delta-Logit-PDs transformed back into plausible PDs using 4.2 and 4.3. Figure 6 shows box

plots of the residuals ε = PD− P̂D for each forecast method and for each h ∈ {1, . . . , 12}. The
box encompasses the middle 50% of the residuals. The thick black line inside the box indicates

the median.

Notably, for h = 1, the boxes of all methods are approximately the same size. However, for

larger h, significant differences emerge. The BMA box is notably larger than those of the other

methods, and the MBMA box is slightly larger as well. This indicates that the residuals from

MBMA and, more notably, BMA are more widely scattered, meaning the predictions deviate

more frequently from the true value. Additionally, the medians of BART, BMA, ELN, and

MBMA are above zero for all h, except for MBMA, where some PD estimates are much too

high. This also applies to most of the middle 50% of the residuals. These methods therefore

underestimate the PDs much more often than they overestimate them. The situation is different
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for the residuals of XGBoost. Here, the median is close to zero for most h, showing that XGBoost

underestimates and overestimates the PDs with approximately equal frequency.

However, these results vary by economic sector. For countries with high risk ratings (Figure 34),

both BMA and MBMA often produce very high estimates, as reflected by many high negative

residuals. In contrast, for countries with low risk ratings (Figure 33), the box plots for all

methods are similar across the entire forecast horizon. In the real estate-backed loan sector for

households (Figure 35), the median residuals from XGBoost are lower than those from the other

methods. In this case, however, it is in negative territory, while the others are closer to zero.
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Figure 6: Boxplots of the errors PD − P̂D for the h-step forecasts. The h value is displayed
to the right of each graph. For each h = 1, . . . , 12, all h-step predictions are summarized in a
graph. To keep the graphs readable, the y-axis is truncated at the 5th and 97.5th percentiles.
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vector. Sector: Financial. Source: Deutsche Bundesbank, Bundesbank’s credit register, 2008
until 2022, Own calculation

41



4 FORECAST RESULTS

4.3.4 Diebold-Mariano-Test

We also want to test whether the residuals that arise from the different methods differ sig-

nificantly in statistical terms. To do this, we use a modified version of the Diebold-Mariano

test (DM test), which was presented by Harvey et al. (1997). For implementation, we use the

function dm.test of the R package forecast.

Since the Diebold-Mariano test accounts for the autocovariances of the error differences, we

cannot use the h-step forecasts for different h in a single test. Instead, we have to analyze

the errors of the forecasts separately for each h = 1, . . . , 12. That is, for a test we only use

the errors εh4 , . . . , ε
h
42 for one h ∈ {1, . . . , 12}. The errors of the forecasted Delta-Logit-PDs

are used in the R-method dm.test. We set the power parameter to two, which means we

use a quadratic loss function. Additionally, we consider a test in which we evaluate all h-step

predictions simultaneously. While this test is no longer statistically valid, the results can provide

a useful overview of the methods. To accomplish this, we pass h = 6 to the test method as the

mean distance to the predicted value. In this test, we also compare the errors of the Last and

Avg simple models.

The methods are compared in pairs. We conduct a one-sided test in each case, with the null

hypothesis being that the expected squared errors of both methods are equal. The alternative

hypothesis states that method in the header row of the table is less accurate than the method

in the column on the left side.

H0 : E[ε21] = E[ε22], H1 : E[ε21] < E[ε22]

ε1 and ε2 denote the residuals of the forecasts produced by the first and second method that are

compared in the test. First, we take a look at the results of the Diebold-Mariano-Test for the

sector for financial institutes. The p-values can be read off in Tables 2 and 15. The method on

the left side of the table denotes the first method and the one in the top row denotes the second

one. For example, the p-value of 0.01 in the top left table would indicate that we should reject

the null hypothesis and assume that BMA is less accurate than MBMA instead.

Considering the 1-step and 2-step forecasts, we reject the null hypothesis of equal squared

errors at a significance level of α = 1% in the pairwise comparisons of BMA with all other

methods. The alternative hypothesis, which we assume to be true, states that BMA produces

less accurate predictions than MBMA, BART, XGBoost and ELN. For predictions further in the

MBMA BMA BART XGB ELN Last Avg

MBMA 0.01 1.00 1.00 1.00 0.51 1.00
BMA 0.99 1.00 1.00 1.00 0.99 1.00
BART 0.00 0.00 0.92 0.11 0.00 0.96
XGB 0.00 0.00 0.08 0.03 0.00 0.45
ELN 0.00 0.00 0.89 0.97 0.00 0.99
Last 0.49 0.01 1.00 1.00 1.00 1.00
Avg 0.00 0.00 0.04 0.55 0.01 0.00

Table 2: p-values of the pairwise Diebold-Mariano test for h = 1, . . . , 12. Sector: Financial.
Source: Deutsche Bundesbank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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future, the p-values are between 0.02 and 0.13. Therefore, we cannot reject the null hypothesis

at a conventional significance level α. However, it should be kept in mind that the tests are

carried out with 39 data points per method on a relatively small data set, so α should not be set

too small. The p-values of just over 0.1 at least suggest that there is evidence for the superiority

of MBMA, BART and XGBoost over BMA.

All p-values for the BART and MBMA tests are below 0.16, and six out of twelve are even

below 0.1. Therefore, we can assume that BART performs significantly better than MBMA

on at least the first half of the prediction horizon. The XGBoost and ELN methods seem to

perform similarly and better than the MBMA method. The p-values for h = 1, . . . , 6 are usually

below 0.1, while those for h = 7, . . . , 12 range from 0.1 to 0.2. Therefore, we can conclude

that XGBoost and ELN produce significantly better estimates for the first six quarters of the

prediction horizon. Interestingly, though, the one-step forecasts of ELN are not significantly

better, with a relatively high p-value of 0.15. No method stands out when comparing BART,

XGBoost, and ELN with each other.

The picture changes when we consider the residuals of all h-step predictions in a single test. The

expected quadratic residuals of BART, XGBoost and ELN are significantly lower than those of

MBMA; even on a low significance level of α = 0.1%. Please note that we are now considering

12 · 39 data points, so we should apply a lower significance level than before. The two simple

methods, Last and Avg, are clearly superior to the BMA. Avg is also significantly better than

MBMA, BART and ELN while Last is inferior to BART, XGBoost and ELN.

The classic BMAmethod performs the worst in all sectors. All other methods deliver significantly

better results. In every other economic sector, there is at least one h ∈ {1, . . . , 12} for which

the predictions of BART, XGBoost, and ELN are better than the MBMA predictions. However,

this is not true for the entire forecast horizon. Conversely, MBMA is never superior to any of the

three methods. Looking at tables 16 to 21, it’s clear that MBMA is inferior. In most cases, the

simple Avg method produces better results than MBMA, and sometimes even BART, XGBoost,

or ELN. However, as we see in the NFC-nonRE sector, we cannot fully rely on Avg. Here, the

complex methods are significantly better. The simple Last method is usually inferior. The only

conclusion that can be drawn with a high degree of certainty is that the classic BMA method

is inferior to the others. There are also indications that BART, XGBoost, and ELN are better

suited than MBMA for predicting PDs across sectors. The simple method Avg should also be

considered.

The difference between the DM test results in the sectors Financial and NFC-nonRE two sectors

is likely due to the shape of the PD time series. For the sector NFC-nonRE, it declines almost

monotonically over the entire period which is why the average over the past values is not a good

predictor. In the Financial sector, however, it fluctuates more. If exogenous variables are not

very helpful taking the average can be a good approach.

4.3.5 Feature Importance

Feature importance indicates the significance of an explanatory variable for the model. In this

section, we examine which variables these are, whether they differ depending on the model, and

if there are differences between economic sectors.
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Figure 7: Feature importance of BART, XGBoost and ELN model. Sector: HH-nonRE. Source:
Deutsche Bundesbank, Bundesbank’s credit register, 2008 until 2022, Own calculation

Figure 7 shows the results for the sector HH-nonRE as an example. Values on the x-axis

cannot easily be compared across different models. It is only used to compare variables within

a single model. Using the BART, XGBoost, and ELN methods, we build a model based on

all available data points; that is, the training time series is 54 long. Then, we use the method

xgb.importance included in the R package to calculate the feature importance for each model.

For the BART model, we calculate this manually. First, we calculate the average frequency

with which the variables appear in all models. We then use the relative average frequency as

feature importance. For the ELN model, we use the R package IML. It permutes the values of

all variables individually to remove their correlation with the endogenous variable. The feature

importance is derived from the increase in prediction error. For more on that, see Fisher et al.

(2019).

Clearly, the lagged endogenous variable DlogPDL1 is the most important for all models. Oth-

erwise, the models are not similar. Generally, the importance of the exogenous variables in the

BART and ELN models is similar. Thus, no macroeconomic variable is particularly well-suited

for predicting PDs. This seems to be somewhat different for the XGBoost model, however.

However, since it is probabilistic, the values may change if a new model is trained on the same

data with the same hyperparameters. After repeated testing, only the statement in the graph

regarding DlogPDL1 appears reliable.
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MBMA BMA BART XGB ELN
MBMA 0.01 0.95 0.96 0.85

BMA 0.99 0.99 1.00 0.99
BART 0.05 0.01 0.82 0.08
XGB 0.04 0.00 0.18 0.06
ELN 0.15 0.01 0.92 0.94

Table 3: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.01 0.97 0.97 0.97

BMA 0.99 0.99 0.99 0.99
BART 0.03 0.01 0.72 0.45
XGB 0.03 0.01 0.28 0.25
ELN 0.03 0.01 0.55 0.75

Table 4: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.04 0.96 0.99 0.95

BMA 0.96 0.98 0.98 0.98
BART 0.04 0.02 0.92 0.50
XGB 0.01 0.02 0.08 0.06
ELN 0.05 0.02 0.50 0.94

Table 5: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.07 0.90 0.86 0.90

BMA 0.93 0.95 0.95 0.95
BART 0.10 0.05 0.42 0.75
XGB 0.14 0.05 0.58 0.68
ELN 0.10 0.05 0.25 0.32

Table 6: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.07 0.94 0.86 0.94

BMA 0.93 0.95 0.95 0.95
BART 0.06 0.05 0.30 0.33
XGB 0.14 0.05 0.70 0.64
ELN 0.06 0.05 0.67 0.36

Table 7: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.90 0.91 0.89

BMA 0.89 0.92 0.92 0.92
BART 0.10 0.08 0.88 0.11
XGB 0.09 0.08 0.12 0.09
ELN 0.11 0.08 0.89 0.91

Table 8: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.88 0.89 0.89

BMA 0.87 0.90 0.90 0.90
BART 0.12 0.10 0.84 0.42
XGB 0.11 0.10 0.16 0.13
ELN 0.11 0.10 0.58 0.87

Table 9: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.12 0.87 0.86 0.87

BMA 0.88 0.90 0.90 0.90
BART 0.13 0.10 0.66 0.51
XGB 0.14 0.10 0.34 0.35
ELN 0.13 0.10 0.49 0.65

Table 10: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.86 0.86 0.86

BMA 0.89 0.91 0.92 0.91
BART 0.14 0.09 0.86 0.22
XGB 0.14 0.08 0.14 0.13
ELN 0.14 0.09 0.78 0.87

Table 11: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.84 0.82 0.85

BMA 0.89 0.92 0.92 0.92
BART 0.16 0.08 0.67 0.35
XGB 0.18 0.08 0.33 0.33
ELN 0.15 0.08 0.65 0.67

Table 12: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.10 0.85 0.80 0.84

BMA 0.90 0.91 0.91 0.91
BART 0.15 0.09 0.44 0.01
XGB 0.20 0.09 0.56 0.43
ELN 0.16 0.09 0.99 0.57

Table 13: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.10 0.85 0.81 0.86

BMA 0.90 0.91 0.91 0.91
BART 0.15 0.09 0.43 0.38
XGB 0.19 0.09 0.57 0.53
ELN 0.14 0.09 0.62 0.47

Table 14: 12-step forecast

Table 15: p-values of the pairwise Diebold-Mariano test - individual tests for h-step forecasts for
each h ∈ {1, . . . , 12}. Sector: Financial. Source: Deutsche Bundesbank, Bundesbank’s credit
register, 2008 until 2022, Own calculation
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5 Conclusion

In this study, we fitted various regression-based, tree-based, and simple models to a dataset of

default probabilities and macroeconomic variables to predict the future values of PD time series.

We then compared the results using visual comparisons of forecasts and error distributions,

scores of multiple scoring functions, and the Diebold-Mariano test. All of these comparisons

revealed that the classical Bayesian Model Averaging approach is inferior to the other methods.

The squared forecast errors are much higher here, as can clearly be seen in the DM test result

tables. However, the results are not that clear otherwise. When we compared the scores of

the h-step forecasts, the simple forecasting method Avg was one of the best methods for most

sectors. Since Avg is not based on macroeconomic variables, they don’t seem to explain much

of the dependent variable. The analysis of feature importance supports this conclusion, as we

could not identify a single variable that consistently remained relevant across different models.

Regarding the scores, however, the BART, XGBoost, and ELN models perform as well as the

Avg models. The analysis of the NFC-nonRE sector showed that the simple model is not suitable

for all datasets; therefore, a more complex model is preferable. In most cases, there is not much

difference, but in some cases, it can be useful not to rely solely on past values of the dependent

variable.

The scores, boxplots of forecast errors, and Diebold-Mariano test indicate that Modified Bayesian

Model Averaging, the method that most closely resembles the current benchmark, outperformes

classical Bayesian Model Averaging but underperforms compared to other regression- and tree-

based methods. Weighted scores show that MBMA forecasts can be even more unreliable during

periods of economic crisis.

The results of the DM tests typically align with the scores obtained. For instance, Figures 22

and 23 show that the XGBoost models produce the lowest scores most of the time. However,

the difference seems to be not that significant. It is therefore interesting that, according to

the Diebold-Mariano test, XGB errors are lower than all other errors at a significance level of

α = 1%. The results of DM test and Scores also coincide with regard to the inferiority of MBMA

compared to other processes. However, it appears that the DM test detects differences that are

barely visible in the plots.

The results differ across different economic sectors, showing that there is no single forecast-

ing method that is preferable in the context of general credit risk stress testing. The most

important limitation of our analysis is the shortness of the PD time series. Only 60 data points

are available because PD measurement began in 2008. The training time series is even shorter

due to the 12-quarter forecast horizon and the deltas we apply. The problem of insufficient

training and validation data becomes even more significant when we are specifically interested

in forecast quality during adverse scenarios. Although the ESRB identifies some crisis quarters

between 2008 and 2022, we do not observe extreme PD increases in every sector. This means

there is almost no crisis data on which we can train or test our models.

Our Modified Bayesian Model Averaging model does not contain a benchmark constraint and

is therefore not completely identical to the BCBMA model, which is currently the benchmark
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model. But the MBMA model is inferior to the BART, XGBoost, and ELN models, what

can at leat give some hints on the properties and the behaviour of BCBMA. At the edges of

distributions, where a predefined adverse macroeconomic scenario would be located, parametric

models, such as linear models, typically provide more reliable estimations than non-parametric

models. In contrast, tree-based models are more effective in regions with many data points.

Unfortunately, we cannot empirically validate this generalization because we lack testing data

on the edges. However, the weighted scores do not indicate such behavior. Even if one prefers

a regression-based model to nonparametric models, this research suggests choosing the Elastic

Net.

In a much larger dataset, it could be interesting to train and compare a neural network. Unfor-

tunately, this proved to be ineffective with fewer than 60 data points. Another solution could

be to search for additional regressors that help explain the default probabilities. If more ad-

verse scenario PD data becomes available in the future, one should pay more attention to those

forecasts.
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Figure 8: Compare for description of Figure 2. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black
line) and own calculation
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Figure 9: Compare for description of Figure 3. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black
line) and own calculation
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Figure 10: Compare for description of Figure 2. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation
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Figure 11: Compare for description of Figure 3. Sector: Financial. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black
line) and own calculation
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Figure 12: Compare for description of Figure 2. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation
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Figure 13: Compare for description of Figure 3. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation
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Figure 14: Compare for description of Figure 2. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation
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Figure 15: Compare for description of Figure 3. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black line)
and own calculation
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Figure 16: Compare for description of Figure 2. Sector: NFC-RE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black
line) and own calculation
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Figure 17: Compare for description of Figure 3. Sector: NFC-RE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank (black
line) and own calculation
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Figure 18: Compare for description of Figure 2. Sector: NFC-nonRE. Source: Deutsche Bun-
desbank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank
(black line) and own calculation
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Figure 19: Compare for description of Figure 3. Sector: NFC-nonRE. Source: Deutsche Bun-
desbank, Bundesbank’s credit register, 2008 until 2022, Calculated by Deutsche Bundesbank
(black line) and own calculation
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Figure 20: Compare for description of Figure 4. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 21: Compare for description of Figure 5. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 22: Compare for description of Figure 4. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 23: Compare for description of Figure 5. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 24: Compare for description of Figure 4. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 25: Compare for description of Figure 5. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 26: Compare for description of Figure 4. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12
h

S
co

re
 1

0.00

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8 9 10 11 12
h

S
co

re
 2

0.000

0.025

0.050

0.075

0.100

1 2 3 4 5 6 7 8 9 10 11 12
h

S
co

re
 3

0.00

0.05

0.10

0.15

1 2 3 4 5 6 7 8 9 10 11 12
h

S
co

re
 4

Method

Avg

BART

ELN

Last

MBMA

XGB

Figure 27: Compare for description of Figure 5. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 28: Compare for description of Figure 4. Sector: NFC-RE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 29: Compare for description of Figure 5. Sector: NFC-RE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 30: Compare for description of Figure 4. Sector: NFC-nonRE. Source: Deutsche Bun-
desbank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 31: Compare for description of Figure 5. Sector: NFC-nonRE. Source: Deutsche Bun-
desbank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 32: Compare for description of Figure 6. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 33: Compare for description of Figure 6. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 34: Compare for description of Figure 6. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 35: Compare for description of Figure 6. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 36: Compare for description of Figure 6. Sector: NFC-RE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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Figure 37: Compare for description of Figure 6. Sector: NFC-nonRE. Source: Deutsche Bun-
desbank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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D RESULTS OF THE DIEBOLD-MARIANO TEST

D Results of the Diebold-Mariano Test

MBMA BMA BART XGB ELN last avg

MBMA 0.13 1.00 1.00 1.00 0.07 1.00
BMA 0.87 0.87 0.87 0.87 0.87 0.87
BART 0.00 0.13 0.13 0.02 0.00 0.90
XGB 0.00 0.13 0.87 0.52 0.00 0.98
ELN 0.00 0.13 0.98 0.48 0.00 0.99
last 0.93 0.13 1.00 1.00 1.00 1.00
avg 0.00 0.13 0.10 0.02 0.01 0.00

Table 16: Compare for description of table 2. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation

MBMA BMA BART XGB ELN last avg

MBMA 0.01 0.97 0.95 0.95 0.84 0.97
BMA 0.99 1.00 1.00 1.00 0.99 1.00
BART 0.03 0.00 0.00 0.15 0.01 0.70
XGB 0.05 0.00 1.00 0.45 0.04 0.99
ELN 0.05 0.00 0.85 0.55 0.07 0.86
last 0.16 0.01 0.99 0.96 0.93 0.98
avg 0.03 0.00 0.30 0.01 0.14 0.02

Table 17: Compare for description of table 2. Sector: NFC-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation

MBMA BMA BART XGB ELN last avg

MBMA 0.16 0.99 0.99 0.96 0.99 0.88
BMA 0.84 0.84 0.84 0.84 0.84 0.84
BART 0.01 0.16 0.10 0.05 0.51 0.00
XGB 0.01 0.16 0.90 0.23 0.72 0.00
ELN 0.04 0.16 0.95 0.77 0.97 0.07
last 0.01 0.16 0.49 0.28 0.03 0.00
avg 0.12 0.16 1.00 1.00 0.93 1.00

Table 18: Compare for description of table 2. Sector: NFC-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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D RESULTS OF THE DIEBOLD-MARIANO TEST

MBMA BMA BART XGB ELN last avg

MBMA 0.12 1.00 1.00 1.00 0.99 1.00
BMA 0.88 0.88 0.88 0.88 0.88 0.88
BART 0.00 0.12 0.00 0.01 0.00 0.80
XGB 0.00 0.12 1.00 1.00 0.01 1.00
ELN 0.00 0.12 0.99 0.00 0.00 0.96
last 0.01 0.12 1.00 0.99 1.00 1.00
avg 0.00 0.12 0.20 0.00 0.04 0.00

Table 19: Compare for description of table 2. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation

MBMA BMA BART XGB ELN last avg

MBMA 0.16 1.00 1.00 1.00 0.97 1.00
BMA 0.84 0.84 0.84 0.84 0.84 0.84
BART 0.00 0.16 0.02 0.01 0.00 0.99
XGB 0.00 0.16 0.98 0.24 0.00 1.00
ELN 0.00 0.16 0.99 0.76 0.00 1.00
last 0.03 0.16 1.00 1.00 1.00 1.00
avg 0.00 0.16 0.01 0.00 0.00 0.00

Table 20: Compare for description of table 2. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation

MBMA BMA BART XGB ELN last avg

MBMA 0.00 1.00 1.00 1.00 0.38 1.00
BMA 1.00 1.00 1.00 1.00 1.00 1.00
BART 0.00 0.00 0.99 0.20 0.01 0.74
XGB 0.00 0.00 0.01 0.00 0.00 0.00
ELN 0.00 0.00 0.80 1.00 0.02 1.00
last 0.62 0.00 0.99 1.00 0.98 0.99
avg 0.00 0.00 0.26 1.00 0.00 0.01

Table 21: Compare for description of table 2. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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D RESULTS OF THE DIEBOLD-MARIANO TEST

MBMA BMA BART XGB ELN
MBMA 0.02 0.82 0.63 0.82

BMA 0.98 0.98 0.98 0.98
BART 0.18 0.02 0.18 0.34
XGB 0.37 0.02 0.82 0.78
ELN 0.18 0.02 0.66 0.22

Table 22: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.10 0.93 0.69 0.93

BMA 0.90 0.90 0.89 0.90
BART 0.07 0.10 0.06 0.20
XGB 0.31 0.11 0.94 0.93
ELN 0.07 0.10 0.80 0.07

Table 23: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.92 0.64 0.89

BMA 0.87 0.87 0.87 0.87
BART 0.08 0.13 0.11 0.21
XGB 0.36 0.13 0.89 0.85
ELN 0.11 0.13 0.79 0.15

Table 24: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.92 0.79 0.93

BMA 0.87 0.87 0.87 0.87
BART 0.08 0.13 0.17 0.46
XGB 0.21 0.13 0.83 0.81
ELN 0.07 0.13 0.54 0.19

Table 25: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.88 0.87 0.87

BMA 0.86 0.86 0.86 0.86
BART 0.12 0.14 0.68 0.37
XGB 0.13 0.14 0.32 0.32
ELN 0.13 0.14 0.63 0.68

Table 26: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.82 0.77 0.84

BMA 0.86 0.86 0.86 0.86
BART 0.18 0.14 0.65 0.32
XGB 0.23 0.14 0.35 0.33
ELN 0.16 0.14 0.68 0.67

Table 27: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.15 0.83 0.78 0.95

BMA 0.85 0.85 0.85 0.85
BART 0.17 0.15 0.58 0.42
XGB 0.22 0.15 0.42 0.40
ELN 0.05 0.15 0.58 0.60

Table 28: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.99 0.89 1.00

BMA 0.86 0.86 0.86 0.86
BART 0.01 0.14 0.43 0.29
XGB 0.11 0.14 0.57 0.51
ELN 0.00 0.14 0.71 0.49

Table 29: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.89 0.86 0.85

BMA 0.86 0.86 0.86 0.86
BART 0.11 0.14 0.32 0.04
XGB 0.14 0.14 0.68 0.58
ELN 0.15 0.14 0.96 0.42

Table 30: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.93 0.98 0.88

BMA 0.87 0.87 0.87 0.87
BART 0.07 0.13 0.34 0.05
XGB 0.02 0.13 0.66 0.51
ELN 0.12 0.13 0.95 0.49

Table 31: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.12 0.95 1.00 0.92

BMA 0.88 0.88 0.88 0.88
BART 0.05 0.12 0.54 0.05
XGB 0.00 0.12 0.46 0.20
ELN 0.08 0.12 0.95 0.80

Table 32: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.91 0.92 0.88

BMA 0.89 0.89 0.89 0.89
BART 0.09 0.11 0.43 0.09
XGB 0.08 0.11 0.57 0.08
ELN 0.12 0.11 0.91 0.92

Table 33: 12-step forecast

Table 34: Compare for description of table 15. Sector: HH-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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D RESULTS OF THE DIEBOLD-MARIANO TEST

MBMA BMA BART XGB ELN
MBMA 0.02 0.80 0.71 0.63

BMA 0.98 0.98 0.97 0.97
BART 0.20 0.02 0.11 0.02
XGB 0.29 0.03 0.89 0.12
ELN 0.37 0.03 0.98 0.88

Table 35: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.01 0.85 0.81 0.79

BMA 0.99 0.97 0.97 0.97
BART 0.15 0.03 0.27 0.16
XGB 0.19 0.03 0.73 0.35
ELN 0.21 0.03 0.84 0.65

Table 36: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.03 0.84 0.83 0.82

BMA 0.97 0.96 0.95 0.95
BART 0.16 0.04 0.43 0.45
XGB 0.17 0.05 0.57 0.50
ELN 0.18 0.05 0.55 0.50

Table 37: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.05 0.88 0.91 0.90

BMA 0.95 0.94 0.94 0.94
BART 0.12 0.06 0.58 0.63
XGB 0.09 0.06 0.42 0.54
ELN 0.10 0.06 0.37 0.46

Table 38: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.07 0.85 0.92 0.85

BMA 0.93 0.92 0.93 0.92
BART 0.15 0.08 0.88 0.59
XGB 0.08 0.07 0.12 0.12
ELN 0.15 0.08 0.41 0.88

Table 39: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.04 0.82 0.87 0.81

BMA 0.96 0.94 0.95 0.94
BART 0.18 0.06 0.71 0.61
XGB 0.13 0.05 0.29 0.32
ELN 0.19 0.06 0.39 0.68

Table 40: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.91 0.97 0.93

BMA 0.89 0.92 0.94 0.92
BART 0.09 0.08 0.99 0.54
XGB 0.03 0.06 0.01 0.01
ELN 0.07 0.08 0.46 0.99

Table 41: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.04 0.84 0.92 0.86

BMA 0.96 0.99 0.99 0.99
BART 0.16 0.01 1.00 0.74
XGB 0.08 0.01 0.00 0.01
ELN 0.14 0.01 0.26 0.99

Table 42: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.02 0.67 0.80 0.67

BMA 0.98 0.98 0.98 0.98
BART 0.33 0.02 0.99 0.32
XGB 0.20 0.02 0.01 0.02
ELN 0.33 0.02 0.68 0.98

Table 43: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.06 0.78 0.85 0.77

BMA 0.94 0.93 0.94 0.94
BART 0.22 0.07 0.98 0.18
XGB 0.15 0.06 0.02 0.07
ELN 0.23 0.06 0.82 0.93

Table 44: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.09 0.80 0.84 0.77

BMA 0.91 0.91 0.92 0.91
BART 0.20 0.09 0.94 0.16
XGB 0.16 0.08 0.06 0.09
ELN 0.23 0.09 0.84 0.91

Table 45: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.08 0.93 0.85 0.98

BMA 0.92 0.92 0.92 0.92
BART 0.07 0.08 0.82 0.25
XGB 0.15 0.08 0.18 0.17
ELN 0.02 0.08 0.75 0.83

Table 46: 12-step forecast

Table 47: Compare for description of table 15. Sector: Sov. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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D RESULTS OF THE DIEBOLD-MARIANO TEST

MBMA BMA BART XGB ELN
MBMA 0.04 0.49 0.36 0.49

BMA 0.96 0.96 0.95 0.96
BART 0.51 0.04 0.08 0.52
XGB 0.64 0.05 0.92 0.94
ELN 0.51 0.04 0.48 0.06

Table 48: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.02 0.89 0.83 0.83

BMA 0.98 0.99 0.99 0.99
BART 0.11 0.01 0.28 0.18
XGB 0.17 0.01 0.72 0.34
ELN 0.17 0.01 0.82 0.66

Table 49: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.06 0.86 0.83 0.85

BMA 0.94 0.94 0.94 0.94
BART 0.14 0.06 0.33 0.37
XGB 0.17 0.06 0.67 0.60
ELN 0.15 0.06 0.63 0.40

Table 50: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.84 0.84 0.84

BMA 0.86 0.87 0.87 0.87
BART 0.16 0.13 0.56 0.43
XGB 0.16 0.13 0.44 0.38
ELN 0.16 0.13 0.57 0.62

Table 51: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.18 0.89 0.90 0.88

BMA 0.82 0.82 0.82 0.82
BART 0.11 0.18 0.74 0.51
XGB 0.10 0.18 0.26 0.34
ELN 0.12 0.18 0.49 0.66

Table 52: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.19 0.84 0.84 0.82

BMA 0.81 0.81 0.81 0.81
BART 0.16 0.19 0.88 0.44
XGB 0.16 0.19 0.12 0.29
ELN 0.18 0.19 0.56 0.71

Table 53: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.20 0.88 0.88 0.87

BMA 0.80 0.80 0.80 0.80
BART 0.12 0.20 0.50 0.40
XGB 0.12 0.20 0.50 0.39
ELN 0.13 0.20 0.60 0.61

Table 54: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.20 0.93 0.92 0.90

BMA 0.80 0.80 0.80 0.80
BART 0.07 0.20 0.18 0.35
XGB 0.08 0.20 0.82 0.47
ELN 0.10 0.20 0.65 0.53

Table 55: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.21 0.96 0.96 0.93

BMA 0.79 0.79 0.79 0.79
BART 0.04 0.21 0.14 0.21
XGB 0.04 0.21 0.86 0.39
ELN 0.07 0.21 0.79 0.61

Table 56: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.22 0.93 0.92 0.90

BMA 0.78 0.78 0.78 0.78
BART 0.07 0.22 0.04 0.04
XGB 0.08 0.22 0.96 0.47
ELN 0.10 0.22 0.96 0.53

Table 57: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.22 0.92 0.91 0.89

BMA 0.78 0.78 0.78 0.78
BART 0.08 0.22 0.11 0.00
XGB 0.09 0.22 0.89 0.41
ELN 0.11 0.22 1.00 0.59

Table 58: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.23 0.94 0.94 0.92

BMA 0.77 0.77 0.77 0.77
BART 0.06 0.23 0.13 0.00
XGB 0.06 0.23 0.87 0.37
ELN 0.08 0.23 1.00 0.63

Table 59: 12-step forecast

Table 60: Compare for description of table 15. Sector: Sov-HR. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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MBMA BMA BART XGB ELN
MBMA 0.12 0.70 0.68 0.72

BMA 0.88 0.88 0.88 0.88
BART 0.30 0.12 0.52 0.57
XGB 0.32 0.12 0.48 0.50
ELN 0.28 0.12 0.43 0.50

Table 61: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.15 0.97 0.96 0.97

BMA 0.85 0.86 0.86 0.86
BART 0.03 0.14 0.57 0.35
XGB 0.04 0.14 0.43 0.40
ELN 0.03 0.14 0.65 0.60

Table 62: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.16 1.00 0.99 1.00

BMA 0.84 0.84 0.84 0.84
BART 0.00 0.16 0.56 0.63
XGB 0.01 0.16 0.44 0.45
ELN 0.00 0.16 0.37 0.55

Table 63: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.16 0.99 0.97 0.99

BMA 0.84 0.84 0.84 0.84
BART 0.01 0.16 0.32 0.42
XGB 0.03 0.16 0.68 0.67
ELN 0.01 0.16 0.58 0.33

Table 64: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.16 0.98 0.96 0.98

BMA 0.84 0.84 0.84 0.84
BART 0.02 0.16 0.38 0.33
XGB 0.04 0.16 0.62 0.56
ELN 0.02 0.16 0.67 0.44

Table 65: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.16 0.92 0.87 0.92

BMA 0.84 0.84 0.84 0.84
BART 0.08 0.16 0.13 0.21
XGB 0.13 0.16 0.87 0.81
ELN 0.08 0.16 0.79 0.19

Table 66: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.15 0.89 0.86 0.90

BMA 0.85 0.85 0.85 0.85
BART 0.11 0.15 0.10 0.13
XGB 0.14 0.15 0.90 0.79
ELN 0.10 0.15 0.87 0.21

Table 67: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.15 0.87 0.84 0.87

BMA 0.85 0.85 0.85 0.85
BART 0.13 0.15 0.06 0.10
XGB 0.16 0.15 0.94 0.86
ELN 0.13 0.15 0.90 0.14

Table 68: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.14 0.86 0.82 0.86

BMA 0.86 0.86 0.86 0.86
BART 0.14 0.14 0.10 0.14
XGB 0.18 0.14 0.90 0.81
ELN 0.14 0.14 0.86 0.19

Table 69: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.90 0.81 0.89

BMA 0.87 0.87 0.87 0.87
BART 0.10 0.13 0.08 0.05
XGB 0.19 0.13 0.92 0.89
ELN 0.11 0.13 0.95 0.11

Table 70: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.12 0.91 0.82 0.90

BMA 0.88 0.88 0.88 0.88
BART 0.09 0.12 0.11 0.08
XGB 0.18 0.12 0.89 0.88
ELN 0.10 0.12 0.92 0.12

Table 71: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.11 0.88 0.81 0.88

BMA 0.89 0.89 0.89 0.89
BART 0.12 0.11 0.06 0.20
XGB 0.19 0.11 0.94 0.93
ELN 0.12 0.11 0.80 0.07

Table 72: 12-step forecast

Table 73: Compare for description of table 15. Sector: HH-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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MBMA BMA BART XGB ELN
MBMA 0.77 0.82 0.82 0.83

BMA 0.23 0.83 0.85 0.91
BART 0.18 0.17 0.69 0.98
XGB 0.18 0.15 0.31 0.76
ELN 0.17 0.09 0.02 0.24

Table 74: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.89 0.88 0.86

BMA 0.87 0.96 0.96 0.95
BART 0.11 0.04 0.51 0.23
XGB 0.12 0.04 0.49 0.20
ELN 0.14 0.05 0.77 0.80

Table 75: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.13 0.91 0.89 0.88

BMA 0.87 0.94 0.93 0.93
BART 0.09 0.06 0.27 0.16
XGB 0.11 0.07 0.73 0.54
ELN 0.12 0.07 0.84 0.46

Table 76: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.06 0.91 0.96 0.93

BMA 0.94 0.96 0.96 0.96
BART 0.09 0.04 0.82 0.21
XGB 0.04 0.04 0.18 0.03
ELN 0.07 0.04 0.79 0.97

Table 77: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.04 0.93 0.96 0.96

BMA 0.96 0.98 0.98 0.98
BART 0.07 0.02 0.38 0.32
XGB 0.04 0.02 0.62 0.42
ELN 0.04 0.02 0.68 0.58

Table 78: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.03 0.87 0.86 0.86

BMA 0.97 0.99 0.98 0.98
BART 0.13 0.01 0.10 0.04
XGB 0.14 0.02 0.90 0.82
ELN 0.14 0.02 0.96 0.18

Table 79: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.10 0.84 0.82 0.81

BMA 0.90 0.98 0.98 0.98
BART 0.16 0.02 0.07 0.18
XGB 0.18 0.02 0.93 0.49
ELN 0.19 0.02 0.82 0.51

Table 80: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.05 0.83 0.81 0.80

BMA 0.95 0.97 0.96 0.96
BART 0.17 0.03 0.06 0.20
XGB 0.19 0.04 0.94 0.48
ELN 0.20 0.04 0.80 0.52

Table 81: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.01 0.97 0.86 0.97

BMA 0.99 0.99 0.99 0.99
BART 0.03 0.01 0.00 0.02
XGB 0.14 0.01 1.00 1.00
ELN 0.03 0.01 0.98 0.00

Table 82: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.01 0.84 0.80 0.84

BMA 0.99 0.98 0.97 0.98
BART 0.16 0.02 0.01 0.39
XGB 0.20 0.03 0.99 0.88
ELN 0.16 0.02 0.61 0.12

Table 83: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.01 1.00 0.97 0.94

BMA 0.99 0.99 0.99 0.99
BART 0.00 0.01 0.01 0.06
XGB 0.03 0.01 0.99 0.00
ELN 0.06 0.01 0.94 1.00

Table 84: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.03 0.99 0.96 0.56

BMA 0.97 0.97 0.97 0.96
BART 0.01 0.03 0.02 0.18
XGB 0.04 0.03 0.98 0.28
ELN 0.44 0.04 0.82 0.72

Table 85: 12-step forecast

Table 86: Compare for description of table 15. Sector: NFC-RE. Source: Deutsche Bundesbank,
Bundesbank’s credit register, 2008 until 2022, Own calculation
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MBMA BMA BART XGB ELN
MBMA 0.12 0.22 0.77 0.93

BMA 0.88 0.88 0.89 0.89
BART 0.78 0.12 0.99 1.00
XGB 0.23 0.11 0.01 0.93
ELN 0.07 0.11 0.00 0.07

Table 87: 1-step forecast

MBMA BMA BART XGB ELN
MBMA 0.17 0.83 0.85 0.84

BMA 0.83 0.86 0.86 0.86
BART 0.17 0.14 0.92 0.81
XGB 0.15 0.14 0.08 0.55
ELN 0.16 0.14 0.19 0.45

Table 88: 2-step forecast

MBMA BMA BART XGB ELN
MBMA 0.17 0.85 0.85 0.80

BMA 0.83 0.83 0.83 0.83
BART 0.15 0.17 0.49 0.29
XGB 0.15 0.17 0.51 0.30
ELN 0.20 0.17 0.71 0.70

Table 89: 3-step forecast

MBMA BMA BART XGB ELN
MBMA 0.18 0.90 0.94 0.87

BMA 0.82 0.82 0.82 0.82
BART 0.10 0.18 0.29 0.65
XGB 0.06 0.18 0.71 0.70
ELN 0.13 0.18 0.35 0.30

Table 90: 4-step forecast

MBMA BMA BART XGB ELN
MBMA 0.19 0.91 1.00 0.75

BMA 0.81 0.81 0.81 0.81
BART 0.09 0.19 0.30 0.25
XGB 0.00 0.19 0.70 0.46
ELN 0.25 0.19 0.75 0.54

Table 91: 5-step forecast

MBMA BMA BART XGB ELN
MBMA 0.19 0.88 0.91 0.81

BMA 0.81 0.81 0.81 0.81
BART 0.12 0.19 0.19 0.18
XGB 0.09 0.19 0.81 0.54
ELN 0.19 0.19 0.82 0.46

Table 92: 6-step forecast

MBMA BMA BART XGB ELN
MBMA 0.20 0.98 0.93 0.89

BMA 0.80 0.80 0.80 0.80
BART 0.02 0.20 0.20 0.19
XGB 0.07 0.20 0.80 0.41
ELN 0.11 0.20 0.81 0.59

Table 93: 7-step forecast

MBMA BMA BART XGB ELN
MBMA 0.20 0.87 0.68 0.81

BMA 0.80 0.80 0.80 0.80
BART 0.13 0.20 0.21 0.18
XGB 0.32 0.20 0.79 0.39
ELN 0.19 0.20 0.82 0.61

Table 94: 8-step forecast

MBMA BMA BART XGB ELN
MBMA 0.21 0.99 0.95 0.96

BMA 0.79 0.79 0.79 0.79
BART 0.01 0.21 0.27 0.22
XGB 0.05 0.21 0.73 0.42
ELN 0.04 0.21 0.78 0.58

Table 95: 9-step forecast

MBMA BMA BART XGB ELN
MBMA 0.22 0.99 0.94 0.96

BMA 0.78 0.78 0.78 0.78
BART 0.01 0.22 0.26 0.14
XGB 0.06 0.22 0.74 0.31
ELN 0.04 0.22 0.86 0.69

Table 96: 10-step forecast

MBMA BMA BART XGB ELN
MBMA 0.22 0.97 0.96 0.72

BMA 0.78 0.78 0.78 0.78
BART 0.03 0.22 0.23 0.15
XGB 0.04 0.22 0.77 0.19
ELN 0.28 0.22 0.85 0.81

Table 97: 11-step forecast

MBMA BMA BART XGB ELN
MBMA 0.23 0.91 0.90 0.87

BMA 0.77 0.77 0.77 0.77
BART 0.09 0.23 0.10 0.06
XGB 0.10 0.23 0.90 0.18
ELN 0.13 0.23 0.94 0.82

Table 98: 12-step forecast

Table 99: Compare for description of table 15. Sector: NFC-nonRE. Source: Deutsche Bundes-
bank, Bundesbank’s credit register, 2008 until 2022, Own calculation
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