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Statistically optimal estimation of signals in modulation
spaces using Gabor frames

Stephan Dahlke, Sven Heuer, Hajo Holzmann, and Pavel Tafo

Time-frequency analysis deals with signals for
which the underlying spectral characteristics change
over time. The essential tool is the short-time Fourier
transform, which localizes the Fourier transform in
time by means of a window function. In a white
noise model, we derive rate-optimal and adaptive
estimators of signals in modulation spaces, which
measure smoothness in terms of decay properties
of the short-time Fourier transform. The estimators
are based on series expansions by means of Gabor
frames and on thresholding the coefficients. The
minimax rates have interesting new features, and the
derivation of the lower bounds requires the use of
test functions which approximately localize both in
time and in frequency. Simulations and applications
to audio recordings illustrate the practical relevance
of our methods. We also discuss the best N -term
approximation and the approximation of variational
problems in modulation spaces by Gabor frame
expansions.

Index Terms—denoising, Gabor frame, minimax
estimation, short-time Fourier transform, time-
frequency analysis, thresholding.

I. INTRODUCTION

Time-frequency analysis allows to deal with signals

f for which the underlying frequencies change over

time, as is common in many acoustic signals such

as music [11] or bird songs [4], as well as in

psychoacoustics [25] and wireless communications

[28]. Gröchenig [17] provides a comprehensive
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account of the mathematics of time-frequency anal-

ysis. The essential tool of time-frequency analysis

is the short-time Fourier transform (STFT), which

is defined by

Vh0g(x, ω)

=

∫
Rd

g(t)h0(t− x) exp(−2πi 〈ω, t〉) dt
(1)

where g, h0 ∈ L2(Rd), h0 6= 0 is the so-called win-

dow function. Here, 〈ω, t〉 denotes the Euclidean

inner product of the vectors x and ω ∈ Rd, and

z is the complex-conjugate of z ∈ C. Note that

(1) is well-defined even for only locally integrable

(e.g. bounded) signals g if the window h0 has a

compact support.

The STFT localizes the ordinary Fourier transform

in time x by means of the window function h0.

Modulation spaces measure the smoothness of sig-

nals by decay properties of their STFT in both time

x and frequency ω. Similarly to Besov spaces and

wavelet expansions, signals can be characterized

as elements in modulation spaces by their Gabor

frame expansions.

In this paper we investigate estimation of signals

f observed in the white noise model

dY (x) = f(x) dx+ ε dW (x), x ∈ Rd, (2)

by Gabor frame expansions, where f is element in

a suitable modulation space. We use estimators for

f in (2) based on soft and hard thresholding of the

Gabor coefficients. The analysis uses the classical

oracle inequalities from Donoho and Johnstone

[10], extended to complex-valued coefficients. See

also Section 11 in Mallat [24] for a discussion of
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denoising in frame expansions by thresholding. We

show that our estimators achieve optimal rates in

the minimax sense up to logarithmic factors for

modulation spaces with commonly used weight

functions. These rates appear to be new and not

to correspond directly to the known rates over

Sobolev or Besov spaces. In contrast to much

literature on wavelet thresholding, the derivation of

the lower bounds does not rely on a sequence space

characterization of modulation spaces. Rather, we

work directly with their definition via the STFT,

and use Gaussian test functions which approxi-

mately localize simultaneously in time as well as

in frequency. Our contributions to denoising are

thus complementary to those of Wolfe, Godsill,

and Ng [30] and Yu et al. [31], who study discrete

Gabor expansions and focus on computational and

practical aspects of denoising.

White noise models such as (2) are widely used

in statistical analysis as stylized versions of more

realistic nonparametric regression models. Formal

approximation results of nonparametric regression

by white noise on the rectangle [0, 1]d are e.g. es-

tablished in Reiß [26]. In our setting, signals cannot

be naturally restricted to certain domains. A further,

more technical reason to use the white noise model

on the whole of Rd is that the theory of Gabor

expansions and modulation spaces seems not to be

developed fully for bounded domains as e.g. the

theory of wavelet expansions and Besov spaces.

Some parts of the paper hold for general frames and

are not restricted to the Gabor case. Indeed, given

a frame, one can define an abstract smoothness

space simply by collecting all functions for which

the frame expansion coefficients are contained in

a weighted `p space, say. Some of our results

would then hold with respect to these kinds of

spaces. However, it is one of the most important

consequences of the famous coorbit theory that

these abstract approximation spaces coincide with

smoothness spaces, that is, the modulation spaces

constructed by means of the decay of a voice

transform. It is one of the goals of this paper to

indicate how this deep relation to the theory of

function spaces can be exploited in practice.

The structure of the paper is as follows. We start

in Section II by summarizing some facts on mod-

ulation spaces and Gabor expansions that we shall

subsequently require. B-splines are attractive win-

dow functions from a numerical and computational

point of view, and we briefly investigate the theo-

retical properties of B-spline windows. In Section

III we introduce the thresholding estimators, and

derive the minimax rates of convergence. Section

IV deals with the best N -term approximation of

functions in modulations spaces by Gabor frame

expansions with emphasis on the sparse case. We

also show how to approximate solutions to vari-

ational problems formulated in the corresponding

sequence space using Gabor coefficients. Section V

contains the results of extensive numerical experi-

ments. As an illustration of our theoretical denois-

ing results, in Section V-A we compare denoising

with Gabor-based thresholding and wavelet thresh-

olding both with universal threshold on various

synthetic signals. Next, in Section V-B we investi-

gate numerically the compression performance for

various spline - and Gaussian window functions,

both for a synthetic and a real-data signal. Fi-

nally, in Section V-C we give an illustration of

the denoising performance of time-frequency based

methods for various more sophisticated threshold-

ing algorithms as well as two competing methods

on several real-data examples. Proofs are deferred

to Section VII.

II. MODULATION SPACES AND GABOR FRAMES

While Sobolev spaces measure smoothness of a

signal f by decay properties of its Fourier trans-

form, modulation spaces analogously rely on the

short time Fourier transform in (1). In this sec-

tion we gather the most relevant notions from the

expositions of Gröchenig [17] and Galperin and
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Samarah [16]. The formal definition of modulation

spaces requires the notion of a weighted Lp-space.

The integer d will denote the dimension of the

signal. Since the STFT involves both time and

frequency, we introduce weighted Lp-spaces on

R2d. A weight function v : R2d → [0,∞) is

submultiplicative if v(z1 + z2) ≤ C v(z1) v(z2),

z1, z2 ∈ R2d for some constant C > 0, and

m : R2d → [0,∞) is v-moderate if m(z1 +

z2) ≤ C v(z1)m(z2). A standard choice is vs(z) =

ms(z) =
(
1 + ‖z‖22

)s/2
for a parameter s ≥ 0,

where ‖ · ‖2 is the Euclidean norm. Given p ∈
(0,∞), the weighted Lp-space, defined by

Lpm = {g : R2d → C measurable | ‖g‖pLpm =∫
Rd

∫
Rd
|g(x, ω)|pm(x, ω)p dx dω <∞},

is a complete (semi-) normed space for p ≥ 1,

and a complete quasi-(semi-) normed space for p ∈
(0, 1).

The modulation spaceMp
m(Rd) with weight func-

tion m and parameter p > 0 is defined as the

set of tempered distributions f ∈ S ′(Rd), the

dual of the Schwartz space S(Rd), for which

Vh0f ∈ Lpm(R2d), and h0 ∈ S(Rd), h0 6= 0 is a

fixed window function in the Schwartz space. See

Gröchenig [17, Section 11.2] for the definition of

the STFT of a tempered distribution. The modula-

tion (quasi-) norm is given by

‖f‖Mp
m(Rd) = ‖Vh0

f‖Lpm(R2d)

=
(∫

Rd

∫
Rd
|Vh0

f(x, ω)|pm(x, ω)p dx dω
)1/p

.

(3)

If the weight function is m = 1 we write

Mp
1(Rd) =Mp(Rd) and Lp1(R2d) = Lp(R2d).

It turns out that the definition of the set Mp
m(Rd)

is independent of the window function, and the

resulting modulation norms are equivalent, for a

wide range of window functions, in particular all

functions in the Schwartz space. See Gröchenig

[17, Theorem 11.3.7 and Proposition 12.1.2] for

p ≥ 1 and Galperin and Samarah [16, Theorem 3.1]

for p ∈ (0, 1). A standard choice is the Gaussian

window function ϕa(x) = exp
(
− π ‖x‖22/a

)
,

a > 0. While by definition, modulation spaces

consist of tempered distributions, for the weight

functions ms defined above and mu,v in (15) that

we focus on, the modulation space is a subset of a

Bessel potential space [17, Proposition 11.3.1] so

that its elements actually correspond to functions.

Modulation spaces can be characterized and its

elements represented in terms of Gabor frames. A

countable family (eλ)λ∈Λ in a separable Hilbert

space (H, ‖ · ‖) is a frame if for all f ∈ H,

A ‖f‖2 ≤
∑
λ∈Λ

∣∣〈f, eλ〉∣∣2 ≤ B ‖f‖2,
where 0 < A < B are the lower and upper

frame bounds. The synthesis operator D associated

with the frame is defined by Dc =
∑
λ∈Λ cλ eλ,

where c = (cλ)λ∈Λ is a complex-valued sequence

indexed by Λ, and the frame operator S by Sf =∑
λ∈Λ 〈f, eλ〉 eλ. The frame operator is a positive,

invertible operator on H. The family (S−1 eλ)λ∈Λ

is a frame called the canonical dual frame, and we

have the representation f =
∑
λ∈Λ 〈f, S−1 eλ〉 eλ.

Given α, β > 0 and a window function h ∈
L2(Rd), a Gabor system is the family of functions,

indexed by the lattice Λ = αZd× βZd, defined by

hλ(x) = exp(2πi〈β n, x− αk〉)h(x− αk), (4)

with λ = (αk, βn) ∈ Λ. For sufficiently small

choices of α, β > 0 and a suitable choice of h

[17, Theorem 6.5.1], (hλ)λ∈Λ is actually a frame in

L2(Rd), called a Gabor frame, and the dual frame

is also of the form (4) with the dual window h̃ =

S−1h.

To characterize modulation spaces by Gabor frame

expansions, we require the mixed norm sequence

spaces: A sequence c = (cλ)λ∈Λ is in `pm if [17,

Def. 11.1.3]

‖c‖p
`pm

=
∑
λ∈Λ

|cλ|pm(λ)p <∞,

where m is the moderate weight function which

is used in the definition of the weighted Lp-space.
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Under the assumption that the STFT of the window

function h is element of a suitable amalgam space,

see Gröchenig [17, Theorem 12.2.4], Galperin and

Samarah [16, Theorem 3.7] we have that if c =

(cλ)λ∈Λ ∈ `pm then f =
∑
λ∈Λ cλhλ ∈ Mp

m(Rd)
and

‖f‖Mp
m(Rd) ≤ const. ‖c‖`pm . (5)

All Schwartz functions are admissible window

functions. Moreover, if we let h̃ = S−1h denote

the dual window, for f ∈ Mp
m(Rd) we have the

expansion

f =
∑
λ∈Λ

〈f, h̃λ〉hλ (6)

and for the canonical coefficients, also called mo-

ments, (〈f, h̃λ〉)λ∈Λ we have the bounds

C̃1 ‖f‖Mp
m(Rd) ≤ ‖(〈f, h̃λ〉)λ∈Λ‖`pm

≤ C̃2 ‖f‖Mp
m(Rd) (7)

with f ∈ Mp
m(Rd) and for suitable constants

0 < C̃1 < C̃2. It is one of the most important

consequences of the coorbit theory that for p in

[1,∞), the estimate in (7) is uniform, i.e. the

constants C1, C2 do not depend on p. One would

conjecture that the same is true for p < 1, or

that the dependence shows at least a moderate

behaviour, however, we were not able to find a

rigorous statement of this form in the current

literature. A dependence on p would of course

not devalue our results. This would only imply

that in some asymtotic results, such as in (16) in

Theorem 6, it would take a longer time to see

the asymptoticsdue to larger constants. However,

our numerical experiments based on cardinal B-

splines described in Section V strongly indicate

that this seems not to be the case, so that an

at most moderate dependence of the constant for

small p appears to be plausible.From a numerical

and computational perspective, windows functions

with compact support are more suitable choices. It

particular, cardinal B-splines can be useful as win-

dow functions in large-data classification problems,

where computation time is an issue [19]. They are

defined by convolutions, i.e., starting with N1 =

1[0,1), the convolution product Nk := Nk−1 ∗ N1

is called the B-spline of order k, k ≥ 2. However,

since B-splines are not contained in the Schwartz

space, the question arises which modulation spaces

can be characterized by means of B-spline window

functions, i.e., for which range of p (7) still holds.

The answer is given by the following theorem

which, to the best of our knowledge, has not been

stated explicitly in the literature before.

Theorem 1. Let d = 1 and let m be a v-moderate

weight with v(x, ω) = v(x) depending only on

time. Also, let the window function h be a B-spline

of order k. Then, the norm equivalence (7) holds

for all p > 1
k .

Remark. It is a consequence of the general coorbit

theory [14] that if one samples densely enought,

the norm equivalence (7) holds. Indeed, one has

to find suitable so-called U-dense sets such that

certain integrability conditions are satisfied. In the

setting of Theorem 1, these U-dense sets can be

constructed by a dense enough sampling strategy.

The proof is provided at the end of Section VII. We

shall investigate the numerical performance of B-

splines as window functions further in the Section

V.

III. THRESHOLDING ESTIMATORS, ORACLE

INEQUALITIES AND RATES OF CONVERGENCE

Let us introduce threshold estimators based on

Gabor frame expansions, that is systems of func-

tions of the type (4) for suitable α, β > 0 and

window function h. The white noise model (2)

can be interpreted as a Gaussian process, and by

integrating a real-valued function h ∈ L2(Rd) we

observe the Gaussian random variable

Y (h) =

∫
h dY ∼ N

(
〈f, h〉L2 , ε2 ‖h‖2L2

)
, (8)

where N (a, σ2) is the normal distribution with

mean a and variance σ2, and Z ∼ N (a, σ2) means
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that the random variable Z has the N (a, σ2)-

distribution. Furthermore, for h1, . . . , hm ∈
L2(Rd), the random variables Y (h1), . . . , Y (hm)

from (8) are jointly normally distributed with co-

variance Cov(Y (hj), Y (hk)) = ε2 〈hj , hk〉.
When applying (8) to a complex-valued square-

integrable function g = h1 + i h2, where h1, h2 ∈
L2(Rd) are real-valued, Y (g) = Y (h1) + iY (h2)

is a complex-valued normally-distributed random

variable, meaning that (Y (h1), Y (h2))> is bivari-

ate (real-valued) Gaussian. To construct estimators

for f in (2), assume that the window h together

with its dual window h̃ are such that (7) holds,

and estimate the coefficient

ϑλ := 〈f, h̃λ〉 by Y (h̃λ). (9)

Note that even though the window h̃ is real-valued

in case of a regular grid, see Strohmer [28] for

more information on the canonical dual window,

the element of the frame h̃λ in (4) will be complex-

valued.

Soft and hard thresholding at level µ > 0 are

defined by

ts(v;µ) = sign(v) (|v| − µ)1(|v| ≥ µ),

th(v;µ) = v 1(|v| ≥ µ),

where v ∈ R and sign(v) is the sign of v. For

complex z = u + iv ∈ C, u, v ∈ R we define

tj(z;µ) = tj(u;µ) + i tj(v;µ), j ∈ {h, s}. Then we

have the following oracle inequalities, which are

extensions to complex-valued random variables of

classic results from Donoho and Johnstone [10].

Proposition 2. Let Λ0 ⊂ Λ with #Λ0 <∞. Then,

in the Gaussian white noise model (2) we have for

soft thresholding with universal threshold µuni =

ε ‖h̃‖L2

√
2 log(#Λ0) that

E
[ ∑
λ∈Λ0

∣∣ts(Y (h̃λ);µuni)− ϑλ
∣∣2]

≤
(
4 log(#Λ0) + 2

)
·
(
ε2 ‖h̃‖2L2

+
∑
λ∈Λ0

min(ε2 ‖h̃‖2L2 , |ϑλ|2)
)
. (10)

Similarly, for hard thresholding we have the same

estimate with a different leading constant.

The proposition is obtained when thresholding

real-and imaginary parts separately. We mention

that Mallat [24], Section 11.3.3., recommends to

threshold the complex modulus instead, mainly for

reasons of better perceptual sound quality when

denoising an audio signal. For the theoretical de-

velopments, however, the above result is quite

adequate.

For a finite subset Λ0 ⊂ Λ we consider the

thresholding estimators

f̂j(·;µ) =
∑
λ∈Λ0

tj(Y (h̃λ);µ)hλ, j ∈ {h, s}. (11)

From boundedness of the synthesis operator Dh

[17, Prop. 5.1.1 (b)] we obtain that for j ∈ {h, s},

‖f̂j(·;µ)− f‖2L2 (12)

=
∥∥ ∑
λ∈Λ0

(
tj(Y (h̃λ);µ)− ϑλ

)
hλ −

∑
λ∈Λ{

0

ϑλ hλ
∥∥2

L2

≤B
( ∑
λ∈Λ0

∣∣tj(Y (h̃λ);µ)− ϑλ
∣∣2 +

∑
λ∈Λ{

0

∣∣ϑλ∣∣2),
where B is the upper frame constant of the Gabor

frame. In the following, using the oracle inequal-

ities from Proposition 2 we shall bound (12) for

particular choices of the weight function. We also

mention that interchanging the roles of the window

function h and its canonical dual h̃ would lead to

the same theoretical results.

Isotropic weight function

First let us consider an isotropic weight function

of the following form. For a parameter s > 0 and

λ = (x>, ω>)> choose the weight function as

ms(λ) = vs(λ) =
(
1 + ‖x‖22 + ‖ω‖22

)s/2
, (13)

and vs = ms, as mentioned in the introduction.

Given K > 0 let Λ0,K = {λ ∈ Λ | ‖λ‖2 ≤ K},
and for large K consider the estimator in (11)

which can be written as

f̂j(·;µ) =
∑
‖λ‖2≤K

tj(Y (h̃λ);µ)hλ, j ∈ {s,h}.
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Theorem 3. Consider model (2) with f ∈
Mp

ms(R
d) for p ∈ (0, 2]. Choosing the universal

threshold µuni = ε ‖h̃‖L2

√
2 log(#Λ0,K) as well

as taking K & ε
− d (2−p)+sp

2 d s+s2 p we have the bound

E
[
‖f̂j(·;µ)− f‖2L2

]
≤ const. · max

(
‖f‖2Mp

ms
, ‖f‖

2 d p
2 d+s p

Mp
ms

)
· log(1/ε) · ε

2 d (2−p)+2sp
2 d+s p , j ∈ {s,h},

(14)

where the constant depends on properties of the

frame and the thresholding method.

Remark. Let us discuss the rate obtained in (14).

For p = 2 we obtain ε
4s

2 d+2 s up to the logarithmic

factor, which is reminiscent with the rate over

Sobolev ellipsoids, but somewhat surprisingly in-

volves the dimension as 2 d instead of the ordinary

d. The reason is that both the dimensions d of time

x as well as of frequency ω influence the rate. As

indicated above, the rates obtained in the white

noise model (2) on the whole of Rd cannot be

directly compared to rates in the case of compact

support. For small p, that is in the sparse situation

the rate in (14) approaches the parametric rate ε2.

The logarithmic factor log(1/ε) is probably not

necessary, and could potentially be eliminated by

adopting a more sophisticated thresholding scheme

such as SureShrink from Donoho and Johnstone

[9].

Let us complement the result by a lower bound.

Theorem 4. For a constant C > 0 and p ∈ (0, 2]

consider the ball in Mp
ms(R

d),

Mp
s,C =

{
f ∈Mp

ms(R
d) | ‖f‖2Mp

ms
≤ C

}
.

Then in model (2) we have that

lim inf
ε↓0

(
ε−

2 d (2−p)+2sp
2 d+s p ·

inf
f̂ε

sup
f∈Mp

s,C

Ef
[
‖f̂ε − f‖2L2

])
> 0,

where f̂ε is any estimator in (2) based on the

observation Y , and Ef denotes the expected value

if the underlying parameter in (2) is f .

Remark. We provide a construction which is

based directly on the definition of modulation

spaces in (3), and does not rely on characterizations

in terms of Gabor coefficients. While the proof

uses standard tools from decision theory such as

Fano’s lemma and the Varshamov-Gilbert bound,

see Tsybakov [29], the issue is to construct the

hypothesis functions in order to obtain the term

2 d which arises in the upper bound. Since there

are no integrable functions which localize sharply,

meaning with compact support, in both time and

frequency domain [17, Theorem 2.3.3], we work

with Gaussian test functions and estimate the over-

laps in time and frequency domain.

Anisotropic weight function

Let us consider the more general situation of an

anisotropic weight function of the following form.

For 0 ≤ u, v ≤ s and λ = (x>, ω>)> choose

mu,v(λ) =
(
1 + ‖x‖22

)u/2
+
(
1 + ‖ω‖22

)v/2
, (15)

it is then also vs -moderate for vs given in (13).

For a constant C > 0 let

Mp
u,v,C =

{
f ∈Mp

mu,v (Rd) | ‖f‖2Mp
mu,v

≤ C
}

denote the ball in Mp
mu,v (Rd).

Theorem 5. Consider model (2) with f ∈
Mp

mu,v (Rd) for p ∈ (0, 2]. Choosing the universal

threshold µuni = ε ‖h̃‖L2

√
2 log(#Λ0,K) as well

as taking K & ε−
(2−p) d (v+u)+2pvu

min(u,v) (d(v+u)+pvu) we have the

upper bound

E
[
‖f̂(·;µ)− f‖2L2

]
≤ const. ·max

(
‖f‖2Mp

mu,v
, ‖f‖

p d (v+u)
d(v+u)+pvu

Mp
mu,v

)
· log(1/ε) · ε

(2−p) d (v+u)+2pvu
d(v+u)+pvu ,

and furthermore the corresponding lower bound

lim inf
ε↓0

(
ε−

(2−p) d (v+u)+2pvu
d(v+u)+pvu

· inf
f̂ε

sup
f∈Mp

u,v,C

Ef
[
‖f̂ε − f‖2L2

])
> 0.

Remark. If u = v = s in Theorem 5 we recover

the result in Theorem 3. On the other hand, if u = 0
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the rate reduces to ε2−p and hence is independent

of v, that is, a higher decay in the frequency (or

in time) alone cannot be used in the estimator in

the model (2). For the case p = 2, we then do not

obtain a rate. This is somewhat surprising since

for u = 0 and p = 2,M2
m0,v

(Rd) corresponds to a

Sobolev space [17, 11.3.1]. Here the reason seems

to be the choice of the model (2) on Rd. Indeed, if

we assume that the signal f as well as the window

h0 have compact support, then the support of STFT

Vh0
f(x, ω) is also uniformly bounded in x for all

ω, and hence f belongs to Mp
mu,v for arbitrarily

large u. For p = 2, fixed v and u→∞ we obtain

the exponent 4v/(d + 2v), corresponding to the

Sobolev case on bounded domains. The situation

is somewhat reminiscent of anisotropic multi-index

denoising [22, 23], though the rates that we obtain

are different.

IV. COMPRESSION AND APPROXIMATION OF

VARIATIONAL PROBLEMS

So far, we have discussed denoising algorithms

based on Gabor frames. Another very important

task in signal processing is of course compression.

To this end, the signal is decomposed with respect

to the underlying dictionary, the small coefficients

are thrown away by thresholding, and then the

signal is reconstructed. These kinds of algorithms

are clearly very much related with best N -term

approximation schemes. In this section, we briefly

analyze the approximation rate of thresholding

algorithms based on Gabor frames.

Classic results from wavelet theory [8] imply that

the convergence rate of best N -term wavelet ap-

proximation schemes depends on the smoothness

of the signal under consideration in a specific

scale of Besov spaces. For functions in modulation

spaces, similar results hold true for best N -term

approximations by elements from a Wilson basis,

see Gröchenig [17, Theorem 12.4.2], at least for

non-weighted norms - that is m = 1 - and in the

non-sparse case p ≥ 1. Further results which also

treat the case 0 < p but involve a further parameter

q > p in the definition of modulation spaces are

presented in Gröchenig and Samarah [18], Samarah

and Al-Sa’di [27]. Here we give a simple upper

bound for p ∈ (0, 2) in terms of Gabor frames. A

numerical illustration can be found in Section V-B.

Theorem 6. Let p ∈ (0, 2) and µ > 0. Given f ∈
Mp(Rd), setting Iµ = {λ ∈ Λ | |〈f, h̃λ〉| ≥ µ},
Nµ = #Iµ and

fµ =
∑
λ∈Iµ

〈f, h̃λ〉hλ,

we have that Nµ <∞ and that

‖f − fµ‖2L2 ≤ B C̃2
2 ‖f‖2Mp(Rd)N

1−2/p
µ , (16)

where C̃2 is from (7).

Remark. To prove this compression rate, we only

need the norm equivalence in (7). By Theorem 1,

this holds whenever we use a B-spline of order

k > 1
p as the window function. Therefore we

can balance the computational complexity and the

compression rate by using B-splines of suitable

order, depending on the smoothness of the signal

f in the modulation space. In Section V we show

some simulations highlighting this effect.

Remark. Theorem 6 holds for general frames

that characterize modulation spaces. It cannot be

expected that the compression rate can be improved

be increasing the overlap. This would more or less

produce more significant coefficients with lower

amplitude. Nevertheless, the quality of the com-

pression is not completely independent of the char-

acteristics of the frame. Indeed, the frame bounds

and hence the conditioning of the frame influence

the constants in (16). Therefore, in practice one

would prefer a well-conditioned frame with good

localization and moderate overlap.

Next, given f ∈ L2(Rd) and a parameter µ >

0, we aim to find g ∈ Mp
m(Rd) that solves the

variational problem

min
g∈Mp

m(Rd)

(
‖f − g‖2L2

+ µ‖g‖pMp
m(Rd)

)
. (17)
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Variational problems of the form (17) occur in

many practical applications. A prominent example

is given by the regularization of inverse problems

by means of Tikhonov schemes, see, e.g., Engl

et al. [12]. Usually, the penalty terms are given by

smoothness norms such as Sobolev norms. Quite

recently, to improve sparsity, also Besov norms

in combination with wavelets have been used [6].

To the best of our knowledge, Gabor frames and

modulation spaces have only rarely been used in

this context.

Therefore, here we show how to balance the mean

squared fit ‖f − g‖2L2
of g to the data f and the

smoothness of g as measured by the multiple of the

modulation norm, µ‖g‖pMp
m(Rd)

. For smoothness

penalties from Sobolev or Besov norms, solutions

of such variational problems have been extensively

studied in terms of orthogonal wavelet expansions,

see e.g. DeVore and Lucier [7], Chambolle et al.

[3].

Theorem 7. Let p > 0, and suppose that the

window h ∈ Mmin(1,p)
v (Rd). There is a constant

C > 0 depending on the upper frame bound

of {hλ | λ ∈ Λ} and on the constants in (5)

such that if c = (cλ)λ∈Λ ∈ `pm and hence

g =
∑
λ∈Λ cλ hλ ∈ Mp

m(Rd) by (5), we have

that

‖f − g‖2L2 + µ‖g‖pMp
m(Rd)

≤ C
∑
λ∈Λ

(
(〈f, h̃λ〉 − cλ)2 + µm(λ)p |cλ|p

)
.

(18)

Remark 1. The right-hand side of (18) can be

minimized coefficientwise by minimizing

E(c) = (〈f, h̃λ〉 − c)2 + µm(λ)p |c|p

in c for each λ ∈ Λ. Since for the minimizer c̃ =

(c̃λ)λ∈Λ, the right-hand side of (18) is finite (it is

finite for the choice cλ = 0), we must have c̃ ∈ `pm.

The choice

ĉλ = 〈f, h̃λ〉1|〈f,h̃λ〉|2≥µm(λ)p |〈f,h̃λ〉|p

satisfies E(ĉλ) ≤ 4E(c̃λ), see Chambolle et al.

[3, Section 3, p. 5] hence we also have that ĉ =

(ĉλ)λ∈Λ ∈ `pm.

Remark 2. In contrast to orthogonal wavelet

expansions, where the version in terms of the

coefficients is of the same order, here we only

have the upper bound as stated in (18). This

can be explained as follows: When representing

g =
∑
λ∈Λ cλ hλ ∈ Mp

m(Rd) for general frame

coefficients (cλ)λ∈Λ, we have the upper bound in

(5) but the upper bound in (7) is only valid for the

canonical frame coefficients (〈f, h̃λ〉)λ∈Λ.

Modulation spaces at least for p ≥ 1 can also be

characterized in terms of the coefficients of Wilson

basis, see Gröchenig [17, Theorem 12.3.1]. Thus,

in this situation solutions to the variational prob-

lem can actually be characterized and not merely

bounded up to constants by solutions involving

Wilson basis coefficients. However, in the present

paper our particular emphasis is on the sparse case

p < 1.

V. NUMERICAL EXPERIMENTS

This section contains the results of extensive nu-

merical experiments. As an illustration of our

results in Section III, in Section V-A we com-

pare denoising with Gabor-based thresholding and

wavelet thresholding both with universal threshold

on various synthetic signals. Next, in Section V-B

we investigate numerically our results on com-

pression from Section IV for various spline - and

Gaussian window functions, both for a synthetic

and a real-data signal. Finally, in Section V-C we

give an illustration of the denoising performance of

time-frequency based methods for several more so-

phisticated thresholding algorithms as well as two

competing methods on three real-data examples.

A. Denoising

In this section we illustrate numerically our de-

noising based on Gabor thresholding, as discussed
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in Section III, for various synthetic signals, and

contrast it with wavelet thresholding methods. The

aim of this section is thus not to optimally tune

thresholding for Gabor expansions, but rather to

compare a simple approach with universal thresh-

olding with a similar method in the wavelet case,

and to investigate which approach performs better

for specific signals. In the subsequent Section V-C,

for various real-data signals we compare several

thresholding algorithms for Gabor expansions and

also briefly discuss the issue of musical noise.

For background on numerical Gabor analysis see

e.g. Feichtinger [13].

To investigate denoising as discussed from a theo-

retical point of view in Section III, we shall con-

sider the following family of functions of spatially

varying frequency

fA,B(t) = sin(2π ·B · t · e−A(t−0.5)2), t ∈ [0, 1],

(19)

which resemble the Doppler functions used by

Donoho and Johnstone [10]. In particular we con-

sider the following three signals: firstly, the signal

f50,2 with small frequency variation, see Figure

1(a); secondly, the signal f50000,4 with small time

variation, see Figure 1(b); and lastly the signal

f40,200 which varies equally in both time and

frequency domains, see Figure 1(c).

For the wavelet shrinkage methods we use a

B-spline of level 4 as the window function for

the Gabor system and for comparison use wavelet

thresholding with the biorthogonal B-spline

wavelet of level 4 (’bior4.4’).

Each signal includes frequencies up to 1000 Hz.

We generate discrete observations from

Yi = f(i/n) + σεi, i = 1, . . . , n,

with n = 2000 and use a discretized version of

the Gabor frames in (4). In repeated simulations

we shall use m = 2000 iterations, e.g. to compute

mean squared errors.

N 2000 400 200 100 50

M 2000 400 200 100 50

α · β 0.0005 0.0125 0.05 0.2 0.8

TABLE I: Number of frequency and time bands

and the grid density

Effects of window length and grid density

In this setting the window function is discretized

over W ∈ N observations within its support. We

start by investigating the effects of the window

width w = W
n ∈ (0, 1] as well as the effect of

the grid density α · β of the frame in (4). In the

discrete setting we refer to α = d nN e as the step

size in terms of samples in the time domain and to

β = 1
M as the step size in the frequency domain,

with M,N ∈ {1, . . . , n}. M and N respectively

represent the number of frequency and time bands

considered. This yields a time-frequency repre-

sentation of the signal of the size M × N . A

Gabor frame can only exist if the density satisfies
n

N ·M < 1, see [17][Theorem 7.5.3]. The interaction

between grid density and window length affects

the computational time as the overlap rate of the

window function, 1− 1
N ·w , increases. A dense grid

as well as a long window function intensify the

redundancy among the coefficients. Here we report

results for the case M = N , additional results for

distinct time - and frequency resolutions can be

found in the supplement. Figure 3 shows the effect

of different window lengths and grid densities

according to Table I on the mean squared error

(MSE) for our three signals for samples of sizes

n = 2000, where we use hard thresholding with an

MSE-optimal threshold which was computed over

a fine grid of threshold values.

Let us interpret the results. In all three cases,

and in particular for f40,200, for suitable values

of the window width the MSE for the density of

0.05 and even of 0.2 is almost as low, or at least

of similar magnitude, than that for the grid with

finest resolution 0.0005. Second, for the signals
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(a) f50,2

‖ · ‖2L2
= 0.2202

(b) f50000,4

‖ · ‖2L2
= 0.00825

(c) f40,200

‖ · ‖2L2
= 0.4269

Fig. 1: Signals (upper row) and spectrogram (lower row) of our test signals

(a) f50,2

σ = 0.1484

(b) f50000,4

σ = 0.02873

(c) f40,200

σ = 0.2066

Fig. 2: Noisy signals with SNR = 10

f50000,4 and f40,200, and also for f50,2 except for

a very fine resolution, the MSE increases as the

window width is increased, at least above 0.05

or 0.1. The significant improvement in the MSE

justified the very high overlap rate, around 90%,

needed to achieve lowest error. Then, to achieve

reasonable computation times and still have good

MSE properties, in all three cases in the following

simulations we choose M = N = 100, resulting

in α · β = 0.2, and for the window width we take

the following values

signal f50,2 f50000,4 f40,200

w 0.1 0.025 0.05

overlap rate 90% 60% 80%
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(a) f50,2 (b) f50000,4 (c) f40,200

Fig. 3: Effect of the window width w and the grid density with M = N for the three signals for samples

of sizes n = 2000, using hard thresholding with the optimal threshold.

Choice of threshold and thresholding method

Next, in a repeated simulation for various sample

sizes we investigate the MSE of soft - and hard

thresholding, both for the universal threshold as

well as for an MSE-optimal threshold, which was

computed over a fine grid of threshold values.

The results are contained in Figure 4, where the

figures in the first row contain the MSE for soft

thresholding while those in the second line have

the MSE for hard thresholding. We observe that

first, hard thresholding performs better than soft

thresholding, and second, the universal threshold

appears to be a very reasonable choice for hard

thresholding.

Comparison of Gabor-frame and wavelet-based

methods

Next we investigate the reconstruction performance

of our thresholding estimators in (11), compared to

wavelet shrinkage methods based on biorthogonal

B-splines wavelet of order 4. Due to the previous

results we chose to focus on hard thresholding with

the universal threshold. First, for a visual impres-

sion, for a particular sample of size n = 2000 we

plot the reconstructions of the signals in Figure

5, where the figures in the first row are from

wavelet shrinkage, the figures in the second row

from the Gabor-frame based method, and the last

row has the spectrograms of the Gabor-frame based

estimates. In particular for the signal f40,200 the

Gabor-frame based method seems to give a better

result, whereas for the signal f50000,4 which con-

sists of a single spike, we expect wavelet shrinkage

to perform better. This is however not yet visible

from the plots. Next we compare the MSE of

both methods in a repeated simulation for various

sample sizes. The results are given in Figure 6. For

the signal f40,200, our Gabor-frame based method

clearly outperforms wavelet shrinkage. This is also

true, though less substantially, for the signal f50,2

except for small sample sizes. Finally, for the signal

f50000,4 wavelet shrinkage seems to be superior, in

particular for small and moderate samples.

B. Compression rates

In Theorem 6, we have studied the achievable

compression rate using the best N -term approxi-

mation with Gabor coefficients. Note that taking

logarithms, (16) can be written as

log(‖f − fµ‖2L2) (20)

≤ log(B C̃2
2 ‖f‖2Mp(Rd)) + log(Nµ) · (1− 2/p).

We now demonstrate this rate by compressing a

synthetic and a real signal with different window

functions and comparing the errors. The complete

code is available on GitHub1.

First, we analyse the Gaussian function

f(x) =
1

0.3 · π
exp

(
−1

2

(
x− 0.5

0.15

)2
)
,

1https://github.com/Heuersv/Compression-Simulations
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(a) f50,2 (b) f50000,4 (c) f40,200

Fig. 4: Figures in first row: MSE for soft thresholding, optimal threshold versus universal threshold;

Figures in second row: MSE for hard thresholding, optimal threshold versus universal threshold. Line

style −− denotes universal threshold. Various sample sizes are investigated.

for x ∈ [0, 1] which is scaled in a way that f is

close to zero at the boundary. We sample f at 2000

equidistant time stamps. A synthetic signal like

this should be in all modulation spacesMp([0, 1]),

p > 0, at least approximately taking into account

the small discontinuities at the boundary. We use

a Gabor transformation on this signal and recon-

struct it using only N coefficients, with N being

between 5% and 25% of the coefficients. This

way, we eliminate distortions that result from the

logarithmic scaling of N in (20) or the good time-

frequency localisation of the signal and only focus

on the “main slope” in the results. To achieve

compatibility between the results, we always use

500 different values for N , spaced equidistantly in

the chosen interval of 5% to 25%.

The exact results clearly depend on the step sizes

in time and frequency and the window lengths

of the spline windows. We found step sizes of

10 samples in time and 10 Hz in frequency as

well as a universal window length of 180 samples

for the splines to work fine for this signal. This

results in a very high redundancy in the frame.

For a comparison of Gaussian window functions of

different widths see the end of this section. Figure

7 (left) shows the results. Here, we can clearly see

the advantage of a smooth window function if the

signal is smooth as well. For the spline windows,

we get better compression rates for higher spline

orders. To quantify this, we take (20) and use linear

regression on the log-scaled errors with respect to

the log-scaled values for N and calculate p from

the slope. In Table II we present the results and

compare them to values of p we would expect with

the relation p > 1
k from Theorem 1 in mind.

The deviation from the estimated p to 1/k with

k equal to the order of the spline is quite small.

Additional experiments showed that by modifying

the window size, the difference could even be

further reduced. It should also be noted, that the

simulation with the Gaussian window took 1.66

seconds, while we needed 10.96 seconds for all

ten spline windows. This shows that even with such

a small signal (only 2000 samples) we get a time



13

(a) f50,2 (b) f50000,4 (c) f40,200

Fig. 5: Reconstructions for a particular sample of size n = 2000 using hard thresholding with universal

threshold. Figures in the first row are from wavelet shrinkage, the figures in the second row from the

Gabor-frame based method, and the last row has the spectrograms of the Gabor-frame based estimates.

(a) f50,2 (b) f50000,4 (c) f40,200

Fig. 6: MSE of the competing methods using universal hard thresholding. −−: Gabor-frame based

method, wavelet-shrinkage.

advantage by using the compactly supported spline

windows, but at the expense of worse compression

rates. All simulations in this section were carried

out on an Intel i7 CPU with a clock speed of

2.93GHz.

We now turn to numerical illustrations using the

recording of a common blackbird2 which will be

further analyzed in Section V-C. We use the same

procedure as for the synthetic signal and only

change the parameters to step sizes of 130 samples

2obtained from https://www.xeno-canto.org/
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(a) Spline and Gaussian windows (b) Dual windows

Fig. 7: Errors for best N -term approximation of synthetic signal with different window functions.

Window function estimated p 1/k, k spline order estimated p for dual window

Spline order 1 0.9318 1 0.9319
Spline order 2 0.4538 0.5 0.4481
Spline order 3 0.4170 0.3333 0.3918
Spline order 4 0.3068 0.25 0.2842
Spline order 5 0.2540 0.2 0.2336
Spline order 6 0.2066 0.1667 0.1809
Spline order 7 0.1715 0.1429 0.1509
Spline order 8 0.1366 0.125 0.1293
Spline order 9 0.1340 0.1111 0.0986

Spline order 10 0.1147 0.1 0.0925

Gaussian 0.0569 ≈ 0 0.0531

TABLE II: Values of p from compressing a synthetic signal for spline and Gaussian window functions

(second column) and for dual windows (forth column)

in time and 130 Hz in frequency as well as a

window length of 800 samples for all splines.

The compression results are visualised in Figure

8 (left).

Here, we can see the linear dependency in (20)

much clearer. We also see that even the B-spline

of order 2 already achieves the same compression

rate as the Gaussian window function. Calculating

p as before confirms this, see Table III.

We conclude that the signal itself is only in the

modulation space Mp for p > 0.82. Also, for

this longer signal the time advantage is very clear:

The simulations with the Gaussian window took

844 seconds or approximately 14 minutes, while

the simulations with all four spline orders together

took only 291 seconds or less than five minutes.

This shows how with real signals, using splines

of rather low order yields the same compression

rate as using smoother window functions while

taking much less computation time. We should

also mention that, given we always decompress

the file with 500 different values for the number

of coefficients N , we get real time decompression

even with the Gaussian window.

Additional simulations with Gaussian windows

For the comparison of different spline windows to

a Gaussian window we always used a Gaussian

with a time-frequency ratio of 1. To justify this, we

now look at the synthetic signal and do the same

simulations using Gaussian windows with time-

frequency ratio between 0.5 and 2. Figure 9 shows

the results and again, we compute the parameter p
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(a) Spline and Gaussian windows (b) Dual windows

Fig. 8: Errors for best N -term approximation of blackbird recording with different window functions.

Window function estimated p from compression rate estimated p for dual window

Spline order 1 0.8844 0.8935
Spline order 2 0.8322 0.8319
Spline order 3 0.8317 0.8309
Spline order 4 0.8207 0.8205

Gaussian 0.8342 0.8342

TABLE III: Values of p from compressing the blackbird signal

Fig. 9: Errors for best N -term approximation of

blackbird recording with different window func-

tions.

of the modulation space from the slopes (see Table

IV). As we can see, all Gaussians with a time-

frequency ratio that is reasonably close to around

1.25 show very similar behaviour, rendering closer

inspections of window length unnecessary for the

TFR of Gaussian estimated p from compression rate

0.5 0.1031
0.75 0.0714

1 0.0569
1.25 0.0542
1.5 0.0578

1.75 0.0643
2 0.0717

TABLE IV: Values of p from compressing the

synthetic signal with different Gaussians

purpose of illustrating the result from Theorem 6.

Another thing to look at is the role of the window

and the dual window in Theorem 6. We can test this

by simply switching the windows for our test on

the synthetic and the real signal. Figures 7 (right)

and 8 (right) show the results, and the last columns

in Tables 1 and III the corresponding estimates on

p. As expected, the differences are quite small. In

fact, with this setting we achieve slightly better

compression rates on the synthetic signal with the

dual window functions.
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C. Denoising on real data

Finally we illustrate the reduction of additive sta-

tionary noise on three real-data examples, that

is, recordings of a common blackbird as used in

Section V-B, of a melody played on the piano

and a sample of human speech3. All recordings

are 5 seconds long with a sampling rate of 44.1

kHz. The various recordings can be found on

GitHub4. Figure 10 gives the spectrograms with

a Gaussian window function and suitable choices

of a relatively dense grid and a window width

resulting in 75% overlap.

Each signal is corrupted with Gaussian white noise

according to a given signal-to-noise ratio (SNR).

State of the art methods for such signals rely on

spectral domain denoising [31]. A time-frequency

representation of the noisy signal is computed and

the resulting coefficients are processed by thresh-

olding methods to attenuate the noise. For com-

parison we also included a wavelet- thresholding

based approach, as well as the non linear median

filter which is a spatial denoising method.

We performed simulations for three thresholding

methods: VisuShrink, the universal threshold pro-

posed by Donoho and Johnstone [10] which we

analyzed theoretically in Section III, SureShrink

which is computed by minimizing Stein’s unbiased

risk estimate [9] and BayesShrink, a method based

on empirical Bayes by Johnstone and Silverman

[21]. Whereas VisuShrink provides a simple global

threshold, SureShrink and BayesShrink deliver co-

efficient - dependent thresholds.

For acoustic signals, diagonal estimation methods

with thresholding can introduce artificial musical

noise [31], which can be ameliorated by block-

thresholding methods [1]. Therefore, we also im-

plemented block-thresholding versions of the above

threshold schemes.

3obtained from https://samplefocus.com/
4Link to recordings on GitHub under

https://github.com/ptafo/Statistically-optimal-estimation-of-
signals-in-modulation-spaces-using-Gabor-frames

Figure 11 displays the spectrograms of the noisy

signal of the blackbird for a particular realization

of the noise, and of several of the above recon-

struction methods. While all the time-frequency

based methods result in much clearer spectrograms

as compared to the wavelet method and median

filtering, Visushrink tends to produce a somewhat

overly clear image appearance.

For a formal comparison of the reconstruction

quality of the denoised signal for each method we

considered

SNR = 10 log10

∑
n f

2[n]∑
n(f [n]− f̂ [n])2

dB,

which we compared over 10000 iterations. The

results displayed in Table V indicate the superior

performance of the time-frequency based meth-

ods. In terms of time-frequency based threshold-

ing methods, Sureshrink for Gabor frames results

in the best denoising perfomance. In particular

for the blackbird signal but also for the melody

played on a piano, the simple VisuShrink methods

for Gabor frames which we focused on is also

competitive. Block-thresholding for Gabor frames

does not seem to improve noise removal for the

specific signals investigated. Finally, while signif-

icantly inferior for the blackbird signal and the

melody, wavelet thresholding with universal thresh-

olding performs surprisingly well for the sample of

human speech. The median filter shows the worst

performance throughout.

Results comparing SureShrink and BayesShrink,

both for the diagonal methods as well as for block

thresholding are provided in the supplementary

material.

VI. CONCLUSIONS AND OUTLOOK

We showed that for signals contained in modulation

spaces, shrinkage methods for Gabor series expan-

sions lead to optimal denoising in a white-noise

model in the statistical minimax sense. While this

could basically be expected, our results show inter-

esting new phenomena in the minimax rates in par-

https://github.com/ptafo/Statistically-optimal-estimation-of-signals-in-modulation-spaces-using-Gabor-frames
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(a) Blackbird (b) Melody (c) Sample of human speech

Fig. 10: Spectrograms of a recording of a common blackbird, of a melody played on the piano and of

a sample of human speech

(a) blackbird, noisy recording (b) Median filtering (c) Wavelet thresholding

(d) VisuShrink (e) SureShrink (f) Block thresholding

Fig. 11: Spectrograms of the noisy and denoised blackbird recordings

audio SNR VisuShrink SureShrink block th wavelet median filter

-10 8.823 9.128 4.901 2.9 -2.772
blackbird 1 15.337 16.3 12.565 10.018 5.012

10 20.785 21.973 19.274 16.559 7.705

-10 6.758 8.35 5.545 3.938 -2.276
melody 1 14.16 15.708 13.505 11.346 7.868

10 20.103 22.21 20.374 18.113 13.88

-10 4.075 6.576 5.531 4.096 -2.285
human 1 11.894 14.281 12.739 11.195 7.994
speech 10 18.746 20.818 19.663 18.046 14.19

TABLE V: Comparison of the thresholding of the Gabor coefficients with the universal threshold

VisuShrink, SureShrink, Time-Frequency block thresholding with SureShrink to remove musical noise,

SureShrink thresholding of the wavelet coefficients and the spatial non-linear median filter. All values

in decibel (10 log10 x, dB).

ticular with an unexpected effect of the dimension.

We also give rates for signal compression which

cover the sparse case. Here, we highlight how much

smoothness of the window function is required to
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achieve optimal signal compression. In our nu-

merical experiments we demonstrate the practical

use of our methods for a range of synthetic and

real acoustic signals. In the experiments, we also

illustrate the advantage of compactly supported B-

spline window functions in terms of computation

time, which becomes relevant for large scale clas-

sification problems of acoustic signals such as bird

songs [19].

Extensions of our methods to other statistical es-

timation problems such as density estimation or

regression on compact domains should be relatively

straightforward. On the methodological side of

time-frequency theory, an analysis which covers

α-modulation spaces [5] with a varying time and

frequency resolution should be of theoretical and

also of applied interest. Finally, in classification

algorithms based on spectrograms, a thorough the-

oretical as well as numerical investigation of the

roles of denoising or compression still seems to be

lacking.
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VII. PROOFS

A. Proofs of Proposition 2 and Theorem 3

Proof of Proposition 2. For (10), we show that for µ >
0,

E
[ ∑
λ∈Λ0

∣∣ts(Y (h̃λ);µ)− ϑλ
∣∣2]

≤
∑
λ∈Λ0

min
(
|ϑλ|2, ε2‖h̃‖2L2 + 2µ2)

+
(
#Λ0

) ε3 ‖h̃‖3L2

µ
exp

(
− µ2

2 ε2 ‖h̃‖2L2

)
.

(21)

Inserting the universal threshold gives the result.

Since ϑλ := 〈f, h̃λ〉 = 〈f,<(h̃λ)〉 + i〈f,=(h̃λ)〉 we
have for j ∈ {s, h} that∑

λ∈Λ0

∣∣tj(Y (h̃λ);µ)− ϑλ
∣∣2

=
∑
λ∈Λ0

((
tj(<(Y (h̃λ));µ)− 〈f,<(h̃λ)〉

)2
+
(
tj(=(Y (h̃λ));µ)− 〈f,=(h̃λ)〉

)2)
.

(22)

To bound the expected value of (22), we use the follow-
ing fact, see Donoho and Johnstone [10] or Candes [2,
Proof of Theorem 5.1] that for W ∼ N (a, σ2

0) we have
that

E
[
(ts(W ;µ)− a)2]

≤ min(a2, σ2
0 + µ2) + 2

σ3
0

µ
ϕ

(
µ

σ0

)
,

(23)

where ϕ is the density of the standard normal distribu-
tion. Applying this to (22) we obtain

E
[ ∑
λ∈Λ0

((
ts(<(Y (h̃λ));µ)− 〈f,<(h̃λ)〉

)2
+
(
ts(=(Y (h̃λ));µ)− 〈f,=(h̃λ)〉

)2)]
=
∑
λ∈Λ0

E
[(
ts(<(Y (h̃λ));µ)− 〈f,<(h̃λ)〉

)2]
+
∑
λ∈Λ0

E
[(
ts(=(Y (h̃λ));µ)− 〈f,=(h̃λ)〉

)2]
≤
∑
λ∈Λ0

(
min

(
(<(ϑλ))2, ε2‖<(h̃λ)‖2L2 + µ2)

+
ε3 ‖<(h̃λ)‖3L2

µ
exp

(
− µ2

2 ε2 ‖<(h̃λ)‖2L2

))
+
∑
λ∈Λ0

(
min

(
(=(ϑλ))2, ε2‖=(h̃λ)‖2L2 + µ2)

+
ε3 ‖=(h̃λ)‖3L2

µ
exp

(
− µ2

2 ε2 ‖=(h̃λ)‖2L2

))
≤
∑
λ∈Λ0

min
(
|ϑλ|2, ε2‖h̃‖2L2 + 2µ2)

+
(
#Λ0

) ε3 ‖h̃‖3L2

µ
exp

(
− µ2

2 ε2 ‖h̃‖2L2

)
,

which is (21).

For hard thresholding, for W ∼ N (a, σ2
0) and µ/σ0 >

4, with a suitable constant C > 0 we have that [20,
Proposition 8.1]

E
[
(th(W ;µ)− a)2]

≤C min(a2, µ2) + C σ0 µϕ(µ/σ0 − 1).
(24)

Proceeding from (22), since

<(Y (h̃λ)) ∼ N
(
<(ϑ̃λ), ε2 ‖<(h̃λ)‖2L2

)
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we have that

E
[ ∑
λ∈Λ0

∣∣th(Y (h̃λ);µ)− ϑλ
∣∣2]

≤ C
∑
λ∈Λ0

(
min

(
(<(ϑλ))2, µ2)

+ min
(
(=(ϑλ))2, µ2)

))
+C (#Λ0) ε µ ·

(
‖<(h̃λ)‖L2 ϕ

( µ

ε ‖<(h̃λ)‖L2

− 1
)

+ ‖=(h̃λ)‖L2 ϕ
( µ

ε ‖=(h̃λ)‖L2

− 1
))

≤ C
∑
λ∈Λ0

min
(
|ϑλ|2, 2µ2)

+ 2 C ε (#Λ0) ‖h̃‖L2 µϕ
( µ

ε ‖h̃‖L2

− 1
)
.

and the bound for hard thresholding follows by inserting
the universal threshold.

Proof of Theorem 3. We may bound the second term in
the oracle inequality (10) for functions in the modula-
tion space associated to the weight function in (13) as
follows.

Lemma 8. For f ∈ Mp
ms(R

d), p ∈ (0, 2] we have the
bound ∑

‖λ‖2≤K

min(ε2 ‖h̃‖2L2 , |ϑλ|2)

≤ const. · ‖f‖
2 d p

2 d+s p

Mp
ms

ε
2 d (2−p)+2sp

2 d+s p .

Proof of Lemma 8. Note that we have ‖h̃‖2L2 ≤ 1, for
notational convenience assume that ‖h̃‖2L2 = 1. Since
p ∈ (0, 2] have that

min(ε2, |ϑλ|2) ≤ ε2−p |ϑλ|p.

Note that

#Λ0,K ≤ C K2d,

where the constant C depends on α, β and d. Then for
0 < Ks ≤ K we obtain∑
‖λ‖2≤K

min(ε2 , |ϑλ|2)

=
∑

‖λ‖2≤Ks

min(ε2 , |ϑλ|2) +
∑

Ks<‖λ‖2≤K

min(ε2 , |ϑλ|2)

≤ ε2 C K2d
s + ε2−p

∑
Ks<‖λ‖2

|ϑλ|p

≤ ε2 C K2d
s + ε2−p (1 +K2

s )−sp/2
∑

Ks<‖λ‖2

ms(λ)p |ϑλ|p

≤ ε2 C K2d
s + ε2−pK−sps C̃p2 ‖f‖

p

Mp
ms

(25)

by using ms(λ)p > (1 + K2
s )sp/2 for Ks < ‖λ‖2 in

the second last step, and (7) in the last step. Balancing
both terms using

Ks = const. · ‖f‖
p

2 d+s p

Mp
ms

ε
− p

2 d+s p

we get the result.

Now let us estimate the truncation term in (12).

Lemma 9. For f ∈Mp
ms(R

d), p ∈ (0, 2] we have that∑
K<‖λ‖2

|ϑλ|2 ≤ K−2 s C̃2 ‖f‖2Mp
ms

.

Proof of Lemma 9. Since the p-norm is monotonously
decreasing, we have∑

K<‖λ‖2

|ϑλ|2

≤
( ∑
K<‖λ‖2

|ϑλ|p
)2/p

≤
((

1 +K2)−s p/2 ∑
K<‖λ‖2

m(λ)p |ϑλ|p
)2/p

.

Applying (7), we obtain the claim.

To conclude the proof of the theorem we apply the
expected value to (12). The first term is bounded by
using the oracle inequality (10) resp. its version for hard
thresholding, together with Lemma 8. The truncation er-
ror in (12) is estimated by using Lemma 9 together with

the assumption K & ε
d (2−p)+sp
2 d s+s2 p in the theorem.

B. Proof of Theorem 4

Proof of Theorem 4. The proof relies on the lower
bound derived from Fano’s lemma, see Tsybakov [29,
Theorem 2.5]. For m ∈ N of order m � ε

− p
ps+2d the

task is to construct M ∈ N test functions fj ∈ Mp
s,C ,

where M � exp(cm2d) for some c > 0, such that

‖fj − fk‖2L2 � ε2 m2d, j 6= k. (26)

Then, if Y (j) and Y (k) are the observations in model (2)
with f = fj and f = fk, respectively, for the Kullback-
Leibler divergence KL(Y (j), Y (k)) we have that

KL(Y (j), Y (k)) =
‖fj − fk‖2L2

ε2
. log(M),

so that by applying Tsybakov [29, Theorem 2.5] yields
the lower bound of order ε2 m2d = ε

2 d (2−p)+2sp
2 d+s p , which

is the statement of the theorem. Note that we need the
upper bound in (26) for bounding the Kullback-Leibler
divergence, and the lower bound for obtaining the rate.
To construct the test functions, we consider the Gaussian
function

ϕ(x) = exp
(
− π ‖x‖22

)
.
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Given m ∈ N, using the Varshamov-Gilbert bound [29,
Lemma 2.9] we may choose M = exp(c1 m

2d), c1 =

(log 2)/8 > 0 indices

ι =
(
ι(k1,...,k2d)

)
k1,...,k2d=1,...,m

∈ {0, 1}(m
2d)

of Hamming - distance ‖ι − ι̃‖22 ≥ m2d/8. Note that
given two vectors ι, ι̃ ∈ {0, 1}(m

2d), the Euclidean
distance ‖ι − ι̃‖22 determines at how many positions ι
and ι̃ differ, that is, reduces to the Hamming distance.
Recall the translation and modulation operators

Tx f(t) = f(t− x)

Mω f(t) = exp
(
2πi 〈ω, t〉

)
f(t), x, ω, t ∈ Rd.

Then, for (large) fixed r > 0 and (small) c > 0 we let

fι = c · ε
m∑

k1,...,k2d=1

(
ι(k1,...,k2d)>

· Tr (k1,...,kd)>Mr (kd+1,...,k2d)> ϕ
)

(27)

= c · ε
m∑

k′,k′′

ιk′,k′′ Tr k′Mr k′′ ϕ,

where we denote k′ = (k1, . . . , kd)
> and k′′ =

(kd+1, . . . , k2d)
>, and

∑m
k′,k′′ indicates tha the coor-

dinates in k′ and k′′ vary from 0 up to m.

Lemma 10. We have that(
Vϕfι

)
(x, ω)

= c · ε
∑
k′,k′′

(
ιk′,k′′ exp

(
− 2πi 〈ω, rk′〉

)
2−d/2

· exp
(
πi 〈x− rk′, ω − rk′′〉

)
(28)

· exp
(
− π‖x− r k′‖22/2

)
exp

(
− π‖ω − r k′′‖22/2

))
.

Proof of Lemma 10. The short time Fourier transform
of the Gaussian function ϕ can be computed as

Vϕ(ϕ)(x, ω)

= 2−d/2 exp
(
− π‖x‖22/2

)
exp

(
πi 〈x, ω〉

)
· exp

(
− π‖ω‖22/2

)
.

Moreover, from the relation TxMω = exp
(
−

2πi 〈x, ω〉
)
Mω Tx, from

〈Txf, g〉L2 = 〈f, T−x g〉L2 ,

〈Mωf, g〉L2 = 〈f,M−ω g〉L2

and from the representation Vgf(x, ω) =

〈f,Mω Tx g〉L2 we obtain(
Vg(Tsf)

)
(x, ω) = exp

(
− 2πi 〈ω, s〉

)
·
(
Vgf

)
(x− s, ω),(

Vg(Mηf)
)
(x, ω) =

(
Vgf

)
(x, ω − η).

Using these formulas and the linearity of the STFT gives
(28).

Bounding the L2-distance

Since ‖Vgf‖L2 = ‖f‖L2 ‖g‖L2 and ‖ϕ‖2L2 = 2−d/2,
we obtain

‖fι − fι′‖2L2 = 2−d/2 ‖Vϕ fι − Vϕfι′‖2L2 , (29)

where ι, ι′ ∈ {0, 1}(m
2d).

Lemma 11. For a sufficiently large (fixed) r > 0 and
for ι and ι′ of Hamming distance ‖ι− ι̃‖22 ≥ m2d/8 we
have for constants c̃i > 0 that

‖Vϕ fι − Vϕfι′‖2L2 ≥ c̃1 ε2 ‖ι− ι′‖22 ≥ c̃1 ε2 m2d/8,

(30)

‖Vϕ fι − Vϕfι′‖2L2 ≤ c̃2 ε2 ‖ι− ι′‖22 ≤ c̃2 ε2 m2d.

(31)

Proof of Lemma 11. First consider the lower bound
(30). We have that∣∣(Vϕfι)− (Vϕfι′)∣∣2 (x, ω)

≥ c2 ε22−d
( m∑
k′,k′′

(ιk′,k′′ − ι′k′,k′′)2 (32)

· exp
(
− π‖x− r k′‖22

)
exp

(
− π‖ω − r k′′‖22

)
−

m∑
(k′,k′′)6=(k′1,k

′′
1 )

|ιk′,k′′ − ι′k′,k′′ | |ιk′1,k′′1 − ι
′
k′1,k

′′
1
|

· exp
(
− π

2
(‖x− r k′‖22 + ‖x− r k′1‖22)

)
· exp

(
− π

2
(‖ω − r k′′‖22 + ‖ω − r k′′1 ‖22)

))
.

Lemma 12. Given a, r > 0 with a1/2 · r sufficiently
large we have that for all x, ω ∈ Rd,∑

(k′,k′′)6=(0,0)

(
exp

(
− a (‖x‖22 + ‖x− r k′‖22)

)
· exp

(
− a (‖ω‖22 + ‖ω − r k′′‖22)

))
(33)

≤ 4 exp
(
− ar

2

8

)
exp

(
− a‖x‖

2
2 + ‖ω‖22

2

)
.

Here, we let the indices k′ and k′′ in the sum range
through Zd.

Proof of Lemma 12. By rescaling we may assume that
a = 1. The left side then reduces to

e−(‖x‖22+‖ω‖22)
∑

(k′,k′′)6=(0,0)

(
exp

(
− ‖x− r k′‖22

)
· exp

(
− ‖ω − r k′′‖22

))
. (34)
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Of course,∑
(k′,k′′)6=(0,0)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
≤

∑
(k′,k′′)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
,

and we bound the sum on the right side uniformly in x
and ω. Indeed, since the function on the right side has
period r in each coordinate of x and ω, it suffices to
bound it on [−r/2, r/2]2 d, and we can bound∑

(k′,k′′)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
≤
∑

(k′,k′′)

exp
(
− r2 ‖k′‖22/4

)
exp

(
− r2 ‖k′′‖22/4

)
≤ 2, (35)

for sufficiently large r.

Now, concerning (34) if ‖x‖2 ≥ r/2 then
‖x‖22 ≥ ‖x‖22/2 + r2/8 and hence e−(‖x‖22+‖ω‖22) ≤
e−r

2/8 e−(‖x‖22+‖ω‖22)/2, which together with (35) im-
plies (33). The case |ω| ≥ r/2 is similar.

If both ‖x‖2 ≤ r/2 and ‖ω‖2 ≤ r/2, then if k′ 6= 0,

‖x− r k′‖22 ≥ (r ‖k′‖2 − ‖x‖2)

≥ r2(‖k′‖2 − 1/2)2

≥ r2 (‖k′‖22/2− 1/4),

and hence in view of (35), and similarly for k′′ 6= 0, and
hence we can bound∑
(k′,k′′)6=(0,0)

exp
(
− ‖x− r k′‖22

)
exp

(
− ‖ω − r k′′‖22

)
≤ 4 exp(−r2/4).

We resume the proof of Lemma 11. Using (33) we may
provide an upper bound on the second term in the bracket
in (32) (which is subtracted) by

m∑
(k′,k′′)6=(k′1,k

′′
1 )

(
|ιk′,k′′ − ι′k′,k′′ | |ιk′1,k′′1 − ι

′
k′1,k

′′
1
|

· exp
(
− π

2
(‖x− r k′‖22 + ‖x− r k′1‖22)

)
· exp

(
− π

2
(‖ω − r k′′‖22 + ‖ω − r k′′1 ‖22)

))
≤ 4 exp(−πr2/16)

∑
(k′,k′′)

(
(ιk′,k′′ − ι′k′,k′′)2

· exp
(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

))
.

Thus, we can provide a lower bound on the difference
in brackets in (32) by∑

(k′,k′′)

(ιk′,k′′ − ι′k′,k′′)2 ·
(

exp
(
− π ‖x− r k′‖22

)
· exp

(
− π ‖ω − r k′′‖22

)
− 4 exp(−πr2/16)

· exp
(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

))
.

Now, the integrals of exp
(
− π ‖x − r k′‖22

)
, exp

(
−

π ‖ω − r k′′‖22
)

and exp
(
− π

4
‖x − r k′‖22

)
, exp

(
−

π
2
‖ω − r k′′‖22

)
are positive and do not depend on r.

Thus, by choosing r large enough we obtain the desired
first inequality in (30), while the second follows from
the assumption on ι and ι′.
For the upper bound, we obtain similarly that∑

(k′,k′′)

(ιk′,k′′ − ι′k′,k′′)2 ·
(

exp
(
− π ‖x− r k′‖22

)
· exp

(
− π ‖ω − r k′′‖22

)
+ 4 exp(−πr2/16)

· exp
(
− π

4
‖x− r k′‖22

)
exp

(
− π

2
‖ω − r k′′‖22

))
,

which yields the first inequality in (31), while the second
follows from ‖ι− ι′‖22 ≤ m2d.

Bounding the modulation norm

Lemma 13. For the functions defined in (27), we have
that

‖fι‖pMp
ms
≤ const. · mps+2d εp,

where the constant can be made small by decreasing the
constant c in (27).

Proof. We have that

‖fι‖pMp
ms

=

∫
Rd

∫
Rd
|Vϕfι(x, ω)|pms(x, ω)p dx dω

≤ cp εp
∫
Rd

∫
Rd

( m∑
k′,k′′

exp
(
− π‖x− r k′‖22/2

)
· exp

(
− π‖ω − r k′′‖22/2

))p
·
(
1 + ‖x‖22 + ‖ω‖22

)ps/2 dx dω. (36)

For a, r > 0 with a1/2 · r sufficiently large we have for
all t ∈ R that

m∑
j=1

exp
(
− a (t− r j)2)

≤ 4
(m−1∑
j=2

exp
(
− a (t− r j)2)1|t−r j|≤r/2

+ exp
(
− a (t− r)2)1t≤3r/2

+ exp
(
− a (t− rm)2)1t≥(m−1/2) r

)
.

(37)
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This follows from

exp(−at2) ≥ 2

∞∑
j=1

exp(−a(t− rj)2), t ≤ r/2,

for a1/2 · r sufficiently large, which is immediate from
the geometric series. The functions on the right of (37)
have disjoint support, so that( m∑

j=1

exp
(
− a (t− r j)2))p

≤ 4p
(m−1∑
j=2

exp
(
− a p (t− r j)2)1|t−r j|≤r/2

+ exp
(
− a p (t− r)2)1t≤3r/2

+ exp
(
− a p (t− rm)2)1t≥(m−1/2) r

)
≤ 4p

m∑
j=1

exp
(
− a p (t− r j)2),

and inserting this bound in each of the sums in (36) we
bound the integral by∫

Rd

∫
Rd

( m∑
k′,k′′

exp
(
− π‖x− r k′‖22/2

)
· exp

(
− π‖ω − r k′′‖22/2

))p
·
(
1 + ‖x‖22 + ‖ω‖22

)ps/2 dx dω

≤ const. ·
m∑

k′,k′′

∫
Rd

∫
Rd

exp
(
− p π‖x− r k′‖22/2

)
· exp

(
− p π‖ω − r k′′‖22/2

)
·
(
1 + |xps1 |+ . . .+ |xd|ps + |ωps1 |+ . . .+ |ωd|ps

)
dx dω

≤ const. ·
m∑

k′,k′′

∫
Rd

∫
Rd

exp
(
− p π‖x− r k′‖22/2

)
· exp

(
− p π‖ω − r k′′‖22/2

) (
1 + ‖x‖22 + ‖ω‖22

)ps/2
dx dω (38)

Since for b ≥ 0,∫
R

exp
(
− p πt2

)
|t+ b|ps dx ≤ const. · |b|ps,

we may further bound (38) by

const. ·
m∑

k1,...,k2d=1

(
1 + kps1 + . . .+ kps2d

)
≤ const. · m2d−1 · mps+1

≤ const. · mps+2d,

which together with (36) proves the lemma.

Conclusion of the proof of Theorem 4. From the above
paragraph we obtain as condition for fι ∈Mp

s,C in d =

1 that mps+2 dεp . 1, which leads to m � ε
− p
ps+2d .

Now (30) implies (26), and the conclusion follows as in
the first paragraph of the proof.

As pointed out by a reviewer, the construction (27)
can potentially be related to the so-called Piano-
Reconstruction Theorem, Theorem 6.4 in Feichtinger
and Gröchenig [15], which would indicate that computa-
tions could be transferred to the level of sequence spaces.

C. Proof of Theorem 5

Proof of Theorem 5. Let us first consider the upper risk
bound. We state an extension of Lemma 8.

Lemma 14. For f ∈ Mp
mu,v (Rd), p ∈ (0, 2] we have

the bound∑
‖λ‖2≤K

min(ε2 ‖h̃‖2L2 , |ϑλ|2)

≤ const. · ‖f‖
p d (v+u)

d(v+u)+pvu

Mp
mu,v

ε
(2−p) d (v+u)+2pvu

d(v+u)+pvu .

(39)

Proof of Lemma 14. Again assume ‖h̃‖2L2 = 1 and use
that min(ε2, |ϑλ|2) ≤ ε2−p |ϑλ|p. For Ku > 0 and
Kv > 0 with a computation similar to (25) we have
that ∑

‖λ‖2≤K

min(ε2 , |ϑλ|2)

≤
∑

‖x‖2≤Ku,‖ω‖2≤Kv

min(ε2 , |ϑλ|2)

+
∑

‖x‖2>Ku

min(ε2 , |ϑλ|2)

+
∑

‖ω‖2>Kv

min(ε2 , |ϑλ|2)

≤ ε2 C Kd
v K

d
u

+ C̃p2 ‖f‖
p

Mp
mu,v

ε2−p (K−upu +K−vpv

)
Balancing the terms with

Kv = const. · ‖f‖
pu

d(v+u)+pvu

Mp
mu,v

ε
− pu
d(v+u)+pvu ,

Ku = const. · ‖f‖
pr

d(v+u)+pvu

Mp
mu,v

ε
− pv
d(v+u)+pvu ,

we get the result.

Next we extend Lemma 9. The proof is analogous and
therefore omitted.

Lemma 15. For f ∈ Mp
mu,v (Rd), p ∈ (0, 2] we have

that
∑

K<‖λ‖2

|ϑλ|2 ≤ K−2 min(u,v) C̃2 ‖f‖2Mp
mu,v

.

These combine to give the upper risk bound in Theorem
5.

Now let us turn to the lower risk bound. The proof is
along the lines of that of Theorem 4. For m1,m2 ∈ N
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of order m1 � ε−
pv

d(v+u)+pvu and m2 � ε−
pu

d(v+u)+pvu ,
we construct M ∈ N test functions fj ∈Mp

u,v,C , where
M � exp(cmd

1 m
d
2) for some c > 0, such that

‖fj − fk‖2L2 � ε2 md
1 m

d
2, j 6= k.

The conclusion then follows as in the proof of Theorem
4.
Again we consider the Gaussian function ϕ(x) =

exp
(
− π ‖x‖22

)
, and given m1,m2 ∈ N, using the

Varshamov-Gilbert bound [29, Lemma 2.9] we may
choose M = exp(c1 m

d
1 m

d
2), c1 = (log 2)/8 > 0

indices

ι =
(
ι(k1,...,k2d)

)
k1,...,kd=1,...,m1,kd+1,...,k2d=1,...m2

∈ {0, 1}(m
d
1 m

d
2)

of Hamming - distance ‖ι − ι̃‖22 ≥ md
1 m

d
2/8. For

suitable (large) fixed r > 0 and some (small) fixed c > 0

we let

fι = c · ε
m1∑

k1,...,k2=1

m2∑
kd+1,...,k2d=1

(
ι(k1,...,k2d)>

· Tr (k1,...,kd)>Mr (kd+1,...,k2d)> ϕ
)

(40)

= c · ε
∑
k′,k′′

ιk′,k′′ Tr k′Mr k′′ ϕ,

where we denote k′ = (k1, . . . , kd)
> and k′′ =

(kd+1, . . . , k2d)
>.

Bounding the L2-distance

Analoguously to Lemma 11, we have that

Lemma 16. For a sufficiently large (fixed) r > 0 and
for ι and ι′ of Hamming distance ‖ι− ι̃‖22 ≥ md

1 m
d
2/8

we have that

‖Vϕ fι − Vϕfι′‖2L2 ≥ c̃1 ε2 ‖ι− ι′‖22 ≥ c̃1 ε2 md
1 m

d
2/8,

‖Vϕ fι − Vϕfι′‖2L2 ≤ c̃2 ε2 ‖ι− ι′‖22 ≤ c̃2 ε2 md
1 m

d
2.

(41)

Bounding the modulation norm

Lemma 17. For the functions defined in (40), we have
that

‖fι‖pMp
mu,v

≤ const. · εp (md
1 m

d
2) (mpu

1 +mpv
2 ) ,

where the constant can be made small by decreasing the
constant c in (40).

For the choices m1 and m2 above, the upper bound in
Lemma 17 remains bounded, and inserting these choices
in (41) gives the rate.

D. Proofs of Section IV

Proof of Theorem 6. Since
(
〈f, h̃λ〉

)
λ∈Λ
∈ `pm we have

that Nµ is finite. By definition of Iµ we have that

Nµ µ
p ≤

∑
λ∈Iµ

|〈f, h̃λ〉|p

≤
∑
λ∈Λ

|〈f, h̃λ〉|p

≤ C̃p2‖f‖
p

Mp(Rd)
,

where we used (7) in the last step. Hence

µ ≤ N−1/p
µ C̃2 ‖f‖Mp(Rd). (42)

Further, for λ ∈ I{µ we have that

|〈f, h̃λ〉|2 ≤ µ2−p |〈f, h̃λ〉|p (43)

since p ∈ (0, 2). Hence by boundedness of the synthesis
operator

‖f − fµ‖2L2 ≤ B
∑
λ∈I{µ

|〈f, h̃λ〉|2

≤ B µ2−p
∑
λ∈I{µ

|〈f, h̃λ〉|p

Using (7) we obtain

‖f − fµ‖2L2 ≤ B C̃p2 µ
2−p ‖f‖pMp(Rd)

and inserting the bound (42) yields the result.

Proof of Theorem 7. From (5) we have the bound

‖g‖pMp
m(Rd)

≤ C̃ ·
∑
λ∈Λ

|cλ|pm(λ)p.

Further we may write

‖f − g‖2L2 =
∥∥∑
λ∈Λ

(〈f, h̃λ〉 − cλ)hλ
∥∥2

L2

=
∥∥Dh(〈f, h̃λ〉 − cλ)λ∈Λ

∥∥2

L2 ,

where Dh is the Gabor synthesis operator associated
with {hλ | λ ∈ Λ}. From Gröchenig [17, Prop. 5.1.1
(b)] we obtain the estimate

∥∥Dh(〈f, h̃λ〉−cλ)λ∈Λ

∥∥2

L2 ≤ B ‖(〈f, h̃λ〉−cλ)λ∈Λ‖2`2 ,

where B is the upper frame bound. Setting C =

max(C̃, B) we obtain the result.
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E. Proof of Theorem 1

Proof. Following Galperin and Samarah [16, Theorem
3.1], it is sufficient to show

h ∈
⋃

r,s>1/p
1≤p∗<∞

Mp∗
wr,s

with

wr,s(x, ω) = v(x, ω)(1 + |x|)r(1 + |ω|)s.

We therefore need Vhh ∈ Lp
∗
wr,s . Since [see, e.g., 17,

Lemma 3.1.1]

Vgf(x, ω) = e−2πixωVĝ f̂(ω,−x),

we have

|Vhh(x, ω)|

=
∣∣∣Vĥĥ(ω,−x)

∣∣∣
=

∣∣∣∣∫
R
ĥ(t)ĥ(t− ω)e2πixtdt

∣∣∣∣
=

∣∣∣∣ ∫
R
e−it/2+i(t−ω)/2

(
sin(t/2) · sin((t− ω)/2)

t/2 · (t− ω)/2

)k
e2πixtdt

∣∣∣∣.
By defining

fω(t) =

(
sin(t/2) · sin((t− ω)/2)

t/2 · (t− ω)/2

)k
,

we can conclude that

‖Vhh‖p
∗

Lp
∗
wr,s

=

∫
R

∫
R
|Vhh(x, ω)|p

∗
wr,s(x, ω)p

∗
dxdω

=

∫
R

∫
R

∣∣∣f̂ω(−x)
∣∣∣p∗ wr,s(x, ω)p

∗
dxdω

=

∫
R
(1 + |ω|)sp

∗

·
(∫

R

∣∣∣f̂ω(x)
∣∣∣p∗ v(−x, ω)(1 + |x|)rp

∗
dx
)

dω.

The sinc function sin(t)/t is bandlimited and its trans-
lation in time corresponds to a modulation of its Fourier
transform, which keeps its support. Therefore, fω is
bandlimited and the support of f̂ω is independent of ω.
Also, we assumed v to be independent of ω as well.
This means that we can bound the weights in the inner
integral by some constants and get

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R
(1 + |ω|)sp

∗
∥∥∥f̂ω∥∥∥p∗

Lp∗
dω.

Assuming 2 ≤ p∗ < ∞ and 1
p∗ + 1

q
= 1, we can use

the Hausdorff-Young inequality to obtain

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R
(1 + |ω|)sp

∗
‖fω‖p

∗

Lq dω. (44)

To bound the norm ‖fω‖Lq we define the set

Nω =

{
t ∈ R

∣∣∣t− ω

2

∣∣∣ ≤ |ω|
4

}
.

For all t ∈ Nω , since |ω|
2
− |t| ≤

∣∣t− ω
2

∣∣, we have the
inequality |t| ≥ |ω|

4
. Therefore

‖fω‖qLq = 2

∫
R

∣∣∣∣ sin tt
∣∣∣∣kq ∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt

≤ 2

∫
Nω

∣∣∣∣1t
∣∣∣∣kq ∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt

+ 2

∫
Ncω

∣∣∣∣ sin tt
∣∣∣∣kq ∣∣∣∣ 1

t− ω/2

∣∣∣∣kq dt

≤ 2 · 4kq |ω|−kq
∫
Nω

∣∣∣∣ sin(t− ω/2)

t− ω/2

∣∣∣∣kq dt

+ 2 · 4kq |ω|−kq
∫
Ncω

∣∣∣∣ sin tt
∣∣∣∣kq dt

. |ω|−kq ,

where we used the integrability of
∣∣∣ sin(x)

x

∣∣∣α for α > 1

in the last step.
Inserting this into (44), we get

‖Vhh‖p
∗

Lp
∗
wr,s

.
∫
R
(1 + |ω|)sp

∗
‖fω‖p

∗

Lq dω

.
∫
|ω|>1

(
(1 + |ω|)s

|ω|k

)p∗
dω

+

∫
|ω|≤1

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω

.2sp
∗
∫
R
(1 + |ω|)(s−k)p∗dω

+

∫
|ω|≤1

(1 + |ω|)sp
∗
‖fω‖p

∗

Lq dω.

In the second summand we integrate a continous function
over a compact set, this integral is always finite. There-
fore, we have ‖Vhh‖Lp∗wr,s < ∞, if (s − k)p∗ < −1.

Additionally we assumed s > 1/p, so 1/p∗ < k − s <
k − 1/p.
Since 2 ≤ p∗ < ∞ can be arbitrarily large, we finally
get the norm equivalence (7) for all B-spline window
functions of order k > 1/p.
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