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Abstract

We extend the concept of the ridgeline from Ray and Lindsay (2005) to finite mixtures
of general elliptical densities with possibly distinct density generators in each component.
This can be used to obtain bounds for the number of modes of two-component mixtures
of t distributions in any dimension. In case of proportional dispersion matrices, these have
at most three modes, while for equal degrees of freedom and equal dispersion matrices,
the number of modes is at most two. We also give numerical illustrations and indicate
applications to clustering and hypothesis testing.
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1 Introduction

Finite mixtures are a popular tool for modeling heterogenous populations. In particular, mul-
tivariate finite mixtures are often used in cluster analysis, see e.g. McLachlan and Peel (2000).
Here, analysis is mainly based on mixtures with multivariate normal components. However,
mixtures of multivariate t-distributions offer an attractive, more flexible and more robust alter-
native, see McLachlan and Peel (2000).
An important feature of these mixtures are their analytic properties, in particular their modality
structure. Modes are essential for a proper interpretability of the resulting density. For example,
in cluster analysis, when there are less modes than components in a mixture, it is reasonable
to merge several components into a single cluster based on their modality structure, see Hennig
(2010). On the other hand, having more modes than components in a mixtures as can happen
in dimensions > 1 is an undesirable feature.
The most important tools for assessing the number of modes of finite mixtures of multivariate
normal distributions are the concepts of the ridgeline and the Π-function as introduced in Ray
and Lindsay (2005). Recently, Ray and Ren (2011) showed that for two-component mixtures
of normals in dimension D, the number of modes is at most D + 1, and further constructed
examples which achieved these bounds.
Here, we extend their concept of the ridgeline to finite mixtures of general elliptical densities
with possibly distinct density generators in each component. This can be used to obtain bounds
for the number of modes of two-component mixtures of t distributions with possibly distinct
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degrees of freedom in any dimension. In case of proportional dispersion matrices, we show
that these have at most three modes, while for equal degrees of freedom and equal dispersion
matrices, the number of modes is at most two.
The paper is structured as follows. In Section 2 we introduce the concept of the ridgeline and
the Π-function for mixtures of general elliptical distributions, and state some basic properties.
These are used in Section 3 to assess the model structure of two-component t-mixtures. In
Section 4 we give numerical illustrations and indicate some statistical applications to clustering
and hypothesis testing.

2 Ridgeline theory for general elliptical distributions

As indicated in Ray and Lindsay (2005), several of their results extend from finite mixtures of
multivariate normal distributions to finite mixtures of general elliptical densities. In this section
we formulate the relevant statements, for the proofs see Alexandrovich (2011).
First, we introduce some notation. A nonnegative measurable function ϕ : [0,∞) → [0,∞) for
which cϕ :=

∫
RD ϕ(xTx) dx <∞ is finite is called a density generator of a D-dimensional spher-

ical distribution. Evidently, f(x) = c−1ϕ ϕ(xTx) is then a D-dimensional density w.r.t. Lebesgue

measure. If µ ∈ RD and Σ > 0 is a positive definite D ×D matrix, then

f(x;µ,Σ) = k ϕ
(
(x− µ)TΣ−1(x− µ)

)
, k =

(
cϕ det(Σ)1/2

)−1
is a density from the associated family of elliptical distributions. For further details on elliptical
distributions and their density generators see Fang et al. (1989). We consider general finite
mixtures of elliptical densities with possibly distinct density generators in each component,
i.e. densities of the form

g(x;µi,Σi, πi, ϕi, i = 1, . . . ,K) =

K∑
i=1

πi ki ϕi((x− µi)TΣ−1i (x− µi)), (1)

where µi ∈ RD, Σi > 0 are positive definite D × D matrices, ϕi are density generators with

ki =
(
cϕi det(Σi)

1/2
)−1

the appropriate normalizing constant, and πi ∈ [0, 1] with
K∑
i=1

πi = 1.

Typically, the density generators ϕi will all be equal as in case of normal mixtures, or at least
belong to a parametric family of density generators such as t-distributions with distinct degrees
of freedom. Set

SK :=
{
α =

(
α1, . . . , αK

)T ∈ RK : αi ∈ [0, 1],

K∑
i=1

αi = 1
}
.

Ray and Lindsay (2005) introduced the map x∗ : SK → RD,

x∗(α) =
[
α1Σ

−1
1 + ...+ αKΣ−1K

]−1
[α1Σ

−1
1 µ1 + ...+ αKΣ−1K µK ],

the so-called ridgeline function. The next theorem summarizes the connection between the
modes of the finite mixture g in (1) and the ridgeline. For the proof in this general setting see
Alexandrovich (2011).

Theorem 2.1. Suppose that the density generators ϕi in the finite mixture g (see (1)) are
continuously differentiable and strictly decreasing. Then
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1. All critical points of g as defined in (1) are contained in x∗
(
SK
)
, the image of SK under the

mapping x∗.
2. Set h(α) = g(x∗(α)), α ∈ SK . Then αcrit is a critical point (resp. local maximum) of h if
and only if x∗(αcrit) is a critical point (resp. local maximum) of g.
3. If D > K − 1, then g has no local minima, only local maxima and saddle points.

Thus, looking for modes of g it is sufficient to look for modes of h.

For a two component mixture, setting

δ(x, i) = (x− µi)TΣ−1i (x− µi), i = 1, 2, (2)

we can write

g(x;π, µ1, µ2,Σ1,Σ2, ϕ1, ϕ2) = π k1ϕ1

(
δ(x, 1)

)
+ (1− π) k2ϕ2

(
δ(x, 2)

)
.

For the ridgeline, we write in slightly different notation than in the above section

x∗(α) = S−1α
(
(1− α)Σ−11 µ1 + αΣ−12 µ2

)
, Sα = (1− α)Σ−11 + αΣ−12 . (3)

As above, set h(α) = g
(
x∗(α)

)
. Then solving

∂αh(α) = πk1 ∂αϕ1

(
δ
(
x∗(α), 1

))
+ (1− π)k2 ∂αϕ2

(
δ
(
x∗(α), 2

))
= 0

for π, where ∂α is the derivative w.r.t. the real parameter α, we get

π =
k2 ∂αϕ2

(
δ
(
x∗(α), 2

))
k2 ∂αϕ2

(
δ
(
x∗(α), 2

))
− k1 ∂αϕ1

(
δ
(
x∗(α), 1

)) =: Π(α),

the so-called Π-function. Note that the Π-function depends on parameters µi,Σi, ϕi, i = 1, 2,
but not on the weight π. For given π, it can be used to find the critical points of g. Further, it
provides general bounds on the number of modes as follows.

Theorem 2.2. a. Π(0) = 1, Π(1) = 0 and Π(α) ∈ [0, 1].
Let N be the number of zeros of the derivative ∂αΠ(α) of Π(α) w.r.t α within the interval [0, 1].
Then
b. N is even, and for any π ∈ [0, 1] the equation Π(α) = π has at most N + 1 solutions, the
smallest of which, α1, gives a mode x∗(α1) of g.
c. For any π, g has at most 1 +N/2 modes.

We can compute general expressions for the Π-function and its derivative as follows. This will
be refined for the t distribution in the next section.

Proposition 2.3. Let ϕ′i(t) = dϕi/dt(t), t ∈ R, i = 1, 2 be the derivatives of the density
generators. Then for 0 < α < 1

Π(α) =
(1− α) k2 ϕ

′
2

(1− α) k2 ϕ′2 + αk1 ϕ′1

∂αΠ(α) = −k1k2
ϕ′1 ϕ

′
2 + 2α(1− α) p(α)

(
(1− α)ϕ′1ϕ

′′
2 + αϕ′2ϕ

′′
1

)(
(1− α) k2 ϕ′2 + αk1 ϕ′1

)2 (4)

where ϕ′2 and ϕ′′2 are evaluated at δ
(
x∗(α), 2

)
(see (2)), while ϕ′1 and ϕ′′1 are evaluated at

δ
(
x∗(α), 1

)
, and

p(α) = (µ2 − µ1)TΣ−11 S−1α Σ−12 S−1α Σ−12 S−1α Σ−11 (µ2 − µ1). (5)
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3 Modes of two components mixtures of t distributions

In this section, based on the results of the previous section we give bounds on the number of
modes of two-component t-mixtures. Observe that from Theorem 2.2 c., for given parameters
µi,Σi, i = 1, 2 (and degrees of freedom ni in case of the t distribution), the number of modes
of the resulting mixture g for any weight π can be bounded by the number of zeros of ∂αΠ in
[0, 1]. Thus, if we can bound this number of zeros in [0, 1] for any parameter combination µi,Σi

(and ni), we obtain bounds in the number of modes of the mixture g.
For mixtures of t-distributions, the density generators are given by

ϕ(x;ni) = ki

(
1 +

x

ni

)−(ni+D)/2
, ki =

Γ
(
ni+D

2

)
|Σi|

1
2 Γ
(
ni/2

)
(niπ)D/2

, i = 1, 2,

where ni denotes the degrees of freedom in the ith component. The general two-component
t-mixture is given by

g(x;π, µ1, µ2,Σ1,Σ2, n1, n2) = πk1ϕ
(
δ(x, 1);n1

)
+ (1− π)k2ϕ

(
δ(x, 2);n2

)
, (6)

Lemma 3.1. Consider a general t-mixture as in (6). Set

Σ∗ = Σ
−1/2
2 Σ1Σ

−1/2
2 , µ∗ = Σ

−1/2
2 (µ1 − µ2) (7)

and let Σ∗ = QD∗QT , where D = diag(λ∗1, . . . , λ
∗
D) and Q is an orthogonal matrix, denote the

spectral decomposition of Σ∗. Then the number of modes of g(x;π, µ1, µ2,Σ1,Σ2, n1, n2) is the
same as that of g(x, π,QTµ∗, 0, D∗, ID, n1, n2).

This follows along similar lines as Theorem 4 in Ray and Ren (2011). Using this simplification,
by bounding the number of zeros of ∂αΠ-function one can obtain

Theorem 3.2. 1. Let g(x;π, µ1, µ2,Σ1,Σ2, n1, n2) = πk1ϕ
(
δ(x, 1);n1

)
+ (1−π)k2ϕ

(
δ(x, 2);n2

)
be a two-component mixture of t distributions in dimension D, and let d be the number of

distinct eigenvalues of the matrix Σ
−1/2
2 Σ1Σ

−1/2
2 . Then the number of modes of g is at most

1 + 2d.
2. Let g(x;π, µ1, µ2,Σ,Σ/λ, n1, n2), λ > 0, be a two-component mixture of t distributions in
dimension D with proportional covariance matrices. Then the number of modes of g in any
dimension is at most three.
3. A two-component t-mixture with equal degrees of freedom and dispersion matrices,
g(x;π, µ1, µ2,Σ, n) has at most two modes in any dimension D.

4 Illustrations and applications

Numerical illustrations

We start by giving some numerical illustrations of some of the results in the paper.
1. First, we investigate the effect of varying the degrees of freedom in a mixture of two t-
distributions while keeping the covariances of components fixed. We also consider a correspond-
ing Gauss mixtures which can be considered as a limit case in which the degrees of freedom tend
to ∞. Specifically, the parameters of the mixtures are

µ1 =

(
0
0

)
, µ2 =

(
1
1

)
, Σ1 =

(
1 0
0 0.05

)
, Σ2 =

(
0.05 0

0 1

)
. (8)
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In the case of t-mixtures we scale the matrices Σi, i = 1, 2 with the factors ni−2
ni

in order to
retain equal covariances in each constellation of degrees of freedom.
Figure 1 contains plots of the Π-functions for various combinations of degrees of freedom, while
Figure 2 has the corresponding for the weight π = 0.65. From Figure 1 we see that with
decreasing degrees of freedoms, the range of mixture weights for which the mixture has three
modes decreases as well. For the choice π = 0.65, the first (normal), second (n1 = n2 = 10) and
forth (n1 = 10, n2 = 3) have three modes, otherwise there are only two.

Figure 1: Π-functions for Gauss- and t-mixtures with various degrees of freedom

2. Second, we consider the transformation in Lemma 3.1 to diagonal dispersion matrices for
a two-component t-mixture with 15 degrees of freedom and π = 0.5 for a special parameter
combination. Specifically, consider

µ1 =

(
0.5
0.5

)
, µ2 =

(
1.5
1.5

)
, Σ1 =

(
1 0.14

0.14 0.06

)
, Σ2 =

(
0.06 0.14
0.14 1

)
.

Then the transformed parameters are given by

µ1 =

(
0
0

)
, µ2 =

(
−4.39
−1.11

)
, Σ1 =

(
1 0
0 1

)
, Σ2 =

(
24.19 0

0 0.041

)
.

Figure 4 contains plots of the corresponding densities, which look quite distinct. Thus, it is not
apparent that the transformation keeps the number of modes
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Figure 2: The corresponding contours for the mixtures for π = 0.65

Figure 3: Two-component t-mixture before (left) and after (right) transformation to diagonal
dispersion matrices
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3. Third, we investigate the effect when rotating one component while keeping everything else
fixed. We consider a two-component t-mixture with 15 degrees of freedom in each component,
and parameters as in (8). We rotate the second component clockwise, with angles ranging from
45% up to 135% in equidistant setps. The corresponding densities are plotted in (4). In the
process a third mode appears at an angle around 90% and vanishes again for higher angles.

Figure 4: The clockwise rotation of one mixture component

Statistical applications

Finally, we indicate two potential statistical application of the above theory.
1. Merging components in mixtures of t-distributions.

McLachlan and Peel (2000) recommend the use of finite mixtures of t-distributions as a more ro-
bust alternative to normal mixtures. While t-mixtures allow for heavier tails of the components,
asymmetry can still not be dealt with, and thus, the number of components may exceed the
actual number of clusters in the data. Thus, modality-based merging algorithms like in Hennig
(2010) for normal mixtures, based on the ridgeline as in Theorem 2.1, can be employed.

2. Testing for the number of modes.

If two-component mixtures under suitable parameter restrictions allow at most two modes, such
as two-component normals with proportional covariances, or t-mixtures with equal degrees of
freedom and covariances, one can use parametric methods to test for one against two modes in
such a model by likelihood-ratio based methods, see Holzmann and Vollmer (2008) for univari-
ate normal and von Mises mixtures. This requires explicit characterizations of the parameter
constellations which yield unimodal or bimodal mixtures. For two-component normals with
proportional covariances, these are given in Ray and Lindsay (2005), Corollary 4, while corre-
sponding characterizations based on Theorem 3.2 2. and 3. still need to be derived.
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