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Abstract

We analyze a new dataset from a recording of transmembrane currents
through a bacterial membrane channel to demonstrate the existence of single
and multiple channel currents. Protein channels mediate transport through
biological membranes; knowledge of the channel properties gained from elec-
trophysiological recordings is important for a targeted drug design. We in-
vestigate the bacterial membrane protein SecYEG which is of essential im-
portance for the secretory pathway for sorting of newly synthesized proteins
to their place of function in the cell. Our results strongly indicate that in
the SecYEG pore the different modes of the density of channel currents are
approximately equidistant and correspond to different numbers of open chan-
nels in the membrane. A current of &~ 12pA under the present experimental
conditions turns out to be characteristic of the presence of a single open Se-

cYEG pore, a fact that had not been electrophysiologically characterized so



far. Electrophysiological recordings of single protein channels show a substan-
tial amount of background noise. The data at our disposal can be modeled
as the independent sum of an error variable and the realization of the ionic
current. Thus, we are led to deconvoluting the density of the observations in
order to recover the density f of the ionic currents, and then investigating the
number of modes of f. To this end we propose an extension of Silverman’s
(1981) test for the number of modes to deconvolution kernel density estima-
tion, and develop the relevant theory. The finite sample performance of the

test is investigated in a simulation study.
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1 Introduction

The cytoplasm of eukaryotic cells is separated from the aqueous extracellular space
by the cell membrane, a lipid bilayer that is impermeable for small charged molecules
such as ions and water. The exchange of substrate between cytoplasm and the ex-
tracellular space is facilitated by proteinaceous membrane spanning channels. There
is a variety of these channel proteins specifically transporting substrates of different
sizes and charge properties. The size of the central channel pore, the surface charge
inside the pore and the transport mechanisms are adjusted to the different kinds of
substrate.

Electrophysiology is the method of choice to explore the transport characteristics

of transmembrane channels. It offers the possibility to observe the behaviour of



single channel proteins in a model membrane. Such electrophysiological recordings
provide detailed insight into the transport dynamics of the pore which is important
to exploit the channel properties e.g. for transport of pharmacological active sub-
strates into the cell. Due to their high sensitivity, electrophysiological methods are
applied for example to model the transport of pharmacological compounds such as
antibiotics LIT across membranes (e.g. Nestorovich et al., 2002, Neves et al., 2005,
and Danelon et al., 2006).

In the present experiment the electrophysiological properties of the bacterial mem-
brane protein SecYEG were addressed. The SecYEG complex is the bacterial ho-
mologue of the mammalian Sec61 complex which is of essential importance for the
secretory pathway for sorting of newly synthesized proteins to their place of function
in the cell (cf. Lodish et al., 2000, Chapter 17.4: Transport of secretory proteins
through the endoplasmatic reticulum [ER| membrane). Interactions between amino
acid motifs (e.g. transmembrane motifs) of the nascent protein chain and the envi-
ronment in the SecYEG pore play an important role for deciding if a protein is either
translocated into the ER lumen or inserted into the ER membrane. This secretory
pathway is of vital importance for the functionality of a cell; there are several dis-
eases linked to defects in protein sorting and trafficking, e.g. Huntington’s disease
(cf. Caviston & Holzbaur, 2009) or Alzheimer’s disease (cf. Yao et al. 2003).

The electrophysiological experiment now serves to characterize the properties of the
inner SecYEG protein pore: The specific current levels, and the distance between
them, give information on the size of the pore, its surface charge and the number of
open channels in the membrane. To acquire recordings of a single protein channel, a
model lipid membrane containing native F.coli-phospholipid is constructed by sep-
arating two electrolyte filled compartments by an artificial lipid membrane. Then,

a constant voltage is applied across the membrane. Upon insertion of a channel



protein into the membrane a small current occurs that is amplified and digitally
recorded.

The current levels acquired in the current signal are characteristic for the ion pore.
In this paper we analyze the modality of the density f of these attained current lev-
els. Note that we do not analyze the modality of the signal given by the measured
current in dependence of time, but rather the modality of the levels to which the
current jumps. Thus, in our analysis we consider those levels as an i.i.d. sample
from the density under investigation.

The biological model under consideration is that the ion pore shows a reproducable
and repeatable behavior with a characteristic, stable current level, depending on
the voltage applied and the kind and concentration of ions in the solution where
the membrane is embedded. The fixed current level would show up as a main peak
in the current level distribution with potential additional modes at multiples of the
main peak. In this paper, the model of a fixed current level will be tested against the
null model of a strongly varying level, which would not yield a multimodal structure,
but rather a single broad mode or a distribution that is monotonically decreasing.
An important characteristic of the electrophysiological data considered here is that
the recording of single channel currents in artificial lipid bilayers is in general prone
to high background noise. The measurements are very sensitive to electrical noise
and also to the system intrinsic noise, e.g. from the electrodes and the electrolyte
solution. To characterize membrane proteins with unknown transport properties it
is essential to be able to distinguish a statistically significant signal and additional
modes of the signal from noise of the estimated density.

In this setting, we are led to a measurement error problem, in which we have to do
inference about the number of modes of the density f which is only observed with

noise, thus resulting in an observed density ¢g. To this end we shall use nonpara-



metric deconvolution kernel density estimation techniques, and extend Silverman’s
(1981) testing methodology for the number of modes to this setup.

Silverman (1981, 1983) observed that for fixed, non-noisy observations the number
of modes in a kernel density estimate with the normal kernel is a monotonically
decreasing function of the bandwidth. Using this fact Silverman (1981) defined the
m-critical bandwidth h,, as the minimal bandwidth for which the kernel estimate
still admits m modes, i.e. for which the estimate is just on the boundary between m
and m+1 modes. Intuitively, if h,, is large, then a lot of smoothing is needed so that
the density estimate only has m modes, which can be taken as an indication that
the underlying density might in fact have more than m modes. More formally, if h,,
exceeds a bootstrap critical value based on the smoothed bootstrap, the hypothesis
for at most m modes of the underlying density is rejected in favor of the alternative
of having more than m modes. Silverman’s (1981) test has been further investigated
in a number of papers, including those by Mammen et al. (1992), Cheng and Hall
(1999) and Hall and York (2001). While inference on the number of modes of a
nonparametric estimate is quite well studied for direct estimation problems, there
seem to be no methods available yet for data which are observed with measurement
error, thus leading to density deconvolution. Here, the formal setting is as follows.

Let Xq,..., X, bei.i.d. observations from the model
Xi=2Z; +¢€, (1)

where we assume that the ¢; are i.i.d. with density ¢y and independent of the Z;.
The object of interest is the density f of the Z;, which is related to the density ¢
of the X; via g = f %, the convolution of f and ). Recovering f from the noisy
observations X7, ..., X, is therefore called the deconvolution problem (e.g. Carroll
and Hall 1988, Stefanski and Carroll 1990, Fan 1991a/b or Butucea and Matias

~

2005). Evidently, choosing a proper model ¢ for the error density ¢ is a relevant



problem in this context. For theoretical purposes, ¢ is often assumed to be known
(i.e. ) = Y), but in any application it has to be empirically specified. In our
application where additional data on the noise distribution is available, i) can be
estimated either parametrically or also nonparametrically.

A popular class of estimators for f in the deconvolution problem are kernel estima-
tors %: Here, one often uses a kernel L for which the Fourier transform is compactly
supported in order to guarantee that w: is well-defined for all bandwidths and all
types of (sufficiently regular) error densities. However, we shall show that for most
error densities, M: is also well-defined if the normal kernel is employed and that the
number of modes is monotonically decreasing in the bandwidth h as well.

Based on this observation, we discuss in Section 3 Silverman’s (1981) test for decon-
volution. However, the main purpose of this paper is the subsequent application of
the proposed methodology to our new dataset from a recording of transmembrane
currents through the bacterial membrane pore protein SecYEG. Hence, the paper
starts in Section 2 with an introduction to the experimental setting.

In Section 4, a graphical analysis of the density estimates of current heights in the
ionic fluxes with critical bandwidths for one, two and three modes is used to illus-
trate that the first and second, and the second and third peak, are separated by
~ 12pA, i.e. are approximately equidistant.

Using the calibrated Silverman’s test for deconvolution we can show at an error
level of 5% that these peaks are not mere sampling artifacts but rather are actual
features of the underlying density f. Thus, in contrast to existing methods on
peak-estimation, our approach allows to statistically assess the existence of modes.
Further, in contrast to mere estimation, for obtaining valid p-values it is essential to
take into account the additional observational errors ¢;. For the data, we conclude

that peaks are linked to single and multiple channel currents.



Section 5 contains an extensive simulation study, and in Section 6 we conclude with
a discussion. Some asymptotic theory for our methods is given in the Appendix.
Proofs of the results are given in the companion technical report Balabdaoui et al.

(2009).

2 Distribution of ionic fluxes through bacterial

membrane pores

2.1 Experimental setup

Lipid membranes form impermeable barriers that separate a cell or an intracellular
compartment from its surrounding aequeous environment. Transport of watersol-
uble substrates such as ions or small organic molecules across the membrane is
facilitated by proteinaceous pores in the membrane. Ton flux through such mem-
brane channel proteins is measured by electrophysiology. However, in-vivo analysis
of the functionality of a specific membrane pore of a cell is impossible due to the
large number of different pores present in a cell membrane which yield an unspecific
signal in electrophysiological recordings. In contrast, in-vitro experiments allow for
a targeted assessment of the behaviour of a single pore. Therefore, isolated protein
channels are inserted into an artificial lipid membrane spanning a small aperture of
approximately 50um between two electrolyte filled chambers. A constant voltage
is applied across the membrane serving as an isolator between the two compart-
ments. Channel proteins are inserted into the artificial lipid membrane by fusion of
protein containing liposomes with the membrane. Upon insertion of a protein pore
into the membrane a transmembrane current occurs and is recorded (cf. Hemm-

ler et al., 2005, Danelon et al., 2006). This method allows the detection of single



channel currents lying in the pico-Ampere [pA] range. The height of the different
levels attained by the current signal gives information about the properties of the
channel pore such as size and surface charge, and depends on the ionic strength of
the solution. Important for the function of the protein is its correct folding (i.e. its
geometric shape) into the membrane. This is identical for the native and artificial
membrane, since the experimental membrane contains proteins that are also present
in the native environment of the protein pore. Hence, electrophysiological recordings
of single protein channels in a model membrane allow investigation of the dynamic
properties of the single channel in its native conformation. In the present experi-
ment the electrophysiological properties of the bacterial membrane protein SecYEG

were addressed.

2.2 Data acquisation

Figure 1 shows typical cutouts of the current recording with a sampling frequency
of 10kHz of single or multiple channel activity at a constant voltage of 50 mV with
~ 20ms duration. In the left panel of Fig. 1 a typical phase is shown, where channel
activity was observed, whereas the right panel shows mere background noise, as the
ion pores were not inserted yet into the membrane. In total, the experiment consists
of two phases of 1 minute each. In the first phase, only background noise is observed.
Then, after addition of the protein pores, membrane currents are recorded. During
the latter phase, intervals of high channel activity as given in the example and
intervals when only background noise was present were recorded. The solid arrow
indicates a phase of background noise whereas the dashed arrows depict current

peaks of one or multiple active channels whose levels were used in the subsequent
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Figure 1: Left: Time dependent recording of the ionic current through SecYEG pores
inserted into an artificial lipid membrane of 50um diameter at a transmembrane voltage
of 50mV and 250 millimolar potassium chloride (KC1). The solid arrow indicates a phase
of background noise whereas the dashed arrows depict current peaks of one or multiple
active channels the levels of which were used in the subsequent analysis. Right: Time
dependent recording of background current at a transmembrane voltage of 50mV and 250

millimolar potassium chloride (KCI).

analysis.

Here, we analyze a sample of 100 transmembrane currents measured from channel
pores that were inserted into an artificial lipid membrane during 10 seconds in

the recording of 1 minute. These currents and the background noise levels were



determined from the data as follows.

First, to determine the background noise the baseline was recorded (cf. right panel
of Fig. 1 for a cutout of the measurements in this phase) before proteoliposomes
(and in consequence channel proteins) were added to the experiment. From this
data it is possible to estimate the variance or even the distribution of the noise.
Here, we used 1000 measurements to estimate the latter distribution. After adding
the protein channels to the experiment, the experimenter chooses the points (peak
heights) to be included based on the following rules. The peak has to be above a
threshold value, which was 6 pA here, to make the subsequent analysis tractable.
The standard method that is used for the selection of the peaks consists of analyzing
the data visually. Based on a visual pilot inspection of the data, the experimenter
chooses the threshold so that it is significantly smaller than the minimum of all
the peaks of interest (e.g. the two right peaks in the left panel of Fig. 1). This
implies that some of the single channel current events in the signal are bound to be
lost. Thus, it is impossible to use the estimated density of channel current levels to
investigate the relative frequency of single vs. multiple channel events. The second
rule in the selection of the peaks is that there is a minimal time lag of 1 ms after
a peak height was recorded in order to avoid or at least reduce dependency in the

data.

2.3 Independence of the measurements

In our subsequent analysis we assume the observed current levels to be an i.i.d.
sample of the current level distribution for the following reasons. This assumption
can be made because of the nature of the experimental setup. The recording of
the single channel currents is not initiated unless a stable (constant) baseline sig-

nal has been observed. After the occurrence of a current peak due to a single or
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Figure 2: Autocorrelation function of the time series formed by the peak current levels.
The dashed, horizontal lines show 95%-coverage probability confidence intervals based on

the assumption of an uncorrelated time series.

multiple channel event (i.e. a jump to a new current level) the current returns to
the baseline level, which remains stable during the time of recording. On the other
hand, the time between two measured channel currents is in general long enough so
that it is possible that other random current fluctations or events occur in between.
Moreover, the theory of ion pores models the transport of ions via passive diffusion
through the central SecYEG pore. No active interaction between the KT ions and
the SecYEG channel is known up to now. Therefore, it is very improbable that K+
induces structural changes in the SecYEG molecule during the experiment, which
would have barred us from assuming i.i.d. observations. Finally, Fig. 2 shows the
autocorrelation function of the observations. Here, we have used the peak level in
the temporal order in which they appear in the data, and interpreted this as a time

series. The figure provides a strong indication that the data is uncorrelated.
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3 Silverman’s test for deconvolution

In the preceding section we have argued that in order to understand the biological
mechanism on which the ionic flux is based we require tests for certain modality
hypotheses of the relevant densities. We will now discuss such a method which is

based on an extension of the Silverman test for direct density estimation.

3.1 Monotonicity of the number of modes

Silverman’s (1981) test relies on the observation that for a kernel density estimator
(or the estimator of a derivative) based on non-noisy observations, the number of
modes is a monotonically decreasing, right-continuous function of the bandwidth,
if a normal kernel is used. It turns out that this is also true for the deconvolution
kernel density estimator (2) based on a normal kernel, as _ocm as it is well-defined.
To fix notation, denote the Fourier transform of f by ®((t) = [, f(z)exp(itz) du,
and suppose that f is p-times continuously differentiable for some p > 0. In the
sequel suppose that the model ﬁ\w for the error density is fixed. Under the assumption
that ®;(t) # 0 for all t € R and that ®r(ht)/®;(t) € Ly for all h > 0, the

deconvolution kernel density estimator for the ;'™ derivative of f, given by,

F9 (a5 n) = :at MU KU Ag z= X, m\vu (2)
where
K9 (1) = ww \ (—it)? %Eé&%%‘%a it 0<j<p, (3)

exists. Here the smoothing parameter h > 0 is called the bandwidth. From now on
we let L denote the standard normal kernel, and this kernel will be used in w:@g h)
and in the deconvolution kernel K)(z:h). We say that the deconvolution kernel
density estimator £ (x;h) with normal kernel is well-defined if t/®; (ht)/ ®,(t) €

12



Ly(R) for all h > 0. One can show that w%.vﬁﬁ h) is well-defined for all ordinary
smooth error distributions (for which ®,(#) decays polynomially), as well as for
most supersmooth error distributions (for which @, (#) decays exponentially) such
as t-distributions or symmetric stable distributions with self-similarity index o < 2.
For further discussion see Section 3.3.

Let v;(h) denote the number of modes (i.e. of local maxima) of the deconvolution

kernel density estimator f. v@w h) on the real line R for a fixed bandwidth h.

Theorem 1. Suppose that the deconvolution density estimator %s@v h) based on a
normal kernel is well-defined. Then v;(h) is a monotonically decreasing and right-

continuous function of the bandwidth h with values in N U oo.

Remark 1. Without additional assumptions on the error distribution, the decon-
volution kernel density estimator (2) can have infinitely many modes. For some
examples see Balabdaoui et al. 2009. Even if the deconvolution kernel density esti-
mator has infinitely many modes in R, simulations indicate that it typically admits
only finitely many modes on a compact interval. Nevertheless, this is no direct
solution since if attention is restricted to a finite interval /, Theorem 1 no longer
applies, and the number of modes of \%v on I need not be monotone any more.
However, Hall and York (2001) show in the context of direct density estimation
that this causes no serious practical problems, since a. the position of modes can
be easily monitored, and thus one sees if a mode leaves the interval I causing non-
monotonicity, and b. the probability of having non-monotonicity converges to zero,
and hence the problem disappears asymptotically. Similar results could also be de-
rived in the deconvolution setting. However, we shall simply ignore the possible

non-monotonicity problem of the number of modes on subsets I C R.
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3.2 Bootstrapping the critical bandwidth

In the following, we restrict our attention to the estimator w%ovﬁ.“ h) = fu(-, h) of the
density f itself. For an interval I C R, set

heritm = inf{h : f,(z; k) has precisely m modes in I}, (4)

which is, as mentioned above, always well-defined if / = R and the number of
modes of the estimator f,(-,h) is finite. In order to assess significance for testing

the hypothesis
H,, : f has at most m modes against K,, : f has more than m modes

Silverman (1981) proposed to use the smoothed bootstrap, based on the critical

bandwidth At . In our setting, the smoothed bootstrap proceeds as follows.

~ ~

(i) Sample {X7,..., X} i.id. from the density G,(-; heritm) = fu (5 heritm) * -

-~

(ii) Compute the kernel estimator, f(x; h*) based on the bootstrap data { X7,..., X}

*

and determine the corresponding bootstrap critical bandwidth hy.;, ...

Note that g, (z; herie.m) s just a kernel density estimate of g based on the observations
Xi,...,X,, with normal kernel and bandwidth Ay, the m-critical bandwidth of
\ms. Silverman originally proposed a slight variation of the smoothed bootstrap, in
which the sampling density for the bootstrap data is renormalized to have variance
equal to the sample variance. One can also give a variant of this procedure in the
deconvolution setting, which we however omit for brevity. Using either bootstrap
procedure, the hypothesis H,, is rejected with nominal level « if hepi, is above the

(1 — a)-quantile of the distribution of A ie. if

crit,m?

NUAb* < ?Q&?S_VNT T ;vﬂs\v N I —a. AWV

crit,m —
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3.3 Choosing the error density

Suitable parametric models for error densities are scale families of the form

Vo (x) = ho(x/0) /0, o >0, (6)

where 1)y is some standardized reference density. If (as is the case in our application)
additional data on the noise are available, the scale parameter o can be easily
estimated. Denote this estimator by &, then N\w = 1);. Relevant special cases for
are the standard normal density, the standardized Laplace density or the family of
standardized t-densities. Meister (2004) gives some theory for deconvolution with
misspecified error density, and in particular considers interchanging Laplace and
normal density. Here, the Laplace error turns out to be somewhat more robust to
misspecification then normal errors.

We note that the estimator (2) is not well-defined for normal errors if the normal
kernel is used. Thus, our method cannot be applied with the normal distribution
as error model. In mitigation, it can be used with t-distributed errors, which for
high degrees of freedom provide accurate approximations to the normal distribution.

Further, it can also be applied with nonparametric models for the errors (see Section

1),

3.4 Asymptotic calibration of Silverman’s test for unimodal-
ity

It is known that Silverman’s test is conservative, even asymptotically. Therefore,

following Hall and York (2001), we discuss in this section how to calibrate Silver-

man’s (1981) test for unimodality in the case of noisy observations. The theory only

applies to ordinary smooth noise, i.e. ®,(t)t? — ¢, t — oo for 3 > 0,0 # c € C.

15



However, at least in finite samples, our simulations indicated that the main effect of
the error on the results of Silverman’s test is its scale (as long as the error density
remains unimodal), and not so much the smoothness of the error density.

First assume that ¢ is fixed an known. Hall and York (2001) observed that the
test decision based on (5) would be (asymptotically) valid if U, = P(h}., <

Perie 1| X1, ... vumzv were asymptotically uniformly distributed under the hypothe-

sis Hy, which is, however, not exactly the case. Indeed, the stochastic process
Gn(\) =P (Wviea/herity < A X1, ..., X,) converges weakly to the limiting process
Gs.(\) (cf. the Appendix for the explicit form of Gz .()\)). Note that this limiting
process does not depend on the unknown density f, although it depends on the
known error density through § (and at a first glance ¢). Now, since the realizations

of G5.(\) are continuous, strictly increasing distribution functions, for each o > 0

there is a unique A, g such that

NUAQC,PFL >1— Qv < a.

In Corollary 4 in the Appendix we show that G5 .(\) = Gs./.(\) and hence that
AaB.c = Aaie/] does not depend on the scale parameter of the error distribution.
Thus, the quantity Ao g. = Aag.e/lc| required to calibrate Silverman’s (1981) test for
unimodality for deconvolution needs only to be computed for one member from a
scale family. If ¢ € R (which is the case for symmetric errors), we simply write A, s
for Aq,p,1 or even A, if the error density is clearly specified. Once A, g, is determined
for the specific error density in use, the hypothesis H; is rejected with asymptotic
level a > 0 if
P (Ropiy1/herity < Aapel X1, Xp) > 1— o

The quantity A, s, will in practice be determined using simulations, as we shall

illustrate in Section 5.
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It N\w = 1); is estimated within a scale family which satisfies Assumption B’ (in the
Appendix), and if & is consistent (as n — o00) and independent of the X; (e.g.
estimated from additional data on the noise), then the above asymptotics remain

true (cf. Corollary 5 in the Appendix).

4 Results from the analysis of the SecYEG data

In this section we apply the Silverman test for deconvolution introduced in Section
3 to the SecYEG data. The measurements of the current levels X; are modeled
by (1). We consider three different models for the distribution of the noise terms
g;, the Laplace distribution, the t-distribution with 25 degrees of freedom as well
as a nonparametric model. The variance of the Laplace distribution is estimated
from the additional observations consisting of background noise, whereas the t-
distributed noise is adjusted to have the same variance as the Laplace distribution.
The nonparametric model is essentially the empirical distribution function of the
noise.

Fig. 3 indicates that both the Laplace and t— densities are not able to fully reproduce
the empirical distribution of the noise terms, and a Kolmogorov-Smirnov test for
these parametric forms (as well as for normally distributed noise) rejects with p-value
< 0.01.

Therefore, we also use the deconvolution estimator by Neumann (1997, eq. 2.7)

given by

; oy 1 . @NQV
Fuxrla:h) = 5~ \ exp(=it2) 21 (1) 2 1 o

where N denotes the length of the baseline series (i.e. N = 1000), and A\Hw@ (t) is the

empirical characteristic function of the baseline. Thus, except for the truncation

17



Figure 3: Parametric and nonparametric estimates of the density of the error terms ¢;.
Solid line: nonparametric kernel density estimate, dashed: density of a Laplace distri-
bution with the same variance as the observed noise terms, and dash-dotted: density of
a t-distribution with 25 degrees of freedom and the same variance as the observed noise

terms.

of frequencies lower than N~'/2, the characteristic function of the empirical distri-
bution of the noise is used as noise model. One can easily show that for a fixed
estimate A\Hw@ (), monotonicity of the modes as stated in Theorem 1 still holds true
for w:,zlﬁ h).

It turns out that the finite sample results for the deconvolution density estimator
with these three distinct models for the error density do not differ much, the main
feature of the noise (at least for finite samples) seems to be the correct specification
of the error’s standard deviation.

Graphical analysis of the data. Fig. 4 shows the critical density estimates for
one, two and three modes for \m?zlﬁ h). The corresponding estimates based on

Laplace and t-distributed noise (not displayed) are very similar. The first, second

18



and third mode for w:vzlﬁ h) with bandwidth A, 3 are located at (11.2,23.7, 36.9).
Similarly, for the t—distribution based estimate these are located at (11.3,22.9, 36.9),
and for Laplace-distributed noise the modes are at (11.3,23.0,36.9). Hence, the
estimated locations of the modes are insensitive to the assumptions on the underlying
density and appear to be located close to ~ 12pA, ~ 24pA and ~ 36pA, i.e. with an
approximately fixed difference of 12pA between the peak locations. This regularity
hints at the existence of several, i.e. 2 or 3, protein pores, being responsible for the
modes at ~ 24pA and ~ 36pA rather than subconductance states of a single pore.
In consequence, a peak of approximately 12pA in the density of current levels under
the present conditions indicates the presence of a single open protein pore in the
membrane.

Testing for the number of modes. We now apply Silverman’s test for deconvo-
lution. For the test for unimodality we use the calibrated version with the values
Ao Obtained for n = 100 in our simulation study in Section 5. For testing two ver-
sus three or more modes, the asymptotic distribution of the bootstrap test statistic
depends on the true underlying density, and we therefore use the uncalibrated test.
For all three models of the error density we get the following results. The calibrated
version of Silverman’s test for deconvolution with test level 5% rejects the null hy-
pothesis of unimodality, thus providing support for the existence of, at least, one
significant secondary mode. Here, the interval of interest I, which determines where
modes of the density are searched for, was [10,60]. For details on the selection of I
and the determination of the calibration constants A\, we refer to Section 5. We also
tested the null hypothesis of < 2 modes against the alternative of at least 3 modes.
Again, the null hypothesis is rejected at a level of 5%. Finally, we tested the null
hypothesis of < 3 modes against the alternative of more than three modes which is

not rejected by the Silverman test for deconvolution.
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Figure 4: Estimates of the density of ionic current levels through SecYEG, correspond-
ing to the critical bandwidth for one mode (solid line), two modes (dashed line) and
three modes (dotted lines). For the deconvolution we use the non-parametric estimator

,wsmzw@w h) (Neumann, 1997); see text for details.

5 Numerical performance of Silverman’s test for

deconvolution

Here we report the results of a simulation study for Silverman’s test for deconvolu-
tion. To this end, we discuss the performance of the original version of Silverman’s

test for deconvolution, as well as its calibrated version introduced in Section 3.4.

5.1 Simulation results for Laplace-distributed error

We generate observations X, ..., X, from model (1) using sample sizes n = 100 and
n = 1000. For assessing the level of the test, we use two unimodal densities for f,

and for assessing the power we use a bimodal and a trimodal density. A summary of
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Table 1: Densities used to generate the data in the simulations. The last column gives

the interval I on which the number of modes in an estimate w: is counted.

the densities f considered is given in Table 1, and Fig. 5 shows the bi- and trimodal

densities fi; and fi,;. Furthermore, in this section we use a Laplace distributed noise

P(x) = Nexp(—A - |z])/2 with parameter A = 3 (and variance 2/9), which satisfies

Assumption B in the Appendix.
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0.6

0.4
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Figure 5: Bimodal and trimodal test densities

0.2 0.4 0.6

\,_om and \wl used

of the Silverman’s test(s) for deconvolution.
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As already observed by Hall and York (2001) for direct observations, the estimator
will have spurious modes in regions where f is small, and for deconvolution the
situation is typically even worse. Thus, computing the critical bandwidth in (4)
over I = R is not feasible, and one should restrict attention to a compact interval
where g > ¢ > 0. Table 1 gives details on the intervals I used in the subsequent
simulations for the various densities f; considered.

We use the smoothed bootstrap method suggested in Section 3.2 with 100 bootstrap
replications in each simulation run, and, except if noted otherwise, we performed
100 simulations for each combination of test version, sample size, error distribution
and underlying density f;. As a first illustration, estimates with bandwidths At m,
m = 1,2,3 based on random samples of size n = 1000 for the different target

densities f; are shown in Fig. 6.

Density/test region/level
Sample size, A, | Normal / [-2,2] | Gamma / [-0.1,0.9] | U[0,1] / [-0.1,1.1]
20% 10% 5% | 20% 10% 5% | 20% 10% 5%
100, classical 2% 1% 0% | 5% 2% 0% 45% 21%  13%
1000, classical | 10% 6% 2% | 9% 3% 1% 19% 11% 3%
100, A, from f; | 22% 10% 5% | 21% 9% 4% 15% 5% 3%
1000, A\, from f; | 19% 11% 6% | 11% 7% 5% 34% 22%  12%
100, A\, from fo | 31% 19% 16% | 21% 9% 4% 23% 13% 9%
1000, A\, from fo | 22% 7% 4% | 19% 10% 5% 22% 14% 10%

Table 2: Level of the classical and calibrated version of Silverman’s test for deconvolution.
The first and second rows correspond to the classical test, the third and fourth rows to
the calibration values )\, based on simulations from the normal density fi, and the fifth

and sixth rows to those based on simulations from the Gamma density fs.
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Figure 6: Estimates corresponding to the critical bandwidth for randomly chosen samples
of size 1000 from the Gaussian density f; (upper left), the density of a Gamma distribution
f2 (upper right), the bimodal density fi; (lower left), and the trimodal density fii (lower
right), respectively. Solid lines correspond to the critical density for one mode, dashed
lines for two modes, and dotted lines for three modes, respectively, for all plots except the
lower right one. In the latter case, i.e. for the trimodal density fi;i, the respective lines

correspond to two, three and four modes.

We now discuss the results of simulations of the original Silverman’s test for decon-
volution, where we test the hypothesis H; of unimodality of f on I. The first and
second rows of Table 2 give the actual levels of the test for the unimodal target den-
sities f; and fy. The test performs very poorly for the sample size n = 100, and is
still rather conservative for n = 1000. The results for power simulations are shown in

the first and second rows of Table 3 where f; and f;; are used as alternatives. The
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True density f/Level
Sample size, A\, Bimodal Trimodal
20% 10% 5% | 20% 10% 5%
100, classical | 24% 2% 1% | 16% 2% 0%
1000, classical | 72% 53% 34% | 30% 1% 4%
100, A\, from f; | 45% 29% 15% | 33% 18% 5%
1000, A\, from f; | 73% 64% 52% | 47% 38% 16%
100, A\, from fy | 42% 34% 30% | 36% 25% 15%
1000, A, from fo | 80% 71% 60% | 8% 75% 61%

Table 3: Power of the classical and calibrated version of Silverman’s test for deconvolution
for rejecting unimodality, the null hypothesis H;, whereas the true density f is bimodal
resp. trimodal. The first and second rows correspond to the classical test, the third and
fourth rows to the calibration values A, based on simulations from the normal density f1,

and the fifth and sixth rows to those based on simulations from the Gamma density fo.

test has no significant power for n = 100, but performs reasonably well for n = 1000.

Next we investigate the calibrated Silverman’s test for deconvolution. First, we de-
termine the calibration values )\,. This is a computationally demanding task, since
a large number of deconvolution density estimators (for each artificial dataset and
bootstrap replication) has to be computed in order to achieve a sufficient precision
of \,. Here, to determine the values of A, for a given combination of underlying
density f and sample size, we used 50 artificial data sets and 100 bootstrap replica-
tions. Table 4 gives the results for A\, from these calibration runs with the unimodal

densities f; and f>.
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Density/test region/level
Sample size | Normal / [-2,2] | Gamma / [—0.1,0.9]
20% 10% 5% | 20% 10% 5%
100 1.11 113 1.15| 1.12 1.16 1.22
1000 1.03 1.07 1.08 | 1.08 1.09 1.10

Table 4: Calibration values \,. The calulations were based on the unimodal densities of

a normal and Gamma distribution for samples sizes 100 and 1000. See text for details.

Simulations were then performed in order to assess the rate of rejection of the test
under the null hypothesis H; of unimodality. Here, two scenarios are possible: The
density f may be taken to be the same as the one used to determine the \,’s, or it
might be a different density. Asymptotically, this has no effect, but as can observed,
it has an effect for finite samples.

Rows three to six of Table 2 show our results. In particular for the sample size
n = 1000 the simulated rejection rates are in most cases as close to their nominal
levels as we can expect for an estimate of the rate of rejection from 100 simulations.
Moreover, for the Gaussian and Gamma distribution f; and f5 they are in particular
significantly closer than for the classical version of the test. However, the simulations
with a uniform density f yield a slightly larger rejection rate, which is due to the fact
that this density represents a borderline case between a unimodal and a multimodal
density.

Finally, rows three to six of Table 3 shows the result of simulations of the power
of the calibrated Silverman’s test for deconvolution against the bi- and trimodal
alternatives fy; and f,4, i.e. against the same alternatives used in the simulations of

the classical test given in the first and second rows. By comparing these results, one
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Density/test region/level

Sample size | Normal / [-2,2] | Gamma / [-0.1,0.9] | U[0,1] / [-0.1,1.1]
n = 1000 20% 10% 5% | 20% 10% 5% 20% 10% 5%

Classical test | 8% 2% 0% | 4% 1% 0% % 2% 1%
Ao from f1 | 21% 10% 7% | 4% 1% 1% % 4% 4%
Ao from fo | 39% 18% 11% | 23% 11% 4% 29% 16% 8%

Table 5: Level of the Silverman’s test for deconvolution with a ¢-distributed noise. The
first row gives the levels for the classical test, whereas the second and third rows give the
levels for the calibrated test, where the calibration values A, were based from simulations

from the normal density f; and the Gamma density fo respectively.

can see that the calibrated test is much more powerful than its classical counterpart

in the deconvolution setting.

5.2 Simulations with ¢-distributed errors

Now we briefly report on simulation results with ¢-distributed noise with 5 df and
scaling parameter \ = /\m\/\m The resulting ¢-distribution has variance o? = 2/9
and Fourier transform ®,, () = (1 + |v/3At| + 3A\%?) exp(—|v/3At]). As discussed in
Section 3, Theorem 1 applies to the ¢-distribution, and Silverman’s test for decon-
volution is in principle applicable. However, the asymptotic theory in Section 7
was only developed for ordinary smooth noise distributions. Nevertheless, we shall
apply the calibration method described in Section 3.4, in order to make the results
comparable with those obtained with a Laplace-distributed noise.

Tables 5 and 6 show the simulated rejection rates of the test under the null hy-

pothesis, and the simulated power w.r.t. the bimodal and trimodal alternatives f;
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True density f/level

Sample size Bimodal Trimodal
n = 1000 20% 10% 5% |20% 10% 5%

Classical test | 33% 17% 10% | 12% 3% 3%
Ao from f1 | 43% 31% 21% | 28% 28% 18%
Ao from fo | 79% 54% 39% | 54% 30% 16%

Table 6: Power of the Silverman’s test for deconvolution with a ¢-distributed noise for
rejecting unimodality, the null hypothesis is H;, whereas the true density f is bimodal
resp. trimodal. The first row of results gives the powers for the classical test, whereas
the second and third row the powers for the calibrated test, where the calibration values
Ao Were based on simulations from the normal density f; and the Gamma density fo

respectively.

and fi;, respectively. The sample size in all simulations was taken to be equal to
n = 1000, and the calibration values A\, were determined as A\gg = 1.02, Ag9 = 1.033
and \g g5 = 1.055 from simulations based on the normal density f;, and A\gg = 1.08,
A9 = 1.085 and Agg5 = 1.09 from simulations based on the Gamma density f.

The results for the t-distributed noise and Laplace-distributed noise are rather sim-
ilar. However, the test based on the {-distributed noise appears to be more con-
servative. In particular, the calibration constants determined from our simulations
based on the normal density f; (resp. the Gamma density f5) yielded poorer (in
the sense of being more conservative) levels if applied to data generated from the

Gamma density (resp. the normal density).
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6 Discussion

There are a number of methods for peak detection in the presence of either de-
terministic or random noise, e.g. wavelet-based methods (Klann et al. 2007), gen-
eral filtering approaches (Nimunkar and Tompkins 2007), or methods based on fast
Fourier transform (Zhang et al. 2007). However, these only aim at estimating the
peak locations and their heights. In contrast, our method allows to test in the pres-
ence of noise whether peaks which are observed in an estimator are indeed present in
the underlying signal, or whether they are mere sampling artifacts of the estimator.
The approach is based on the Silverman test for direct density estimation. Other
methods for direct data, e.g. those by Miiller and Sawitzki (1991) or by Fisher and
Marron (2001), seem not to carry over in a straightforward fashion to noisy obser-
vations.

In this paper, we have demonstrated that we are able to discriminate different modes
of ionic currents, which indicate the number of open channel proteins in the lipid
membrane. The nearly equidistant location of the peaks in the current level dis-
tribution for the present experiment supports the notion that they can be assigned
to multiple open SecYEG channels in the membrane. In contrast, observations of
Wirth et al. (2003) on the eukaryotic homologue of SecY, the Sec61 protein, showed
the presence of several subconductance states for a single membrane channel.
Further experiments will be required to dissect the transport properties of the Se-
cYEG channel in artificial lipid bilayers in a more detailed manner. This includes
analysis of peptide translocation through the SecYEG pore in native bacterial mem-
branes in combination with the ATPase SecA. A combination of single channel cur-
rent recording and simultaneous fluorescence imaging gives the possibility to closely

monitor the interaction of the protein pore with a fluorescently labelled substrate
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(Hemmler et al., 2005). Transporters and ion channels also play an essential role
as targets for drugs in diseases of the central nervous system, the cardiac system,
and metabolic misfunctions. Single channel recordings allow the characterization of
drugs with their target receptor on a nanoscale level and with high throughput which
makes the method applicable for drug screenings in pharmaceutical research. For
specific commercial biological and pharmaceutical applications of membrane trans-
porters, ion channels and cellular signal transmission cf. e.g. www.iongate.de and

http://www.signalomics.com/en/.
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7 Appendix: Some asymptotic theory

We start by extending an asymptotic result of Mammen et al. (1992) for the expected
number of modes of w:? h) to the case of noisy observations. To this end we need the

following assumptions.

Assumptions A. We assume that the true density of the unobserved data, f, is twice
differentiable, has a compact support and admits a unique mode. More precisely, we

assume the following.

Al 3 — oo <t <t, <oosuch that f is compactly supported on [t;,%,],
A2. f is twice continuously differentiable on (;,,),

A3. f'(t;+) >0 and f'(t,—) <0,

A4. f has exactly one maximum, at zy, in (¢, ty),

A5, .\,:ANDV wm 0.
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Assumption B. The error density is ordinary smooth, and moreover there are 5 > 0,

0 # c € C, such that eﬁg% — ¢, t — oo.

Under Assumption B, from the dominated convergence theorem if follows that the kernels
K(z;h) = KO (z;h) defined in (3), converge to a limit version as h — 0, i.e. W5 K (z;h) —
Kgsc(x), h — 0, where
I I
Kge(u) = 9 /. exp(—iuz)z O (z) dz + e exp(—iuz)|z|’ () dz.

This expression specializes to

1

Kpo(u) = e

\oxwﬁl&ﬁgv_a_m@h@v dx
R
if the noise is assumed to have density which is symmetric around 0.

Theorem 2. Let N(h) be the number of modes of the deconvolution kernel density estima-
tor %:T h) based on the Gaussian kernel L. Under Assumptions A. and B. with ¢ € R, for
any sequence of bandwidths h such that 0 < liminf, . n'/ A+ h < limsup,_, ., n'/COHP)h <
00, we have

Vnh?84oy/axe| |f"(20)|
[ l22@ )@ (@)2da] ' /g(z0)

where H(z) = L(z)/z + [*_ L(t)dt — 1.

EN(h)=1+H

The formula reduces to that of Mammen et al. (1992) in case 8 = 0. The rate of

~1/5

convergence, in expectation, is n~1/(28+5) and is thus slower than the n which occurs

for noiseless data.

Next we give the asymptotic distribution of the critical bandwidth A1 and of its boot-

*

strap version hg, ;.

1 based on the smooth bootstrap. To this end, we introduce the processes

1
Zgo(r,s) = 577 \%N:vn? +u)W (ru)du, r>0,s>0

and

1
7348

van?twv = \%N:u%m +u)W*(ru)du, r>0,s >0,
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where W and W* are two independent two-sided standard Brownian motions. Further-

more, set

b

B 9(20) 1/(268+5)
wlan, ) = ?ﬁg_w_

Rg . =inf{r > 0: Zg .(r,s) + s changes sign exactly once in —oo < s < 0o},

and let Sg . be the unique point such that s — Zg .(Rg,, s) + s changes sign.

Theorem 3. Under the Assumptions A. and B., we have for the critical bandwidth hepii 1
that

d
3\H\mmm+m:~n2.£ — IAN?QV Nwm“n.
Furthermore, for the ratio hy.; 1 /herity we have that

\ mAEU v 7.Wv Qﬂlﬁw\?nlﬁw < V,_NT s JN:V -pr Awwwun\.mwmvn < v,_g\v 7 -0
€(0,00

in probability, where

Ry = inf{r>0:25.(r,5) +r " RooZj (Roe S+ By lrs) + 77 Ry oSpe + 5

changes sign exactly once in —o0 < s < oow.

Thus, the process Q:Ayv =P Abwii\bnzﬁ < AXq,. .. JN:V converges weakly to the limit
process Qm“n;v =P Amwvn\mma < y_S\v

Corollary 4. Under Assumptions A. and B., we have mmun\muh 2 mm“n\?_\mmvn\_g. and
therefore qunﬁyv = Qma\?_;v.
Assumption B’. The error density 1 belongs to a scale family (6) for which there are

B > 0 and ¢y € R such that

lim  sup |y, (1)tF —coo™P| =0, V0 <Oy < Cs.
t—o0 C1<o<Ch

Corollary 5. Under Assumptions A. and B’ and if & is a consistent estimator for o as

n — oo and independent of the X;, then the conclusions of Theorem 3 remain true.
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