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Abstract

In current genome wide association studies (GWASs) based on a case-control design, single nu-

cleotide polymorphisms (SNPs) are typically evaluated for association as well as for Hardy-Weinberg

equilibrium (HWE) in the control group by performing two separate statistical tests. Since HWE

is expected to hold in the control group, SNPs for which the p-value of the HWE test is below some

threshold value are excluded from further analysis. For the other SNPs, the value of the HWE

statistic is subsequently ignored. This standard approach has several quite obvious drawbacks.

First, the threshold value for the HWE test has to be chosen rather arbitrarily. Second, for SNPs

which are not excluded the HWE statistic is completely ignored. Thus, the dependency of the

two tests is not taken into account in an appropriate manner. Further, we shall argue that such a

procedure is not optimal for detecting or avoiding effects of systematic error.

To overcome these drawbacks, we propose a conditional genotype-based test that conditions the

Pearson Chi-Square test for association in the 3x2 contingency table on the HWE statistic in the

control group. The asymptotic distribution of the conditional test is derived. Here, the main tech-

nical tool is a new parametrization for the genotype distribution. The properties of our test, as

compared to two competing procedures, are investigated in an extensive simulation study. After

comparing power and robustness properties in single locus simulations, our main concern is for the

properties of the tests in GWASs simulations. Here, we propose an elaborate simulation setting

and study several measures for performance in GWASs, in particular average ranking of alterna-

tive SNPs, number of rejected alternative SNPs under a false discovery rate criterion (FDR) and

probability of rejecting any alternative SNP (while controlling the FDR). It turns out that the

proposed conditional test strongly outperforms its competitors for these performance measures in

several distinct GWASs settings.

Finally, we illustrate the new procedure by an application to a data set in an alopecia study. This

data set shows mild deviation from HWE in controls and therefore offers interesting insights into

behavior under misspecification.

In conclusion, our test makes separate HWE testing superfluous by providing a unified framework

and strictly improves on the standard procedure in terms of power and interpretability, thereby

making replication more cost effective and improving subsequent fine mapping.

Keywords: Hardy-Weinberg Equilibrium; Genome-Wide Association; Case-Control;

False discovery Rate; SNP; Association Testing
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1. INTRODUCTION

Genome wide associations studies (GWASs) are currently used in epidemiological studies to identify

genetic variants with predictive power for a phenotype [Kruglyak, 2008]. In such a study typically

300,000-500,000 genetic markers are scrutinized, each being tested for significant association with a

phenotype. There are many statistical challenges in the analysis of such studies including confound-

ing by population stratification (e.g. [Devlin and Roeder, 1999]), marker selection (e.g. [Carlson

et al., 2004; Consortium, 2007]) and addressing multiple testing (e.g. [Benjamini and Hochberg,

1995; Kimmel and Shamir, 2006]). We propose a novel solution for analyzing Hardy-Weinberg

equilibrium (HWE), an aspect of case-control studies that has not been sufficiently addressed so

far. HWE describes the assumption that the two observed copies (alleles) at a genetic locus are

randomly and independently drawn from the previous generation. For a random variable X, de-

scribing a locus with two alleles, say 1, 2, we denote the frequency of one allele with P (X = 1) = ρ

and P (X = 2) = 1−ρ. For the joint distribution of both alleles (genotype) we consider the number

of copies of, say, allele 1, thereby ignoring parental origin. The HWE assumption can then be

summarized by the equation

(P (G = 0), P (G = 1), P (G = 2)) = (ρ2, 2ρ(1− ρ), (1− ρ)2),

when G is the random variable for a bi-allelic locus with allele frequency ρ. So called single

nucleotide polymorphisms (SNPs) are an important class of bi-allelic loci and we use the terms

interchangeably.

In this paper, we focus on case-control studies based on SNPs. Here, HWE is usually assumed

to hold in the control group since this was empirically confirmed in many studies (e.g. [Yeager

et al., 2007]). Assuming HWE in the control group allows to test this assumption by means of a

goodness-of-fit test. Testing this assumption might be reasonable, as departures from HWE may

be due to systematic error, e.g. in the process of observing genotypes (genotyping errors), sample

contamination or confounding by population strata (see below). As a conclusion, SNPs departing

from HWE are excluded from further analysis(e.g. [Gudmundsson et al., 2007; Yeager et al., 2007;

Salmela et al., 2008]). However, such a strategy leads to several problems as we will show now.

First, the significance level at which to reject a SNP based on HWE is arbitrary and has shifted

historically (e.g. compare [Salmela et al., 2008; Gudmundsson et al., 2007]). For example, in a

study with 500,000 SNPs and a HWE testing procedure at the level α = .05, 25,000 SNPs are
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expected to be rejected by the test. This situation has led to suggestions of choosing α = 0.001 or

lower. Second, the conclusion that HWE departures imply systematic error is not warrented and

can lead to exclusion of SNPs not influenced by systematic error, thereby ignoring valid information.

Third, if a cut-off is used for HWE, the value for the test statistic for SNPs passing the criterion

is entirely ignored in subsequent analyses. Intuitively this seems paradoxical as SNPs close to the

critical value of the HWE test are treated just like SNPs with p-values for the HWE test close to

1.

We here take the point of view that significant deviations from HWE are the result of finite sample

size and random fluctuations from observing a large number of SNPs and therefore the tails of a

distribution measuring such deviation will be observed in the absence of systematic error. We will

later carefully discuss the relationship with systematic errors. The intuition behind our stance is,

that the value of the HWE test statistic is not independent of a subsequent association test, as

deviation from HWE in controls tell us that a sample is ”atypical”. More formally, this leads us to a

conditional approach, where a test statistic is considered conditionally on the HWE goodness-of-fit

test statistic.

HWE was identified as an important criterion to evaluate quality of association studies [Salanti

et al., 2005] and an important source for systematic error [Xu et al., 2002]. The latter reference notes

the correlation between false positives and HWE deviations and attributes it mainly to genotyping

errors. However, this correlation is naturally implied by our results in the absence of systematic

error. Wittke-Thompson et al. [2005] develop a goodness-of-fit test for HWE by separating deviation

due to effects of some genetic model and “genuine” HWE deviations. Strong assumptions about

the genetic model are needed. Wang and Shete [2008] follow a similar idea by assuming that HWE

deviations in cases may be due to a genetic effect. They focus on global testing by adopting a so

called tail-strength measure following Taylor and Tibshirani [2006]. Song and Elston [2006] consider

a weighted average between the Armitage trend test and a trend statistic comparing HWE in cases

and controls. The weighing factor is chosen arbitrarily and is justified by explorative simulations.

The most closely related work proposes to ignore HWE in controls altogether [Chen and Chatterjee,

2007], an approach, that is later shown to have unfavorable properties in a GWAS setting. The main

difference of our work as compared to the reviewed papers is that we consider HWE in controls to

be a nuisance parameter measured by some parameter (η1) and it is therefore natural to condition

the test statistic on a sufficient statistic for η1.

4



The paper is organized as follows: In section 2 we introduce a new parametrization of the testing

problem and develop the asymptotic theory for a conditional test. In section 3, we scrutinize

finite-sample properties of the test by means of simulation studies and compare the test with

alternative approaches. Section 4 is concerned with the analysis of a data set on an alopecia

phenotype. This analysis gives some insight into behavior under mis-specification as some mild

deviation from HWE in controls is observed. In section 5 we conclude with a discussion in which

we summarize the properties of our proposed procedure and highlight the benefits for practical

data analysis. Technical proofs as well as technical details on the simulation setting are contained

in the Appendix.

2. ASYMPTOTIC CONDITIONAL DISTRIBUTION

2.1 Reparametrization of the multinomial distribution

The genotype distribution for N individuals at a SNP can be parametrized by a multinomial

distribution M(N ; π1, π2, π3), π1 + π2 + π3 = 1, with three possible resulting categories and N

repetitions. Categories again represent genotypes determined by allele counts of one arbitrarily

chosen allele.

In order to motivate our new parametrization, we recall the most simple model of a neutral coales-

cent process for a fixed population size [Hudson, 1990]. In this model each allele is drawn randomly

and independently from the previous generation with replacement. The grouping of two alleles into

a genotype (an individual) is not needed in the model as it seeks to describe allele behaviors in

terms of frequency changes and time (e.g. number of generations) that has passed since two alleles

were drawn from the same ancestor. In this setting, the allele frequency ρ suffices to describe the

distribution per generation. Following this notion, we interpret the genotype distribution as the

result of a two stage process. First, alleles are selected at random for transmission to the current

generation (gamete formation), a process that only depends on the allele frequency ρ in the previous

generation. Second, alleles are paired to form genotypes (individuals) in the current generation.

We introduce a second parameter η that measures deviation of genotype formation from a HWE

expectation. More formally we define (ρ, η) = T (π1, π2), where
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ρ = π1 + π2/2

η = sgn
(
π2 − f2(ρ)

)( 3∑
j=1

(πj − fj(ρ))2

fj(ρ)

)1/2
,

and
(
f1(ρ), f2(ρ), f3(ρ)

)
=
(
ρ2, 2ρ(1− ρ), (1− ρ)2

)
. One can recover the original parameters of the

multinomial by letting π1 = ρ− π2/2 and π2 = f2(ρ)(1 + η) thereby retaining the full information

on the genotype distribution. The parameter η measures an excess or deficit of heterozygous

genotypes (allele count of 1 in the genotype) relative to HWE. Not only does this parametrization

allow to formulate our problem more conveniently, it also has some merits in reformulating existing

statistical procedures concerning HWE. For example, we will later discuss an alternative likelihood

ratio (LR) test which has a very simple null hypothesis in our parametrization [Chen and Chatterjee,

2007]. We also note, that graphical representations of genotype frequencies might be more easily

interpreted as compared to De Finetti diagrams [Edwards, 2000].

2.2 Maximum likelihood estimates and Fisher information of the reparametrized likelihood

Consider again the multinomial distribution M(N ; π1, π2, π3) as above. Let X = (n1, n2, n3) ∼

M(N ; π1, π2, π3). The maximum likelihood estimates for πi, i = 1, 2, 3, are given by π̂i = ni/N .

We have
√

N
(
(π̂1, π̂2)T − (π1, π2)T

) d→ N(0,J −1
0 ),

where

J −1
0 =

 π1(1− π1) −π1π2

−π1π2 π2(1− π2)

 , J0 =

 1
π1

+ 1
π3

1
π3

1
π3

1
π2

+ 1
π3

 ,

J0 being the Fisher information of the multinomial.

The ML estimates of (ρ, η) are then given by (ρ̂, η̂) = T (π̂1, π̂2). Their asymptotic distribution is

easily derived from the δ−method. Indeed,

√
N
(
(ρ̂, η̂)T − (ρ, η)T

) d→ N(0, I−1
0 ),
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where I−1
0 = DT J −1

0 DT T . Straightforward algebraic transformations show that

I−1
0 =

1
2

 (1− η)(1− ρ)ρ η(1 + η)(1− 2ρ)

η(1 + η)(1− 2ρ) − (η+1)((η−2ηρ)2+2(ρ−1)ρ+η(6(ρ−1)ρ+2))
(1−ρ)ρ


Observe that in HWE equilibrium, η = 0 and thus I−1

0 is a diagonal matrix and the estimators

(ρ̂, η̂) are asymptotically independent.

2.3 Conditional tests

Consider two multinomial distributions M(Ni; πi,1, πi,2, πi,3), i = 1, 2 corresponding to control and

case groups, with three possible resulting categories and Ni repetitions. Let Xi = (ni,1, ni,2, ni,3) ∼

M(Ni; πi,1, πi,2, πi,3). Consider the hypothesis

H : π1,j = π2,j =: πj , j = 1, 2, 3.

We set n·j = n1,j + n2,j and N = N1 + N2. The unrestricted log-likelihood is given by

L(π1,1, π1,2, π2,1, π2,2) =
∑
i=1,2

∑
j=1,2

ni,j log πi,j +
∑
i=1,2

ni,3 log πi,3,

where πi,3 = 1− πi,1 − πi,2, and the restricted log-likelihood under H

L(π1, π2) =
∑

j=1,2

n·j log πj + n·3 log π3.

The unrestricted ML estimates are π̂i,j = ni,j/Ni, i = 1, 2, j = 1, 2, and in the equivalent

parametrization, (ρ̂i, η̂i) = T (π̂i,1, π̂i,2). Further, the restricted ML estimates under H are given by

π̂j = n·j/N . Let D(Z) denote the distribution of the random variable Z, and let d be a metric on

the probabilities on R which metrizes weak convergence.

Theorem 1. Suppose that H holds and that further the control group is in HWE, i.e. η1 = 0. If

c = N1/N is bounded away from 0 and 1, then for the asymptotic conditional distribution of the

LRT statistic, given η̂1, we have as N →∞ that

d
(
D
(
2
(
L(π̂1,1, π̂1,2, π̂2,1, π̂2,2)− L(π̂1, π̂2)

)
|η̂1

)
,D
(
(Z1 + Z2)|η̂1

))
= oP (1), (1)

7



where D
(
· |η̂1

)
is the conditional distribution given η̂1, Z1 and (Z2, η̂1) are independent, Z1 ∼ χ2

1

and Z2|η̂1 ∼ cχ2
1

(
Nη̂2

1(1− c)/2
)
.

Theorem 1 is proved in Appendix A.1.

Next we draw some conclusions and comment on the conditional asymptotic distribution.

Remark 1. The asymptotic conditional distribution only depends on η̂2
1, the HWE χ2-statistic,

and not on the signed version η̂1. Thus, (1) remains true if we condition the LRT statistic on η̂2
1

or Ncη̂2
1, the latter being the exact form of the HWE χ2-statistic.

Remark 2. Since the LRT statistic and χ2 statistic are asymptotically equivalent, (1) remains

true if we replace the LRT statistic by the χ2 statistic for H. More specifically, let

X 2 =
2∑

i=1

3∑
j=1

(
ni,j −Niπ̂j

)2
Niπ̂j

.

With Remark 1 this yields

Corollary 1. Under the assumptions of Theorem 1, we have that

d
(
D
(
X 2|η̂2

1

)
,D
(
(Z1 + Z2)|η̂2

1

))
= oP (1), (2)

where Z1 and Z2 are distributed as in the theorem.

Remark 3. For evaluating the asymptotic (conditional) P-value of the test statistics in (1) and

(2), we have to evaluate the distribution function of the asymptotic conditional distribution. Note

that this is the convolution of the χ2
1-variable and a rescaled non-central χ2

1 variable. Now, the

distribution function F1(x; λ) of χ2
1(λ) (χ2

1 with non-centrality parameter (NCP) λ) can be written

as (cf. [Johnson et al., 1994])

F1(x; λ) =
∞∑

j=0

((λ/2)j

j!
e−λ/2

)
F1+2j(x),

where Fν(x) is the distribution function of the central χ2
ν distribution. Therefore, it would be

sufficient to compute the convolutions of χ2
1 and the rescaled cχ2

1+2j , j ≥ 0. However, this amounts
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to computing the convolution of two gamma variables with distinct scale parameters (cf. [Johnson

et al., 1994]). Although methods for this problem do exist, we found it preferable to simply compute

the convolution of the densities of χ2
1 and cχ2

1(λ) numerically, as outlined in the simulation section.

Remark 4. The proof shows that one can also test for deviations in the allele frequency with stan-

dard χ2
1 limit distribution when conditioning on the HWE statistic. Indeed, under the assumptions

of Theorem 1,

N
( c

a

(
ρ̂1 − ρ̂

)2 +
1− c

a

(
ρ̂2 − ρ̂

)2)|η̂1
D→ χ2

1,

where a is defined in (A.1).

3. SIMULATION STUDY

In this section, the finite sample properties of the proposed testing procedure are scrutinized. First,

we describe numerical computation of the distribution function of the test statistic. Second, we

show single locus simulations to characterize speed of convergence and make comparisons with

two other test statistics. These comparisons will further motivate the application of our proposed

procedure in a GWAS setting. Finally, we compare the same statistics in GWAS simulations.

3.1 Computation of the distribution function

Numerical integration is used to compute the distribution function of the convolution Z := Z1 +

cZ2(λ), with NCP λ = Nη̂1(1 − c)/2. Denote with ϕ(x, y) = ϕ(x, y; λ, c) the joint density of

Z1 and cZ2(λ). Therefore FZ(x) =
∫ x
0

∫ z
0 ϕ(t, z − t)dtdz, if FZ denotes the distribution function

of Z. A first change of variables allows for a rectangular integration area: θ : (x, y) → (x, xy),

FZ(x) =
∫ x
0

∫ 1
0 ϕ ◦ θ(z, t)|Dθ|dtdz. Note, that ϕ ◦ θ(z, t) has poles at t = 0 and t = 1 for all

values z. The poles behave as 1√
t

for t → 0 and as 1√
1−t

for t → 1. For t, we split the integral

into subintervals (0, 1
4), (1

4 , 3
4), (3

4 , 1) and apply transformations in the outer intervals in order to

eliminate the poles. To this end, we use the identities
∫ b
0 f(x) =

∫ √b
0 2tf(t2) for the pole at 0 and∫ 1

a f(x) =
∫ √1−a
0 2tf(1− t2) for the pole at 1.
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Therefore, after some algebraic transformations, the distribution function of Z is given by:

FZ(x; λ, c)

=
∫ 1

4

0

∫ x

0

2
π

exp
{
−1

2

(
λ + s + 4t2s(

1
c
− 1) + log(c(1− 4t2))

)}
cosh

(
2t

√
λs

c

)
ds dt

+
∫ 3

4

1
4

∫ x

0

1
2π

exp
{
−1

2

(
λ + s + st(

1
c
− 1) + log(ct(1− t))

)}
cosh

(√
λst

c

)
ds dt

+
∫ 1

3
4

∫ x

0

2
π

exp
{
−1

2

(
λ +

s

c
+ 4t2s(1− 1

c
) + log(c(1− 4t2))

)}
cosh

(√
λs(1− 4t2)

c

)
ds dt,

which is amenable to numerical integration. We use the software package adapt in R version 2.8.0

to compute the integrals [Team, 2008].

3.2 Single locus simulations

Table 1 shows simulations comparing the proposed test statistic with the Pearson test and a test

that assumes HWE frequencies in controls [Chen and Chatterjee, 2007]. The latter test is perhaps

the most simple way to address the HWE assumption in controls. This test compares genotype

frequencies in cases with an HWE-expectation based on an allele frequency estimation in controls,

thereby ignoring the parameter η1 entirely. In (ρ, η) parametrization the test is a LR test with the

null hypothesis Θ0 : ρ1 = ρ2, η1 = η2 = 0 and the alternative Θ1 : η1 = 0, (ρ1 6= ρ2 ∨ η2 6= 0),

where (ρ1, η1) are parameters for the control group and (ρ2, η2) are parameters for cases. This test

completely ignores the HWE distribution in controls and is referred to as the EHWE (expected

HWE) test.

Table 1 shows in the first section that all tests maintain the α level faithfully as is expected for

the sample size of 103 for each group. The second section shows results under the alternative. The

most powerful test in cases where ρ1 = ρ2 and 0 = η1 6= η2 is the EHWE test. For example power

for EHWE is 99% for (ρ1, ρ2, η1, η2) = (.1, .1, 0, .1) whereas it is 77% and 79% for our conditional

test and the Pearson test, respectively. In cases where the ηs are equal and ρs differ, our conditional

test is the most powerful test. In cases where the Pearson test is most powerful, the difference is

not statistically significant such that the Pearson test can be considered as the least powerful test

in all scenarios. This result is expected as the Pearson test makes the least assumptions of the

compared tests.

Our conditional test and the EHWE test both assume HWE in controls and it appears that they

have mutual strengths. However, if we misspecify our test scenario by setting η1 6= 0 some interest-
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ing results are apparent from the third section in Table 1. In situations where ρ1 = ρ2, η1 = η2 but

η1 6= 0 the conditional test is conservative and does not exhaust the α-level of 0.05 whereas EHWE

is anticonservative and exceeds the α-level by large margins. These qualitative observations have

important consequences for a GWAS setting as loci with estimates for |η1| >> 0 are expected to

occur in the set of SNPs even under the HWE assumptions. In these cases EHWE would be more

likely to assign a smaller p-value than our conditional test. Therefore on average, our conditional

test adjusts p-values for SNPs with |η1| >> 0 upwards whereas EHWE adjusts downwards. Intu-

itively this should result in an excess of false positives for EHWE as compared to our conditional

approach. We address this question by simulations of GWASs.

3.3 GWASs simulations

We conducted simulations of plausible GWAS scenarios in order to assess the impact of our condi-

tional test on the analysis of such studies. Our single locus simulations indicate that our test should

have favorable properties as compared to the EHWE and the Pearson test in a GWAS scenario.

We constructed an alternative based on a logistic penetrance function. If K loci influence disease

status, we have:

P (Y = 1|g1, ..., gK) =

(
1 + exp

{
−

(
µ +

K∑
i=1

βixi

)})−1

=: Y (g; β). (3)

Here, xi is a score assigned to a genotype, βi is the effect size of locus i and µ is a baseline

penetrance. For genotypes 0 and 2 we assign the respective scores 0 and 1 and for genotype 1 we

assign 0, 1
2 , 1 to respectively simulate a recessive, additive and dominant mode of inheritance. The

prevalence P (Y = 1) of the disease is then given by:

α = P (Y = 1) =
∑

(g1,..,gK)∈G

Y (g; β)P (G = g) =
∑

(g1,..,gK)∈G

Y (g; β)
K∏

i=1

ρi,gi , (4)

assuming that g = (g1, .., gK), β = (β1, ..., βK) and ρi,gi denotes the genotype frequency of genotype

gi at locus i. In all simulations we assume all SNPs to be independent for a random sample from

the population. In order to pick an alternative hypothesis, we deterministically chose some of the

parameters and drew the others randomly. Deterministic parameters were α, µ, β1, ρ1 and the score

assignment. K, β2, ..., βK , ρ2, ..., ρK were drawn randomly as follows. βi ∼ U(1.1, β1), i = 2, ...,
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ρi ∼ U(ρ1/2, ρ1) subject to the constraint P (Y = 1) = α. We give details about the procedure in

Appendix A.2. In summary, we created alternatives for which we know prevalence, maximal effect

size and baseline penetrance with freedom in how the prevalance was distributed over effects of

additional loci, mimicking the suspected polygenic nature of most complex genetic diseases. From

the allele frequencies expected genotype frequencies under HWE were computed and genotypes

were drawn according to these distributions for cases and controls for SNPs under the null. For

SNPs under the alternative, genotypes for controls were drawn likewise and genotypes for cases

were drawn according to the penetrance model above.

3.4 Results of GWASs simulation

Table 2 summarizes results of the GWASs simulations which compare our conditional test (indicated

by ∗s), EHWE (indicated by •s) and the Person test (plain notation). We chose several measures

to judge the performance of the tests. As ranking is important in practical analysis we show rank

criteria in columns Qx. We pick the SNP at quantile x according to P-value among SNPs under

the alternative and average the rank statistic among all SNPs of these selected SNPs. We also

evaluated the number of rejected SNPs denoted by mα for a false discovery rate (FDR) criterion at

level α [Benjamini and Hochberg, 1995]. Finally, Φα is the power of the FDR procedure, denoting

the probability of rejecting any SNP in a GWAS. For all simulations we assumed the prevalence to

be 0.1, sample size to be 2 × 103 in both groups and averaged all numbers across 103 repetitions

after picking an alternative.

In most situations the conditional test is the most powerful. In cases where it is not most powerful

the difference is not statistically significant. These cases are seen for the dominant model, where

alternative SNPs ranked mostly at the top of the list as is apparent from columns Q∗
0, Q

•
0, Q0

(values between 1.0 and 1.9). In other cases the difference in power can be quite dramatic, e.g. for

(OR1, ρ1, µ) = (2.0, .1, 5 × 10−2) under the recessive model power is 72% for the conditional test,

5% for EHWE, 0.9% for the Pearson test.

With respect to ranking (columns Qx), the conditional test ranks SNPs simulated under the alter-

native with lowest ranks in most situations. This is true for the dominant and additive model. How-

ever, under the recessive model EHWE ranks lowest but is has no power to reject the low-ranking

SNPs (column Φ•). Except for the dominant model, all tests rank SNPs from the 0.25-quantile at

ranks > 300, highlighting the difficulty to pinpoint relevant SNPs. If an extensive survey is planned

that would imply replication of top ranked SNPs in a second sample, the conditional approach is
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optimal as it is the only test that can reject SNPs that are ranked lowly.

Columns m show the average number of rejected SNPs per test. It should be noted that these

numbers include SNPs drawn under the null hypothesis. These columns therefore need to be

interpreted in conjunction with power as low power would indicated rejection of false positives. In

all cases, except for non-significant differences, the conditional test rejects most SNPs while having

best power, showing that more true positives were rejected on average.

4. DATA ANALYSIS

We applied our testing procedure to a data set previously published [Hillmer et al., 2008] and

compared it with the same tests as used in the simulation section. The data set is comprised of 296

males with androgenic alopecia and 383 random controls. Details about the data set are given in

the initial publication [Hillmer et al., 2008]. The data set was pruned for SNPs with a minor allele

frequency (MAF) < 0.1 (i.e. min{ρ, 1− ρ} < 0.1) and call rates for SNPs < 0.9.

Figure 4 shows Quantile-Quantile (Q-Q) plots for several tests comparing the empirical distribution

to a uniform distribution. The plot for the HWE test in controls (part (A)) shows notable deviation

from the expected uniform distribution for expected p-values < 10−2. Apart from this deviation

in the tail, the HWE statistic shows a close fit with expected values. This deviation most likely

excludes systematic error such as population stratification (different mixtures of cases and controls

as drawn from several underlying unique distributions) or cryptic relatedness (different correlation

structure of samples across groups) [Devlin and Roeder, 1999; Voight et al., 2005] as in principle

all SNPs should be affected. A first thing to note is, that an arbitrary cut-off for HWE p-values,

say 10−3 would not remove all deviating SNPs in the dataset. As our test should not be sensitive

to non-systematic deviations from HWE, we did not remove any SNPs from further analysis. It is

informative to see how the different tests behave in this situation. We subjected the data to our

conditional test, the Pearson test and EHWE.

Part (B), (C) and (D) of figure 4 show Q-Q-plots for the conditional, Pearson and EHWE tests,

respectively. All Q-Q-plots show an excess of low p-values as compared to the expected uniform

distribution under the null hypothesis. The EHWE shows excessive anti-conservative behavior

whereas the conditional and Pearson tests both show close correspondence to a uniform distribution

for p-values > 10−3.5. The data set contains a strong signal on chromosome 20 such that some tail

deviation is expected.
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Table 4 shows SNPs ordered according to p-values for EHWE. The corresponding p-values for

HWE are located in the range (10−9, 10−1) with a majority of SNPs having p-values < 10−2. This

reflects the sensitivity of EHWE to misspecification as was shown in the simulation section. It is

important to note that EHWE has practically no overlap with either the conditional or Pearson test

as determined by SNP rankings except for the very strong signal for the top-5 SNPs according to

the conditional test. Apart from these SNPs, the top-30 list for EHWE contains highest rankings of

80 and 184 for the conditional and Pearson test, respectively. HWE outliers with p-values < 10−6

rank high for EHWE (ranks 2, 5, 9 in the top-10) whereas the conditional and Pearson tests rank

them at ranks > 200, 000 and > 3, 500, respectively.

Table 3 shows 30 SNPs ranked according to p-values of the conditional test. Again, overlap with

EHWE is weak except for the top-6 SNPs but the Pearson test shows some agreement. Skipping the

first six SNPs, the top ranked SNP according to the conditional test has Rank 78 for the Pearson

test. From the top 10 list according to Pearson rank 5, 6 and 9 are missing from table 3. These

observations can be described more quantitatively by estimating the correlation between p-values

of the test statistics as shown in table 5. Pearson and the conditional test show a correlation of

0.95 whereas their correlation with EHWE is < 0.76. The conditional test is the only test showing

a negative correlation with HWE (−0.01), EHWE has correlation ∼ 0 with HWE (as it ignores

the HWE statistic in controls) and Pearson has a correlation of 0.24 with HWE. The negative

correlation is not significant in this data set although it is intuitively plausible to assume that

HWE should have a strict negative correlation with the conditional test.

5. DISCUSSION

In this paper we have proposed a new testing procedure for case-control studies in a GWAS setting.

One major advantage of our test is that is removes the need for two separate tests (HWE, Pearson)

and thereby eliminates the need for an arbitrary cutoff that is normally introduced to avoid false

positives. However, the problem of systematic error needs still to be addressed. For example a Q-Q

plot can reveal deviations from the expected χ2
1 distribution for the HWE test. If a deviation is

seen in the tail of the distribution, a very strict cutoff can be used to eliminate these SNPs. This

should typically be a p-value of around 10−6 thereby establishing a much better correspondence

between HWE statistic and systematic error.

Another interesting property of our test is that it is more powerful than competing tests, in partic-
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Figure 1: Q-Q-plots for p-values derived from the obesity data set comparing an empirical distri-
bution with a uniform distribution on a double logarithmic scale. Part (A) shows the HWE test in
controls, (B) is the conditional test, (C) the Pearson test and (D) is EHWE.
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ular in the analysis of GWAs. Intuitively, this result is expected from the distribution of our test

statistic. The non-centrality parameter relates linearly to the HWE statistic and therefore gives

more mass to the tail for a SNP with a big HWE statistic as compared with a SNP that shows

close correspondence with HWE. Therefore, the test has lower critical values for SNPs in HWE as

compared to SNPs with deviations from HWE. Loosly speaking, our conditional test is more likely

to reject ”promising” SNPs in HWE and less likely to reject ”atypical” SNPs with departures from

HWE.

Interestingly, a more direct approach to address the assumption of HWE in controls, namely EHWE,

is not effective in the analysis of GWAs. Instead of modeling HWE, EHWE completely ignores

the HWE statistic by constraining the parameter η1 to zero in the control group (see table 5).

While doing so can improve power in single locus simulations, it decreases power in GWASs and is

additionally very sensitive to model misspecification. What is the difference between single locus

and GWAS simulations? In the single locus situations the tails of the HWE statistic does only

contribute to the average according to its probability mass, whereas in a GWAS no averaging takes

place over SNPs such that SNPs with HWE statistics in the tail will be individually represented

and are even likely to stick out in tests like Pearson or EHWE for only this reason. This explains

why EHWE should be avoided in GWASs.

As a further conclusion, we would like to point out that simulations on a single locus basis do not

allow to judge performance in a GWAS as our results underline.

We have analyzed a data set that shows some deviation from the expected distribution for the

HWE statistic in controls. This deviation is most likely due to population stratification [Voight

et al., 2005]. While this deviation could be addressed (e.g. [Devlin and Roeder, 1999]), we chose

to re-analyze this data set in its published form. While our test is robust against deviation from

HWE in the controls i.e. η1 6= 0 in controls, obviously, if η1 6= η2 under the null due to population

stratification, our test shows anti-conservative behavior. Therefore, population stratification still

has to be quantified and addressed, if a biased analysis is to be expected. In this respect the

conditional test seems to behave similarly to the Pearson statistic although it seems to be slightly

more anti-conservative.

In conclusion, our test offers a unified and more powerful approach to association testing as com-

pared to standard analyses. These two aspects seem to warrant wide adoption and we aim to

integrate our procedure into standard software packages. The test statistic is identical to that of

16



the Pearson test. Only computing P-values requires a numeric integration. For high-throughput

analysis P-values can be precomputed on a grid for the non-centrality parameter and values of the

test statistic. Actual P-values can be computed utilizing bi-linear interpolation as we did in the

GWAS simulations.

With regard to population stratification it is interesting to compute the distribution by relaxing

the assumption η1 = 0 in controls. Such a framework would allow for joint analysis of population

stratification, HWE and association testing.
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A. APPENDIX

A.1 Proof of Theorem 1

Proof. We set

L̃(ρ1, η1, ρ2, η2) = L
(
T−1(ρ1, η1), T−1(ρ2, η2)

)
, L̃(ρ, η) = L

(
T−1(ρ, η)

)
.

We let (ρ̂1, η̂1, ρ̂2, η̂2) and (ρ̂, η̂) be the unrestricted and restricted ML estimators of the transformed pa-

rameters, respectively. Denote the true value for the ρ’s by ρ1 = ρ2 = ρ0 (by assumption, η1 = η2 = 0).

Set

a = (1− ρ0)ρ0, b = 2, (A.1)

so that
(
I−1

0

)
1,1

= a,
(
I−1

0

)
2,2

= b, in case η = 0 (note that (I−1
0 )1,2 = (I−1

0 )2,1 = 0). Now

√
N
(
(ρ̂1, η̂1, ρ̂2, η̂2)T − (ρ0, 0, ρ0, 0)T

) d→ N(0, I−1
Joint),
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where I−1
Joint = diag

(
a/c, b/c, a/(1 − c), b/(1 − c)

)
. A standard argument in likelihood theory (see e.g.

[Ferguson, 1996], p. 145, eq (4)) now shows that under our assumptions,

2
(
L(ρ̂1, η̂1, ρ̂2, η̂2)− L(ρ̂, η̂)

)
= N

(
ρ̂1 − ρ̂, η̂1 − η̂, ρ̂2 − ρ̂, η̂2 − η̂

)
IJoint

(
ρ̂1 − ρ̂, η̂1 − η̂, ρ̂2 − ρ̂, η̂2 − η̂

)T + oP (1)

= N
( c

a

(
ρ̂1 − ρ̂

)2 +
1− c

a

(
ρ̂2 − ρ̂

)2)+ N
(c

b

(
η̂1 − η̂

)2 +
1− c

a

(
η̂2 − η̂

)2)+ oP (1).

= A1,n + A2,n + oP (1). (A.2)

Now, straightforward computations give the covariance in the following (degenerate) asymptotic covariance

matrix,
√

N
(
(π̂11, π̂12, π̂21, π̂12, π̂1, π̂2)− (π1, π2, π1, π2, π1, π2)

)
→ N(0, Σπ),

where (π1, π2) = T−1(ρ0, 0) and

Σπ =



(1−π1)π1
c −π1π2

c 0 0 (1− π1) π1 −π1π2

−π1π2
c

(1−π2)π2
c 0 0 −π1π2 (1− π2) π2

0 0 (1−π1)π1
1−c −π1π2

1−c (1− π1) π1 −π1π2

0 0 −π1π2
1−c

(1−π2)π2
1−c −π1π2 (1− π2) π2

(1− π1) π1 −π1π2 (1− π1) π1 −π1π2 (1− π1) π1 −π1π2

−π1π2 (1− π2) π2 −π1π2 (1− π2) π2 −π1π2 (1− π2) π2


Therefore, from the δ-method,

√
N
(
(ρ̂1, η̂1, ρ̂2, η̂2, ρ̂, η̂)T − (ρ0, 0, ρ0, 0, ρ0, 0)T

)
→ N(0, I−1

comp), (A.3)

where

I−1
comp =



a/c 0 0 0 a 0

0 b/c 0 0 0 b

0 0 a/(1− c) 0 a 0

0 0 0 b/(1− c) 0 b

a 0 a 0 a 0

0 b 0 b 0 b


Thus, it follows that A1,n and A2,n in (A.2) are asymptotically independent, and that A1,n is, also condi-

tionally on η̂1, asymptotically distributed as χ2
1. As for A2,n, from (A.3) it follows that

d
(
D
(√

N
(
η̂2, η̂

)
|η̂1

)
,
(
N(µη̂1 , Σcond)|η̂1

))
= oP (1),
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where

µη̂1 = (0, c
√

Nη̂1)T , Σcond =

 b/(1− c) b

b (1− c)b

 .

Thus,

d
(
D
(
A2,n|η̂1

)
,D
(
W |η̂1

))
= oP (1),

where

W =
c

b

(
(1− c)1/2X − (1− c)

√
Nη̂1

)2 +
1− c

a

(
(1− c)1/2X + c

√
Nη̂1 −X/(1− c)1/2

)2
and X ∼ N(0, b) is independent of η̂1. W reduces in distribution to

W |η̂1
d= c
(
Y −

√
Nη̂1(1− c)1/2

√
b

)2

|η̂1 ∼ cχ2
1

(
Nη̂2

1(1− c)/b
)
,

where Y ∼ N(0, 1) is independent of η̂1. The theorem follows.

A.2 Simulations

We here give details about the simulation of genotypes for the GWAS simulations. With the penetrance

model (3) and the choosing of parameters as described in the simulation section the alternative hypothesis

is fully specified. However, computationally it is not straightforward to choose the number of loci under the

alternative K and random penetrance parameters β = (β2, ..., βK) such that

α = P (Y = 1),

for a given α. In order to efficiently draw parameters we use a step-wise procedure. We construct a

parameter vector θ(i) = (α, µ, β1, β2, ..., βi+1, ρ1, ρ2, ..., ρi+1) by adding parameters βi+1 ∼ U(1.1, β1), ρi+1 ∼

U(ρ1/2, ρ1) to θ(i−1). We then estimate prevalence P (Y = 1) by α̂ and accept θ(i) if α̂ < α. Otherwise

we draw new parameters βi+1, ρi+1. We stop the procedure, if α̂ ∈ (α − ε, α + ε). We use ε = 10−2 in all

simulations.

As computation of α would require summation over all possible genotype combinations in formula (4),

the number of which grows exponentially with the number of loci, we instead estimate α by Monte-Carlo

integration. Instead, we compute α̂ =
∑

(g1,..,gK)∈G0
Y (g; β)G(g; ρ), with G0 = (g1j , .., gij)M

j=1, where each

glj is independently drawn from the corresponding genotype distribution of locus l. We use M = 105 in the

simulations.

After specifying the alternative, we independently draw genotypes from the distribution as specified by

ρ = (ρ1, ..., ρK) and assign a phenotype according to the penetrance model. As we typically use α = .1 in

the simulations, the ratio of generated cases and controls is around 1:9, which is a tolerable excess of controls.
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Finally we simulate S control loci for which the distribution between cases and controls is identical. We use

S = 3× 105 in the simulations. We average results from simulations over 103 runs for each alternative that

was generated once as outlined above.
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Table 1: Single locus simulations comparing the power for the conditional test (Φ∗), the EHWE
test (Φ•) and the Pearson test (Φ). 103 controls and 103 cases were drawn from the distributions
(ρ0, η0) and (ρ1, η1), respectively. The significance level was chosen as α = .05 and the power was
estimated from 104 simulations.

ρ0 η0 ρ1 η1 Φ∗.05 Φ•.05 Φ.05

0.10 0.00 0.10 0.00 0.048 0.051 0.049
0.50 0.00 0.50 0.00 0.053 0.053 0.053
0.10 0.00 0.10 0.05 0.199 0.320 0.173
0.50 0.00 0.50 0.05 0.179 0.273 0.155
0.10 0.00 0.10 0.10 0.772 0.990 0.791
0.50 0.00 0.50 0.10 0.575 0.820 0.507
0.10 0.00 0.11 0.00 0.149 0.138 0.135
0.50 0.00 0.51 0.00 0.088 0.084 0.082
0.10 0.00 0.12 0.00 0.457 0.426 0.423
0.50 0.00 0.52 0.00 0.209 0.188 0.188
0.10 0.05 0.10 0.05 0.029 0.313 0.049
0.50 0.05 0.50 0.05 0.037 0.275 0.050
0.10 -0.05 0.10 -0.05 0.043 0.255 0.049
0.50 -0.05 0.50 -0.05 0.041 0.273 0.051
0.10 0.05 0.10 0.10 0.195 0.990 0.332
0.50 0.05 0.50 0.10 0.162 0.819 0.154
0.10 -0.05 0.10 0.00 0.048 0.053 0.136
0.50 -0.05 0.50 0.00 0.052 0.052 0.154
0.10 0.05 0.12 0.05 0.277 0.653 0.444
0.50 0.05 0.52 0.05 0.141 0.425 0.195
0.10 -0.05 0.14 -0.05 0.884 0.967 0.940
0.50 -0.05 0.54 -0.05 0.469 0.761 0.590
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Table 3: Analysis of an alopecia data set. Results are ordered according to P-values of the con-
ditional test and the first 30 SNPs are shown. Columns in parentheses show order statistics. C
denotes the conditional test, P denotes the Pearson test and E denotes EHWE. λ denotes the NCP
of the conditional test.

SNP C P (P) EHWE (E) HWE λ
rs1998076 1.21e-07 7.15e-07 1 4.23e-07 14 5.9e-01 0.24
rs6075852 2.50e-07 1.47e-06 2 9.65e-07 18 6.6e-01 0.17
rs2180439 2.53e-07 1.54e-06 3 1.01e-06 20 6.6e-01 0.17
rs201571 8.37e-07 4.68e-06 7 2.44e-06 23 5.8e-01 0.26
rs6113491 8.75e-07 1.78e-06 4 3.13e-06 25 1.2e-01 2.01
rs6137444 2.17e-06 1.02e-05 8 3.63e-06 27 6.5e-01 0.18
rs10992241 3.64e-06 2.00e-04 78 1.08e-05 45 9.3e-01 0.01
rs6137473 3.83e-06 1.60e-05 10 1.38e-05 50 4.9e-01 0.41
rs6047768 7.16e-06 2.43e-05 15 2.12e-05 63 4.0e-01 0.59
rs2207878 7.51e-06 2.25e-05 13 2.05e-05 60 3.2e-01 0.84
rs6113424 7.87e-06 3.06e-05 19 2.59e-05 75 5.1e-01 0.37
rs201543 7.88e-06 3.06e-05 17 2.59e-05 73 5.1e-01 0.37
rs6035995 8.04e-06 3.04e-05 16 2.56e-05 71 4.7e-01 0.44
rs2024885 8.08e-06 3.06e-05 18 2.59e-05 74 5.1e-01 0.37
rs1884592 9.28e-06 3.89e-05 26 3.27e-05 85 5.9e-01 0.25
rs6137476 9.49e-06 3.89e-05 28 3.27e-05 87 5.9e-01 0.25
rs1555264 9.53e-06 3.64e-05 25 3.14e-05 82 5.1e-01 0.37
rs6047769 9.57e-06 3.62e-05 23 3.09e-05 81 5.0e-01 0.38
rs2328683 9.82e-06 4.08e-05 31 3.54e-05 93 6.5e-01 0.18
rs6047731 9.84e-06 3.89e-05 27 3.27e-05 86 5.9e-01 0.25
rs4805229 1.15e-05 4.82e-05 33 3.60e-05 94 9.8e-01 0.00
rs655683 1.53e-05 2.13e-05 11 5.93e-06 36 1.8e-01 1.49
rs927059 2.05e-05 7.34e-05 43 6.47e-05 109 5.3e-01 0.33
rs6106434 2.05e-05 8.50e-05 49 7.08e-05 113 5.5e-01 0.30
rs1009840 2.17e-05 5.23e-05 35 4.90e-05 100 2.2e-01 1.22
rs4896028 2.26e-05 6.82e-05 41 6.69e-05 110 3.1e-01 0.86
rs500629 2.31e-05 8.08e-05 46 8.71e-05 124 5.6e-01 0.29
rs6137547 2.32e-05 6.40e-05 39 5.77e-06 34 5.3e-01 0.38
rs9300398 2.65e-05 5.04e-05 34 8.83e-05 125 2.5e-01 1.15
rs4771987 3.16e-05 1.05e-04 56 9.49e-05 135 5.6e-01 0.29

25



Table 4: Analysis of an alopecia data set. Results are ordered according to P-values of EHWE
and the first 30 SNPs are shown. Columns in parentheses show order statistics. C denotes the
conditional test, P denotes the Pearson test and E denotes EHWE. λ denotes the NCP of the
conditional test.

SNP EHWE C (C) P (P) HWE λ
rs1506694 1.13e-11 8.17e-03 2195 3.43e-03 900 7.9e-03 4.25
rs12357377 1.13e-10 9.68e-01 245387 2.23e-01 57416 4.5e-07 16.24
rs2189935 1.88e-10 2.47e-01 63594 4.02e-02 10418 2.2e-04 6.93
rs3760877 1.07e-09 1.51e-01 39079 1.44e-02 3768 6.2e-03 6.79
rs396999 3.17e-09 1.00e+00 253779 6.01e-01 153007 7.2e-09 23.04
rs1873921 6.30e-09 1.06e-01 27530 2.40e-03 640 3.1e-02 6.12
rs13362504 3.45e-08 1.73e-02 4630 4.57e-03 1208 8.4e-03 4.91
rs11232869 7.84e-08 7.72e-01 195223 2.85e-01 73175 3.3e-05 7.20
rs1491485 1.45e-07 9.71e-01 246040 6.68e-02 17202 1.7e-09 22.81
rs12282 1.50e-07 2.36e-04 80 6.35e-04 184 9.4e-01 0.00
rs632547 1.63e-07 9.88e-01 250757 4.88e-01 124485 2.1e-06 12.32
rs7857803 1.96e-07 5.35e-01 135381 8.97e-02 23171 3.5e-03 7.71
rs4307321 3.35e-07 8.29e-01 209871 2.02e-01 52160 4.7e-04 10.17
rs1998076 4.23e-07 1.21e-07 1 7.15e-07 1 5.9e-01 0.24
rs647731 5.53e-07 5.18e-02 13690 3.01e-02 7797 6.2e-02 2.49
rs2687860 8.08e-07 1.00e+00 253697 3.76e-01 96292 1.5e-07 24.61
rs295117 9.08e-07 9.85e-01 249783 4.01e-01 102635 8.9e-05 13.95
rs6075852 9.65e-07 2.50e-07 2 1.47e-06 2 6.6e-01 0.17
rs9285864 9.70e-07 8.32e-01 210441 1.49e-02 3907 1.2e-07 21.28
rs2180439 1.01e-06 2.53e-07 3 1.54e-06 3 6.6e-01 0.17
rs2975520 1.19e-06 1.00e+00 253844 8.32e-01 211079 1.0e-09 25.35
rs875001 1.42e-06 1.49e-01 38498 6.47e-02 16671 3.4e-02 3.19
rs201571 2.44e-06 8.37e-07 4 4.68e-06 7 5.8e-01 0.26
rs2425628 2.78e-06 9.71e-01 246163 4.55e-01 115990 2.7e-04 10.94
rs6113491 3.13e-06 8.75e-07 5 1.78e-06 4 1.2e-01 2.01
rs970952 3.51e-06 6.56e-01 165884 2.47e-01 63608 1.9e-03 6.09
rs6137444 3.63e-06 2.17e-06 6 1.02e-05 8 6.5e-01 0.18
rs10824842 3.93e-06 1.00e+00 253840 3.42e-01 87705 8.3e-04 32.92
rs1555257 4.53e-06 3.37e-03 965 3.01e-03 803 2.5e-01 1.03
rs7744253 4.67e-06 8.75e-01 221379 3.55e-01 90907 9.4e-04 7.74

Table 5: Correlation structure between the conditional, EHWE, Pearson, HWE tests for the obesity
data set.

Conditional EHWE Pearson HWE
Conditional 1.00 0.76 0.95 -0.01

EHWE 0.76 1.00 0.72 0.01
Pearson 0.95 0.72 1.00 0.24

HWE -0.01 0.01 0.24 1.00
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