Statistically optimal estimation of signals in modulation spaces using Gabor frames

Stephan Dahlke, Sven Heuer, Hajo Holzmann, and Pavel Tafo

Time-frequency analysis deals with signals for which the underlying spectral characteristics change over time. The essential tool is the short-time Fourier transform, which localizes the Fourier transform in time by means of a window function. In a white noise model, we derive rate-optimal and adaptive estimators of signals in modulation spaces, which measure smoothness in terms of decay properties of the short-time Fourier transform. The estimators are based on series expansions by means of Gabor frames and on thresholding the coefficients. The minimax rates have interesting new features, and the derivation of the lower bounds requires the use of test functions which approximately localize both in time and in frequency. Simulations and applications to audio recordings illustrate the practical relevance of our methods. We also discuss the best N-term approximation and the approximation of variational problems in modulation spaces by Gabor frame expansions.

SUPPLEMENT

A. Additional results for denoising the signals from Section V-C in the main paper

We provide some additional simulation results for the setting from Section V-C in the main paper, in particular for SureShrink, BayesShrink and musical noise block soft thresholding.

B. Additional simulations

Effects of window length and grid density

1

In the setting of Section V-A in the main paper, we also analyze the error from an irregular grid, i e. unequal amount of frequency and time bands, $M \neq N$. Giving the characteristics of some functions with signals being located in a single time or frequency fragment, it might be useful to consider an amplification of the time-frequency representation in either time or frequency plane. Figure 1 shows the MSE for four different scenarios according to table III.

For all signals we observe that S2 performs better than S3 for a long window and S3 performs better than S2 for a short window. An increased discretization of the time domain is required as the window grows to make up for the loss in time resolution. Similarly, an increased discretization of the frequency domain is required as the window decreased to make up for the loss in the frequency resolution. For $f_{50,2}$, scenario S3 perform as good S1, which means that the lost of local information in the time domain in S3 does not affect the denoising method since the signal is located only in a small frequency domain. Scenario S2 and S4 also perform equal. This means that a gain in local information in the time domain does not improve the denoising of $f_{50,2}$.

For $f_{50000,4}$ we observed opposite results. Scenario

All authors are with the Faculty of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg, Germany H. Holzmann is the corresponding author

[{]dahlke, heuersv, holzmann, tafo}@mathematik.unimarburg.de

audio	SNR	SureShrink			BayesShrink		
		STFT _{rect}	STFT _{gauss}	wavelet _{db4}	STFT _{rect}	$STFT_{gauss}$	wavelet $_{db4}$
	-10	8.339	9.128	2.9	7.921	8.394	2.836
blackbird	1	14.918	16.3	10.018	13.588	14.112	9.506
	10	20.356	21.973	16.559	19.199	19.77	15.902
	30	32.968	34.11	31.956	33.406	34.112	31.586
	-10	8.196	8.35	3.938	8.041	8.043	3.913
melody	1	14.911	15.708	11.346	13.694	13.855	11.096
	10	20.681	22.21	18.113	20.283	20.801	17.894
	30	34.174	37.831	34.57	34.543	37.427	34.436
	-10	3.452	3.694	3.556	4.344	4.486	3.791
ECG	1	11.551	11.685	11.25	11.283	11.644	11.036
	10	17.005	18.44	17.838	16.926	18.286	17.647
	30	30.057	30.074	30.953	30.358	30.786	31.008
	-10	4.171	4.212	3.81	4.907	4.768	3.784
guitar	1	11.548	11.829	9.546	11.218	11.274	9.541
	10	17.77	18.184	16.443	17.966	18.106	16.357
	30	33.061	35.98	33.323	33.621	35.832	33.242
	-10	6.713	6.576	4.096	6.925	6.862	4.119
human	1	13.773	14.281	11.195	13.151	13.263	10.958
speech	10	20.05	20.818	18.046	19.887	20.121	17.702
	30	33.834	37.344	34.42	34.524	37.221	34.134

TABLE I: SureShrink and BayesShrink. All values in decibel (10 $\log_{10} x$, dB).

audio	SNR	SureShrink			BayesShrink		
		STFT _{rect}	$STFT_{gauss}$	wavelet _{db4}	$STFT_{rect}$	$STFT_{gauss}$	wavelet _{db4}
	-10	5.665	4.901	1.459	7.253	7.318	1.81
blackbird	1	13.536	12.565	7.667	14.487	14.774	8.481
	10	19.632	19.274	13.897	20.295	20.854	14.578
	30	32.68	33.448	30.239	33.53	34.136	30.939
melody	-10	5.251	5.545	2.578	7.202	7.48	2.762
	1	13.462	13.505	10.112	14.434	14.814	10.547
	10	20.15	20.374	16.829	20.812	21.415	17.191
	30	32.773	37.029	33.739	34.887	37.728	33.979
	-10	0.989	1.122	2.35	2.484	2.618	2.784
ECG	1	9.876	10.047	9.225	10.482	10.715	10.125
	10	16.633	17.61	15.639	16.644	17.91	16.643
	30	30.018	30.074	30.949	30.158	30.546	31.023
	-10	3.516	3.842	3.536	4.301	4.418	3.557
guitar	1	10.573	10.58	8.688	11.297	11.366	8.565
	10	17.827	17.896	15.893	18.22	18.332	16.024
	30	31.369	34.708	32.907	33.896	35.872	33.032
	-10	5.324	5.531	3.446	6.376	6.438	3.55
human	1	12.835	12.739	9.875	13.484	13.578	10.277
speech	10	19.701	19.663	16.364	20.254	20.422	16.957
	30	32.119	36.801	33.219	34.893	37.56	33.654

TABLE II: Musical noise block soft thresholding. All values in decibel (10 $\log_{10} x$, dB).

Scenario	S1	S2	S 3	S4
N	400	400	100	100
M	400	100	400	100
$lpha \cdot eta$	0.0125	0.05	0.05	0.3125

TABLE III: Gabor grid density

Fig. 1: Effect of the window width w and the grid density. For the three signals for samples of sizes n = 2000, using hard thresholding with the optimal threshold. —S1, -S2, -S3, $\cdots S4$

S2 performs as good as S1 and better than S3 which in turn performs almost as good as S4. This is not surprising given that the signal lies in a small time fragment. Therefore an increasing of the local information in the frequency domain does not lead to better results.