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Statistically optimal estimation of signals in modulation
spaces using Gabor frames

Stephan Dahlke, Sven Heuer, Hajo Holzmann, and Pavel Tafo

Time-frequency analysis deals with signals for
which the underlying spectral characteristics change
over time. The essential tool is the short-time Fourier
transform, which localizes the Fourier transform in
time by means of a window function. In a white
noise model, we derive rate-optimal and adaptive
estimators of signals in modulation spaces, which
measure smoothness in terms of decay properties
of the short-time Fourier transform. The estimators
are based on series expansions by means of Gabor
frames and on thresholding the coefficients. The
minimax rates have interesting new features, and the
derivation of the lower bounds requires the use of
test functions which approximately localize both in
time and in frequency. Simulations and applications
to audio recordings illustrate the practical relevance
of our methods. We also discuss the best N -term
approximation and the approximation of variational
problems in modulation spaces by Gabor frame
expansions.

SUPPLEMENT

A. Additional results for denoising the signals from

Section V-C in the main paper

We provide some additional simulation results for

the setting from Section V-C in the main paper, in

particular for SureShrink, BayesShrink and musical

noise block soft thresholding.
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B. Additional simulations

Effects of window length and grid density

In the setting of Section V-A in the main pa-

per, we also analyze the error from an irregular

grid, i e. unequal amount of frequency and time

bands, M 6= N . Giving the characteristics of some

functions with signals being located in a single

time or frequency fragment, it might be useful

to consider an amplification of the time-frequency

representation in either time or frequency plane.

Figure 1 shows the MSE for four different scenar-

ios according to table III.

For all signals we observe that S2 performs better

than S3 for a long window and S3 performs

better than S2 for a short window. An increased

discretization of the time domain is required as

the window grows to make up for the loss in time

resolution. Similarly, an increased discretization of

the frequency domain is required as the window

decreased to make up for the loss in the frequency

resolution. For f50,2, scenario S3 perform as good

S1, which means that the lost of local information

in the time domain in S3 does not affect the

denoising method since the signal is located only

in a small frequency domain. Scenario S2 and S4

also perform equal. This means that a gain in local

information in the time domain does not improve

the denoising of f50,2.

For f50000,4 we observed opposite results. Scenario



2

audio SNR
SureShrink BayesShrink

STFTrect STFTgauss waveletdb4 STFTrect STFTgauss waveletdb4
-10 8.339 9.128 2.9 7.921 8.394 2.836

blackbird 1 14.918 16.3 10.018 13.588 14.112 9.506
10 20.356 21.973 16.559 19.199 19.77 15.902
30 32.968 34.11 31.956 33.406 34.112 31.586

-10 8.196 8.35 3.938 8.041 8.043 3.913
melody 1 14.911 15.708 11.346 13.694 13.855 11.096

10 20.681 22.21 18.113 20.283 20.801 17.894
30 34.174 37.831 34.57 34.543 37.427 34.436

-10 3.452 3.694 3.556 4.344 4.486 3.791
ECG 1 11.551 11.685 11.25 11.283 11.644 11.036

10 17.005 18.44 17.838 16.926 18.286 17.647
30 30.057 30.074 30.953 30.358 30.786 31.008
-10 4.171 4.212 3.81 4.907 4.768 3.784

guitar 1 11.548 11.829 9.546 11.218 11.274 9.541
10 17.77 18.184 16.443 17.966 18.106 16.357
30 33.061 35.98 33.323 33.621 35.832 33.242

-10 6.713 6.576 4.096 6.925 6.862 4.119
human 1 13.773 14.281 11.195 13.151 13.263 10.958
speech 10 20.05 20.818 18.046 19.887 20.121 17.702

30 33.834 37.344 34.42 34.524 37.221 34.134

TABLE I: SureShrink and BayesShrink. All values in decibel (10 log10 x, dB).

audio SNR
SureShrink BayesShrink

STFTrect STFTgauss waveletdb4 STFTrect STFTgauss waveletdb4
-10 5.665 4.901 1.459 7.253 7.318 1.81

blackbird 1 13.536 12.565 7.667 14.487 14.774 8.481
10 19.632 19.274 13.897 20.295 20.854 14.578
30 32.68 33.448 30.239 33.53 34.136 30.939

-10 5.251 5.545 2.578 7.202 7.48 2.762
melody 1 13.462 13.505 10.112 14.434 14.814 10.547

10 20.15 20.374 16.829 20.812 21.415 17.191
30 32.773 37.029 33.739 34.887 37.728 33.979

-10 0.989 1.122 2.35 2.484 2.618 2.784
ECG 1 9.876 10.047 9.225 10.482 10.715 10.125

10 16.633 17.61 15.639 16.644 17.91 16.643
30 30.018 30.074 30.949 30.158 30.546 31.023
-10 3.516 3.842 3.536 4.301 4.418 3.557

guitar 1 10.573 10.58 8.688 11.297 11.366 8.565
10 17.827 17.896 15.893 18.22 18.332 16.024
30 31.369 34.708 32.907 33.896 35.872 33.032

-10 5.324 5.531 3.446 6.376 6.438 3.55
human 1 12.835 12.739 9.875 13.484 13.578 10.277
speech 10 19.701 19.663 16.364 20.254 20.422 16.957

30 32.119 36.801 33.219 34.893 37.56 33.654

TABLE II: Musical noise block soft thresholding. All values in decibel (10 log10 x, dB).
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Scenario S1 S2 S3 S4

N 400 400 100 100

M 400 100 400 100

α · β 0.0125 0.05 0.05 0.3125

TABLE III: Gabor grid density

(a) f50,2

(b) f50000,4

(c) f40,200

Fig. 1: Effect of the window width w and the grid

density. For the three signals for samples of sizes

n = 2000, using hard thresholding with the optimal

threshold. —S1, – –S2, –·–S3, · · · S4

S2 performs as good as S1 and better than S3

which in turn perfoms almost as good as S4. This

is not surprising given that the signal lies in a

small time fragment. Therefore an increasing of

the local information in the frequency domain

does not lead to better results.
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