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Abstract

We show that the method of Kipnis and Varadhan [Comm. Math. Phys. 104 (1986) 1-19] to
construct a Martingale approximation to an additive functional of a stationary ergodic
Markov process via the resolvent is universal in the sense that a martingale approximation
exists if and only if the resolvent representation converges. A sufficient condition for the
existence of a martingale approximation is also given. As examples we discuss moving average
processes and processes with normal generator.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The central limit theorem (CLT) for additive functionals of stationary, ergodic
Markov chains has been studied intensively during the last decades. A basic
approach for proving the CLT, initiated by Gordin and LifSic [13] and afterwards
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pursued by several authors, is to construct a martingale approximation to the partial
sums. These are decomposed into a sum of a martingale with stationary increments
and a remainder term. After showing that the remainder term is negligible in some
suitable sense, asymptotic normality follows from a martingale CLT. In this note we
will focus on the case where the remainder is negligible in mean-square. Let (X,),>,
be a stationary ergodic (discrete-time) Markov chain with state space (X,%),
transition operator Q and stationary initial distribution u. We denote by || - || and
(-, -) the norm and the inner product of L;(u), respectively, and by Lg(,u) the subspace
with [/ du = 0. For a fixed function f € L5(w) let Sy = 0 and

Su(f) =fX1)+ - +f(Xy), n=1

Definition 1.1. We say that there is a martingale approximation to S,(f) if there exist
two sequences of random variables (M), and (4,),~ such that

L. S,(f)=M,+ A4,, n=1,

2. (M,),~ is a square-integrable martingale with stationary increments with respect
to #, = d(Xo,...,X,),

3. E(4,)*/n — 0, n — oo.

Notice that if there exists a martingale approximation to S,(f), the processes
(M,),>, and (4,),>, are uniquely determined a.s.. Given a martingale approxima-
tion to S,(f), from the CLT for martingales with stationary, ergodic increments due
to Billingsley [2] and Ibragimov [16] it follows that:

S,(f) ns o0 5
Ji = N(0,07(/)),

where the asymptotic variance satisfies

a*(f) = EM? = lim ES,(f)*/n.

A martingale approximation in the above sense (with additional properties in several
cases) was constructed by Derriennic and Lin [9-11], Gordin and Holzmann [12],
Gordin and LifSic [13,14], Kipnis and Varadhan [17], Maxwell and Woodroofe [18]
and Woodroofe [20] under suitable conditions on the function fand in some cases on
the Markov operator Q. Wu and Woodroofe [21] also investigated necessary and
sufficient conditions for existence of (a different notion of) martingale approxima-
tions. For a comparison with their results see Remark 2.4.

In this note we will mainly consider continuous-time Markov processes. Let
(X:);>¢ be a stationary ergodic Markov process, defined on a probability space
(Q, o/, P), with state space (X, %), transition probability function p(z,x,dy) and
stationary initial distribution u. We assume that the contraction semigroup

Tf(x) = /X FO)p(tx.dy), [ e Lo

is strongly continuous (on L»(u)). Let (#,),5, be a filtration in (Q,.«Z, P) such
that (X,),5, is progressively measurable with respect to (#,),5, and satisfies the
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Markov property
EfX)N7 ) =T/ (Xu), [ € La(w), O<u<t. (D

Let L be the generator of (T),~ and (L) its domain of definition on L,(u). Denote
by Lg(u) the subspace of functions in L,(u) with fX fdu=0. For f € Lg(u) and
t=0 let

I3
sih = [ s
0
For a more detailed description of this setting see e.g. [1].

Definition 1.2. We say that there is a martingale approximation to S,(f) if there exist
two processes (M;),;~o and (4;),5¢ on (2, <7, P) such that

1. Si(f) = M, + A, >0,

2. (M}),5 is a square-integrable martingale with respect to (), with stationary
increments and My = 0,

3. E(4,)*/t > 0 as t — oo.

Again note that once the filtration (#),5 is fixed, a martingale approximation is
uniquely determined a.s.. As in the discrete-time case, using a CLT for martingales
with stationary increments (a careful discussion of which can be found in [6]) the
existence of a martingale approximation implies that

Si(f) =00 2/ p
i = N(0,57°(f)),

where

() = EM? = lim ES/(f)*/t.
The problem of the validity of the CLT for general continuous-time Markov
processes has been studied less intensively than for discrete-time chains, and there
seem to be few results via martingale approximation. Bhattacharya [1] proved the

continuous-time analogue of Gordin and LifSic’s [13] result. He assumed that there
exists a solution to Poisson’s equation

f=-Lg, ge2L). 2
Write

.= 900) —a¥0)— [ LX) ds-+ 906 = o),
Using Dynkin’s formula

Ttg—gz/othLgds, g€ 2() 3)

it can be shown that (M,),-q, M, = g(X,) — g(Xo) — fé Lg(X,)ds, is a martingale
with stationary increments with respect to (%,). Furthermore, we evidently have
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E(g(Xo) — g(X)))? /t — 0. For the asymptotic variance, Bhattacharya [1] gave the
formula

a*(f) = 2(f,g) where f = —Lg.

Kipnis and Varadhan [17] extended this approach in the context of reversible
processes by solving (2) approximately via the resolvent. Using their method, de
Masi et al. [8] studied reversible processes under weaker integrability conditions on
the function f, and Olla [19] considered non-reversible processes via the symmetrized
operator (L 4+ L*)/2. Here our main goal is to show that the method of Kipnis and
Varadhan [17] is universal in a certain sense. In Section 2 we introduce the resolvent
representation of S,(f) and show that there exists a martingale approximation to
S.(f) if and only if the resolvent representation converges (for the definitions see
Section 2). Corresponding results are also formulated for Markov chains. In Section
3 this is applied to prove the CLT for stationary Markov processes under a condition
analogous to that used by Maxwell and Woodroofe [18] in the discrete-time setting.
As an example we consider moving average processes in continuous time.
Furthermore, we give a sufficient condition for the existence of a martingale
approximation if the generator L is a normal operator on Lg(u).

2. Martingale approximation and the resolvent

Let us start this section by recalling the resolvent representation of S(f), as
introduced in [17]. Given ¢>0 let

RS =(el—L)'f = /0 Tt T, dl, f e Lo,

be the resolvent. Since R, f € Z(L), given f € Lg(u) we let g, = R.f and decompose
St(f) = Mt,'s + SSt(gz;) + At,t‘a (4)

where

Moo = g,(X0) — g.(Xo) - /0 (Lg)(X)ds,  Auy = —g,(X 1)+ 6,(Xo).

For each &> 0 the process (M;), is a square-integrable martingale with stationary
increments and M, = 0.

Definition 2.1. The decomposition (4) of S,(f) is called the resolvent representation.

The resolvent representation is said to converge if

1. 6||g£||2 — 0, e—> 0.

2. There exists a decreasing sequence &, — 0 with &, > c¢, for some ¢>0 such that
for each 1>0, M,,, converges as n — oo to a limit in L,(£, <7, P).

Although this definition is rather technical, its significance becomes clear in the
following theorem.
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Theorem 2.2. Let (X;);~( be a progressively measurable stationary ergodic Markov
process, defined on a probability space (2, .o/, P), with state space (X, %), strongly
continuous contraction semlgroup (T));>o and stationary initial distribution p. Let
fel) S(n) and S,(f) = fo f(Xy)ds. Then there exists a martingale approximation to
S(f) if and only if the resolvent representation of S,(f) converges. In either case the
limit variance is given by

() = im 21491, — T /g1 us G1/0)- (5)

A similar result also holds for discrete-time Markov chains. For &>0 set
g, = (1 4+ &) — 0)”'f, where I denotes the identity, so that (1 + &g, —Qg.=71.
Then we obtain a decomposition

Sn(f) =M.+ ESn(gg) + AH,C’ (6)

where

Moo= (9,(X0) = ()X k1)), Ane = (0g,)(X0) = (Qg,)(X,).

k=1

Again (06) is called the resolvent representation, and its convergence is defined as in
the continuous-time case (just replace ¢ by n in Definition 2.1). The theorem now
goes

Theorem 2.3. Let (X,),~¢ be a stationary ergodic Markov chain, defined on a
probability space (2, .</,P), with state space (X, %), transition operator Q and
stationary initial distribution p. Let f € L5(u) and S,(f) = S r_, f(Xx). Then there
exists a martingale approximation to S,(f) if and only if the resolvent representation of
Su(f) converges. In either case the limit variance is given by

a(f) = 21im(g,.f) = If I1%. (7)

Remark 2.4. Wu and Woodroofe [21] studied approximations by triangular arrays
(M), of martingales (with respect to 7). If

max E(Si — Mn,k)2 = O(Ui)’
<n

where 62 = ES%(f ) = 00, (M, 1)~ is called a martingale approximation scheme. It is
called stationary if for each n, (M,;),~; has stationary differences, and non-
triangular if M, = M does not depend on n. In this terminology, the martingale
approximations of Definition 1.1 are stationary and non-triangular martingale
approximation schemes. Wu and Woodroofe [21, Theorem 1], obtained necessary
and sufficient conditions for the existence of such martingale approximation
schemes. However, the martingale approximation schemes they construct are either
stationary or non-triangular but the proof of Theorem 1 in [21] does not yield the
existence of martingale approximation schemes which are both stationary and non-
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triangular. Moreover, the martingale approximation schemes constructed do not
imply the CLT. In their paper they also showed that the validity of a conditional
version of the CLT is equivalent to a Lindeberg-type condition for the martingale

approximation scheme.

Let us turn to the proof of Theorem 2.2. We will first prove two lemmas. Let

V= /0 Tofds. [ e L.

Lemma 2.5. Suppose that |V, f|| = o(y/n). Then /¢||lg,| = 0, &— 0.

Proof. Observe that ||V, /|| <[V 4l + If|l, where |¢] denotes the integer part of ¢.
Hence there is a non-increasing sequence ¢, — 0 such that |V, f| /1< Gy, 121
Therefore it is easy to find a bounded, continuously differentiable function ¥ on
[0, 00) such that y()>¢ ,, =1, and () — 0, ¢ — oo. Using the formula

g = /O sV S dr ®)

for the resolvent we estimate

1 0
Jallgll < / Sl V£ di + / Sl £ di
0 1
<SP\ + / &% /1y (1) dt.
0

Substituting # = &t in the second term, we obtain f(fo e "/uy(u/e)du, which tends to
0 as ¢ - 0 by dominated convergence. [

Lemma 2.6. For ¢,0>0 we have
2 2

|<gs — 95 — Tt(gé) - g(5)9 9: — g(3>| <21‘(8 + 5) (Hg;H + ||g(5H ) (9)

Proof. From Dynkin’s formula (3)
t

0= 0= g, =) = [ (ToLgy = TuLg)ds

Hence
t
(0= 95— T, = 000 0.~ = [ (TLgs = TLapog, = 05)ds (10)

Now since dgs5 — Lgs = f
ToLg; =06Tgs — Tsf.
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Therefore

(TsLgs — TsLg,, g, — gs5)| = {0Tsgs — eTsg,, 9, — 95)|
<O UTs95,95) + el{Ts9; 9,)]
+ 0Ts9s,9:) + e (Tsg;» g5
<5 llgsl® + ellg I + (¢ + O)llg.llllgs |
<2z + 8)(llg.lI* + llgsl*).-

Applying this inequality in (10) yields the result. O

Proof of Theorem 1. First assume that there exists a martingale approximation
S(f)=M,+ A,. Since My =0

LI = BESIF )Y

1
= —E(E(4,| #0))°
1
<;EA§—>O, n— o0.

Thus || V,.f || = o(y/n), and Lemma 2.5 applies. For any & € Ly(u), from the Schwarz
inequality

t 2 t
2 202
E(/o h(XS)dS) SE(t/O h(Xy) ds) = t||h|-. (11)

From (11) and Lemma 2.5 it follows that eE(S,(gE))2 — 0, e — 0, for any £>0. Let
us show that M, converges in L,(€, 7, P) along the sequence ¢, = 1/n to M,. Since
both (M,),~, and (M,,),~, are martingales with stationary increments with respect
to (#,), so is (M, — M,,). Therefore

E(Mt,s - Mt)2 = l/n E(Mtn,s - Mm)2
<3/nEA +3/nEA%, + 3/ne E(Su(g,))*.

m,e

By assumption, 1/nEA2 — 0 as n— oco. Furthermore, EA,zn,1 n<4||g1/n||2, thus
using Lemma 2.5, 1/nEA?n,l/n — 0. Finally from (11), E(Sm(g1/n))2<t2n2||g]/,,||2,
and we obtain the conclusion for the last term. This shows that the resolvent
representation converges.

Conversely, assume that the resolvent representation converges. Since
E(St(ge)z)gtzllgs”z, eSi(g.) > 0 as e —> 0 in Ly(Q,/,P). From the resolvent
representation (4),

A= Si(f) — M, — eSi(g,).

Since for >0 both M, and ¢,S/(g,, ) converge as n — oo in Ly(£,.o/, P), and S(f)
does not depend on #, it follows that 4, ,, also converges in L,(£, .27, P). Let us show
that in fact 4,5, converges along an arbitrary sequence é; — 0. Let n(k) be such that
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En(iy+1 <Ok <én(ky. Then O = ceur). From (1) and Lemma 2.6,

E(Ars, = Arey) = 2005, — oy — Te(05, = Gur)s 950 = Gon)
<4 + 0195, 17 + 19, 17)
<8ty 195, 1> + 41 (1 +1/0) dxllgs, 17 — 0,k — oo
(12)
Arguing with the resolvent representation as above it follows that both
M;,— M, and A;,, —> A, e¢—0 in LyQ,o,P), =0,

where (M), is a martingale with stationary increments with respect to (%), Mo =
0 and EM? <00, EA? < oo for every . Thus it remains to show that E4?/t — 0. But

EA;<3EA],+3E(M ., — M,)* + 3¢ ES(g,)".

Now let ¢ = 1/t and proceed as in [17] in the discrete-time situation to obtain the
conclusion. Therefore we have a martingale approximation to S,(f).
Finally let us prove the formula for the limit variance. We have that

o’(f) = EM} = lim EM3, .
n—0o0 ’

Since (M 1/,),>0 is @ martingale with stationary increments,

2
1/n
EM%,]/n = nEM%/n,l/n =nk (gl/n(Xl/n) - gl/n(XO) - \/0 (Lgl/n)(X\) dS) .

For any >0, Lg, = —f + ¢g,, hence ||Lg, | </l + ellg, I <2|/1l. Thus

2
1/}’1 n—0o0
nE< / (Lgl/nxxs)ds) <1/nllLg, ,I1*"=70.
0

Since nE(g)/,(X1/a) = 61/(X0))’ = 214Gy = T1/u1/n»91/s)- the formula for o*(f)
follows. The theorem is thus proved. [

Proof of Theorem 2. The proof is similar to that of Theorem 1, therefore we only
show how to obtain the formula for the variance.

() = lim EM3, = lim (g, 1* = 1Qg,11*).
Furthermore,

lg,lI* = 1109, II> = =2ellg,I* — &g, /I* + 2(gn f) — IFI* + 2¢(g,. 1)

All terms vanish as ¢ — 0 except for 2(g,,f) — I£1I%, and the formula for &>(f)
follows. [
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3. Asymptotic normality

In the following theorem we apply Theorem 1 to prove the CLT for stationary
Markov processes under a condition which is analogous to that used by Maxwell
and Woodroofe [18] in a discrete-time setting.

Theorem 3.1. Let (X;),;-( be a progressively measurable stationary ergodic Markov
process with state space (X, %), strongly continuous contraction semigroup (T;),~ o and
stationary initial distribution u. Let [ € Lg(u) and S(f) = fot f(Xy)ds. Suppose that f
satisfies

/1 T di<oo. (13)

Then there exists a martingale approximation to S,(f). In particular S,(f)//t is
asymptotically normal with variance ¢*(f) given in (5), and

a*(f) = lim ES(f)*/t.

Proof. We show that the resolvent approximation converges. Let ¢, = 1/2". The
main point is to show that

D Ve sup gl <oe. (14)

n>1 e <Le<ép—1

From this it follows immediately that ¢||g,||> — 0, ¢ — 0. Furthermore, from (12)

E(Ay,,, — Ar,) <8teyllg, I* + 12tensillg,,,, 1%,
and since v/a + b<./a+ /b, a,b>0,

14ee — Arell L@,.0.p) < Cii/enllgs, | + Coi/enti g, Nl
Therefore, from (14)

Z ”At,s:H] - At,sn ”LZ(Q,y/,P) <00,

n=1

and A,,, converges in L,(£, .o/, P) as n — oo. From the resolvent representation it
follows that M,,, also converges. It remains to show (14). Given ¢>0 choose n such
that ¢, <e<e,_;. From (8)

o0

1
lod<e [ e vnidee [ e yids
0 1
o0
<261 + 26, / e | V()] dr.
1

Hence

S Ve sup llg <2 SR + 2/ V(O (Z 8,31/268,,t> dz.
1

en SE<§E
n=1 nSE<ép n=1 n=1
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But >, &/%e~" can be seen to be O(t~3/2) (cf. [18, p. 715]), and condition (13)
implies (14). O

Corollary 3.2. If f € L3(u) satisfies

TN
/1 NG dr<oo,

then it also fulfills (13), and therefore the conclusions of the theorem remain valid.

Example 3.3 (Moving average processes). We consider the semigroup of translation
operators on L,[0, c0) given by

(T )w) =fu+1), f€L0,00)

and denote the generator of (7;) by L. Let (£,),.p be a square-integrable, real-valued
process with stationary, independent increments, E¢, = 0 and Ed.ff =dr (cf. [7,
p. 111]). Each f € L,[0, co) gives rise to a stationary, ergodic process (Y),cg, defined
by the stochastic integrals

Y.(f) =Y, = / £t - 5)de,.

Let 7, = a(&,, u<s). We have that

E(Y,|97u)=/u f(t—s)d&:/u Ti—wf(u—s)dé, t>u,

[ee]

hence

o0
BECYF0) = 1TV = [ f du
t
Although (YY), is not constructed from a Markov process in the way discussed
above, these considerations show that our method can still be used with the

translation semigroup (7;) in place of the semigroup of the Markov process. For
example, the martingales (M;),~,, ¢>0, now take the form

t
Mus = Yig) — Yolg,) — / Y,(Lg,)ds,
0

where g, is formed via the semigroup (7';). Thus Corollary 3.2 applies, and we obtain
that if /" € L,[0, co) satisfies

/loo\/i;/toof(u)zdudt<oo,

then

1 /t —00 >
— [ Yyds = N(,s°(f)),
Jido 4

where ¢%(f) is given by (5).
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Remark 3.4. Finally suppose that the generator L of the Markov process is a normal
operator on Lg(u) (LL* = L*L). Although conditions for the CLT in the discrete-
time case, i.e. in case of a normal transition operator Q, have been studied intensively
(cf. Gordin and LifSic [14], who announced the result and later published the
complete proofs in [5, Section IV.7], or Derriennic and Lin [9,10]), there seems to be
no continuous-time version in the literature so far. Let us formulate a sufficient
condition for the convergence of the resolvent representation and hence for the
validity of the CLT for such operators. Given f € Lg(u) let p, be the spectral
measure of L with respect to f(cf. [3, pp. 123—125]), and let (L) denote the spectrum
of L. One can show that if

1

/ — py(dz)<oo, (15)
o) 121

then the resolvent representation converges and hence there exists a martingale

approximation to S;(f), where the limit variance is given by

1
H=-2[ - :
a(f) /J(L) B ps(dz)

A rich class of examples of Markov processes with normal but not necessarily
self-adjoint generator arises from convolution semigroups on compact, commutative
hypergroups (cf. [4]). Further details can be found in [15]. As pointed out in [10]
for the discrete-time case, the condition (15) is weaker than (13) as used in
Theorem 3.1.
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