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Abstract

We show that the method of Kipnis and Varadhan [Comm. Math. Phys. 104 (1986) 1–19] to

construct a Martingale approximation to an additive functional of a stationary ergodic

Markov process via the resolvent is universal in the sense that a martingale approximation

exists if and only if the resolvent representation converges. A sufficient condition for the

existence of a martingale approximation is also given. As examples we discuss moving average

processes and processes with normal generator.
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1. Introduction

The central limit theorem (CLT) for additive functionals of stationary, ergodic
Markov chains has been studied intensively during the last decades. A basic
approach for proving the CLT, initiated by Gordin and Lifšic [13] and afterwards
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pursued by several authors, is to construct a martingale approximation to the partial
sums. These are decomposed into a sum of a martingale with stationary increments
and a remainder term. After showing that the remainder term is negligible in some
suitable sense, asymptotic normality follows from a martingale CLT. In this note we
will focus on the case where the remainder is negligible in mean-square. Let ðX nÞnX0

be a stationary ergodic (discrete-time) Markov chain with state space ðX ;BÞ,
transition operator Q and stationary initial distribution m. We denote by k � k and
h�; �i the norm and the inner product of L2ðmÞ, respectively, and by L0

2ðmÞ the subspace
with

R
f dm ¼ 0. For a fixed function f 2 L0

2ðmÞ let S0 ¼ 0 and

Snðf Þ ¼ f ðX 1Þ þ � � � þ f ðX nÞ; nX1.

Definition 1.1. We say that there is a martingale approximation to Snðf Þ if there exist
two sequences of random variables ðMnÞnX1 and ðAnÞnX1 such that
1.
 Snðf Þ ¼ Mn þ An; nX1,

2.
 ðMnÞnX1 is a square-integrable martingale with stationary increments with respect

to Fn ¼ sðX 0; . . . ;X nÞ,

3.
 EðAnÞ

2=n ! 0; n ! 1.

Notice that if there exists a martingale approximation to Snðf Þ, the processes
ðMnÞnX1 and ðAnÞnX1 are uniquely determined a.s.. Given a martingale approxima-
tion to Snðf Þ, from the CLT for martingales with stationary, ergodic increments due
to Billingsley [2] and Ibragimov [16] it follows that:

Snðf Þffiffiffi
n

p )
n!1

Nð0; s2ðf ÞÞ,

where the asymptotic variance satisfies

s2ðf Þ ¼ EM2
1 ¼ lim

n!1
ESnðf Þ

2=n.

A martingale approximation in the above sense (with additional properties in several
cases) was constructed by Derriennic and Lin [9–11], Gordin and Holzmann [12],
Gordin and Lifšic [13,14], Kipnis and Varadhan [17], Maxwell and Woodroofe [18]
and Woodroofe [20] under suitable conditions on the function f and in some cases on
the Markov operator Q. Wu and Woodroofe [21] also investigated necessary and
sufficient conditions for existence of (a different notion of) martingale approxima-
tions. For a comparison with their results see Remark 2.4.

In this note we will mainly consider continuous-time Markov processes. Let
ðX tÞtX0 be a stationary ergodic Markov process, defined on a probability space
ðO;A;PÞ, with state space ðX ;BÞ, transition probability function pðt; x;dyÞ and
stationary initial distribution m. We assume that the contraction semigroup

Ttf ðxÞ ¼

Z
X

f ðyÞ pðt;x;dyÞ; f 2 L2ðmÞ

is strongly continuous (on L2ðmÞ). Let ðFtÞtX0 be a filtration in ðO;A;PÞ such
that ðX tÞtX0 is progressively measurable with respect to ðFtÞtX0 and satisfies the
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Markov property

Eðf ðX tÞjFuÞ ¼ Tt�u f ðX uÞ; f 2 L2ðmÞ; 0puot. (1)

Let L be the generator of ðTtÞtX0 and DðLÞ its domain of definition on L2ðmÞ. Denote
by L0

2ðmÞ the subspace of functions in L2ðmÞ with
R

X
f dm ¼ 0. For f 2 L0

2ðmÞ and
tX0 let

Stðf Þ ¼

Z t

0

f ðX sÞds.

For a more detailed description of this setting see e.g. [1].

Definition 1.2. We say that there is a martingale approximation to Stðf Þ if there exist
two processes ðMtÞtX0 and ðAtÞtX0 on ðO;A;PÞ such that
1.
 Stðf Þ ¼ Mt þ At; tX0,

2.
 ðMtÞtX0 is a square-integrable martingale with respect to ðFtÞtX0 with stationary

increments and M0 ¼ 0,

3.
 EðAtÞ

2=t ! 0 as t ! 1.

Again note that once the filtration ðFtÞtX0 is fixed, a martingale approximation is
uniquely determined a.s.. As in the discrete-time case, using a CLT for martingales
with stationary increments (a careful discussion of which can be found in [6]) the
existence of a martingale approximation implies that

Stðf Þffiffi
t

p )
t!1

Nð0;s2ðf ÞÞ,

where

s2ðf Þ ¼ EM2
1 ¼ lim

t!1
EStðf Þ

2=t.

The problem of the validity of the CLT for general continuous-time Markov
processes has been studied less intensively than for discrete-time chains, and there
seem to be few results via martingale approximation. Bhattacharya [1] proved the
continuous-time analogue of Gordin and Lifšic’s [13] result. He assumed that there
exists a solution to Poisson’s equation

f ¼ �Lg; g 2 DðLÞ. (2)

Write

Stðf Þ ¼ gðX tÞ � gðX 0Þ �

Z t

0

LgðX sÞds þ gðX 0Þ � gðX tÞ.

Using Dynkin’s formula

Ttg � g ¼

Z t

0

TsLg ds; g 2 DðLÞ (3)

it can be shown that ðMtÞtX0; Mt ¼ gðX tÞ � gðX 0Þ �
R t

0 LgðX sÞds, is a martingale
with stationary increments with respect to ðFtÞ. Furthermore, we evidently have
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EðgðX 0Þ � gðX tÞÞ
2=t ! 0. For the asymptotic variance, Bhattacharya [1] gave the

formula

s2ðf Þ ¼ 2hf ; gi where f ¼ �Lg.

Kipnis and Varadhan [17] extended this approach in the context of reversible
processes by solving (2) approximately via the resolvent. Using their method, de
Masi et al. [8] studied reversible processes under weaker integrability conditions on
the function f, and Olla [19] considered non-reversible processes via the symmetrized
operator ðL þ L�Þ=2. Here our main goal is to show that the method of Kipnis and
Varadhan [17] is universal in a certain sense. In Section 2 we introduce the resolvent
representation of Stðf Þ and show that there exists a martingale approximation to
Stðf Þ if and only if the resolvent representation converges (for the definitions see
Section 2). Corresponding results are also formulated for Markov chains. In Section
3 this is applied to prove the CLT for stationary Markov processes under a condition
analogous to that used by Maxwell and Woodroofe [18] in the discrete-time setting.
As an example we consider moving average processes in continuous time.
Furthermore, we give a sufficient condition for the existence of a martingale
approximation if the generator L is a normal operator on LC

2 ðmÞ.
2. Martingale approximation and the resolvent

Let us start this section by recalling the resolvent representation of Stðf Þ, as
introduced in [17]. Given �40 let

R� f ¼ ð�I � LÞ�1f ¼

Z 1

0

e��tTt f dt; f 2 L2ðmÞ,

be the resolvent. Since R� f 2 DðLÞ, given f 2 L0
2ðmÞ we let g� ¼ R� f and decompose

Stðf Þ ¼ Mt;� þ �Stðg�Þ þ At;�, (4)

where

Mt;� ¼ g�ðX tÞ � g�ðX 0Þ �

Z t

0

ðLg�ÞðX sÞds; At;� ¼ �g�ðX tÞ þ g�ðX 0Þ.

For each �40 the process ðMt;�ÞtX0 is a square-integrable martingale with stationary
increments and M0;� ¼ 0.

Definition 2.1. The decomposition (4) of Stðf Þ is called the resolvent representation.
The resolvent representation is said to converge if
1.
 �kg�k
2 ! 0; � ! 0.
2.
 There exists a decreasing sequence �n ! 0 with �nþ1Xc �n for some c40 such that
for each tX0, Mt;�n

converges as n ! 1 to a limit in L2ðO;A;PÞ.

Although this definition is rather technical, its significance becomes clear in the
following theorem.
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Theorem 2.2. Let ðX tÞtX0 be a progressively measurable stationary ergodic Markov

process, defined on a probability space ðO;A;PÞ, with state space ðX ;BÞ, strongly

continuous contraction semigroup ðTtÞtX0 and stationary initial distribution m. Let

f 2 L0
2ðmÞ and Stðf Þ ¼

R t

0 f ðX sÞds. Then there exists a martingale approximation to

Stðf Þ if and only if the resolvent representation of Stðf Þ converges. In either case the

limit variance is given by

s2ðf Þ ¼ lim
n!1

2nhg1=n � T1=ng1=n; g1=ni. (5)

A similar result also holds for discrete-time Markov chains. For �40 set
g� ¼ ðð1 þ �ÞI � QÞ

�1f , where I denotes the identity, so that ð1 þ �Þg� � Qg� ¼ f .
Then we obtain a decomposition

Snðf Þ ¼ Mn;� þ �Snðg�Þ þ An;�, (6)

where

Mn;� ¼
Xn

k¼1

ðg�ðX kÞ � ðQg�ÞðX k�1ÞÞ; An;� ¼ ðQg�ÞðX 0Þ � ðQg�ÞðX nÞ.

Again (6) is called the resolvent representation, and its convergence is defined as in
the continuous-time case (just replace t by n in Definition 2.1). The theorem now
goes

Theorem 2.3. Let ðX nÞnX0 be a stationary ergodic Markov chain, defined on a

probability space ðO;A;PÞ, with state space ðX ;BÞ, transition operator Q and

stationary initial distribution m. Let f 2 L0
2ðmÞ and Snðf Þ ¼

Pn
k¼1 f ðX kÞ. Then there

exists a martingale approximation to Snðf Þ if and only if the resolvent representation of

Snðf Þ converges. In either case the limit variance is given by

s2ðf Þ ¼ 2 lim
�!0

hg�; f i � kf k2. (7)

Remark 2.4. Wu and Woodroofe [21] studied approximations by triangular arrays
ðMn;kÞkX1 of martingales (with respect to Fk). If

max
kpn

EðSk � Mn;kÞ
2
¼ oðs2

nÞ,

where s2
n ¼ ES2

nðf Þ ! 1, ðMn;kÞkX1 is called a martingale approximation scheme. It is
called stationary if for each n, ðMn;kÞkX1 has stationary differences, and non-

triangular if Mn;k ¼ Mk does not depend on n. In this terminology, the martingale
approximations of Definition 1.1 are stationary and non-triangular martingale
approximation schemes. Wu and Woodroofe [21, Theorem 1], obtained necessary
and sufficient conditions for the existence of such martingale approximation
schemes. However, the martingale approximation schemes they construct are either
stationary or non-triangular but the proof of Theorem 1 in [21] does not yield the
existence of martingale approximation schemes which are both stationary and non-
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triangular. Moreover, the martingale approximation schemes constructed do not
imply the CLT. In their paper they also showed that the validity of a conditional
version of the CLT is equivalent to a Lindeberg-type condition for the martingale
approximation scheme.

Let us turn to the proof of Theorem 2.2. We will first prove two lemmas. Let

Vt f ¼

Z t

0

Ts f ds; f 2 L0
2ðmÞ.

Lemma 2.5. Suppose that kV n f k ¼ oð
ffiffiffi
n

p
Þ. Then

ffiffi
�

p
kg�k ! 0; � ! 0.

Proof. Observe that kV t f kpkV btck þ kf k, where btc denotes the integer part of t.
Hence there is a non-increasing sequence fn ! 0 such that kVt f k=

ffiffi
t

p
pfbtc; tX1.

Therefore it is easy to find a bounded, continuously differentiable function c on
½0;1Þ such that cðtÞXfbtc, tX1, and cðtÞ ! 0; t ! 1. Using the formula

g� ¼

Z 1

0

�e��tVt f dt (8)

for the resolvent we estimate

ffiffi
�

p
kg�kp

Z 1

0

�3=2e��tkVt f kdt þ

Z 1

1

�3=2e��tkVt f kdt

p�3=2kf k þ

Z 1

0

�3=2e��t
ffiffi
t

p
cðtÞdt.

Substituting u ¼ �t in the second term, we obtain
R1

0 e�u
ffiffiffi
u

p
cðu=�Þdu, which tends to

0 as � ! 0 by dominated convergence. &

Lemma 2.6. For �; d40 we have

jhg� � gd � Ttðg� � gdÞ; g� � gdijp2tð�þ dÞ ð g�

�� ��2
þ gd

�� ��2
Þ. (9)

Proof. From Dynkin’s formula (3)

g� � gd � Ttðg� � gdÞ ¼

Z t

0

ðTsLgd � TsLg�Þds.

Hence

hg� � gd � Ttðg� � gdÞ; g� � gdi ¼

Z t

0

hTsLgd � TsLg�; g� � gdids. (10)

Now since dgd � Lgd ¼ f

TsLgd ¼ dTsgd � Ts f .
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Therefore

jhTsLgd � TsLg�; g� � gdij ¼ jhdTsgd � �Tsg�; g� � gdij

pd jhTsgd; gdij þ �jhTsg�; g�ij

þ d jhTsgd; g�ij þ � jhTsg�; gdij

pd kgdk
2 þ �kg�k

2 þ ð�þ dÞkg�kkgdk

p2ð�þ dÞðkg�k
2 þ kgdk

2Þ.

Applying this inequality in (10) yields the result. &

Proof of Theorem 1. First assume that there exists a martingale approximation
Stðf Þ ¼ Mt þ At. Since M0 ¼ 0

1

n
kV n f k2 ¼

1

n
EðEðSnðf ÞjF0ÞÞ

2

¼
1

n
EðEðAnj F0ÞÞ

2

p
1

n
EA2

n ! 0; n ! 1.

Thus kV n f k ¼ oð
ffiffiffi
n

p
Þ, and Lemma 2.5 applies. For any h 2 L2ðmÞ, from the Schwarz

inequality

E

Z t

0

hðX sÞds

� �2

pE t

Z t

0

hðX sÞ
2 ds

� �
¼ t2khk2. (11)

From (11) and Lemma 2.5 it follows that �EðStðg�ÞÞ
2
! 0; � ! 0, for any t40. Let

us show that Mt;� converges in L2ðO;A;PÞ along the sequence �n ¼ 1=n to Mt. Since
both ðMtÞtX0 and ðMt;�ÞtX0 are martingales with stationary increments with respect
to ðFtÞ, so is ðMt � Mt;�Þ. Therefore

EðMt;� � MtÞ
2
¼ 1=n EðMtn;� � MtnÞ

2

p3=n EA2
tn þ 3=n EA2

tn;� þ 3=n �2EðStnðg�ÞÞ
2.

By assumption, 1=n EA2
tn ! 0 as n ! 1. Furthermore, EA2

tn;1=np4kg1=nk
2, thus

using Lemma 2.5, 1=n EA2
tn;1=n ! 0. Finally from (11), EðStnðg1=nÞÞ

2pt2n2kg1=nk
2,

and we obtain the conclusion for the last term. This shows that the resolvent
representation converges.

Conversely, assume that the resolvent representation converges. Since
EðStðg�Þ

2
Þpt2kg�k

2, �Stðg�Þ ! 0 as � ! 0 in L2ðO;A;PÞ. From the resolvent
representation (4),

At;� ¼ Stðf Þ � Mt;� � �Stðg�Þ.

Since for t40 both Mt;�n
and �nStðg�n

Þ converge as n ! 1 in L2ðO;A;PÞ, and Stðf Þ

does not depend on n, it follows that At;�n
also converges in L2ðO;A;PÞ. Let us show

that in fact At;dk
converges along an arbitrary sequence dk ! 0. Let nðkÞ be such that
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�nðkÞþ1odkp�nðkÞ. Then dkXc�nðkÞ. From (1) and Lemma 2.6,

EðAt;dk
� At;�nðkÞ

Þ
2
¼ 2hgdk

� g�nðkÞ
� Ttðgdk

� g�nðkÞ
Þ; gdk

� g�nðkÞ
i

p4tðdk þ �nðkÞÞðkgdk
k2 þ kg�nðkÞ

k2Þ

p8t �nðkÞ kg�nðkÞ
k2 þ 4t ð1 þ 1=cÞ dk kgdk

k2 ! 0; k ! 1.

ð12Þ

Arguing with the resolvent representation as above it follows that both

Mt;� ! Mt and At;� ! At; � ! 0 in L2ðO;A;PÞ; tX0,

where ðMtÞtX0 is a martingale with stationary increments with respect to ðFtÞ, M0 ¼

0 and EM2
to1, EA2

to1 for every t. Thus it remains to show that EA2
t =t ! 0. But

EA2
tp3EA2

t;� þ 3EðMt;� � MtÞ
2
þ 3�2EStðg�Þ

2.

Now let � ¼ 1=t and proceed as in [17] in the discrete-time situation to obtain the
conclusion. Therefore we have a martingale approximation to Stðf Þ.

Finally let us prove the formula for the limit variance. We have that

s2ðf Þ ¼ EM2
1 ¼ lim

n!1
EM2

1;1=n.

Since ðMt;1=nÞtX0 is a martingale with stationary increments,

EM2
1;1=n ¼ nEM2

1=n;1=n ¼ nE g1=nðX 1=nÞ � g1=nðX 0Þ �

Z 1=n

0

ðLg1=nÞðX sÞds

 !2

.

For any �40, Lg� ¼ �f þ �g�, hence kLg�kpkf k þ �kg�kp2kf k. Thus

nE

Z 1=n

0

ðLg1=nÞðX sÞds

 !2

p1=nkLg1=nk
2 !

n!1
0.

Since nEðg1=nðX 1=nÞ � g1=nðX 0ÞÞ
2
¼ 2nhg1=n � T1=ng1=n; g1=ni, the formula for s2ðf Þ

follows. The theorem is thus proved. &

Proof of Theorem 2. The proof is similar to that of Theorem 1, therefore we only
show how to obtain the formula for the variance.

s2ðf Þ ¼ lim
�!0

EM2
1;� ¼ lim

�!0
ðkg�k

2 � kQg�k
2Þ.

Furthermore,

kg�k
2 � kQg�k

2 ¼ �2�kg�k
2 � �2kg�k

2 þ 2hg�; f i � kf k2 þ 2�hg�; f i.

All terms vanish as � ! 0 except for 2hg�; f i � kf k2, and the formula for s2ðf Þ

follows. &
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3. Asymptotic normality

In the following theorem we apply Theorem 1 to prove the CLT for stationary
Markov processes under a condition which is analogous to that used by Maxwell
and Woodroofe [18] in a discrete-time setting.

Theorem 3.1. Let ðX tÞtX0 be a progressively measurable stationary ergodic Markov

process with state space ðX ;BÞ, strongly continuous contraction semigroup ðTtÞt40 and

stationary initial distribution m. Let f 2 L0
2ðmÞ and Stðf Þ ¼

R t

0 f ðX sÞds. Suppose that f

satisfiesZ 1

1

kVtðf Þk=t3=2 dto1. (13)

Then there exists a martingale approximation to Stðf Þ. In particular Stðf Þ=
ffiffi
t

p
is

asymptotically normal with variance s2ðf Þ given in (5), and

s2ðf Þ ¼ lim
t!1

EStðf Þ
2=t.

Proof. We show that the resolvent approximation converges. Let �n ¼ 1=2n. The
main point is to show thatX

nX1

ffiffiffiffi
�n

p
sup

�np�o�n�1

kg�ko1. (14)

From this it follows immediately that �kg�k
2 ! 0; � ! 0. Furthermore, from (12)

EðAt;�nþ1
� At;�n

Þ
2p8t�nkg�n

k2 þ 12t�nþ1kg�nþ1
k2,

and since
ffiffiffiffiffiffiffiffiffiffiffi
a þ b

p
p

ffiffiffi
a

p
þ

ffiffiffi
b

p
, a; bX0,

kAt;�nþ1
� At;�n

kL2ðO;A;PÞpC1

ffiffiffiffi
�n

p
kg�n

k þ C2
ffiffiffiffiffiffiffiffiffi
�nþ1

p
kg�nþ1

k.

Therefore, from (14)X
nX1

kAt;�nþ1
� At;�n

kL2ðO;A;PÞo1,

and At;�n
converges in L2ðO;A;PÞ as n ! 1. From the resolvent representation it

follows that Mt;�n
also converges. It remains to show (14). Given �40 choose n such

that �np�o�n�1. From (8)

kg�kp�

Z 1

0

e��tkVtðf Þkdt þ �

Z 1

1

e��tkVtðf Þkdt

p2�nkf k þ 2�n

Z 1

1

e��ntkVtðf Þkdt.

Hence

X
nX1

ffiffiffiffi
�n

p
sup

�np�o�n

kg�kp2
X
nX1

�3=2n kf k þ 2

Z 1

1

kV tðf Þk
X
nX1

�3=2n e��nt

 !
dt.
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But
P

nX1 �
3=2
n e��nt can be seen to be Oðt�3=2Þ (cf. [18, p. 715]), and condition (13)

implies (14). &

Corollary 3.2. If f 2 L0
2ðmÞ satisfiesZ 1

1

kTtðf Þkffiffi
t

p dto1,

then it also fulfills (13), and therefore the conclusions of the theorem remain valid.

Example 3.3 (Moving average processes). We consider the semigroup of translation
operators on L2½0;1Þ given by

ðTt f ÞðuÞ ¼ f ðu þ tÞ; f 2 L2½0;1Þ

and denote the generator of ðTtÞ by L. Let ðxtÞt2R be a square-integrable, real-valued
process with stationary, independent increments, Ext ¼ 0 and Edx2

t ¼ dt (cf. [7,
p. 111]). Each f 2 L2½0;1Þ gives rise to a stationary, ergodic process ðY tÞt2R, defined
by the stochastic integrals

Y tðf Þ ¼ Y t ¼

Z t

�1

f ðt � sÞdxs.

Let Fs ¼ sðxu; upsÞ. We have that

EðY tjFuÞ ¼

Z u

�1

f ðt � sÞdxs ¼

Z u

�1

Tt�u f ðu � sÞdxs; tXu,

hence

EðEðY tjF0ÞÞ
2
¼ kTt f k2 ¼

Z 1

t

f ðuÞ2 du.

Although ðY tÞtX0 is not constructed from a Markov process in the way discussed
above, these considerations show that our method can still be used with the
translation semigroup ðTtÞ in place of the semigroup of the Markov process. For
example, the martingales ðMt;�ÞtX0, �40, now take the form

Mt;� ¼ Y tðg�Þ � Y 0ðg�Þ �

Z t

0

Y sðLg�Þds,

where g� is formed via the semigroup ðTtÞ. Thus Corollary 3.2 applies, and we obtain
that if f 2 L2½0;1Þ satisfiesZ 1

1

1ffiffi
t

p

Z 1

t

f ðuÞ2 du dto1,

then

1ffiffi
t

p

Z t

0

Y s ds )
t!1

Nð0;s2ðf ÞÞ,

where s2ðf Þ is given by (5).
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Remark 3.4. Finally suppose that the generator L of the Markov process is a normal

operator on LC
2 ðmÞ (LL� ¼ L�L). Although conditions for the CLT in the discrete-

time case, i.e. in case of a normal transition operator Q, have been studied intensively
(cf. Gordin and Lifšic [14], who announced the result and later published the
complete proofs in [5, Section IV.7], or Derriennic and Lin [9,10]), there seems to be
no continuous-time version in the literature so far. Let us formulate a sufficient
condition for the convergence of the resolvent representation and hence for the
validity of the CLT for such operators. Given f 2 L0

2ðmÞ let rf be the spectral
measure of L with respect to f (cf. [3, pp. 123–125]), and let sðLÞ denote the spectrum
of L. One can show that ifZ

sðLÞ

1

jzj
rf ðdzÞo1, (15)

then the resolvent representation converges and hence there exists a martingale
approximation to Stðf Þ, where the limit variance is given by

s2ðf Þ ¼ �2

Z
sðLÞ

1

z
rf ðdzÞ.

A rich class of examples of Markov processes with normal but not necessarily
self-adjoint generator arises from convolution semigroups on compact, commutative
hypergroups (cf. [4]). Further details can be found in [15]. As pointed out in [10]
for the discrete-time case, the condition (15) is weaker than (13) as used in
Theorem 3.1.
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