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Finite-state hidden Markov models (HMMs), also called Markov-dependent
finite mixtures, form a popular, frequently used model class for serially de-
pendent observations with unobserved heterogeneity. We consider HMMs in
which the state-dependent distributions are themselves finite mixtures. In such
models, the parametrization is not unique, since components from the state-
dependent mixtures may also be represented as states in the underlying Markov
chain. We determine a unique (up to label switching) representation for the
HMM in which the Markov chain has a minimal number of states. Further,
we propose a likelihood-ratio test for the hypothesis that the number of states
in the Markov chain can be reduced without changing the distribution of the
time-series model.
Our method has important applications in cluster analysis and model selec-
tion. After highlighting the relevance of serial dependence for clustering, we
propose two-step clustering algorithms. Starting with a BIC choice for a stan-
dard HMM (with simple state-dependent distributions), in the first step we
determine the minimal representation of the HMM by testing, and in the sec-
ond step we merge components in the resulting state-dependent finite mixtures
by using either a local entropy or a modality-based criterion. The states in
the resulting Markov chain, potentially split according to the remaining state-
dependent components, are then interpreted as clusters. For model selection,
we illustrate our method on a series of logarithmic returns of gold prices using
normal HMMs. The AIC choice is a six-state HMM, while the BIC choice has
four states. When starting with the AIC choice, successive testing results in a
four-state Markov chain, with two state-dependent distributions consisting of
two-component normal mixtures.

Keywords: hidden Markov models, merging states, clustering, likelihood-ratio test, finan-
cial log-returns
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1 Introduction

A finite state hidden Markov model (HMM) is a bivariate process (Xt, St)t∈N, where (St)t
is a unobservable finite state Markov chain with k ∈ N states, the observable process (Xt)t
is independent given the Markov chain (St)t and the conditional distribution of each Xt

depends on St only. Finite-state HMMs, also called Markov-dependent finite mixtures,
form a popular, frequently used model class for serially dependent observations with un-
observed heterogeneity, with areas of application such as speech recognition, modeling of
financial time series or biological sequence analysis. For a comprehensive treatment of
theoretical properties of HMMs see Cappé et al. (2005), Zucchini and MacDonald (2009)
is a more basic introduction with applications and further references.

Typically, the state-dependent distributions of an HMM, that is, the conditional distri-
butions of the Xt given the St, are assumed to belong to a standard parametric family
such as the Poisson or the (multivariate) normal distribution. If these are not flexible
enough, finite mixtures as state-dependent distributions may provide a more appropriate
choice. Ajmera and Wooters (2003) used HMMs with normal mixtures as state-dependent
distributions for speaker segmentation in the context of speech recognition. Geweke and
Amisano (2011) analyzed such models in a Bayesian framework and gave an application to
modeling S&P 500 log returns. Chiu et. al (2011) formulate the EM algorithm for HMMs
with state-dependent finite normal mixtures, and use these to analyze epileptic seizure
dynamics. Volant et. al (2013) propose a criterion for selecting the number of states in
the Markov chain together with the number of components in each mixture, in particular
for the purpose of cluster analysis, and also formulate the EM algorithm.

In this paper, we analyze the structure of HMMs with state-dependent finite mixtures
in detail and give applications to clustering and model selection. On the methodological
side, we show that the parametrization is not unique, since components from the state-
dependent mixtures may also be represented as states in the underlying Markov chain.
However, we show that there is a unique (up to label switching) representation for the
HMM in which the underlying Markov chain has a minimal number of states. Moreover,
we propose a likelihood-ratio test for the hypothesis that the number of states in the
Markov chain can be reduced without changing the distribution of the HMM.

Our methodology has important applications in cluster analysis and model selection. Af-
ter highlighting the relevance of serial dependence for clustering, we propose a two-step
clustering algorithm. Starting with a BIC choice for a standard HMM (with simple state-
dependent distributions), in the first step we determine the minimal representation of the
HMM by a backward selection based on testing. Given the minimal representation, we
can make certain that no states in the Markov chain are merged for which relevant de-
pendence information is lost. Thus, in the second step we restrict ourselves to merging
components in the resulting state-dependent finite mixtures, using either a local entropy
or a modality-based criterion. Finally, the states in the resulting Markov chain, potentially
split according to the remaining state-dependent components, are interpreted as clusters.
For model selection, we illustrate our method on a series of logarithmic returns of gold
prices using normal HMMs. The AIC choice is a six-state HMM, while the BIC choice has
four states. When starting with the AIC choice, successive testing results in a four-state
Markov chain, with two state-dependent distributions consisting of two-component normal
mixtures.
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The outline of the paper is as follows. Section 2 contains the theoretical methodology.
Section 3 presents our clustering algorithm and compares it to that of Volant et al. (2013).
Section 4 has some additional simulations on the levels of our proposed test, as well as
on the performance of the backward selection. This is investigated both in a correctly
specified setting, as well as in a misspecified setting where data are generated from a two-
state skew-normal HMM, but ordinary normal HMMs are used in the analysis. Section 5
finally gives an application of the proposed methodology in the context of model selection
to a series of logarithmic returns of daily gold prices. All proofs are deferred to the
appendix. The supplementary material Holzmann and Schwaiger (2014) contains some
further numerical results. An implementation of the proposed algorithm is provided in
the R package mergeHMM, which can be downloaded from the homepage of the university
of Marburg1.

2 Methodology for HMMs with state-dependent mixtures

In this section we present our methodology. Section 2 analyzes Markov chains under
restrictions on the dependence structure. This is used in Section 2.2 to determine the
distinct representations of an HMM with state-dependent finite mixtures, and in particular
to determine its unique (up to label switching) representation with minimal number of
states. Finally, Section 2.3 develops a likelihood-ratio test for the hypothesis that states
in the Markov-chain may be represented as mixture components.

2.1 Markov chains under dependence structure restrictions

We start by analyzing Markov chains under restrictions on the dependence structure.
Let (St)t be a stationary k-state Markov chain with ergodic transition probability matrix
(t.p.m.) Γ = (γi,j)i,j=1,...,k having the stationary distribution π = (π1, . . . , πk). In the
following we always assume πj > 0 for j = 1, . . . , k.
For a (disjoint) partition G = {G1, . . . , Gr} of the state space (into non-empty sets), we
let G(j) be the function which maps a state j ∈ {1, . . . , k} onto its group, i.e. for j ∈ Gl
we have G(j) = Gl. If P

(
St−1 = i, St ∈ G(j)

)
> 0) we have the general formula

γi,j = P
(
St ∈ G(j)

∣∣St−1 = i
)
· P
(
St = j

∣∣St−1 = i, St ∈ G(j)
)
. (1)

Define the reduced t.p.m. λG(Γ) by(
λG(Γ)

)
i,j

= P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
· P
(
St = j

∣∣St ∈ G(j)
)
, i, j = 1, . . . , k. (2)

Proposition 1. The matrix λG(Γ) is a t.p.m., and the following statements are equivalent.

1. We have
λG(Γ) = Γ. (3)

2. For i, j = 1, . . . , k it holds

P
(
St ∈ G(j)

∣∣St−1 = i
)

= P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)

(4)

1 http://www.unimarburg.de/fb12/stoch/research/rpackage

3

http://www.uni-marburg.de/fb12/stoch/research/rpackage


and if P
(
St ∈ G(j), St−1 = i

)
> 0 also

P
(
St = j

∣∣St ∈ G(j), St−1 = i
)

= P
(
St = j

∣∣St ∈ G(j)
)
.

3. There exists a t.p.m. (νl,m)l,m ∈ Rr×r and (p1, . . . , pk) ∈ Rk, with pj ≥ 0,
∑

g∈Gl
pg =

1, l = 1, . . . , r, such that

γi,j = νa(i),a(j) · pj , i, j = 1, . . . , k

where a : {1, . . . , k} → {1, . . . , r} and a(g) = l :⇔ g ∈ Gl.

Note that condition 3. in particular implies that the rows with indices in the same element
Gl of the partition are all equal.

In the Markov-chain literature, the notion of lumpabilty (cf. Kemeny and Snell 1960) refers
to the possibility of merging states of a Markov chain w.r.t. a partition while retaining a
Markovian dependence structure. Indeed, lumpability is equivalent to the condition (4),
however, (3) is a stronger requirement as the additional conditions in the lemma show.
For example, consider the state space {1, 2, 3} with partition G =

{
{1, 2}, {3}

}
, and the

t.p.m.

Γ =

1/2 1/4 1/4
1/4 1/2 1/4
1/2 1/2 0

 , then λG(Γ) =

3/8 3/8 1/4
3/8 3/8 1/4
1/2 1/2 0

 ,

so that (3) does not hold, however, Γ is lumpable w.r.t. G.

Next, we show that there is a unique partition G∗Γ fulfilling (3) and having a minimal
number of sets. Note that when G is a partition with r sets, a k-state Markov chain
satisfying λG(Γ) = Γ can be parametrized by r2 − 2 · r + k parameters, thus, a partition
with a minimal number of sets provides a parametrization of the t.p.m. with a minimal
number of parameters.

Theorem 2. There exists a unique partition G∗Γ of the state space, which has a minimal
number of sets and fulfills λG∗Γ(Γ) = Γ.

We call the partition G∗Γ the independence partition of the Markov chain (St)t or of the
transition probability matrix Γ.

When G = {G1, . . . , Gr} and H = {H1, . . . Hq} are two partitions of the state space
{1, . . . , k} such that r > q and each set Gl ∈ G is a subset of a certain set in H, we call
G a refinement of H or H a coarsening of G. We remark that for any refinement G of the
independence partition G∗Γ, the restriction λG(Γ) = Γ also holds. To show this one first
uses the property that each set of G is a subset of one set in G∗Γ, yielding equal rows in Γ
for indices in the same set of G. Then the statement follows with the same arguments as
used at the end of the proof of Lemma 6 (in the appendix).

2.2 Representations of HMMs with state-dependent mixtures

Let (Xt, St)t be a stationary k-state HMM with state space {1, . . . , k}, state dependent
densities fj(x) = fXt|St=j(x), j = 1, . . . , k, t.p.m. Γ and stationary distribution π =
(π1, . . . , πk).
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Definition 1 (Reducing states to mixture components in an HMM). Let G = {G1, . . . , Gr}
be a partition of {1, . . . , k}. Call reducing states to mixture components with respect to G
the mapping of the HMM (Xt, St)t onto the new HMM (X

(G)
t , S

(G)
t )t, the distribution of

which is determined by the t.p.m. Γ(G),(
Γ(G)

)
l,m

:= P
(
St ∈ Gm

∣∣St−1 ∈ Gl
)
, l,m = 1, . . . , r

of the Markov chain (S
(G)
t )t (on the state space {1, . . . , r}), and the state-dependent den-

sities
f

(G)
l (x) := f

X
(G)
t |S(G)

t =l
(x) := fXt|St∈Gl

(x), x ∈ Rd, l = 1, . . . , r.

of the observable process (X
(G)
t )t. �

The parameters of the reduced HMM are easily determined as follows. For l,m = 1, . . . , r
we have that(

Γ(G)
)
l,m

= P
(
St ∈ Gm

∣∣St−1 ∈ Gl
)

=
∑
g∈Gm

P
(
St = g

∣∣St−1 ∈ Gl
)

=
∑
g∈Gm

∑
h∈Gl

(
P
(
St = h

)
P
(
St ∈ Gl

) · P (St = g
∣∣St−1 = h

))

=
∑
g∈Gm

∑
h∈Gl

(
πh∑
a∈Gl

πa
· γh,g

)

and for x ∈ Rd that

f
(G)
l (x) =

∑
g∈Gl

P (St = g|St ∈ Gl) · fg(x) =
∑
g∈Gl

πg∑
a∈Gl

πa
fg(x).

Thus, the state dependent distributions are indeed given by mixtures of the original state
dependent distributions. We say that states in each element of the partition G are reduced
to mixture components.

Theorem 3. The distribution of the observable process
(
X

(G)
t

)
t

after reducing states to
mixture components w.r.t. the partition G is the same as that of an HMM with t.p.m. λG(Γ)
(on the original state space {1, . . . , k}) and state-dependent densities fj(x), j = 1, . . . , k.

In particular, if λG(Γ) = Γ we have that (Xt)t
(d)
=
(
X

(G)
t

)
t
.

Corollary 4. Let (Xt, St)t be a stationary k-state HMM with t.p.m. Γ and state-dependent
densities fj belonging to a parametric family, i.e. fj(x) = f(x; θ(j)), θ(j) ∈ M ⊂ Rp. If
k component-mixtures in this parametric family are identifiable, then the independence
partition G∗Γ of Γ of the set {1, . . . , k} is the unique partition with minimal number of
states for which we may reduce states within each member of the partition to mixture

components, i.e. for which (Xt)t
(d)
=
(
X

(G)
t

)
t
.

We call G∗Γ the independence partition of the HMM and the elements of the indepen-
dence partition G∗Γ = {G1, . . . , Gr} of the HMM its independence clusters. The corollary
follows from Theorems 2 and 3, since identifiability of k-component mixtures guarantees
identifiability of the parameters of the HMM.
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In the literature, a notion of lumpability w.r.t. a partition of the state space, similar to
that of Markov chains has also been developed for HMMs, see White et al. (2000). As
for Markov chains, the process with reduced state-space retains a possibly distinct HMM
structure, which is in contrast to our notion.

2.3 Testing the validity of reducing states to mixture components

Suppose that the state-dependent densities f1(·), . . . , fk(·) belong to a parametric family,
i.e. fj(x) = f(x; θ(j)), θ(j) ∈ M ⊂ Rp, j = 1, . . . , k. We denote the complete parameter
vector by η =

(
(γi,j)i,j=1,...,k, θ(1), . . . , θ(k)

)
∈ Θ ⊂ Rd. Given a parameter vector η

we denote its t.p.m. by Γη and the associated stationary distribution by πη, the state
dependent parameters by θη(j), and the log-likelihood function of the observable part
by

LT
(
η) = log

(
pη(X1, . . . , XT )

)
,

where pη denotes the density function of (X1, . . . , XT ) given parameter η.

In the following we denote the true, unknown parameter by η0 and always assume πη0
> 0.

Giudici, Rydén and Vandekerkhove (2000) extend the asymptotic Chi-square distribution
of the likelihood-ratio for i.i.d. models to hidden Markov models. We are interested in
testing hypotheses on the dependence structure, i.e. whether the hidden Markov chain
fulfills the restriction introduced in Section 2.1. Specifically, for a given partition G =
{G1, . . . , Gr} of the state space consider

H0 : λG(Γη) = Γη versus H1 : λG(Γη) 6= Γη,

or equivalently H0 : η ∈ Θ0,G versus H1 : η ∈ Θ \Θ0,G with

Θ0,G = {η ∈ Θ : λG(Γη) = Γη}.

An essential condition for the asymptotic chi-square distribution of the LRT is for the
null parameter to be an interior point of the parameter space. In our context, we require
P (St ∈ Gl|St−1 ∈ Gm) > 0 for 1 ≤ l,m ≤ r.

Theorem 5. Assume the Markov chain (St)t to be ergodic, the MLE η̂T to be strongly
consistent, Assumptions 1-3 in the Appendix to hold and the Fisher information J (η0) of
the HMM to be nonsingular. If η0 ∈ Θ0,G, Pη0

(St ∈ Gl|St−1 ∈ Gm) > 0 for l,m = 1, . . . , r,
and θη0(i) lies in the interior of M , i = 1, . . . , k, then

2 ·
(

sup
η∈Θ

LT
(
η)− sup

η∈Θ0,G

LT
(
η)
)

d→ χ2
h(k,r), as T →∞,

with h(k, r) = k2 − 2k − r2 + 2r and G = {G1, . . . , Gr}.
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3 Clustering serially-dependent observations

3.1 Importance of dependence for state decoding

Let us start with a simulated example which shows the importance of serial dependence
for clustering and state-estimation. We simulate a sequence of length T = 2.500 from
a two-state HMM with state dependent bivariate normal distributions fXt|St=j(x) =
ϕ(x;µj ,Σj), j = 1, 2, where the parameters are chosen as

µ
(1)
1 = µ

(1)
2 =

(
0 0

)
, Σ

(1)
1 =

(
10 0
0 1.5

)
, Σ

(1)
2 =

(
3 0
0 11

)
, Γ =

(
0.95 0.05
0.05 0.95

)
.

The stationary distribution of the observable part (Xt)t is the two-component mixture of
normals with the above parameters and weight vector π =

(
0.5 0.5

)
. Figure 1a illustrates

contour lines of the state dependent densities and gives a scatter plot of the data.
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(c) misclassified HMM

Figure 1: Clustering a sample of a two-state hidden Markov model of bivariate normals.

First we fit an independent two-component normal mixture by ML and determine states
by maximum-a-posteriori. Figure 1b visualizes the result, where data assigned to the
first (resp. second) component are colored blue (resp. green). There is a hard border
between the two clusters which is depicted by the dashed line, and while the majority
of the points are correctly classified (647 of 2.500 observations are wrongly classified,
which corresponds to 25.88% of the data), in the overlap between the two components no
appropriate discrimination is possible.

In contrast, when using a serially-dependent HMM we can separate the two groups very
well. When first estimating the parameters by ML and then performing global decoding
using the Viterbi-algorithm, i.e. finding the sequence of states s1, . . . , sT which maximizes
P (S1 = s1, . . . , ST = sT |X1 = x1, . . . , XT = xT ) only 140 observations (5.6%) are wrongly
classified. Thus, even observations in the heavily overlapping area (around µ1 = µ2 = 0)
can be well separated. The intuitive reason is that each observation also helps to classify
additional observations which are close in time, by the serial dependence.
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3.2 Merging states in HMMs

For clustering independent data, there is a substantial literature on the appropriate choice
of cluster shapes, see e.g. Hennig (2010) for a recent discussion. When using (independent)
finite mixtures and a maximum-a-posteriori analysis directly, the component distributions
need to correspond well to what cluster shapes are supposed to look like.

As an illustration, consider the example in Section 3.1. When fitting independent normal
mixtures and choosing the number of components by the BIC, the result is the two-
component fit as illustrated in Figure 1. However, without serial dependence, there are
good reasons to assign all data to a single cluster, one reason being that the two-component
normal mixture is actually a unimodal density.

As a solution, one can merge the components of an independent mixture, which correspond
to a single cluster, into a single component. Baudry et al. (2010) propose an entropy-
based criterion for selecting the candidate components for merging in independent finite
mixtures. Hennig (2010) proposes further, in particular density-based (more specifically:
modality-based) methods, and compares the distinct methods in a simulation study.

For dependent data modeled by HMMs, the situation is somewhat more involved. Scat-
ter plots as in Figure 1 only refer to the marginal distribution, and miss the additional
information provided by serial dependence. However, as Figure 1c illustrates, taking ad-
vantage of serial dependence, one can very well separate components which marginally
form a (typically unimodal) scale mixture. An important class of data examples are time
series of financial log-returns, where means are always close to zero, but where different
scales correspond to different volatility phases of the market and must be discriminated.
See Section 5 for an application.

Therefore, we propose merging and clustering algorithms for HMMs which focus on re-
taining the full dependence information. Only states within the same elements of the
independence partition of the HMM are allowed to be merged.

First, we formulate a corresponding algorithm based on the local-decoding entropy of the
HMM, similar in spirit to the proposal by Baudry et al. (2010) for independent mixtures.

Input: The observed series x1, . . . , xT and the parametric family of the state de-
pendent densities f(·, θ).

Step 1 Select and fit an appropriate finite-state HMM with state dependent den-
sities from f(·, θ), e.g. by using the BIC (or possibly the AIC). Denote the
number of states of the selected HMM by k.

Step 2 Determine the independence partition G∗ = {G1, . . . , Gr} of the selected
HMM with k states using a backward selection based on the p-values of
the test in Theorem 5, according to a certain significance level (say 0.05 or
0.1). Details for the backward selection algorithm are given in Section 4.2.

We let Γ̂ and θ̂1, . . . , θ̂k denote the parameters of the ML-fit under the in-
dependence restrictions given by G∗, so that Γ̂ is a k × k-t.p.m. for which
λG∗(Γ̂) = Γ̂, and we let (Xt, St)t denote a k-state HMM with these param-
eters.
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Step 3 Initialize H0 = {{1}, . . . , {k}}, i = 0. Compute the local decoding entropy

LDE(0) of the HMM (X
(H0)
t , S

(H0)
t )t = (Xt, St)t via

LDE(0) := −
T∑
t=1

k∑
j=1

φt,j(H0) · log
(
φt,j(H0)

)
,

φt,j(H0) := P
(
S

(H0)
t = j

∣∣X(H0)
1 = x1, . . . , X

(H0)
T = xT

)
,

for j = 1, . . . , k, t = 1, . . . , T .

Iteration If i+ 1 > k − r, stop, otherwise

For each partition H which is a coarsening of Hi with one element less than
Hi, but a refinement of the independence partition G∗, compute the local

decoding entropy of the HMM (X
(H)
t , S

(H)
t )t

LDE(H) := −
n∑
t=1

k−(i+1)∑
j=1

φt,j(H) · log
(
φt,j(H)

)
,

φt,j(H) := P
(
S

(H)
t = j

∣∣X(H)
1 = x1, . . . , X

(H)
T = xT

)
,

for j = 1, . . . , k − (i + 1), t = 1, . . . , T . Choose Hi+1 = H for which
LDE(H) =: LDE(i+ 1) is minimal, and continue iteration with i+ 1.

Choosing the clusters We obtain a nested sequence of partitions

{{1}, . . . , {k}} = H0,H1, . . . ,Hk−r = G∗,

together with the local decoding entropies

LDE(0) ≥ LDE(1) ≥ . . . ≥ LDE(k − r),

and choose 0 ≤ i∗ ≤ k − r appropriately, e.g. as an elbow in the entropy
plot or such that the relative reduction in the entropy from step i∗ to i∗+1
falls below a certain threshold.

The elements in Hi∗ correspond to clusters, while the states within each
element of Hi∗ are merged.

Next, we propose to replace Step 3 by using a modality-based method. Specifically, we
use the unimodal ridgeline or the ridgeline ratio method in Hennig (2010). Underlying
this method is the fact that all local extrema of Gaussian mixtures occur along the so-
called ridgeline, see Ray and Lindsay (2005) or Hennig (2010). The ridgeline ratio for a
two-component normal mixture is then defined as 1 if the mixture is unimodal, and as the
ratio between the minimum of the density along the ridgeline between the exterior modes
and the value of the density at the minimal mode in case of more than one mode.

Step 3 For the states in each element of the independence partition G∗, we apply
separately one of the ridgeline merging algorithms of Henning (2010), either
the ridgeline unimodal method or the ridgeline ratio method. Thus, only
merges within each element of the independence partition are allowed.
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Volant et al. (2013) propose related hierarchical merging and clustering algorithms, based
on three different model-selection based criteria (BIC and two versions of the ICL by
Biernacki et al. 2000). Our method focuses more strongly on the dependence structure of
the underlying Markov chain: Only states within the same element of the independence
partition are allowed to be merged, as motivated in Section 3.1. In the next section we
shall compare the numerical performance of the two methods. For future work, a version
of the ICL could also be built into our algorithm.

3.3 Numerical Illustrations

We present two numerical illustrations of the above algorithms, which we implemented in
the R package mergeHMM2. This package provides functions to perform the backward selec-
tion based on the LRT (see Section 4.2), to calculate iteratively local decoding entropies
given an estimated model, to estimate HMMs via MLE under dependence-structure re-
strictions, to simulate datasets and to perform a maximum-a-posteriori analysis with the
Viterbi algorithm.

1. Five-state normal HMM with two independence clusters

First, we consider the following five-state bivariate normal HMM.

µ1 =

(
2.5
1.5

)T
µ2 =

(
3.5
2

)T
µ3 =

(
2
7

)T
µ4 =

(
3

0.5

)T
µ5 =

(
2.5
6

)T
Σ1 =

(
0.30 0.18
0.18 0.30

)
Σ2 =

(
0.30 −0.18
−0.18 0.30

)
Σ3 =

(
0.48 −0.42
−0.42 0.48

)
Σ4 =

(
1.20 0.27
0.27 1.20

)
Σ5 =

(
0.5 0.4
0.4 0.5

)
,

Γ =


25.50 17.00 42.50 10.00 5.00
25.50 17.00 42.50 10.00 5.00
25.50 17.00 42.50 10.00 5.00
6.00 4.00 10.00 70.00 10.00
4.50 3.00 7.50 10.00 75.00


(5)

Its independence partition is given by G∗ =
{
{1, 2, 3}, {4}, {5}

}
, but within {1, 2, 3},

only the densities of states {1, 2} overlap. See Figure 2 for the contour lines of the state-
dependent densities. We generate a sequence of 1000 observations, for a (correctly speci-
fied) normal HMM the BIC indeed selects five states:

no. of states 2 3 4 5 6 7

BIC 6492.975 6000.316 5894.382 5891.908 5979.094 6073.929

the parameter estimates for five states are listed in the supplementary material. The
backward selection then leads to the independence partition G∗, as follows.

Step i Max. P-value of λGi(Γ) = (Γ) Partition Gi with max. p-value

1 60.61%
{
{1, 3}, {2}, {4}, {5}

}
2 72.78%

{
{1, 2, 3}, {4}, {5}

}
3 ≤ 10−4

{
{1, 2, 3, 4}, {5}

}
2 http://www.unimarburg.de/fb12/stoch/research/rpackage
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Figure 2: Contour lines of the state dependent bivariate normals. States one to three are
depicted by (black) solid lines, state four by (red) dashed lines and state five by
(green) dot-dashed lines.

Under the independence restrictions implied by G∗ we obtain the estimate

Γ̂ =


26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
26.00 17.25 41.71 12.82 2.22
6.36 4.22 10.20 69.28 9.94
4.72 3.13 7.57 9.67 74.91


for Γ, see the supplement for the remaining parameter estimates. First, the local de-
coding entropies, together with the corresponding partitions, are plotted in Figure 3a.
There is a distinctive elbow after the first merge, so that the four elements of the parti-
tion H1∗ = {{1, 2}, {3}, {4}, {5}} correspond to the clusters, and only states 1 and 2 are
merged. The two-component normal mixture formed from states 1 and 2 (the weights
being (0.255, 0.17)/(0.255 + 0.17)) is actually slightly bimodal, but with a ridgeline-ratio
(see Hennig 2010) of 0.95 very close to 1. See Figure 4 for a ridgline plot, i.e. the value of
the density along the parameter α which parametrizes the ridgeline.

The algorithm of Volant et al. (2013) merges all states except state 5 into a single cluster,
see the supplementary material Holzmann and Schwaiger (2014) for the numerical output.
This is contrary to our clustering philosophy in to respects: First, state 4 does not belong
to the same element of the independence partition as states 1-3, second, state 3 can be
well discriminated from states 1,2,4 based on its marginal density.

2. Two-state skew-normal HMM
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Figure 3: Local decoding entropies of estimated HMMs(a): series according to five-state
normal HMM, (b) series according to two-state skew-normal HMM, local decod-
ing entropies based on fitted five-state normal HMM.
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Figure 4: Plot of density along parameter of the ridgline for first two states of five-state
normal HMM
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Second, we consider the following two-state bivariate skew-normal HMM :

Σ1 =

(
4.80 −0.48
−0.48 1.20

)
, Σ2 =

(
4.0 −0.4
−0.4 1.0

)
, Γ =

(
0.9 0.1
0.1 0.9

)
α1 =

(
14 −6

)
, α2 =

(
14 0

)
,

µ1 =
(
−5.0 3.3

)
, µ2 =

(
−1.5 6.0

)
.

(6)

Specifically, the two-dimensional skew-normal density is given by

2ϕ
(
y;µ,Σ

)
· Φ1

(
αω−1(y − µ)T

)
,

where Φ1(·) is the distribution function of univariate standard-normal, and

ω−1 = diag
(
Σ
−1/2
11 ,Σ

−1/2
22

)
.

We consider a series of length 5000, and fit a (misspecified) normal HMM. In order to
fit strongly skewed state-dependent densities, the BIC selects 5 states, the first three
corresponding to the first component, the other two to the second component:

no. of states 2 3 4 5 6 7

BIC 34274.92 33814.44 33364.45 33324.97 33330.39 33419.65

The estimated five-state transition matrix in the normal HMM is

Γ̂Nor =


25.92 39.45 23.92 7.37 3.35
23.35 44.16 21.30 2.43 8.75
20.72 44.38 25.37 4.12 5.41
2.89 4.32 2.50 33.76 56.53
3.75 2.85 3.45 36.20 53.75

 ,

which has approximate independence restrictions. If we apply the backward selection
procedure in this misspecified situation, we obtain G∗ =

{
{1, 2, 3}, {4, 5}

}
as independence

partition:

Step i Max. P-value of λGi(Γ) = (Γ) Partition Gi with max. p-value

1 62.99%
{
{1, 3}, {2}, {4}, {5}

}
2 22.45%

{
{1, 3}, {2}, {4, 5}

}
3 11.94%

{
{1, 2, 3}, {4, 5}

}
4 ≤ 10−4

{
{1, 2, 3, 4, 5}

}
Under the independence restrictions implied by G∗, the fitted transition matrix is given
by

Γ̂ =


89.37 ·

0.26 0.47 0.27
0.26 0.47 0.27
0.26 0.47 0.27

 10.63 ·

0.39 0.61
0.39 0.61
0.39 0.61


09.92 ·

(
0.26 0.47 0.27
0.26 0.47 0.27

)
90.08 ·

(
0.39 0.61
0.39 0.61

)
 ,
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and fitted values for the state-dependent parameters are listed in the supplementary ma-
terial, see Figures 5a and 5b for contour plots of the true densities and the fitted normal
state-dependent densities.

When applying our merging algorithms, we obtain the LDEs with corresponding partitions
as plotted in Figure 3b. There is no elbow, so that we ought to perform all possible merges,
leading to H3∗ = G∗, the elements of which correspond to the two clusters.

Next, consider the modality-based merging methods. First, consider the states 4 and
5. The resulting two-component normal mixture is bimodal, with a ridgeline ratio of
0.82. For the states {1, 2, 3}, the two-component mixture of states 2 and 3 (with weights
π = 0.27/(0.27 + 0.47) for states 2 and 1 − π for state 3) is unimodal (the others being
bimodal), so that these two states are merged in the first step. Next, we form the mean
vector and the covariance matrix of the resulting two-component normal mixture of states
2 and 3, which are given by (vectors are taken as column vectors)

µmix = π µ2 + (1− π)µ3, Σmix = π
(
Σ2 + µT2 µ2

)
+ (1− π)

(
Σ3 + µT3 µ3

)
− µTmixµmix.

Then the ridgeline is formed for the parameters (µ1,Σ1), (µmix,Σmix) and weights (0.26, 0.74),
yielding a unimodal density. Thus, the ridgeline ratio method with tuning parameter 0.8
yields two clusters.

The misclassifications from a clustering using global decoding is plotted in Figure 5c.
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(c) merged normal HMM

Figure 5: State dependent densities of (a) true skew-normal HMM and (b) estimated nor-
mal HMM; (c) wrongly estimated states using the Viterbi algorithm and the
estimated, merged normal HMM (49 of 5.000 observations). The states of the
normal fit are ordered ascending by mean of the x-coordinate.

In this example, the algorithm of Volant et al. (2013) gives the same result with two
remaining clusters, see the supplementary material. Neglecting dependence, we also ap-
plied the algorithm of Baudry et al. (2010). It also selects two clusters, but the resulting
clustering is slightly different, since in the independent case there is a hard threshold line
between the clusters, these cannot “overlap”. The maximum a-posteriori clustering of
the mixture-model classified 92 of 5.000 observations incorrectly, in comparison to 49 for
the merged HMM. Thus, both methods perform well, but as expected the merged HMM
can recover more observations which lie on the boundary of the two clusters. See the
supplement for the numerical results.
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Further simulation results in the above two settings are presented in Section 4.

4 Further simulation results

4.1 Simulated sizes

We simulate the levels of the likelihood-ratio test for the five-state normal HMM with
three independence clusters as specified in (5). The regularity conditions of Theorem
5 are satisfied if we impose lower bounds on the determinants of the state-dependent
covariance matrices.

For the four partitions G1 =
{
{1, 2}, {3}, {4}, {5}

}
, G2 =

{
{1}, {2, 3}, {4}, {5}

}
, G3 ={

{1, 3}, {2}, {4}, {5}
}

and G4 =
{
{1, 2, 3}, {4}, {5}

}
for which λGi(Γ) = Γ is satisfied,

we simulate the levels of the corresponding tests for three different sample sizes (T =
1.000, 2.500, 5.000), with M = 5.000 simulations each. The sizes corresponding to asymp-
totic levels of α = 10%, 5%, 1% are listed in Table 1. The tests are somewhat anti-
conservative for the smaller sample sizes, but quite accurate for higher ones. Note that
states 2 and 3 are much better separated than states 1 and 2, which also leads to some-
what more accurate levels of the test. The simulations were conducted on the MaRC2
supercomputer of the university of Marburg, and their duration was a few days.

level/T 1.000 2.500 5.000

10% 16.62 12.84 11.80
5% 9.22 7.36 6.20
1% 2.20 1.50 1.68

(a) G1 =
{
{1, 2}, {3}, {4}, {5}

}

level/T 1.000 2.500 5.000

10% 15.36 10.92 10.76
5% 8.36 5.94 5.60
1% 2.18 1.50 1.32

(b) G2 =
{
{1}, {2, 3}, {4}, {5}

}
level/T 1.000 2.500 5.000

10% 14.96 12.30 10.72
5% 7.52 6.42 5.68
1% 1.66 1.52 1.24

(c) G3 =
{
{1, 3}, {2}, {4}, {5}

}

level/T 1.000 2.500 5.000

10% 16.30 12.46 11.32
5% 9.30 6.90 5.80
1% 2.38 1.44 1.16

(d) G4 =
{
{1, 2, 3}, {4}, {5}

}
Table 1: Simulated rejection rates in percent (series lengths 1.000, 2.500 and 5.000) for

accessing finite sample behavior of χ2
· - approximation in case of a normal HMM,

row-wise to levels 10%, 5% and 1%. (a), (b), (c) χ2
7 - approximation, (d) χ2

12 -
approximation.

4.2 Backward selection

We start by spelling out the backward selection algorithm for determining the indepen-
dence partition based on Theorem 5 in detail.

Input: The observed series x1, . . . , xT and the parametric family of the state de-
pendent densities f(·, θ), and the test level α > 0.
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Step 1 Select and fit an appropriate finite-state HMM with state dependent den-
sities from f(·, θ), e.g. by using the BIC (or possibly the AIC). Denote the
number of states of the selected HMM by k.

Step 2 Initialize G0 = {{1}, . . . , {k}}, i = 1.

Iteration For each partition G which is a coarsening of Gi−1 with one element less
than Gi−1, compute the p-value of the likelihood-ratio test of H : λG(Γ) = Γ
based on the asymptotic χ2-distribution with 2i(k − 1) − i2 degrees of
freedom.

If the maximal p-value of these tests is < α, we set G∗ = Gi−1 and stop.

Otherwise we choose the partition G̃ with maximal p-value. If G̃ = {{1, . . . , k}}
is the trivial partition (in step i = k − 1), we let G∗ = {{1, . . . , k}} and
stop,

otherwise we let Gi = G̃ and continue the iteration with i+ 1.

We continue by simulating the performance of the backward selection in two examples.

Five-state normal HMM with two independence clusters

We apply the backward selection algorithm to the five-state normal HMM with three
independence clusters as specified in (5), where we always start with a HMM with five
states. The results are given in Table 2, corresponding simulation results for series of
length 500 are provided in the supplement. The backward selection most often selects the
independence partition with three elements. Since no partition with less states is selected,
the power of the test for the given t.p.m. is quite high. The situation is changed if we
consider instead the t.p.m.

Γ =


3.00 2.00 5.00 85.00 5.00
3.00 2.00 5.00 85.00 5.00
3.00 2.00 5.00 85.00 5.00
6.00 4.00 10.00 70.00 10.00
4.50 3.00 7.50 10.00 75.00


Here, states 1-3 and 4 are sometimes merged, in particular for the shorter series, see the
supplement for the simulation results.

length T 1.000 2.500 5.000

level/ind. clusters 3 4 5 3 4 5 3 4 5

10% 830 127 43 881 101 18 448 44 8
5% 905 79 16 934 59 7 471 23 6
1% 977 21 2 991 8 1 496 4 -

Table 2: Simulation results of backward selection under a normal HMM: Absolute fre-
quency of number of elements in independence partition according to used level.
M = 1.000 repetitions for lengths of T = 1.000 and 2.500; M = 500 repetitions
for lenght T = 5.000.

Two-state skew-normal HMM
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Finally, we apply the backward selection algorithm in the misspecified situation where we
simulate series from the two-state skew-normal HMM in (6), but fit normal HMMs. We
generate M = 1.000 repetitions for lengths T = 1.000 and 2.500, as well as M = 500
repetitions for length T = 5.000.

We start with a BIC-choice for the number of states, the results are as follows.

length / states 3 4 5 6

1.000 138 862 0 0
2.500 0 815 185 0
5.000 0 2 158 340

length T 1.000 2.500 5.000
BIC choice level/ind. clusters 2 3 4 2 3 4 5 2 3 4 5 6

10% 128 10 - - - - - - - - - -
3 states 5% 132 6 - - - - - - - - - -

1% 136 2 - - - - - - - - - -

10% 730 76 56 702 71 42 - 2 - - - -
4 states 5% 788 51 23 755 43 17 - 2 - - - -

1% 844 14 4 809 5 1 - 2 - - - -

10% - - - 153 16 15 1 136 16 6 - -
5 states 5% - - - 162 13 10 - 148 7 3 - -

1% - - - 176 5 4 - 155 2 1 - -

10% - - - - - - - 280 34 22 2 2
6 states 5% - - - - - - - 311 20 8 - 1

1% - - - - - - - 344 4 1 1 -

Table 3: Simulation results of the backward selection of normal HMMs under a true skew-
normal HMM: Absolute frequency of number of elements in independence parti-
tion according to used level.

Finally, the results of the backward selection for the number of states in the independence
partition, split according to the initial BIC-choice, are given in Table 3.

A two-element independence partition is chosen most often in all settings.

5 Model selection: An application to logarithmic returns of daily
gold prices

We conclude with an application which illustrates how our methodology can be used for
model selection and fine-tuning.

We consider a series of logarithmic returns of the daily gold prices in London in U.S. dollar
from September 2nd 1997 until August 31st 2012. When fitting normal HMMs, the AIC
selects six states, while the BIC selects only four:
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no. of states 2 3 4 5 6 7 8

AIC 11250 11125 11060 11035 11023 11034 11052
BIC 11294 11213 11204 11248 11318 11423 11547

We therefore start with the six-state HMM, for which we obtain the estimates

µ̃ =
(
−0.252 0.821 −0.202 0.119 0.018 0.008

)
σ̃ =

(
1.454 0.652 0.561 2.281 0.796 0.293

)

Γ̃ =



47.75 28.74 23.42 0.08 0.01 0.00
11.86 15.53 71.96 0.65 0.00 0.00
54.48 33.26 8.01 0.00 4.26 0.00
2.53 0.00 0.00 97.47 0.00 0.00
0.00 0.00 0.00 0.24 60.31 39.45
3.22 1.05 0.00 0.18 69.36 26.19

 .

Next we apply the backward-selection algorithm to find the independence partition of the
six-state HMM, which yields

Step i Max. P-value of λGi(Γ) = (Γ) Partition Gi with max. p-value

1 94.04%
{
{1}, {2}, {3}, {4}, {5, 6}

}
2 45.80%

{
{1, 2}, {3}, {4}, {5, 6}

}
3 0.47%

{
{1, 2, 3}, {4}, {5, 6}

}
giving G∗ =

{
{1, 2}, {3}, {4}, {5, 6}

}
as independence partition. Here, in the second step of

the algorithm all except two of the eight p-values are ≤ 10−3, and the second highest being
2.63% for the partition {{1, 3}, {2}, {4}, {5, 6}}, which is much lower than the 45, 80% for
the selected partition {{1, 2}, {3}, {4}, {5, 6}}. Although transitions from states 1 and 3
look similar, a heuristic reason might be that states 4 and 5 can only be reached from
state 3, but not from states 1 (and 2). Therefore, state 3 does not belong to the same
element of the independence partition as state 1.

When estimating under the independence restrictions implied by G∗, we obtain

µ̂ =
(
−0.259 0.717 −0.290 0.072 0.026 0.006

)
σ̂ =

(
1.531 0.695 0.626 2.244 0.805 0.296

)
and

Γ̂ =


51.04 ·

(
0.5043 0.4957
0.5043 0.4957

)
48.58 ·

(
1
1

)
0.37 ·

(
1
1

)
0.01 ·

(
0.661 0.339
0.661 0.339

)
95.64 ·

(
0.5043 0.4957

)
0.00 0.00 4.36 ·

(
0.661 0.339

)
2.57 ·

(
0.5043 0.4957

)
0.00 97.43 0.00 ·

(
0.661 0.339

)
1.42 ·

(
0.5043 0.4957
0.5043 0.4957

)
0.00 ·

(
1
1

)
0.22 ·

(
1
1

)
98.36 ·

(
0.661 0.339
0.661 0.339

)


The local decoding entropy for the initial model is given by 3300.245, after the first merging
step (states 5 and 6) by 2521.548, and after the second step by 1896.366.
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Therefore, also for clustering purposes it is reasonable to consider the reduced represen-
tation with four states, t.p.m. λG∗(Γ̂), and state-dependent densities

f1(x) = p
(1)
1 · ϕ(x; µ̂1, σ̂1) + p

(1)
2 · ϕ(x; µ̂2, σ̂2), f2(x) = ϕ(x; µ̂3, σ̂3)

f4(x) = p
(2)
1 · ϕ(x; µ̂5, σ̂5) + p

(2)
2 · ϕ(x; µ̂6, σ̂6), f3(x) = ϕ(x; µ̂4, σ̂4)

p(1) =
(
0.5043; 0.4957

)T
, p(2) =

(
0.661; 0.339

)T
.

Figure 6 illustrates the estimated state dependent distributions.

Let us briefly describe and comment on the resulting four-state model.

State 1 has a positive-mean, comparatively high volatility and is left skewed. State 2 has
a negative mean and small volatility, these two states form a kind of cycle, out of which
transition is (almost) only possible from the State 2 to 4. State 4, which arises as a scale
mixture of two normals, has mean almost = 0 but a heavier tail than an ordinary normal
distribution. This state is highly persistent, which implies that we observe long periods of
moderate growth corresponding to that state.

State 3 (green) can be interpreted as a turbulent or crisis state since its state-dependent
distribution is a scale mixture with a very high variance and almost zero mean.

Using the merged model and the Viterbi algorithm we estimated the most likely series of
states, see Figure 7 for visualizations of the results.

State 3 (crisis) occurs e.g. from October 26th 2007 until April 6th 2009, a time period
containing the financial crisis, in 2011, which contained the US debt ceiling crisis, in March
2003 at the beginning of the Iraq war and at the time following the September 11, 2001
attacks. In contrast, state 4 occurs over the long stable periods of moderate growth.

The volatility in the cycle consisting of states 1 and is between that of states 4 and 3, it
can therefore be interpreted as an intermediate phase between moderate growth (state 4)
and crisis (state 3).

Acknowledgements
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Figure 6: Histogram of logarithmic returns of gold prices in percent (September 2nd 1997
until August 31st 2012) and estimated state dependent densities of the merged
four-state hidden Markov model (densities of states one to four are colored in
black, red, green and blue).
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(a) log-returns of gold prices

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●
●●●●●●●●
●●●●
●●●
●●
●●●●●●
●●●●
●●●●
●●●
●●●●●
●●●
●
●●●●●●●
●●●●●●
●●
●
●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●
●●●●●
●●
●
●
●
●●
●●
●●
●●
●●●
●●
●●

●
●●●
●●●
●●
●●●●
●●●●●
●●●

●●
●●●●
●●●●●●
●
●●●
●●●●
●●
●●
●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●
●●
●●●
●●
●
●●●
●●●
●●●●
●●●●●●●
●●
●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●●
●
●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●
●●●●
●●●
●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●
●●
●●●
●●●●●
●●
●●●●●●
●●
●●●
●●●●
●●●
●●
●●●●●
●
●●●
●●
●●
●●●●

●●
●
●●●
●●●
●●●●●●●
●●●●
●●
●
●●●●●●
●●●
●●
●●●
●●●●
●●
●●●●●●●
●
●●
●●
●●●●
●●
●
●●
●●
●●●●●
●
●●●●●
●
●●
●
●
●●●●●●
●●●
●

●

●●●
●
●●
●
●

●
●●●
●●
●●●●●
●●
●●●●
●●●
●●
●●
●●●
●●●
●●
●
●●
●
●●●●
●●
●●
●●●●
●●
●
●
●●
●●
●●●●●●

●●●
●●●●●●●
●
●●
●
●●●●●
●●●●●
●●●●
●●●
●

●●
●
●
●
●
●●
●
●●●●
●●
●
●●●●●
●
●●
●
●●

●●
●
●●●●●

●

●●

●●
●
●
●●

●
●●
●

●
●
●
●

●●
●●
●●●
●●

●
●●●
●
●
●
●●●●●
●

●
●●●●●

●
●●●●
●●

●●●
●
●●●
●●●●●
●●●
●●●
●●
●
●●

●●●●
●●
●●●

●●●●
●
●
●●●
●●
●
●
●●●●
●
●●
●●
●●●●
●●●
●●●
●●
●●●●
●
●●
●
●●●●●●●
●●
●
●●●●
●●●
●●
●●●
●●●●●●●
●●
●●●●
●●●●●●
●
●●●●●●
●●●
●
●
●●●●●
●●●●●●●●●
●●●●
●●●●●
●●●●
●
●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●
●
●●●●
●●●
●
●●●●●●
●●●
●●●●●●●●●●
●●●
●
●●
●●●
●●
●●
●●●●●
●●●
●●
●
●●●●
●●
●
●
●
●●●●●
●●
●●
●●
●
●●

●●

●●●
●●●
●

●
●
●●●
●●●●●●●
●●
●●●
●
●●
●●●●
●
●●●●●●●
●●●

●●●
●●
●●●
●
●●
●●●●●
●●
●●●●●●
●●●●
●●●
●●●
●●
●●●●
●●●●
●●
●●●●●
●●●●●
●●
●●●
●●●●

●●●

●●●●●●

●●●
●
●●●●
●●●●
●
●●●
●●●
●●
●●●●●●
●
●●●

●
●●
●●●
●
●
●●●
●●●●
●●●
●●●
●●●
●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●
●●●
●●●●

●
●
●●
●●
●
●
●●●●

●●
●
●●
●

●●
●●
●●
●●●●●●
●●●
●●
●
●●●
●●
●●●
●●●●●●
●●●
●●

●●●●●
●●●●●●●
●●●●
●

●
●●●●
●●●
●●●●●
●●●
●
●●
●●●●
●●
●
●●●●
●●
●

●●●
●●●
●●●●●●
●●●
●●●
●●●●
●
●●●
●●●●●
●●
●
●●
●

●
●
●●
●●●●●●●
●●
●●●
●●●●●●●●●●●
●●
●●●●
●●
●
●●●
●
●
●●
●
●●
●●
●
●●●
●
●
●●●
●●●●
●●

●●
●
●

●
●

●
●
●
●
●●

●
●

●

●

●
●

●

●

●●●

●
●
●

●

●
●

●
●
●

●
●

●
●
●

●

●

●
●

●●
●

●

●
●●●

●
●
●●
●●
●
●
●
●●

●
●
●●
●●
●
●●

●●
●●

●●●
●

●●

●
●●●●
●●

●●●
●●
●

●●

●

●

●●
●●
●●●●●
●

●●
●●

●●
●●●
●●
●●●
●●●
●●●

●●
●●●
●
●

●●
●
●●●●●●●●
●
●
●●●●
●

●
●●●

●●
●
●
●
●
●
●●●●●●
●
●●
●●●
●

●
●●
●●
●●
●
●●●●●●●●●
●●●●●
●●●

●
●●●
●
●●

●
●●
●●●
●●
●●●

●●●●

●●●
●●
●●●●●

●●
●●●
●

●●
●●●
●●
●●●
●●●●●●●●
●
●●●●
●●
●●●●
●●●●●
●●●
●
●
●●●●●●

●

50
0

10
00

15
00

04.09.1997 11.07.2000 27.05.2003 04.04.2006 12.02.2009 20.12.2011

(b) gold prices

Figure 7: Viterbi Clustering of gold prices and log-returns. Coloring is chosen as in Figure
6
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Appendix: Proofs

Proof of Proposition 1. λG(Γ) is a t.p.m. since

k∑
j=1

(
λG(Γ)

)
i,j

=

r∑
l=1

∑
g∈Gl

P
(
St ∈ Gl

∣∣St−1 ∈ G(i)
)
· P
(
St = g

∣∣St ∈ Gl) = 1.

In order to validate that 1. implies 2., note that

γi,j = P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
· P
(
St = j

∣∣St ∈ G(j)
)
, i, j = 1, . . . , k,

implies γi,j = γh,j for all h ∈ G(i), i.e. that under 1. Γ has equal rows with indices in the same set
of the partition G. Thus,

P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)

=
∑

g∈G(j)

∑
h∈G(i)

(
P
(
St−1 = h

)
P
(
St−1 ∈ G(i)

) · γh,g)

=
∑

g∈G(j)

γi,g
∑

h∈G(i)

(
P
(
St−1 = h

)
P
(
St−1 ∈ G(i)

)) =
∑

g∈G(j)

γi,g = P
(
St ∈ G(j)

∣∣St−1 = i
)
,

which gives the first claim of 2. If further P
(
St ∈ G(j), St−1 = i

)
> 0 then γi,g > 0 for at least

one g ∈ G(j) and thus P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
> 0. Further, due to 1. and (1)

P
(
St ∈ G(j)

∣∣St−1 = i
)
· P
(
St = j

∣∣St−1 = i, St ∈ G(j)
)

= P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
· P
(
St = j

∣∣St ∈ G(j)
)

and hence also the second claim of 2. follows.

Now, assume 2. to hold, then for l,m = 1, . . . , r set νl,m = P (St ∈ Gm|St−1 ∈ Gl) and pj = P (St =
j|St ∈ G(j)). Note a(·) is constant on each group of the partition, N = (νl,m)l,m ∈ Rr×r defines a
t.p.m. and p = (p1, . . . , pk) is normalized as in 3. At first, if P

(
St−1 = i, St ∈ G(j)

)
= 0 we have

γi,j = 0 and also P
(
St ∈ G(j)

∣∣St−1 = i
)

= 0. Thus, due to 2. also P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)

= 0

and hence 3. holds in this case. If otherwise P
(
St−1 = i, St ∈ G(j)

)
> 0, due to (1) and the

validity of both statements in 2.,

γi,j = P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
· P
(
St = j

∣∣St ∈ G(j)
)

= νa(i),a(j) · pj .

Finally, assume 3. to hold. Then for i, j = 1, . . . , k

P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)

=
∑

g∈G(j)

∑
h∈G(i)

(
P
(
St−1 = h

)
P
(
St−1 ∈ G(i)

) · νa(h),a(g) · pg) = νa(i),a(j),

P
(
St ∈ G(j)

∣∣St−1 = i
)

=
∑

g∈G(j)

(
νa(h),a(g) · pg

)
= νa(i),a(j).

If P
(
St−1 = i, St ∈ G(j)

)
= 0, again γi,g = 0 for all g ∈ G(j). Due to 3. we further have

for h ∈ G(i) and g ∈ G(j) γh,g = νa(i),a(g) · pg = γi,g = 0. Thus also νa(i),a(j) = 0 and hence

γi,j =
(
λG(Γ)

)
i,j

= 0. If otherwise P
(
St−1 = i, St ∈ G(j)

)
> 0 due to (1) we directly get

pj = P
(
St = j

∣∣St−1 = i, St ∈ G(j)
)
, and since pj is independent of i, pj = P

(
St = j

∣∣St ∈ G(j)
)
,

which finally gives

γi,j = νa(i),a(j) · pj = P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
· P
(
St = j

∣∣St ∈ G(j)
)

=
(
λG(Γ)

)
i,j
.
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Lemma 6. Let Γ = (γi,j)i,j=1,...,k denote the (ergodic) t.p.m. of the stationary Markov chain
(St)t. Suppose that G = {G1, . . . , Gr} and H = {H1, . . . Hq} are two distinct partitions of the state
space for which λG(Γ) = λH(Γ) = Γ and H is not a refinement of G. Then there exists a partition
I which is a strict coarsening of G and for which λI(Γ) = Γ.

Proof of Lemma 6. Since H is not a refinement of G, there exist H ∈ H, G ∈ G with H ∩ G 6= ∅
and H \G 6= ∅, w.l.o.g. this is true for G1 and H1. Define the partition I by

I1 = G1 ∪
⋃

{l : Gl∩H1 6=∅}

Gl,

Il = Gl, for l ∈ {1, . . . , r} with Gl ∩H1 = ∅.

Evidently I is a coarsening of G and has at least one element less than G. We shall prove that
λI(Γ) = Γ, that is,

γi,j = P
(
St ∈ I(j)

∣∣St−1 ∈ I(i)
)
· P
(
St = j

∣∣St ∈ I(j)
)

1 ≤ i, j ≤ k. (7)

Note that (7) in particular requires that rows of Γ with indices in the same element of the partition
I be equal. Since Γ = λG(Γ), this is true for G, and hence evidently for all elements of the partition
I exept for I1. Suppose that i, i′ ∈ I1, i ∈ Gl, i′ ∈ Gl′ , we need to show that the ith and the i′th

row of Γ be equal. By definition of I1, there exist j ∈ Gl ∩H1 and j′ ∈ Gl′ ∩H1, and hence the
ith and the jth row as well as the i′th and the j′th row of Γ are equal. But since also Γ = λH(Γ),
the jth and the j′th row of Γ are also equal, and the conclusion of equal rows for indices in the
elements of I follows, formally,

γi,g = γh,g, i, h ∈ I ∈ I, 1 ≤ g ≤ k. (8)

Now, due to (8), (
λI(Γ)

)
i,j

= P
(
St = j

∣∣St ∈ I(j)
)
· P
(
St ∈ I(j)

∣∣St−1 ∈ I(i)
)

=
πj∑

g∈I(j) πg
·
∑
g∈I(j)

∑
h∈I(i)

(
πh∑

l∈I(i) πl
· γh,g

)
=

πj∑
g∈I(j) πg

·
∑
g∈I(j)

γi,g
∑
h∈I(i)

πh∑
l∈I(i) πl

=
πj∑

g∈I(j) πg
·
∑
g∈I(j)

γi,g,

(9)

where π = (π1, . . . , πk) denotes the stationary distribution of (St)t. Therefore, in order to show
(7), it sufficies to show that

γi,j
πj

=

∑
g∈I(j) γi,g∑
g∈I(j) πg

, 1 ≤ i, j ≤ k. (10)

which is equivalent to
γi,j
πj

=
γi,a
πa

, 1 ≤ i, j ≤ k, a ∈ I(j). (11)

Indeed, (10) evidently implies (11), while using (11) one computes

γi,j =
1∑

g∈I(j) πg
·
∑
g∈I(j)

πg γi,j =
1∑

g∈I(j) πg
·
∑
g∈I(j)

πj γi,g =
πj∑

g∈I(j) πg
·
∑
g∈I(j)

γi,g,

that is, (10).

Now, in order to show (11), we note that the corresponding property holds for the partitions G
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and H, so that (11) evidently holds if I(j) 6= I1. To cover this case, suppose that j, a ∈ I1, so
that j ∈ Gl and a ∈ Gl′ for some 1 ≤ l, l′ ≤ r. By definition of I1, there exist j′ ∈ Gl ∩H1 and
a′ ∈ Gl′ ∩H1, and therefore for 1 ≤ i ≤ k:

γi,j
πj

=
γi,j′

πj′
=
γi,a′

πa′
=
γi,a
πa

.

Proof of Theorem 2. Let

G∗Γ ∈ argmin
{

cardG : G is partition of{1, . . . , k} with λG(Γ) = Γ
}
. (12)

Note that λ{
{1},...,{k}

}(Γ) = Γ is always satisfied. Suppose that H is a partition of {1, . . . , k} with

Γ = λH(Γ), then H must be a refinement of G∗Γ, since otherwise by Lemma 6, there would exist a
strict coarsening I of G∗Γ satisfying Γ = λI(Γ), thus contradicting the choice of G∗Γ. Therefore G∗Γ
is the unique minimizer in (12).

Proof of Theorem 3. Denote by (Y
(G)
t , T

(G)
t )t the HMM with Markov chain (T

(G)
t )t having t.p.m. λG(Γ)

and observable process (Y
(G)
t )t with state dependent densities fj(x), j = 1, . . . , k.

First, we show that π is also the stationary distribution of the Markov chain (Tt)
G , i.e. P

(
T

(G)
t =

j
)

= P
(
St = j

)
for j ∈ {1, . . . k}. Since

k∑
i=1

πi P
(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)

=

r∑
l=1

∑
g∈Gl

πg P
(
St ∈ G(j)

∣∣St−1 ∈ Gl)
=

r∑
l=1

{
P
(
St ∈ G(j)

∣∣St−1 ∈ Gl) P (St ∈ Gl)} =

r∑
l=1

{
P
(
St ∈ G(j), St−1 ∈ Gl

)}
= P

(
St ∈ G(j)

)
,

we get that

π ·
(
λG(Γ)

)
·,j =

k∑
i=1

{
πi P

(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)
P
(
St = j

∣∣St ∈ G(j)
)}

=P
(
St = j

∣∣St ∈ G(j)
) k∑
i=1

{
πi P

(
St ∈ G(j)

∣∣St−1 ∈ G(i)
)}

= P (St = j).

The density of the observable process (Y
(G)
t )t=1,...,n of the reduced model is given by

f
(Y

(G)
1 ,...,Y

(G)
n )

(x1, . . . , xn)

=

k∑
j1,...,jn=1

(
P
(
T

(G)
1 = j1

)
· fj1(x1) ·

n∏
t=2

P
(
T

(G)
t = jt

∣∣T (G)
t−1 = jt−1

)
· fjt(xt)

)
=

r∑
l1,...,ln=1

∑
g1∈Gl1

· · ·
∑

gn∈Gln

(
P
(
S1 = g1

)
· fg1(x1) ·

n∏
t=2

(
λG(Γ)

)
gt−1,gt

· fgt(xt)
)

=

r∑
l1,...,ln=1

∑
g1∈Gl1

· · ·
∑

gn∈Gln

(
P
(
S1 = g1

)
· fg1(x1) ·

n∏
t=2

(
Γ(G))

lt−1,lt
· P
(
St = gt|St ∈ Glt

)
· fgt(xt)

)
since for gt−1 ∈ Glt−1

and gt ∈ Glt ,(
λG(Γ)

)
gt−1,gt

=
(
Γ(G))

lt−1,lt
· P
(
St = gt|St ∈ Glt

)
.
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Only P (Sn = gn|Sn ∈ Gln) · fgn(x) depend on gn in the sum
∑
gn∈Gln

, everything else can be

factorized. Iterating this procedure over gt gives

f
(Y

(G)
1 ,...,Y

(G)
n )

(x1, . . . , xn)

=

r∑
l1,...,ln=1

( ∑
g1∈Gl1

P
(
S1 = g1

)
· fg1(x1) ·

n∏
t=2

{(
Γ(G))

lt−1,lt
·
∑

gt∈Glt

P (St = gt|St ∈ Glt) · fgt(xt)
})

=

r∑
l1,...,ln=1

(
P
(
S
(G)
1 = l1

)
· f (G)l1

(x1) ·
n∏
t=2

{(
Γ(G))

lt−1,lt
· f (G)lt

(xt)
})

= f
(X

(G)
1 ,...,X

(G)
n )

(x1, . . . , xn).

In the following we denote by X the observational space of the HMM, where the (Xt) take their
values, and by ν the dominating measure for the densities f(x, θ), where θ = (θ1, . . . , θp)

T ∈M ⊂
Rp.

Assumption 1. The set M is open, and for for every x ∈ X the map θ 7→ f(x, θ) is two-times
continuously partially differentiable.

Assumption 2. The support of f(·, θ) does not depend on θ ∈M .

Assumption 3. There is a δ > 0 such that for all 1 ≤ i ≤ k, 1 ≤ a, b ≤ p

Eη0

(
sup

‖η−η0‖<δ

∣∣∂θa f(X1, θη(i))
∣∣2) <∞, Eη0

(
sup

‖η−η0‖<δ

∣∣∂θa ∂θb f(X1, θη(i))
∣∣) <∞,∫

X
sup

‖θ−θ0‖<δ

∣∣∂θa f(y, θ)
∣∣ dν(y) <∞,

∫
X

sup
‖θ−θ0‖<δ

∣∣∂θa ∂θb f(y, θ)
∣∣ dν(y) <∞.

Proof of Theorem 5. We intend to apply theorem 2 from Giudici et al. (2000). To this end, we
note that their assumptions A1-A6 are satisfied and in particular that η0 lies in the interior of the
parameter set.

It remains to study the restriction on Γ and determine the degrees of freedom.

Note that in Γη one arbitrary column is redundant, leading to k2 − k parameters. To prove the
claim it is sufficient to show that Γη can be smoothly parametrized in dependence of G via (k2−k)
parameters such that (k2 − 2k − r2 + 2r) of them are zero if and only if η ∈ Θ0,G .

Since we assume that PΓη (St ∈ Gl|St−1 ∈ Gm) > 0, we may set

A = (αi,l) i=1,...,k

l=1,...,r
, (αi,l) =

∑
g∈Gl

(Γη)i,g,

B = (βi,j)i,j=1,...,k, βi,j = α−1i,a(j) · (Γη)i,j .

Obviously, (Γη)i,j = αi,a(j) · βi,j . In the parametrization via A,B also one column in A (since
all rows of A have to sum up to one), and r columns in B (since all columns of B with indices
in the same group have to sum up to one) are redundant. In order to access the non-redundant
parameters in a convenient way, consider a label switching in the Markov chain, such that G1 =
{1, . . . , n1}, G2 = {n1 + 1, . . . , n2}, . . . , Gr = {nr−1 + 1, . . . , nr}. Thus, the Markov chain can be
parametrized via

A = (αi,l) i=1,...,k

l=1,...,r−1
, B = (βi,j) i=1,...,k

j=1,...,k, j 6=n1,...,nr

.

Note,
αi,l = PΓη

(
St ∈ Gl|St−1 = i

)
, βi,j = PΓη

(
St = j|St−1 = i, St ∈ Gl

)
.
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Due to Proposition 1, λG(Γη) = Γη, i.e. H0, is equivalent to

αi,l = PΓη

(
St ∈ Gl|St−1 ∈ Ga(i)

)
, i = 1, . . . , k, l = 1, . . . , r − 1,

βi,j = PΓη

(
St = j|St ∈ Gl

)
, i = 1, . . . , k, j = 1, . . . , k, j 6= n1, . . . , nr.

Therefore, H0 is equivalent to

α1+n(m−1),l = · · · = αnm,l, m = 1, . . . , r, l = 1, . . . , r − 1,

β1,j = · · · = βk,j , j = 1, . . . , k, j 6= n1, . . . , nr

where n0 = 0, which yields (r − 1) · (k − r) restrictions to A and (k − r) · (k − 1) restrictions to
B. Altogether, Γη can be parametrized via matrices A, B and H0 can be formulated via equality
restrictions according to the new parameters. Thus, doing a second re-parametrization, where for
each group of parameters that should be equal under H0, all these parameters are expressed as the
difference to one base parameter, yields the requested parametrization. Finally, k2 − 2k − r2 + 2r
parameters in the re-parametrized version being zero is equivalent to H0, which concludes the
proof.
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