A methodological protocol to extract microplastics from river sediments (bed, bank and floodplain)

PRUME J.1, SCHÖMANN E.-M.2, CHIFFLARD P.2 and KOCH M.1

1Department of Physics and Materials Science Center, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35043 Marburg, Germany
2Department of Geography, Philipps-University Marburg, Deutschhauussätraße 10, 35032 Marburg, Germany
*corresponding author: Julia Prume (julia.prume@physik.uni-marburg.de)

1. Introduction

Background of this work

- While microplastic pollution has been proven at many spots worldwide, an accurate knowledge of sources, transport pathways and sinks is still missing.
- Research has focused on marine habitats [1] and large streams so far and the role of small-scale river systems, often adjacent to potential sources as agricultural areas and waste water treatment plants, is yet to be investigated.
- At the same time, the microplastic research community is challenged to develop reliable and efficient identification and quantification methods which are standardized enough to allow for inter-study comparisons.

Aims of this work

- To gain first insights in microplastic abundance, small-scale distribution and composition in river Lahn
- To establish a method for microplastic analysis in river sediments in our University’s microplastic laboratory

2. Methods

1. Sampling

Density separation via MPSS [2]
[Bio-Bios Apparatbau GmbH; separation liquid: NaCl dissolved in water (p = 1.2 g ml⁻¹)]

2. Sample preparation

Size fractionation by sieving [2500 μm, 500 μm, 315 μm]

Identification via ATR-FTIR spectroscopy [2] (Tenor 37, Bruker)

Detection via Nile red based photoluminescence [3]
[20 µg/ml; solvents: acetone and ethanol (90:50); excitation with 450 nm]

3. Polymer identification

Comparison of two river bank types

Sample type [a = river bed, b–d = bottom, middle and upper section of the river bank, e = floodplain]

Particle size distribution (river bed)

Polymer types (river bed)

4. Conclusions

- First data on microplastic pollution in the Hessian river Lahn are shown. Microplastics were not only found in the river bed, but also in the river bank and the floodplain. Highest concentrations were found in the river bank of the slip-off slope – probably due to a lower flow velocity compared to the straight river section. Microplastic particle number increases with decreasing particle size as reported elsewhere [4]. Main polymer types were PP, PE and PS. Further investigations at other locations in river Lahn are planned.

- The presented approach – MPSS, sieving, Nile red, FTIR-spectroscopy – was successfully applied to analyse microplastics in river sediments. A digestion of sample matrix could be avoided by using Nile red. Validation and enhancements of the presented methodology are ongoing.

References


Acknowledgments

Participants of the Citizen Lab für Mikroplastik Marburg contributed to the density separation via MPSS. The students Christina Hüllmöller and Anna Baumgartner had a hand in the particle detection. Financial support from the UMR 2017 project is gratefully acknowledged.