Gutzwiller Density Functional Theory

Florian Gebhard

Department of Physics, Philipps-Universität Marburg, Germany

in collaboration with Jörg Bünemann, Marburg Tobias Schickling, Marburg Werner Weber, Dortmund

June 26, 2014

Outline

- Density Functional Theory
 - Electronic problem
 - Levy's constrained search
 - Single-particle Hamiltonian and Ritz variational principle
 - Kohn-Sham equations
- 2 Density Functional Theory for many-particle Hamiltonians
 - Hubbard interaction and Hubbard density functional
 - Gutzwiller density functional
 - Limit of infinite lattice coordination number
- 3 Translational invariant lattice systems
 - Gutzwiller-Kohn-Sham quasi-particle Hamiltonian
 - Local Hamiltonian for transition metals
 - Results for nickel
- 4 Conclusions
 - Summary
 - Outlook

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Electronic many-particle Hamiltonian ($\sigma=\uparrow,\downarrow;\ \hbar\equiv1$)

$$\hat{H} = \hat{H}_{\text{band}} + \hat{H}_{\text{int}} ,$$

$$\hat{H}_{\text{band}} = \sum_{\sigma} \int d\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m} + U(\mathbf{r}) \right) \hat{\Psi}_{\sigma}(\mathbf{r}) ,$$

$$\hat{H}_{\text{int}} = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}^{\dagger}(\mathbf{r}') V(\mathbf{r} - \mathbf{r}') \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}) .$$

$$(1)$$

The electrons experience their mutual Coulomb interaction and the interaction with the ions at positions \mathbf{R} ,

$$\mathcal{U}(\mathbf{r} - \mathbf{r}') = \frac{1}{2} \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}, \qquad (2)$$
$$U(\mathbf{r}) = \sum_{\mathbf{R}} \frac{e^2}{|\mathbf{r} - \mathbf{R}|}. \qquad (3)$$

3/38

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem

Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Ritz variational principle

Task: minimize the energy functional

$${\sf E}\left[\{|\Psi
angle\}
ight] = rac{\langle\Psi|\hat{H}|\Psi
angle}{\langle\Psi|\Psi
angle} \,.$$

(4)

Problem

This task poses a difficult many-body problem!

Density Functional Theory

Express the energy functional in terms of a density functional – and make some educated approximations later in the game!

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Consider all normalized states $|\Psi^{(n)}
angle$ for given 'physical' densities

$$n_{\sigma}(\mathbf{r}) = \langle \Psi^{(n)} | \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) | \Psi^{(n)} \rangle .$$
 (5)

The purely electronic operator $\hat{H}_{\rm e} = \hat{H}_{\rm kin} + \hat{V}_{\rm xc}$ (kinetic energy + exchange-correlation energy) is

$$\hat{\mathcal{H}}_{\mathrm{kin}} = \sum_{\sigma} \int \mathrm{d}\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m}\right) \hat{\Psi}_{\sigma}(\mathbf{r}) , \qquad (6)$$

$$\hat{\mathcal{V}}_{\mathrm{xc}} = \sum_{\sigma,\sigma'} \int \mathrm{d}\mathbf{r} \int \mathrm{d}\mathbf{r}' V(\mathbf{r}-\mathbf{r}') \Big[\hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma'}(\mathbf{r}') \hat{\Psi}_{\sigma}(\mathbf{r}) \\
-2 \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}') + n_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}') \Big] .$$

For fixed densities, the interaction with the ions and the Hartree interaction are constant.

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Levy's constraint search

Task: minimize the energy functional

$$\mathsf{F}\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Psi^{(n)}\rangle\right\}\right] = \langle\Psi^{(n)}|\hat{H}_{\mathrm{kin}} + \hat{V}_{\mathrm{xc}}|\Psi^{(n)}\rangle.$$
(7)

for fixed densities $n_{\sigma}(\mathbf{r})$. Result: optimized $|\Psi_0^{(n)}\rangle$.

Density functionals for the kinetic/exchange-correlation energy

We define two energy functionals that only depend on the densities,

Kinetic:
$$\mathcal{K}[\{n_{\sigma}(\mathbf{r})\}] = \langle \Psi_0^{(n)} | \hat{H}_{kin} | \Psi_0^{(n)} \rangle$$
, (8)

Exchange-correlation: $E_{\rm xc}[\{n_{\sigma}(\mathbf{r})\}] = \langle \Psi_0^{(n)} | \hat{V}_{\rm xc} | \Psi_0^{(n)} \rangle$. (9)

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Density Functional

Task: minimize the Density Functional

$$D[\{n_{\sigma}(\mathbf{r})\}] = K[\{n_{\sigma}(\mathbf{r})\}] + E_{\rm xc}[\{n_{\sigma}(\mathbf{r})\}] + U[\{n_{\sigma}(\mathbf{r})\}] + V_{\rm Har}[\{n_{\sigma}(\mathbf{r})\}]$$
(10)

with the ionic/Hartree energies

lonic:
$$U[\{n_{\sigma}(\mathbf{r})\}] = \sum_{\sigma} \int d\mathbf{r} U(\mathbf{r}) n_{\sigma}(\mathbf{r}) ,$$
 (11)

Hartree: $V_{\text{Har}}[\{n_{\sigma}(\mathbf{r})\}] = \sum_{\sigma,\sigma'} \int d\mathbf{r} \int d\mathbf{r}' V(\mathbf{r} - \mathbf{r}') n_{\sigma}(\mathbf{r}) n_{\sigma'}(\mathbf{r}') .$

The minimization provides the ground-state densities $n_{\sigma}^{0}(\mathbf{r})$ and the ground-state energy $E_{0} = D\left[\left\{n_{\sigma}^{0}(\mathbf{r})\right\}\right]$.

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Problem

The minimization of the energy functional in eq. (7) \bullet poses a difficult many-particle problem. Thus, the exact density functional $D[\{n_{\sigma}(\mathbf{r})\}]$ is unknown.

Hohenberg-Kohn approach

Idea: derive the same ground-state physics from an effective single-particle problem.

How can this be achieved?

In the following we follow a simple and straightforward strategy, not the most general one.

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Consider all normalized single-particle product states $|\Phi^{(n)}\rangle$ for given 'physical' densities

$$n_{\sigma}^{\rm sp}(\mathbf{r}) = \langle \Phi^{(n)} | \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \hat{\Psi}_{\sigma}(\mathbf{r}) | \Phi^{(n)} \rangle .$$
 (12)

As our single-particle Hamiltonian we consider the kinetic-energy operator $\hat{H}_{\rm kin}$. For fixed single-particle densities $n_{\sigma}^{\rm sp}(\mathbf{r})$, we define the single-particle functional

$$F_{\rm sp}\left[\left\{n_{\sigma}^{\rm sp}(\mathbf{r})\right\}, \left\{|\Phi^{(n)}\rangle\right\}\right] = \langle \Phi^{(n)}|\hat{H}_{\rm kin}|\Phi^{(n)}\rangle .$$
(13)

Levy's constrained search provides the optimized $|\Phi_0^{(n)}
angle$ and

$$\mathcal{K}_{\rm sp}\left[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}\right] = \langle \Phi_0^{(n)} | \hat{H}_{\rm kin} | \Phi_0^{(n)} \rangle . \tag{14}$$

9/38

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

The single-particle density functional is defined as

$$D_{\rm sp}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] = K_{\rm sp}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + U[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + V_{\rm Har}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}] + E_{\rm sp,xc}[\{n_{\sigma}^{\rm sp}(\mathbf{r})\}]$$
(15)

with the yet unspecified single-particle exchange-correlation energy $E_{\rm sp,xc} [\{n_{\sigma}^{\rm sp}(\mathbf{r})\}].$

Assumption: non-interacting V-representability

For any given (physical) densities $n_{\sigma}(\mathbf{r})$ we can find normalized single-particle product states $|\Phi^{(n)}\rangle$ such that

$$n_{\sigma}^{\mathrm{sp}}(\mathbf{r}) = n_{\sigma}(\mathbf{r})$$
 (16)

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Hohenberg-Kohn theorem

We demand

$$D_{\rm sp}\left[\{n_{\sigma}(\mathbf{r})\}\right] = D\left[\{n_{\sigma}(\mathbf{r})\}\right].$$
(17)

 \Rightarrow The single-particle substitute system has the same ground-state density $n_{\sigma}^{0}(\mathbf{r})$ and energy E_{0} as the many-particle Hamiltonian.

Single-particle exchange-correlation energy

To fulfill eq. (17), we define

 $E_{\rm sp,xc}\left[\{n_{\sigma}(\mathbf{r})\}\right] = K\left[\{n_{\sigma}(\mathbf{r})\}\right] - K_{\rm sp}\left[\{n_{\sigma}(\mathbf{r})\}\right] + E_{\rm xc}\left[\{n_{\sigma}(\mathbf{r})\}\right].$ (18)

Problem

We know neither of the quantities on the r.h.s. of eq. (18)!

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Upshot of the Hohenberg-Kohn theorem:

- A single-particle substitute system *exists* that leads to the exact ground-state properties.
- Its energy functional takes the form

$$E\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Phi\rangle\right\}\right] = \langle\Phi|\hat{H}_{\mathrm{kin}}|\Phi\rangle + U\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right]$$
(19)
+ $V_{\mathrm{Har}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + E_{\mathrm{sp,xc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right].$

Remaining task: minimize $E[\{n_{\sigma}(\mathbf{r})\}, \{|\Phi\rangle\}]$ in the subset of single-particle product states $|\Phi\rangle = \prod_{n,\sigma}' \hat{b}_{n,\sigma}^{\dagger} |\text{vac}\rangle$. The field operators are expanded as

$$\hat{\Psi}^{\dagger}_{\sigma}(\mathbf{r}) = \sum_{n} \psi^{*}_{n}(\mathbf{r})\hat{b}^{\dagger}_{n,\sigma} \quad , \quad \hat{\Psi}_{\sigma}(\mathbf{r}) = \sum_{n} \psi_{n}(\mathbf{r})\hat{b}_{n,\sigma} \; . \tag{20}$$

12 / 38

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

With the Hartree and exchange-correlation potentials

$$V_{\text{Har}}(\mathbf{r}) \equiv \sum_{\sigma'} \int d\mathbf{r}' 2V(\mathbf{r} - \mathbf{r}') n_{\sigma'}^{0}(\mathbf{r}') ,$$

$$v_{\text{sp,xc},\sigma}(\mathbf{r}) \equiv \frac{\partial E_{\text{sp,xc}} \left[\left\{ n_{\sigma'}(\mathbf{r}') \right\} \right]}{\partial n_{\sigma}(\mathbf{r})} \Big|_{n_{\sigma}(\mathbf{r}) = n_{\sigma}^{0}(\mathbf{r})} , \qquad (21)$$

the minimization conditions lead to the Kohn-Sham equations.

Kohn-Sham equations

$$h_{\sigma}^{\mathrm{KS}}(\mathbf{r})\psi_{n}(\mathbf{r}) = \epsilon_{n}(\mathbf{r})\psi_{n}(\mathbf{r}) ,$$

$$h_{\sigma}^{\mathrm{KS}}(\mathbf{r}) \equiv -\frac{\Delta_{\mathbf{r}}}{2m} + V_{\sigma}^{\mathrm{KS}}(\mathbf{r}) ,$$

$$V_{\sigma}^{\mathrm{KS}}(\mathbf{r}) \equiv U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{sp,xc},\sigma}(\mathbf{r}) .$$
(22)

13/38

Density Functional Theory for many-particle Hamiltonians Translational invariant lattice systems Conclusions Electronic problem Levy's constrained search Single-particle Hamiltonian and Ritz variational principle Kohn-Sham equations

Density Functional Theory

Resume of DFT

- There exists a single-particle substitute system that has the same ground-state energy and ground-state densities as the interacting many-electron system.
- If we knew the single-particle exchange-correlation energy $E_{\rm sp,xc}$ [{ $n_{\sigma}(\mathbf{r})$ }], the Kohn-Sham equations would provide single-particle eigenstates that define the single-particle ground state $|\Phi_0\rangle$. The exact ground-state properties can be extracted from $|\Phi_0\rangle$.

Remaining task

Find physically reasonable approximations for $E_{sp,xc}[\{n_{\sigma}(\mathbf{r})\}]$. Example: the local (spin) density approximation (L(S)DA).

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Limitations of DFT-L(S)DA & Co

The properties of transition metals and their compounds are not so well described.

Reason: 3d electrons are strongly correlated.

Solution

Treat interaction of electrons in correlated bands separately! The kinetic energy $\hat{H}_{\rm kin}$ plus the Hubbard interaction $\hat{V}_{\rm loc}$ define our new reference system,

$$\hat{H}_{\mathrm{kin}} \mapsto \hat{H}_{\mathrm{H}} = \hat{H}_{\mathrm{kin}} + \hat{V}_{\mathrm{loc}} - \hat{V}_{\mathrm{dc}}$$
 (23)

Here, $\hat{V}_{\rm dc}$ accounts for the double counting of the Coulomb interactions among correlated electrons.

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Using the same formalism as before, we define the functional

$$F_{\rm H}\left[\left\{n_{\sigma}(\mathbf{r})\right\},\left\{|\Psi^{(n)}\rangle\right\}\right] = \langle\Psi^{(n)}|\hat{H}_{\rm H}|\Psi^{(n)}\rangle . \tag{24}$$

Its optimization provides $|\Psi_{\mathrm{H},0}^{(n)}
angle$ and the functionals

$$\begin{aligned}
\mathcal{K}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \langle \Psi_{\mathrm{H},0}^{(n)} | \hat{H}_{\mathrm{kin}} | \Psi_{\mathrm{H},0}^{(n)} \rangle , \\
\mathcal{V}_{\mathrm{loc/dc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \langle \Psi_{\mathrm{H},0}^{(n)} | \hat{V}_{\mathrm{loc/dc}} | \Psi_{\mathrm{H},0}^{(n)} \rangle , \\
\mathcal{D}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] &= \mathcal{K}_{\mathrm{H}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + U\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] + \mathcal{V}_{\mathrm{Har}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] \\
&+ \mathcal{V}_{\mathrm{loc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] - \mathcal{V}_{\mathrm{dc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] \\
&+ \mathcal{E}_{\mathrm{H},\mathrm{xc}}\left[\left\{n_{\sigma}(\mathbf{r})\right\}\right] . \end{aligned}$$
(25)
$$(25)$$

We demand $D_{\rm H}[\{n_{\sigma}(\mathbf{r})\}] = D[\{n_{\sigma}(\mathbf{r})\}]$. Then, $\hat{H}_{\rm H}$ leads to the exact ground-state energy E_0 and densities $n_{\sigma}^0(\mathbf{r})$.

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Problem

The Hubbard interaction \hat{V}_{loc} reintroduces the complexity of the the full many-body problem! – What have we gained?

Indeed, when we apply the Ritz principle to the energy functional

$$E = \langle \Psi | \hat{H}_{\mathrm{H}} | \Psi \rangle + U \left[\{ n_{\sigma}(\mathbf{r}) \} \right] + V_{\mathrm{Har}} \left[\{ n_{\sigma}(\mathbf{r}) \} \right] + E_{\mathrm{H,xc}} \left[\{ n_{\sigma}(\mathbf{r}) \} \right] ,$$
(27)

we arrive at the many-particle Hubbard-Schrödinger equation

$$\left(\hat{H}_{0}+\hat{V}_{\rm loc}-\hat{V}_{\rm dc}\right)|\Psi_{0}\rangle=E_{0}|\Psi_{0}\rangle \tag{28}$$

with the single-particle Hamiltonian

$$\hat{H}_{0} = \sum_{\sigma} \int \mathrm{d}\mathbf{r} \hat{\Psi}_{\sigma}^{\dagger}(\mathbf{r}) \Big(-\frac{\Delta_{\mathbf{r}}}{2m} + U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{H,xc},\sigma}(\mathbf{r}) \Big) \hat{\Psi}_{\sigma}(\mathbf{r}) \,.$$

17/38

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Advantage

Local interactions among correlated electrons are treated explicitly so that they are subtracted from the exact exchange-correlation energy,

$$E_{\mathrm{H,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] = K\left[\{n_{\sigma}(\mathbf{r})\}\right] - K_{\mathrm{H}}\left[\{n_{\sigma}(\mathbf{r})\}\right] + E_{\mathrm{xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] - \left(V_{\mathrm{loc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] - V_{\mathrm{dc}}\left[\{n_{\sigma}(\mathbf{r})\}\right]\right) .$$
(30)

Consequence: an (L(S)DA) approximation should better suited for $E_{\rm H,xc}$ than for $E_{\rm sp,xc}.$

Later, we shall employ the approximation

$$E_{\mathrm{H,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] \approx E_{\mathrm{LDA,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right] . \tag{31}$$

イロト 不得 とくき とくき とうき

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Variational approach

Idea:

approximate the many-particle functional $\langle \Psi | \hat{H}_{kin} + \hat{V}_{loc} - \hat{V}_{dc} | \Psi \rangle$. Strategies:

- LDA+U: use single-particle states $|\Phi\rangle$.
- Gutzwiller: use many-particle variational states $|\Psi_{\rm G}\rangle.$

Consider atomic states $|\Gamma\rangle_{\mathbf{R}}$ at lattice site \mathbf{R} that are built from the correlated orbitals. With the local many-particle operators $\hat{m}_{\mathbf{R};\Gamma,\Gamma'} = |\Gamma\rangle_{\mathbf{R}\mathbf{R}}\langle\Gamma'|$ we define the Gutzwiller states as

$$|\Psi_{\rm G}\rangle = \hat{P}_{\rm G}|\Phi\rangle \quad , \quad \hat{P}_{\rm G} = \prod_{\mathbf{R}} \sum_{\Gamma,\Gamma'} \lambda_{\Gamma,\Gamma'}(\mathbf{R}) \hat{m}_{\mathbf{R};\Gamma,\Gamma'} \; .$$
(32)

 $\lambda_{\Gamma,\Gamma'}(\mathbf{R})$ are, in general, complex variational parameters.

19/38

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

The energy functional requires the evaluation of expectation values for the local interaction

$$V_{\rm loc/dc} = \sum_{\mathbf{R}} \sum_{\Gamma,\Gamma'} E_{\Gamma,\Gamma'}^{\rm loc/dc}(\mathbf{R}) \frac{\langle \Psi_{\rm G} | \hat{m}_{\mathbf{R};\Gamma,\Gamma'} | \Psi_{\rm G} \rangle}{\langle \Psi_{\rm G} | \Psi_{\rm G} \rangle} , \quad (33)$$
$$E_{\Gamma,\Gamma'}^{\rm loc/dc}(\mathbf{R}) = {}_{\mathbf{R}} \langle \Gamma | \hat{V}_{\rm loc/dc}(\mathbf{R}) | \Gamma' \rangle_{\mathbf{R}} , \quad (34)$$

and for the single-particle density matrix, e.g., in the orbital Wannier basis ($\hat{\Psi}_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}} \phi_{\mathbf{R},b,\sigma}(\mathbf{r}) \hat{c}_{\mathbf{R},b,\sigma}$),

$$\rho_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma}^{\mathrm{G}} = \frac{\langle \Psi_{\mathrm{G}} | \hat{c}_{\mathbf{R},b,\sigma}^{\dagger} \hat{c}_{\mathbf{R}',b',\sigma} | \Psi_{\mathrm{G}} \rangle}{\langle \Psi_{\mathrm{G}} | \Psi_{\mathrm{G}} \rangle} .$$
(35)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Gutzwiller energy functional

The Gutzwiller energy functional $E \equiv E[\{n_{\sigma}(\mathbf{r})\}, \{|\Psi_{G}\rangle\}]$ reads

$$E = \sum_{\mathbf{R},b,\mathbf{R}',b',\sigma} \mathcal{T}_{(\mathbf{R},b),(\mathbf{R}',b');\sigma} \rho^{\mathrm{G}}_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma} + V^{\mathrm{G}}_{\mathrm{loc}} - V^{\mathrm{G}}_{\mathrm{dc}} + U\left[\{n_{\sigma}(\mathbf{r})\}\right] + V_{\mathrm{Har}}\left[\{n_{\sigma}(\mathbf{r})\}\right] + \mathcal{E}_{\mathrm{H,xc}}\left[\{n_{\sigma}(\mathbf{r})\}\right], (36)$$
$$\mathcal{T}_{(\mathbf{R},b),(\mathbf{R}',b');\sigma} = \int \mathrm{d}\mathbf{r} \phi^{*}_{\mathbf{R},b,\sigma}(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m}\right) \phi_{\mathbf{R}',b',\sigma}(\mathbf{r}).$$
(37)

The densities become

$$n_{\sigma}(\mathbf{r}) = \sum_{\mathbf{R}, b, \mathbf{R}', b'} \phi_{\mathbf{R}, b, \sigma}^{*}(\mathbf{r}) \phi_{\mathbf{R}', b', \sigma}(\mathbf{r}) \rho_{(\mathbf{R}', b'), (\mathbf{R}, b); \sigma}^{\mathrm{G}} .$$
(38)

Hubbard interaction and Hubbard density functional Gutzwiller density functional Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

Problem

The evaluation of expectation values with Gutzwiller-correlated states poses a difficult many-particle problem.

Solution

Evaluate expectation values diagrammatically in such a way that not a single diagram must be calculated in the limit of infinite lattice coordination number, $Z \rightarrow \infty$ (recall: Z = 12 for nickel).

Result: all quantities depend only on the single-particle density matrix $C_{b',b;\sigma}(\mathbf{R}) = \langle \Phi | \hat{c}^{\dagger}_{\mathbf{R},b,\sigma} \hat{c}_{\mathbf{R},b',\sigma} | \Phi \rangle$ and the Gutzwiller variational parameters $\lambda_{\Gamma,\Gamma'}(\mathbf{R})$. For example,

$$V_{\rm loc}^{\rm G} = \sum_{\mathbf{R}} \sum_{\Gamma_1, \dots, \Gamma_4} \lambda_{\Gamma_2, \Gamma_1}^*(\mathbf{R}) E_{\Gamma_2, \Gamma_3}^{\rm loc}(\mathbf{R}) \lambda_{\Gamma_3, \Gamma_4}(\mathbf{R}) \langle \hat{m}_{\mathbf{R}; \Gamma_1, \Gamma_4} \rangle_{\Phi} .$$
(39)

Density Functional Theory for many-particle Hamiltonians

For $\textbf{R} \neq \textbf{R}'$, the correlated single-particle density matrix becomes

$$\rho_{(\mathbf{R}',b'),(\mathbf{R},b);\sigma}^{\mathrm{G}} = \sum_{a,a'} q_{b,\sigma}^{a,\sigma}(\mathbf{R}) \left(q_{b',\sigma}^{a',\sigma}(\mathbf{R}') \right)^* \rho_{(\mathbf{R}',a'),(\mathbf{R},a);\sigma} .$$
(40)

The orbital-dependent factors $q_{b,\sigma}^{a,\sigma}(\mathbf{R})$ reduce the band width of the correlated orbitals and their hybridizations with other orbitals.

Results

- In the limit $Z \to \infty$, the Gutzwiller many-body problem is solved without further approximations.
- 'Solve the Gutzwiller–Kohn-Sham equations' ⊕
 'Minimize with respect to the Gutzwiller parameters λ_{Γ,Γ'}(**R**)' is similar in complexity to the DFT. For simple systems such as nickel, the latter minimization is computationally inexpensive (20% of total CPU time).

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

For translational invariant lattice systems, the quasi-particle ('Gutzwiller–Kohn-Sham') Hamiltonian becomes

$$\hat{\mathcal{H}}_{qp}^{G} = \sum_{\mathbf{k},b,b',\sigma} h_{b,b';\sigma}^{G}(\mathbf{k}) \hat{c}_{\mathbf{k},b,\sigma}^{\dagger} \hat{c}_{\mathbf{k},b',\sigma}$$
(41)

with the matrix elements in the orbital Bloch basis

$$\begin{split} h_{b,b';\sigma}^{\mathrm{G}}(\mathbf{k}) &= \eta_{b,b';\sigma} + \sum_{a,a'} q_{a,\sigma}^{b,\sigma} \left(q_{a',\sigma}^{b',\sigma} \right)^* h_{a,a';\sigma}^0(\mathbf{k}) , \\ h_{a,a';\sigma}^0(\mathbf{k}) &= \int \mathrm{d}\mathbf{r} \phi_{\mathbf{k},a,\sigma}^*(\mathbf{r}) \left(-\frac{\Delta_{\mathbf{r}}}{2m} + V_{\sigma}^{\mathrm{H}}(\mathbf{r}) \right) \phi_{\mathbf{k},a',\sigma}(\mathbf{r}) , (42) \\ V_{\sigma}^{\mathrm{H}}(\mathbf{r}) &= U(\mathbf{r}) + V_{\mathrm{Har}}(\mathbf{r}) + v_{\mathrm{H,xc},\sigma}(\mathbf{r}) . \end{split}$$

 $\eta_{b,b';\sigma}$: Lagrange parameters (variational band-shifts).

24 / 38

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

・ロト ・四ト ・ヨト ・ヨト

Translational invariant lattice systems

In cubic symmetry, the local interaction for 3d electrons reads

$$\begin{split} \hat{V}_{\text{loc}}^{\text{full}} &= \hat{V}_{\text{loc}}^{\text{dens}} + \hat{V}_{\text{loc}}^{\text{sf}} + \hat{V}_{\text{loc}}^{(3)} + \hat{V}_{\text{loc}}^{(4)} , \\ \hat{V}_{\text{loc}}^{\text{dens}} &= \sum_{c,\sigma} U(c,c) \hat{n}_{c,\sigma} \hat{n}_{c',\bar{\sigma}} + \sum_{c(\neq)c'} \sum_{\sigma,\sigma'} \widetilde{U}_{\sigma,\sigma'}(c,c') \hat{n}_{c,\sigma} \hat{n}_{c',\sigma'} , \\ \hat{V}_{\text{loc}}^{\text{sf}} &= \sum_{c(\neq)c'} J(c,c') \left(\hat{c}_{c,\uparrow}^{\dagger} \hat{c}_{c,\downarrow}^{\dagger} \hat{c}_{c',\downarrow} \hat{c}_{c',\uparrow} + \text{h.c.} \right) \\ &+ \sum_{c(\neq)c';\sigma} J(c,c') \hat{c}_{c,\sigma}^{\dagger} \hat{c}_{c',\bar{\sigma}}^{\dagger} \hat{c}_{c,\bar{\sigma}} \hat{c}_{c',\sigma} . \end{split}$$
(43)
Here, $\bar{\uparrow} = \downarrow (\bar{\downarrow} = \uparrow)$ and $\widetilde{U}_{\sigma,\sigma'}(c,c') = U(c,c) - \delta_{\sigma,\sigma'} J(c,c'). \\ U \equiv U(c,c) \text{ and } J \equiv J(c,c') \text{ are local Hubbard and Hund's-rule} exchange interactions. DMFT calculations often employ $\hat{V}_{\text{loc}}^{\text{dens}} \end{split}$$

only (reduction of the numerical effort).

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Gutzwiller calculations include the full $\hat{V}_{\rm loc}$ with the spin-flip terms and the three-orbital and four-orbital terms

$$\hat{V}_{\text{loc}}^{(3)} = \sum_{t;\sigma,\sigma'} (T(t) - \delta_{\sigma,\sigma'}A(t)) \hat{n}_{t,\sigma} \hat{c}_{u,\sigma'}^{\dagger} \hat{c}_{v,\sigma'} + \text{h.c.}, \qquad (44)$$

$$+ \sum_{t,\sigma} A(t) \left(\hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t,\bar{\sigma}}^{\dagger} \hat{c}_{u,\bar{\sigma}} \hat{c}_{v,\sigma} + \hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t,\bar{\sigma}}^{\dagger} \hat{c}_{t,\bar{\sigma}} \hat{c}_{v,\sigma} + \text{h.c.} \right)$$

$$\hat{V}_{\text{loc}}^{(4)} = \sum_{t(\neq)t'(\neq)t''} \sum_{e,\sigma,\sigma'} S(t,t';t'',e) \hat{c}_{t,\sigma}^{\dagger} \hat{c}_{t',\sigma'}^{\dagger} \hat{c}_{t'',\sigma'} \hat{c}_{e,\sigma} + \text{h.c.}.$$

Here, $t = \zeta$, η , ξ (t_{2g} orbitals) with symmetries $\zeta = xy$, $\eta = xz$, and $\xi = yz$, and e = u, v (two e_g orbitals) with symmetries $u = 3z^2 - r^2$ and $v = x^2 - y^2$.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Double counting corrections

There exists no systematic (let alone rigorous) derivation of the double-counting corrections.

In the context of the LDA+U method, it was suggested to use

$$V_{\rm dc}^{\rm LDA+U} = \frac{U}{2}\bar{n}(\bar{n}-1) - \frac{J}{2}\sum_{\sigma}\bar{n}_{\sigma}(1-\bar{n}_{\sigma}) , \qquad (45)$$

where \bar{n}_{σ} is the sum of σ -electrons in the correlated orbitals. In effect, the double-counting corrections generate a band shift

$$\eta_{c,c;\sigma}^{\rm dc} = -\left[U\left(\bar{n} - 1/2\right) + J\left(\bar{n}_{\sigma} - 1/2\right)\right] \,. \tag{46}$$

It guarantees that the Hubbard interaction does not empty the 3d-levels.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Problems

- The choice of the double-counting correction is guess-work.
- The double-counting corrections have no orbital resolution.
- The double-counting corrections do not work, e.g., for Cerium.

There is the big risk that the physics is determined by the choice of the double-counting corrections!

Double counting corrections for nickel

The 3*d*-shell is almost filled, $n_{3d} \approx 9/10$. Here, the form of the double-counting corrections is not decisive for the ground-state properties.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Further simplifications for nickel

- Assume identical radial parts for the t_{2g} and e_g orbitals ('spherical approximation'). Then, three Racah parameters A, B, C determine all Coulomb parameters, e.g., U = A + 4B + 3C, J = 5B/2 + C.
- Use C/B = 4, as is appropriate for neutral nickel atoms.
 Then, U and J determine the atomic spectrum completely.
- In cubic symmetry, some matrices become diagonal

$$q_{c,\sigma}^{c',\sigma} = \delta_{c,c'} \left(\delta_{c,t_{2g}} q_{t,\sigma} + \delta_{c,e_g} q_{e,\sigma} \right) , \quad (47)$$

$$\rho_{(\mathbf{R},b'),(\mathbf{R},b);\sigma}^{G} = \delta_{b,b'} \rho_{(\mathbf{R},b),(\mathbf{R},b);\sigma} . \quad (48)$$

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Implementation

- We use QUANTUMESPRESSO as DFT code (open source, based on plane waves, employs ultra-soft pseudo-potentials).
- 'Poor-man' Wannier orbitals for 3*d* electrons (Wannier90 not yet implemented).

Hubbard parameters

The 'best values' for U and J depend on

- the quality of the correlated orbitals; better localized orbitals require larger Coulomb interactions;
- the accuracy of the local interaction; using density-density interactions only requires smaller Coulomb parameters;
- The choice of the double-counting corrections.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

We fix U and J for nickel from a comparison of the lattice constant and the spin-only magnetic moment.

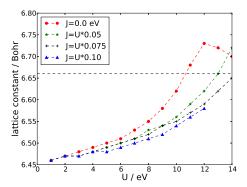


Fig. 1: fcc lattice constant of nickel as a function of U for different values of J/U, calculated with the full local Hamiltonian $\hat{V}_{\rm loc}^{\rm full}$ and the LDA+U double counting correction; dashed line: experimental value.

(本間) とうきょうきょう

In DFT: the lattice constant is too small; the Gutzwiller approach resolves this problem if we choose U > 10 eV.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

In order to fix both U and J, we must also consider the spin-only magnetic moment.

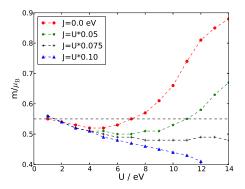


Fig. 2: magnetic moment of nickel as a function of U for different values of J/U, calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; dashed line: experimental value.

If we choose $U_{opt} = 13 \text{ eV}$ and $J_{opt} = 0.9 \text{ eV} (J/U = 0.7)$, we obtain a good agreement with the experimental values for *a* and *m*.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

For $U_{\rm opt}=13\,{\rm eV}$ and $J_{\rm opt}=0.9\,{\rm eV}$ (J/U=0.7), we calculate the bulk modulus.

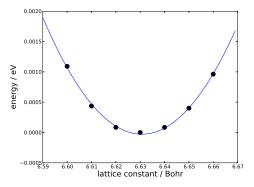


Fig. 3: Ground-state energy per particle $E_0(a)/N$ relative to its value at $a = 6.63a_B$ as a function of the fcc lattice parameter a/a_B , calculated with the full local Hamiltonian \hat{V}_{loc}^{full} and the LDA+U double counting correction; full line: 2^{nd} -order polynomial fit.

 $K_{\rm G} = 169 \,{\rm GPa}$, in good agreement with experiment, $K = 182 \,{\rm GPa}$, whereas $K_{\rm DFT} = 245 \,{\rm GPa}$.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

For $U_{\rm opt} = 13 \, {\rm eV}$ and $J_{\rm opt} = 0.9 \, {\rm eV}$ (J/U = 0.7), we derive the quasi-particle band structure.

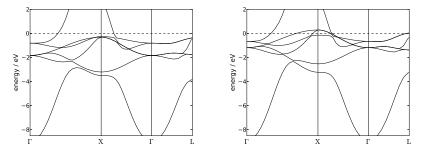


Fig. 4: quasi-particle band structure of fcc nickel along high-symmetry lines in the first Brillouin zone, calculated with the full local Hamiltonian $\hat{V}_{\rm loc}^{\rm full}$ and the LDA+U double counting correction; left: majority spin; right: minority spin; Fermi energy $E_{\rm F}^{\rm G} = 0$.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Symmetry	Experiment	$\hat{V}_{ m loc}^{ m full}$	$\hat{V}_{ m loc}^{ m dens}$
$\langle \Gamma_1 \rangle$	8.90 ± 0.30	8.95[0.08]	8.93[0.08]
$\langle X_1 \rangle$	3.30 ± 0.20	3.37[0.27]	3.42[0.10]
$X_{2\uparrow}$	0.21 ± 0.03	0.26	0.13
$X_{2\downarrow}$	0.04 ± 0.03	0.14	0.21
$X_{5\uparrow}$	0.15 ± 0.03	0.32	0.41
$\Delta_{e_g}(X_2)$	0.17 ± 0.05	0.12	-0.08
$\Delta_{t_{2g}}(X_5)$	0.33 ± 0.04	0.60	0.70
$\langle L_{2'} \rangle$	1.00 ± 0.20	0.14[0.06]	0.12[0.06]
$\langle \Lambda_{3;1/2} \rangle$	$0.50[0.21\pm 0.02]$	0.64[0.30]	0.60[0.16]

Quasi-particle band energies with respect to the Fermi energy in eV at various high-symmetry points (counted positive for occupied states). $\langle \ldots \rangle$ indicates the spin average, errors bars in the experiments without spin resolution are given as \pm . Theoretical data show the spin average and the exchange splittings in square brackets.

Gutzwiller–Kohn-Sham quasi-particle Hamiltonian Local Hamiltonian for transition metals Results for nickel

Translational invariant lattice systems

Improvements

- Gutzwiller-DFT gets the correct 3d bandwidth ($W_{G-DFT} = 3.3 \text{ eV}$, whereas $W_{DFT} = 4.5 \text{ eV}$).
- Gutzwiller-DFT gets the correct Fermi-surface topology (one one hole ellipsoid at the X-point).
- The positions of the bands are OK, by and large.
- The band at $L_{2'}$ are pure 3p-like (not correlated yet!).
- The full local interaction gives somewhat better results that the density-only interaction.

Refinements are to be expected when we improve the description (orbital dependent double counting, spin-orbit coupling).

Conclusions

Summary

- Formalism:
 - We presented a formal derivation of the Gutzwiller Density Functional Theory.
 - Explicit expressions for all required expectation values are available in the limit of large lattice coordination number.
 - For simple cases such as nickel, previous ad-hoc formulations are proven to be correct.
- Results for nickel:
 - Experimental values for the lattice constant, the bulk modulus and the magnetic moment are reproduced for U = 13 eV and J = 0.9 eV.
 - The band width, the Fermi surface topology, and the overall band structure reproduce the experimental data fairly well.
 - No fine tuning of parameters is required.

Summary Outlook

Conclusions

Outlook

- The Gutzwiller DFT is a generic extension of the DFT framework; however, it is not fully 'ab initio'!
- It is a numerically affordable method to include correlations.
- Our present implementation is based on the limit of infinite lattice coordination number.

Open problems

- The spin-orbit coupling must be implemented.
- The method must be applied to other materials.
- Well localized correlated orbitals must be constructed & used.
- The double-counting problem must be solved in a canonical way; ad-hoc potentials are not helpful in the long run.