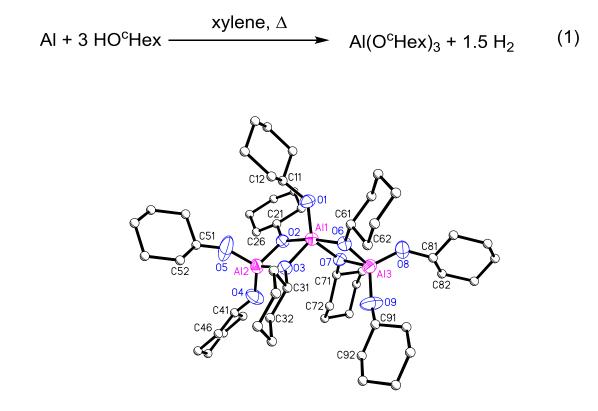
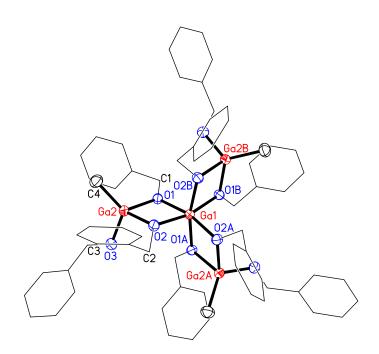
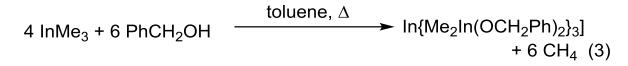
## Alkoxometalates

A possible synthesis route to homonuclear aluminium sesquialkoxides is the reaction of equimolar amounts of aluminium with an alcohol in xylene under reflux conditions [eqn. (1)]. Al( $O^{c}Hex$ )<sub>3</sub> is trimeric in the solid state (fig. 1)





fig. 1

Reaction of Trimethylgallane with PhCH<sub>2</sub>OH leads to a sesquialkoxide according eqn. (2).


4 GaMe<sub>3</sub> + 9 PhCH<sub>2</sub>OH 
$$\longrightarrow$$
 Ga{Me<sub>2</sub>Ga(OCH<sub>2</sub>Ph)<sub>3</sub>}<sub>3</sub>]  
+ 9 CH<sub>4</sub> (2)

The structure of this sesquialkoxide is shown in fig. 2.





With <sup>c</sup>HexOH and InMe<sub>3</sub> another type of sesquialkoxide was formed accoding eqn. (3).



The structure is similar, shown in fig. 3.

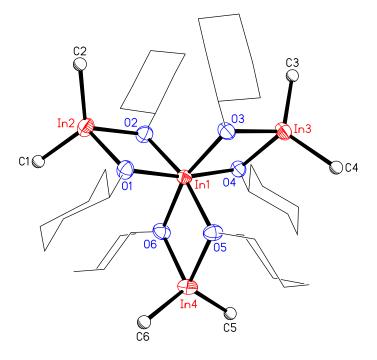



fig. 3

Me<sub>3</sub>Ga and two equivalents of alcohol gives MeGa(OR)<sub>2</sub> according eqn. (4) which are polymeric in the solid state (fig. 4).

GaMe<sub>3</sub> + 2 ROH 
$$\rightarrow$$
 1/n [{MeGa(OR)<sub>2</sub>}<sub>2</sub>]<sub>n</sub> + 2 CH<sub>4</sub> (4)  
R = Et, <sup>n</sup>Bu

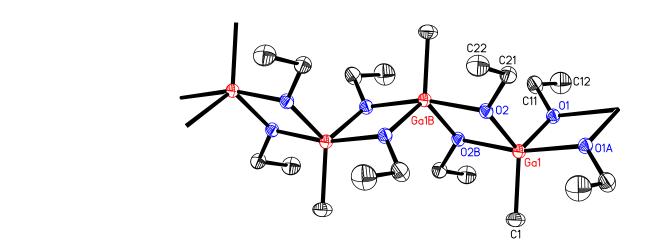
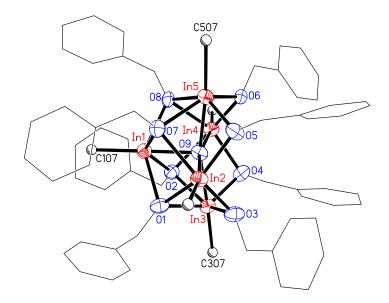


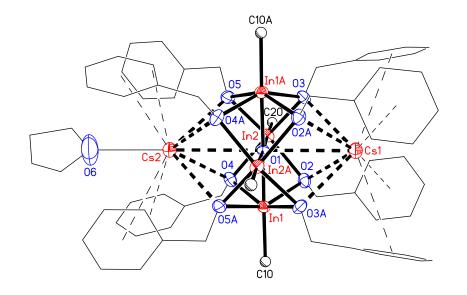

fig 4

InMe<sub>3</sub> undergoes in PhCH<sub>2</sub>OH under reflux conditions the reaction to a complex with five In atoms (eqn. 5).

InMe<sub>3</sub> 
$$\xrightarrow{\text{PhCH}_2\text{OH}, \Delta}$$
 [(Meln)<sub>5</sub>(OCH<sub>2</sub>Ph)<sub>8</sub>(O)] (5)  
- CH<sub>4</sub>

The complex is shown in fig. 5.





fig. 5

Reaction of [(MeIn)<sub>5</sub>(OCH<sub>2</sub>Ph)<sub>8</sub>(O)] with cesium in organic solvents under ultrasonic conditions leads to a Cs complex according eqn. (6).

$$(Meln)_5(OCH_2Ph)_8(O)] + 2 Cs$$
 1. toluene, 20 °C, ultrasound  
2. THF

 $[Cs{Cs(THF)}{Meln(OCH_2Ph)_2]_4(O)}] (6)$ 

In the cesium comlex the Cs+-Ions are coordinated by oxygen atoms and the  $\pi$ -systems of the OCH<sub>2</sub>Ph ligands (fig. 6).



## Literature:

- B. Neumüller: Chem. Soc. Rev. 2003, 32, 50.
- Th. Kräuter: Chem. Eur. J. 1997, 3, 568.
- S. Chitsaz: Z. Anorg. Allg. Chem. 2001, 627, 2451.
- S. Chitsaz, E. Iravani, B. Neumüller, Z. Anorg. Allg. Chem. 2002, 628, 2279.
- N. Nami Chamazi, M. M. Heravi, B. Neumüller, Z. Anorg. Allg. Chem. 2007, 633, 709.